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ASYMPTOTICALLY MEAN STATIONARY MEASURES'

By ROBERT M. GRAY AND J. C. KIEFFER
Stanford University and University of Missouri

Numerous properties are developed of measures that are asymptotically
mean stationary with respect to a possibly nonsingular and noninvertible
measurable transformation on a probability space. In particular, several neces-
sary and sufficient conditions for the measure and transformation to satisfy the
ergodic theorem are given, an asymptotic form of the Radon-Nikodym theorem
for asymptotically dominated measures is developed, and the asymptotic be-
havior of the resulting Radon-Nikodym derivatives is described. As an applica-
tion we prove a Shannon-McMillan-Breiman theorem for the case considered.
Several examples are given to illustrate the results.

Introduction. Let (2,%) be a measurable space and 7: € — £ a measurable
transformation. If (A4, %) is a measurable space, (A4;, ®;) = (A4, B®) for all integers i,
and (R,%) is the two-sided sequence space defined by the Cartesian product
(Parthasarathy (1972), page 6)

172 _ (4, B;) = (4%, %),
or (2, %) is the one-sided sequence space
I26(4,,%;) = (4" ,%"),

then T is assumed to be the shift. It is of interest in ergodic theory and its
application to information theory to know under what conditions on a probability
measure p on (2, %) the ergodic theorem and the Shannon-McMillan theorem will
hold for T.

In information theory the mathematical model of a source is usually a one-sided
random process {X,}»>, or a two-sided random process {X,};. _. defined on
some probability space. Hence when treating processes we will focus on the
appropriate sequence space with the distribution rather than the underlying proba-
bility space and T will be the shift. The basic coding theorems of information
theory are applications of the ergodic and Shannon-McMillan theorems and it is
customary in the information theory literature to assume that the process distribu-
tion p is stationary (u(T~'F) = u(F), all F € ¥) in order to invoke these results.
This typically involves placing restrictions on the allowed sources, coders, and
channels in order to ensure that all sources arising within a communications system
are stationary. As will be detailed later, several important models arising in
information theory are not stationary. Examples are the outputs of codes mapping
blocks of a source into encoded blocks of fixed or variable length, the output of a
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finite state machine driven by a stationary one-sided source, and a stationary
source when given side information in the form of conditioning.

More general conditions under which the ergodic and Shannon-McMillan theo-
rems hold under additional assumptions on T have appeared in the literature.
Dowker (1951) showed that if 7 is invertible and nonsingular (7 is nonsingular if
uT~ ! < p) then the ergodic theorem holds if and only if

(D lim, 1~ 'S 0u(T 'F) exists, all F € F,
in which case it follows from the Vitali-Hahn-Saks theorem that
2 B(F) = lim, o n~'ZiZou(T'F), Feg

is a probability measure. Since j is obviously stationary, (2) can be interpreted as
saying that the measures p7~" converge to the stationary measure i in an
arithmetic mean or Cesaro mean sense. Hence we define a probability measure p to
be asymptotically mean stationary with respect to T if (1) holds and we call i
stationary mean of u. If T is clear from context we merely say that u is am.s. A
process is said to be a.m.s. if its distribution is a.m.s. If T is invertible, it follows
easily that &> p and that p is a.m.s. iff there exists a stationary measure 1 such
that 7 > p.

Rechard (1956) generalized these ideas to nonsingular transformations that need
not be invertible (such as the one-sided shift). It follows from his results that the
ergodic theorem is satisfied iff p is a.m.s. It need no longer be true, however, that
i > p. Rechard replaced this condition by an asymptotic form: a measure 1 on Fis
said to asymptotically dominate (or be asymptotically stronger than) a measure p on
% (with respect to T') if F € ¥ and n(F) = 0 implies that

lim, , pu(T7"F) = 0.

Rechard effectively showed that a measure p is a.m.s. if and only if it is asymptoti-
cally dominated by a stationary measure.

Halmos (1966) argues there is no loss of generality in assuming a transformation
nonsingular since similar conclusions can be drawn by replacing the original
measure y by a measure p, such that T is nonsingular with respect to p, and
o> p. This idea could be used to prove the ergodic theorem holds iff p is a.m.s.
for general measurable 7 without the nonsingular assumption (although this has
not actually been done to our knowledge). In addition, it would likely yield
generalizations of some of Rechard’s other properties of a.m.s. measures to possibly
singular transformations. This approach has two drawbacks. First, direct proofs
without the nonsingular assumption are simpler in several cases. For example, the
proof that the ergodic theorem holds iff a measure is a.m.s. is easy in the general
case. Secondly, singular measures arise naturally in information theory in the study
of sources that can be synchronized, that is, where an observer can find with high
probability where code blocks begin by observing a long run of data (Nedoma
(1964); Dobrushin (1967); Gray, Ornstein, and Dobrushin (1980); Kieffer (1977)).
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When developing properties of such sources it is of interest that they describe the
source itself and not an artificial dominating source. That is, the source is
inherently singular and should be treated as such.

The Shannon-McMillan theorem has not been shown to hold under conditions
as general as those for the ergodic theorem. Jacobs (1959) proved that if n satisfies
the Shannon-McMillan theorem for 7 and n > u, then p also satisfies the theorem.
This immediately implies that if p is a.m.s. and T is invertible, then the Shannon-
McMillan theorem holds for T since p < g and ji is stationary. If T is not
invertible, however, then g only asymptotically dominates g and the Shannon-
McMillan theorem has not previously been proved for this case.

It is the purpose of this paper to give a survey of the properties of a.m.s.
measures with respect to general measurable transformations which are not as-
sumed invertible or nonsingular. Some of these results are generalizations of results
of Dowker (1951) and Rechard (1956) and many are new. These properties are here
used to prove a Shannon-McMillan-Breiman and Shannon-McMillan theorem for
measures a.m.s. with respect to a general measurable transformation. They are also
intended to serve as a basis for further applications.

The ergodic theorem. Let (2,9 ) be a measurable space and T: Q2> Q a
measurable transformation. If y is a.m.s. with stationary mean, then it is clear from
(2) that g(F) = u(F) for every T-invariant set F € %. This observation yields a
simple proof of an ergodic theorem for p.

THEOREM 1. Let p be a probability measure on %. Then . is a.m.s. if and only if for
every bounded measurable f:Q — (— o0, 0) {n”'S7_) f T’} converges a.e. [u] as
n— 0.

PrOOF. If p is a.m.s., the set on which {(n™'S7-)f T’} converges is T-invariant
and has pg-measure 1, and therefore has y-measure 1. Conversely the convergence of
the averages implies that p is a.m.s.—just take f as an indicator function and
integrate the sequence of averages.

Asymptotic dominance. Fix (2,%) and T : 2 — € for the rest of this section. It is
sometimes difficult to determine if a measure p on ¥ is a.m.s. by using the
definition. An alternate approach is provided by the concept of asymptotic domi-
nance.

THEOREM 2. If p,m are probability measures on %, where v is stationary and
asymptotically dominates p., then y is a.m.s.

Proor. The stated condition implies an ergodic theorem (see the proof of
Theorem 1) and hence the result follows from Theorem 1.

Since the concept of asymptotic dominance proves useful in determining whether
a measure is a.m.s., it is helpful to know some conditions which imply and /or are
implied by asymptotic dominance. Theorems 3 and 4 give a few conditions of this

type.
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First, define ¥, = N,,,7""9. Note that if T is invertible, then %_ = ¥ and
several of the following results are trivial. Note also that if @ is a one-sided
sequence space, then ¥, is the tail o-field N,,, (0(X,,X,,, " - - ), where { X}, are
the coordinate mappings.

THEOREM 3. Let p,n be probability measures on %, where v is stationary. The
Jollowing are equivalent:

(a) m asymptotically dominates ;

(b) If F € % is T-invariant and n(F) = 0, then u(F) = 0;

(c) If FE Y, and n(F) = 0, then u(F) = 0.

PRrROOF.
(c) = (b) Immediate.
(b) = (a) If n(F) = 0, then lim sup, 7T~ "F is T-invariant and
has n-measure 0. Hence,
lim sup, , , u(T7"F) < p(limsup, ,, T "F) = 0.
(a) = (c) This implication is Corollary 1 of the next section.

REMARK. Note that the equivalence of (a) and (b) implies that if p is a.m.s.,
then i asymptotically dominates p.

THEOREM 4. Let u,m be probability measures on %, where v is invariant.
(a)pu < n implies m asymptotically dominates
(b)If T is invertible and n asymptotically dominates p, then p < 1.

PRrOOF.

@ p<n and W(F)=9(T""F) =0, all n, then also u(7 "F) =0 whence
lim, ,  w(T™"F) = 0. .

(b) If n asymptotically dominates u and n(F) = 0, then U _T"FET is
T-invariant and has n measure zero and hence also u measure zero from Theorem
3. Thus

p(F) < p(UL_,T"F) = 0.

ReEMARK. Theorem 4 is a generalization of Theorem 1 of Rechard (1956) for
nonsingular transformations. Rechard’s proof utilizes the nonsingularity of 7 and is
longer.

Thus asymptotic dominance and ordinary dominance are equivalent in the
invertible case and i >> p.

Some asymptotic convergence theorems. Fix in this section (2, %), T, and prob-
ability measures p1,n on ¥. If A is a probability measure on ¥, let A, denote the part
of A absolutely continuous with respect to n (that is, A, is the unique positive
measure such that A, «n and A — A, L7, its existence being guaranteed by the
Lebesgue decomposition theorem).

If pis a.m.s. and T is invertible, then p < j& and hence from the Radon-Nikodym
theorem u(F) = [r(dp/dp)djr. The Radon-Nikodym theorem is useful in studying
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a.m.s. sources with invertible shifts. In particular, Jacobs (1959) shows that if  has
a Shannon-McMillan theorem and n >> u, then u also has a Shannon-McMillan
theorem. Thus the Shannon-McMillan theorem is valid for all a.m.s. measures if T
is invertible, e.g., for two-sided a.m.s. sources. The following theorem provides an
asymptotic form of the Radon-Nikodym theorem for asymptotically dominated
measures. This result is used in the next section to generalize Jacob’s (1959) result
to asymptotic dominance.

THEOREM 5. Define

_ d(uT™")a
5= R

If 1 asymptotically dominates p., then
lim, _,, {suppeg|n(T~"F) = [pfydn|} = 0.

PrOOF. From the Lebesgue decomposition theorem and the Radon-Nikodym

theorem for each n = 0,1,2,- - - there exists a B, € ¥ such that
(3 pT~"(F) = pT™"(F N B,) + [, dn, Feg,
’J‘(Bn) = 0'

Define B = U;%,B, and we have that n(B) = 0 and hence by assumption
0 < w(T™"F) — [phidn = p(T""(F N B,))
< w(T™"(FN B)) < p(T™"B) —,..0.

Since the bound is uniform over F, the theorem is proved.

The remainder of this section is devoted to further developing the properties of
the f,. Henceforth if A is a probability measure on ¥, let A, denote the restriction
of A to 9.

CoRrOLLARY 1. If n is stationary and asymptotically dominates ., then Poo K Mo

PrROOF. Let F € %, satisfy n(F) =0. Find {F,} so that T™"F,=F, n =
1,2, ---. By Theorem 2, u(F) — Jr, fodn — 0. But by stationarity of n [, fodn =
Je£,T"dn = 0, hence u(F) = 0.

THEOREM 6. Let n be stationary and asymptotically dominate . Then
d,
j;,T”—)n_m—”—w a.e.[n] and L'(9).
dne, :

ProoF. Define f, = du,/dn, and 9, = T~"%. All conditional expectations
below are with respect to 1. For any m

@) Jlfo = £T"dn < [1f — E(£,T"|%,) dn + [|E(£,T™|F,)
— E(£f,T™|%,)dn + [|E(£,T™|F,) — f,T"|dn.
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For all F € ¥, we have from (3) and iterated expectation that
.“(F) = [pfodn > [pf,T"dn = [E(£,T™|%,)dn
and hence since f, and E(f,T™|9,) are both measurable with respect to %, we

have from Ash (1972), page 49, that £, > E(f£,T™|%9,)a.e.[n]. Thus from Theorem

5
(%) I fo = E(f,T™F,)|dn = [fodn — JE(f,T™|%,)dn
=1- (f,T"dn - 0.

m—o0

Therefore given ¢ > 0 we can choose M so large that m > M implies

(6) [ fo = E(faT™|F)ldn < /2.

For fixed m we have from the L'(n) convergence of conditional expectation given
decreasing o-fields (e.g., Ash (1972), page 299) that the middle term on the right of
(4) goes to zero as n— oo0. From the proof of Theorem 5 and the facts that
T "B, € 9,,m(B,) = 7(T~"B,) = 0, we have for n > m and all F € §, C 9, that

JrE(£,T™|F,)dn = [¢f,T"dN = [pnrpyfuT™dn < p(F 0 (T7"B,)°)
= [rna—rsy ST dn + w(FN(T™"B,)°n T""B,)

= [pf,T"dn.
Since £, T" and E(f,T™|9,) are both measurable with respect to %, this implies
from Ash (1972), page 49, that E(f,T™|%,) < f,T" a.e. [n] and hence from (6)

(M JIE(£T™F,) - £,T"|dn = [f,T"dn — [E(£,T™|%,)dn

= [f,T"dn — [f,T"dn -, .1 — [f,T"dn < ¢/2.
Thus from (4), (6) and (7)

ﬁmsupn—)ooflf _an|"7 < e
proving L'(n) convergence since ¢ is arbitrary. For any measure A on &, let A,
denote its restriction to %,. From (3) we see that f,7" = d(p,,),/ dn,, for each n. It
is an easy consequence of the Lebesgue decomposition theorem that f,, ,T"*! is
the maximal ¥,, - measurable function g for which u(F) > frgdn, FEF,,,.
That is, if g is ¥, ,-measurable and p(F) > [rgdn, FEF,,,, theng < f,,,T"*!
a.e. [n]. Now by (3),
p(F) > [pf,T"dn = [fE(£,T"|%,,)dn, Feg,,.
Hence by the preceding remarks, E(f£,T"|%,,,) < f,.,T"*" a.e. [n]. This means
that {f,T"}3 is a reverse supermartingale so by a supermartingale convergence
theorem (Neveu (1975), pages 115-119), { f,T"} converges a.e. [n].
:COROLLARY 2. If 0 is stationary and asymptotically dominates ., then
limn—mo supFE"'f““(T_nF) - fT"'Ffoo d"l| = O’

where f,, = dp.,/ dn.
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Proor. For any m and F
SUPreg|(T™"F) = [r-npfodn| < SUpreg|u(T™"F) — Jre £, T"dn|
+ SUppeg| [r-p o, T"dN — [r-npfodn].

The leftmost term on the right goes to zero as n— oo from Theorem 5 and
stationarity of . The remaining term is bound above using Theorem 6 by

SUPreg [r-p| K T" — foldn < Sl ,T" — foldm =0

completing the proof.
The next corollary provides an (e, §) version of absolute dominance and gener-
alizes Theorem 2 of Rechard (1956) to possibly nonsingular transformations.

COROLLARY 3. If n is stationary and asymptotically dominates ., then given ¢ > 0
there is a 8 > 0 and an integer N such that if 7(F) < 8, then u(T ~"F) < ¢ for all
n> N.

Proor. From the previous corollary given € > 0 there is an N such that for
n>NFe¥%

MT7"F) < [r-npfodn + ¢/3
and hence for any r > 0
p(T™"F) < ro(F) + [;_,.fodn + ¢/3.

Since f, € L'(n) we can choose r so large that

Jfio>rfodn < &/3
and hence 8 = ¢/3r completes the proof.

THEOREM 7. Let n be stationary and asymptotically dominate ., then

n_12?=_01 i n—-»ooj—” in LI("]) norm.
Thus if n = p,
nISI el in L(E) norm.

Proor. Forn = 0 1,- - - define the operator T, LI(Q F,m) — LR, %,,1) by
T W f=fT" Then T, T, is a norm-preserving 1somorphlsm Let U, be the inverse of T
and note that

(8) IJn(Umf) n+mf f € LI(Q’ goo$ TI)~

By Theorem 6 £, T"— £, in L'(n) norm, hence since each U, preserves L!(7n) norm,
U(£,T") = U,f,—0 in L'(n) norm. Thus, since U(f,T") = f,,n"'S'ZLf, con-
verges in L'(n) norm if n~ 'S U, £ does. From (8) we have that U, foo = Uifo
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Since

(@ U[LY(R,F,, )] C L2, F,,n);

® UI[LZ(Q’ Fom] C LX(Q, For M)

(c) U, preserves the L'(n) and L?(n) norms, it follows from Jacobs (1962), page
94, that n 'S U/ f, converges in L'(n) norm. By Theorem 5, if F € ¥, then

Je{n™'Zi50f Y dn — nT'EI50(T T'F) >,.0.
Thus if g is the L'(n) limit of {n~'37_)f}, then [rgdn = u(F), F € %, and so
g =dp/dn.

The Shannon-McMillan-Breiman theorem. In this section we prove the Shan-
non-McMillan theorem (L' convergence) and the Shannon-McMillan-Breiman
theorem (a.e. convergence) for a one-sided a.m.s. process with a finite state space.
(These results are immediate for 2-sided a.m.s. processes by the remark following
Theorem 4 and Jacobs (1959) result.) As pointed out in Corollary 4, we can and
will assume our process {X,,}§ consists of the coordinate mappings from 4™ — 4,
where A is a fixed finite set.

If U,V are discrete measurable functions defined on4*, and A is probability
measure on (A*,% ™), let A((U) and A(U |V') be the functions on 4™ such that

AU)(x) = A[U = U(x)], xEA*
AU|V) =AU, V)/NV), AV)>0
=0, elsewhere.

LEMMA . Let 1 be stationary and asymptotically dominate p. If f: A* — (— 0, 0)
is a measurable tail function of {X;} (measurable with respect to %), f,: A*—
(—o0,), n=1,2,3, -+ is a sequence of measurable functions, and k,— oo, then

(X s Xy 415+ ) > fae.[n]

implies
J( X s X 41500 ) > fae. [pu].

PROOF. Assume k,— oo and f,(X;,X; .y, -+ +)—>f ae. [n]. Then for each
e >0, lim,_ n(E,(e)) = 0, where

En(e) = Ur0:=n{|fm(ka’ka+l’ e ) -fl > 6}.
By Corollary 3, it follows that lim,_, u(E,(¢)) = 0, and so
j;(Xk",anH, <o) > fae.[p].

. THEOREM 8. Let m be stationary and asymptotically dominate . Let h be any tail
Sfunction such that
n(X7")
n

log — ha.e. [11],
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then also

— hae.[p] andin L'(p).

p(X7)
log .

PrOOF. From Jacobs (1959), n~'logu(X}") is uniformly p-integrable and so
L'(p) convergence will follow from a.e. convergence. First assume that p( X2 = x)
> 0,n(X2=x)>0, all m,n,x € A" ™', Let k be a positive integer. If n > k,
log p(X}") = log u(X) + log p(X{F~'|X?). From Parry (1969), page 14,
sup ,| log p(X~'| X{)| € L'(n) whence

n~ogu(X7) — n"ogu(X7) -, .0ae. [p].
The same holds true for p replaced by 1. Hence if k,, — oo slowly enough,
9) n~'logu(X7) — n"'logu(X; ) — Oae.[p]
(10) n~'logn(X7) — n'logn(X;) - Oae.[n].

If log = log,, then
n(n~"log {w(Xi)/n(XL)} > ¢) < 27"
hence
(n'logp(X;y) — n~'logn(X;)), > Oae.[n]
and reversing roles yields
(n“logn(X,:‘") - n"logp(X,:'”))+ — 0ae.[p].

Applying the lemma,
(11) n~'logn(Xy ) — n'logu(X7) - Oae.[n].
From (10)

n~'logn(X;) > hae.[n].
From the lemma,

n~'logn(X;) — hae.[u].
From (11),

n~'logp(Xg) - hae.[p],
and hence from (9)

n~logu(Xy) - hae.[p].
If u,7n are not strictly positive, pick A stationary such that A(X2 = x) > 0 for all
m,n,x. Let o’ = (p +A)/2, ' = (n + A)/2. Picking /" a tail function such that
+n~'log n{(X") - K’ a.e.[p'], we have by the preceding argument that
n-'logw (X") - k' a.e.[p'] and therefore since u < p’, n”'logu(X") — 1’ a.e.[p]
by the Jacobs (1959) result. Since n < 7’, we again have by Jacobs (1959) that

n~'logn(X') > k' a.e.[n] and so h = k' a.e.[n]. But A,k are tail functions so by
Theorem 3(c), h = h’a.e.[pu].
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COROLLARY 4. The Shannon-McMillan-Breiman and Shannon-McMillan theo-
rems hold for any one-sided a.m.s. processes with finite-state space.

Proor. If two processes have the same distribution, it is easy to see that the
Shannon-McMillan theorem holds for one of the processes if and only if it holds
for the other. Thus Corollary 4 follows from Theorem 8 and the observation that if
{Y,)% is an A-valued a.m.s. process with joint distribution p, the process {X,}5’ on
(A% ,%™, ) also has joint distribution p.

Examples. In this section several nonstationary yet a.m.s. measures are de-
scribed.

ExampLE 1. If T:Q — Q is measurable and u,n are probability measures on
(2, %) such that 7 is stationary and p < 7, then p is a.m.s. from Theorem 1. From
the Radon-Nikodym theorem p < 7 iff there is a measurable f:§ — [0, c0) such
that u(F) = [pfdn, F € 9. Thus by choosing different f one can generate many
a.m.s. nonstationary p.

ExampLE 2. Ifn is stationary and n(G) >0, G € %, then u(F)=n(FnN
G)/7(G) is am.s. as in Example 1 since p < 7. Furthermore, if 1 is a.m.s. and
7(G) > 0, then u(F) = n(F N G)/n(G) is a.m.s. since if §(F) = O, then as in the
proof of Theorem 3, n(lim sup, ., T "F) =0 hence p(lim sup, ,, 7 "F)=0
hence lim, , pu(T""F) =0 and p is ams. from Theorem 2. Thus the a.m.s.
property is not lost by conditioning while stationarity is, in general, lost by
conditioning.

ExaMPLE 3. We give an example of an a.m.s. source which cannot be generated
as in Example 1. Let @ = A*,4 = {0,1}. Let u be such that x(1,0,0, ---) = 1.
Then p is a.m.s. and singular to every stationary .

Observe that by mixing sources such as in Example 3 with a stationary measure
we can model measures that are nonstationary due to transients and hence become
stationary in the limit, that is, (T~ "F) -> u(F) asn—> oo, F € F.

ExampLE 4. Let {X,}2°, be a one-sided process with finite alphabet 4. A
finite-state code consists of a finite state space S, an initial state s, € S, and two
mappings f: 4 X S— B,g: 4 X S — S yielding an output (encoded) sequence Y,
and state sequence S,, n = 1,2, - - - where

Yn+l = f(Xn’Sn)

Sn+l = g(Xn’Sn)'

Kieffer and Rahe (1979) have shown that if the process {X,,} is stationary (or, more
generally, a.m.s.), then the joint input/output process {X,,Y,};°, is also a.m.s.
Thus, in particular, both the ergodic theorem and Shannon-McMillan theorem
hold for the output of a finite state machine driven by a stationary process.
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ExaMPLE 5. If p is stationary with respect to TV for some integer N (or
N-stationary), then p is easily seen to be a.m.s. with respect to 7 with stationary
mean

E(F) = N7'25(T ~'F).

N-stationary processes arise naturally in information theory in the study of block
codes, that is, codes mapping nonoverlapping of source N-tuples into encoded
N-blocks. Furthermore, if an N-stationary source p with alphabet A is synchroniz-
able in the sense that given ¢ > 0 there is for sufficiently large M a function
f:A™ - {0,1,-- - ,N — 1} such that
pT"(f(XM)=n) > 1 —¢

(e.g., p is a block length N encoded source and the beginning of the blocks can be
determined with high probability by observing the outputs for a long time), then T
is singular.

ExAMPLE 6. A generalization of N-stationary sources that arises in variable-
length coding problems in information theory is a variable length shift 7* defined
by

T*w = TH@y, w E Q,

where L:Q2— {1,2,---} is called a length function. If a source measure p is
stationary with respect to T* we say it is variable-length stationary. For example, if
a one-sided stationary source is encoded by mapping a source N-tuple x!' into
output blocks of variable length /(x”), then the encoded source is stationary with
respect to T* with L(w) = I(X{(w)). We here show that if u is stationary with
respect to T*, then it is a.m.s. with respect to 7. We assume that EL < oo and
define the probability measure

i(f) = (EL) 'Sg. Zion(T~F 0 L7'(k)),
where L™!(k) = {w: L(w) = k}. We have that
T*'F = U (T*F) n L™\(k),

hence

= w((T*F) 0 L7\(k)) = u(F)
= 32 w(Fn L7Y(k)).

w(T*~'F)

We therefore have

i(T'F)

(EL)™'Sp_ Shodu(T~-'F 0 L™ (k)

= i(F) + (EL)" (S w(T7*F n L7'(k))
- S m(Fn L7Y(k)))

= (F)
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and hence ji is stationary with respect to 7. By construction ji > p and hence p is
a.m.s. with respect to T from Theorems 4 and 3. Intuitively, the measure i
corresponds to the distribution of a process obtained from {X,} “randomizing” the
choice of zero time, or, equivalently, inserting a random phase. From this point of
view the fact that fi is stationary is equivalent to Theorem 3 of Cariolaro and
Pierobon (1977) for the case of a bounded length function of the form L(w) =
(X))
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