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model that admits a posterior distribution with desirable properties under
mild conditions. In particular, our empirical Bayes posterior distribution
concentrates on balls, centered at the true mean vector, with squared radius
proportional to the minimax rate, and its posterior mean is an asymptoti-
cally minimax estimator. We also show that, asymptotically, the support of
our empirical Bayes posterior has roughly the same effective dimension as
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is straightforward, and our numerical results demonstrate the quality of our
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1. Introduction

High-dimensional problems, where the parameter is effectively lower-dimensional,
are now commonplace in statistical applications. Examples include variable se-
lection in regression (Fan and Lv, 2010), covariance matrix estimation (Cai,
Zhang and Zhou, 2010; Cai and Zhou, 2012; Lam and Fan, 2009), large-scale
multiple testing (Bogdan et al., 2011; Cai and Jin, 2010), and function estima-
tion (Cai, 2012; Johnstone and Silverman, 2005). The canonical example, which
we shall consider here, is that of estimating a sparse high-dimensional normal
mean vector. Let X1, . . . , Xn be independent observations, with Xi ∼ N(θi, 1),
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i = 1, . . . , n, and the goal is to estimate the mean vector θ = (θ1, . . . , θn) un-

der squared-error loss ‖θ̂ − θ‖2, where ‖ · ‖ is the usual ℓ2-norm on R
n (e.g.,

Abramovich et al., 2006; Brown and Greenshtein, 2009; Castillo and van der
Vaart, 2012; Donoho and Johnstone, 1994; Donoho et al., 1992; Jiang and Zhang,
2009). With only a single observation Xi for each θi, accurate estimation is not
possible without some structure. Assuming θ is sparse, in the sense that most
of the θi’s are zero, makes the effective dimension relatively small so that rea-
sonably accurate estimation becomes possible.

This normal means model is by now a classic one which has been widely
studied from both a mathematical and applied point of view. Despite the extent
to which the many-normal-means model has been studied, it is still a practically
important model in a variety of problems. For example, the sparse normal mean
model is the cornerstone for many modern Bayes and empirical Bayes multiple
testing procedures, e.g., Scott and Berger (2006), Jin and Cai (2007), Bogdan,
Ghosh and Tokdar (2008), Efron (2008), and Martin and Tokdar (2012). More
recently, Scott et al. (2013) have presented a novel use of the same classical
model considered here but in the regression setting. Clearly, research on this clas-
sical model is alive and well, and the results provided by our unique approach,
namely, asymptotically minimax concentration rates and superior finite-sample
performance compared to many existing methods, are useful contributions.

Recently, Castillo and van der Vaart (2012) have considered the performance
of several Bayesian methods for this problem. They focus on frequentist prop-
erties of a Bayesian posterior distribution, and the corresponding Bayes esti-
mators, for priors with a two-groups structure. In sparse estimation problems,
a two-groups prior puts positive probability on θ vectors with some exact zero
entries, so the marginal prior for each component is a mixture of a continuous
distribution and a point-mass at zero. Castillo and van der Vaart (2012) show
that, for a suitably chosen two-groups prior, the posterior concentrates around
the true signal at the asymptotically optimal minimax rate. From this, concen-
tration properties of posterior quantities, such as the posterior mean, can be
derived. An important message in their paper is that care is needed in choos-
ing the prior for the non-zero θ entries. In particular, they show that priors
with too light tails, e.g., Gaussian, give sub-optimal concentration properties.
The results presented herein provide similar guidance, though our perspective
is different.

Here we take a novel empirical Bayes approach. In particular, we present
a hierarchical two-groups prior where, given a weight ω, the θi’s are modeled
as independent, with θi = 0 with probability gi(ω), and θi ∼ hi(θ | ω) with
probability 1− gi(ω), where the functions gi and hi depend on data Xi. These
functions are defined explicitly in Section 2. To complete the hierarchy, ω is
assigned a prior concentrated near 1. We argue that the effect of the data-
dependent prior is mitigated by preventing the posterior from tracking the data
too closely. This approach provides some new insights, which we compare to
those coming from the approach of Castillo and van der Vaart (2012).

In Section 3 we present our theoretical framework. First, we show that our
empirical Bayes posterior concentrates, with probability 1, around the true mean
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vector at the optimal minimax rate (with respect to square error loss) for the as-
sumed sparsity class. Concentration rate theorems for empirical Bayes posteriors
are relatively scarce in the literature, and our technique for handling the chal-
lenges that arise from data appearing in both the likelihood and prior might be
useful in other problems; one possible extension is discussed briefly in Section 5.
We then show that our empirical Bayes posterior mean is an asymptotically
minimax estimator of θ. Finally, we show that, asymptotically, the support of
our empirical Bayes posterior has, up to a logarithmic factor, the same effective
dimension as the true sparse θ. An interesting observation is that the particular
form of the prior on ω is the main catalyst for concentration of our empirical
Bayes posterior.

Section 4 describes computation of our empirical Bayes posterior mean via
a straightforward Markov chain Monte Carlo. Simulation results are presented
to show that our empirical Bayes posterior mean generally outperforms those
Bayesian and non-Bayesian competitors with comparable large-sample proper-
ties. In particular, we compare our method with a two hard thresholding esti-
mators (Donoho and Johnstone, 1994), Bayes and empirical Bayes estimators
based on priors with a two-groups structure (Castillo and van der Vaart, 2012;
Johnstone and Silverman, 2004), and a new estimator based on the one-group
Dirichlet–Laplace prior (Bhattacharya et al., 2014). Our proposed empirical
Bayes estimator is competitive in all cases considered here, and is often strik-
ingly better than the others. Concluding remarks are given in Section 5.

2. An empirical Bayes model

For the independent normal mean model, Xi ∼ N(θi, 1), i = 1, . . . , n, let pθi(xi)
denote the density of Xi, and, for x = (x1, . . . , xn), let pnθ (x) =

∏n
i=1 pθi(xi)

denote the corresponding joint density of X = (X1, . . . , Xn). Define a data-
dependent hierarchical prior ΠX for θ = (θ1, . . . , θn) as follows. Introduce a
parameter ω ∈ (0, 1), and take the joint prior distribution for (θ1, . . . , θn, ω),
under ΠX , to have density proportional to

ωαn−1
n
∏

i=1

{

ωe
1
2 (1−κ)X2

i δ0(dθi) + (1− ω) 1√
2πσ2

e−
1
2

[

1−(1−κ)σ2

σ2

]

(θi−Xi)
2

dθi

}

, (1)

where α > 0, κ ∈ (0, 1), and σ2 > 0 are parameters to be discussed further in
Sections 3–4. A representation of this as a genuine empirical Bayes plug-in prior
is given in Section 3.1. The dependence of the prior on (α, κ, σ2) will not be
reflected in our notation. Hence, gi(ω) and hi(ω), mentioned in Section 1, are
given by

gi(ω) =
ωe−

1
2 (1−κ)X2

i

ωe−
1
2 (1−κ)X2

i + (1 − ω){1− (1− κ)σ2}−1

and

hi(· | ω) = N
(

· | Xi, σ
2{1− (1− κ)σ2}−1

)

,
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respectively. If we denote by ΠX(θ1, . . . , θn, ω) the density (1), then by ΠX(θ)
we mean the marginal prior for θ = (θ1, . . . , θn), i.e.,

ΠX(θ) =

∫ 1

0

ΠX(θ1, . . . , θn, ω) dω.

Observe that if σ2 < (1−κ)−1, then the prior for θi is proper, a mixture of a point
mass and a Gaussian centered atXi. When σ2 > (1−κ)−1, the prior is improper.
In any case, the posterior is proper, so this possible impropriety of the prior is
not a concern. In fact, σ2 = (1−κ)−1 is a critical boundary, corresponding to an
improper uniform prior for the non-zero θi’s; see Section 3.3. The term ωαn−1

in the joint density, which resembles a beta density, turns out to be critical to
the success of our proposed method, both in theory and in implementation.

Given dataX = (X1, . . . , Xn) from the normal mean model and the empirical
Bayes prior distribution ΠX for θ, we could combine these to form an empirical
Bayes posterior distribution via Bayes theorem. That is, for a suitable set A in
the θ-space, define the probability measure

Qn(A) ≡ Qn,X(A) ∝
∫

A

pnθ (X)ΠX(dθ).

We will investigate concentration properties of the empirical Bayes posterior
in Section 3. In particular, we show that the empirical Bayes posterior mean
derived from Qn is an asymptotically minimax estimator of θ.

It might seem that our apparent double-use of the data—once in the prior
and again in the likelihood—could lead to a posterior Qn that tracks the data
too closely. To see that this is not the case, note that if |Xi| is large, then the
prior probability for θi = 0, under ΠX , would be rather large. Thus, the prior
has an unexpected shrinkage effect, pushing θi corresponding to Xi with large
magnitude towards zero. On the other hand, an Xi with large magnitude shifts
the prior on the non-zero part further from zero, effectively making the tails
heavier, to accommodate large signals. These two phenomena suggest that using
data in both the prior and the likelihood will not result in a posterior that tracks
data too closely. In fact, our theoretical and numerical results demonstrate that
the posterior is doing the right thing, namely, concentrating on the true θ.

3. Empirical Bayes posterior asymptotics

3.1. A fractional likelihood perspective

To start, it will help to look at the proposed model from a different perspective.
For mathematical convenience, we shift our focus and rewrite the empirical
Bayes posterior Qn using a fractional likelihood. That is, we write pnθ (X) =
pnθ (X)κpnθ (X)1−κ and move the 1− κ fraction into the prior ΠX defined above.
The effect of this is an alternative prior for (θ, ω) of a very simple form:

θi | ω ind∼ ωδ0 + (1 − ω)N(Xi, σ
2), i = 1, . . . , n,

ω ∼ Beta(αn, 1).
(2)
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To provide some further intuition for the prior (1) in Section 2, we may con-
sider a data-free version of the prior in (2), where the Xi’s are replaced by
hyperparameters µi. The marginal likelihood for µ = (µ1, . . . , µn), given ω, is

n
∏

i=1

{

ωN(Xi | 0, 1) + (1− ω)N(Xi | µi, 1)
}

.

and Xi is clearly the maximum marginal likelihood estimate of µi. The use
of plug-in estimates for mean hyperparameters was considered in Babenko and
Belitser (2010) though in a slightly different context. We get the empirical Bayes
prior (1) by plugging in Xi for µi and undoing the fractional likelihood.

To make this explicit, we have

exp
{

−κ(Xi − θi)
2

2

}[

ωδ0(θi) + (1− ω)
1

σ
√
2π

exp
{

− (θi − µi)
2

2σ2

}]

,

which is equivalent to

exp
{

− (Xi − θi)
2

2

}[

ω exp
{

− (κ− 1)(θi −Xi)
2

2

}

δ0(θi)

+ (1− ω)
1

σ
√
2π

exp
{

− [1− (1 − κ)σ2] (θi −Xi)
2

2σ2

}]

,

with µi = Xi.
Within this alternative setup, we introduce independent binary latent vari-

ables I1, . . . , In, where Ii = 1 if and only if θi = 0. Then, given ω, the indicators
I1, . . . , In are independent Ber(ω) variables. These indicators characterize the
support of the vector θ; in particular,

∑n
i=1(1− Ii) is the number of non-zero θi

and is distributed as Bin(n, 1−ω). The beta prior for ω is concentrated near 1 for
n large, so the support size will tend to be small, consistent with the assumption
of sparsity. Castillo and van der Vaart (2012), on the other hand, focus primarily
on priors directly on the support size, though this kind of beta–binomial prior
is considered in their Example 2.2. We find that direct use of the weight ω is
both theoretically and computationally convenient; see Remark 1.

Write this new version (2) of the prior as Π̃X and express the posterior as

Qn(A) ∝
∫

A

pnθ (X)κ Π̃X(dθ).

This version of the empirical Bayes posterior is amenable for our asymptotic
analysis; see, also Walker and Hjort (2001). The use of pseudo-posteriors, where
an inverse temperature parameter plays the role of κ, has been considered in the
statistics and machine learning literature (e.g., Dalalyan and Tsybakov, 2008;
Jiang and Tanner, 2008; Zhang, 2006), but our context is different.

3.2. Lower bound on the denominator

In the normal mean model, let θ⋆ denote the true mean vector. Assume that θ⋆

is sparse in the sense that most of its entries are zero. To make this more precise,
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let S⋆ ⊂ {1, 2, . . . , n} denote the support of θ⋆, i.e., θ⋆i 6= 0 if and only if i ∈ S⋆.
Let sn = #S⋆ be the cardinality of S⋆, and say that θ⋆ is sn-sparse. Then by
sparse we mean that sn → ∞ but sn = o(n) as n → ∞. That is, although θ⋆ is
n-dimensional, its effective dimension is actually much smaller.

Start by rewriting the empirical Bayes posterior Qn once more as

Qn(A) =

∫

A{pnθ (X)/pnθ⋆(X)}κ Π̃X(dθ)
∫

Rn{pnθ (X)/pnθ⋆(X)}κ Π̃X(dθ)
. (3)

Our overall goal is to show that Qn concentrates its mass near θ⋆ with Pθ⋆-
probability 1. The strategy is to show that the denominator of Qn is not too
small, and the numerator, for sets An away from θ⋆, is not too large.

Our first result gives a bound on the denominator of Qn, like that which
obtains from the familiar Kullback–Leibler property (e.g., Barron, Schervish
and Wasserman, 1999; Ghosal, Ghosh and Ramamoorthi, 1999; Ghosal, Ghosh
and van der Vaart, 2000; Schwartz, 1965; Shen and Wasserman, 2001). This
lower bound will be used in Section 3.3 to derive vanishing upper bounds on
the Qn-probability assigned to complements of balls around θ⋆. But besides as
a tool for proving other things, the following lemma suggests that our empirical
Bayes-style prior is sufficiently concentrated around θ⋆. As Castillo and van der
Vaart (2012) show, without suitable prior concentration, the desired posterior
concentration is not possible. Therefore, if we associate lower bounds on the
denominator of Qn in (3) with adequate prior concentration, then Lemma 1
says that our prior is sufficiently concentrated around θ⋆.

Lemma 1. Let Dn be the denominator in (3). If θ⋆ is sn-sparse, then there ex-

ists η ∈ R, depending on (κ, α, σ2), such that Dn > α
1+α exp{ηsn−2sn log(n/sn)+

o(sn)} with Pθ⋆-probability 1.

Proof. Write Dn in terms of the conditional prior (θ1, . . . , θn) | ω ∼ Π̃X,ω and

the marginal prior ω ∼ π̃ for ω under Π̃X . That is,

Dn =

∫ 1

0

∫

Rn

{ pnθ (X)

pnθ⋆(X)

}κ

Π̃X,ω(dθ) π̃(dω)

=

∫ 1

0

n
∏

i=1

∫

R

{ pθi(Xi)

pθ⋆
i
(Xi)

}κ

Π̃X,ω(dθi) π̃(dω).

For given ω, the inner expectation involves an average over all configurations of
the indicators (I1, . . . , In) defined in Section 3.1. This average is clearly larger
than just the case where the indicators exactly match up with the support S⋆

of θ⋆, times the probability of that configuration. That is,

Dn >

∫ 1

0

ωn−sn(1 − ω)sn π̃(dω)

×
∏

i∈S⋆

∫

R

e
κ
2 {(Xi−θ⋆

i )
2−(Xi−θi)

2} 1√
2πσ2

e−
1

2σ2 (Xi−θi)
2

dθi.
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The term ωsn−n(1−ω)sn corresponds to the probability for the configuration of
(I1, . . . , In) matching the support S⋆. The integral for i ∈ S⋆ is the expectation
of the normal density ratio for non-zero θi with respect to the N(Xi, σ

2) prior.
Finally, the product over i 6∈ S⋆ disappears because p0(Xi) = pθ⋆

i
(Xi) for i 6∈

S⋆. To further bound this quantity, first pull out the terms exp{κ
2 (Xi − θ⋆i )

2}
in the latter integrand that do not depend on θi. Since, by the law of large
numbers, s−1

n

∑

i∈S⋆(Xi − θ⋆i )
2 → 1, as n → ∞, with Pθ⋆-probability 1, this

part contributes a factor exp{κ
2 sn + o(sn)} to the lower bound for Dn. Next,

∫

R

e−
κ
2 (Xi−θi)

2 1√
2πσ2

e−
1

2σ2 (θi−Xi)
2

dθi =
1

(1 + κσ2)1/2
.

So, the remaining product over i ∈ S⋆ equals (1+κσ2)−sn/2, and we can conclude
that the entire product over i ∈ S⋆ in the lower bound for Dn is itself lower
bounded by

exp
[sn
2
{κ− log(1 + κσ2)}+ o(sn)

]

.

It remains to bound the integral over ω. Since π(dω) = αnωαn−1 dω, we have

∫ 1

0

ωn−sn(1− ω)sn π̃(dω) > αn

∫ 1−sn/n

0

ωn−sn+αn−1(1− ω)sn dω

>
(sn
n

)sn αn

n− sn + αn

(

1− sn
n

)n−sn+αn

>
α

1 + α

(sn
n

)2sn(

1− sn
n

)αn

. (4)

The last inequality follows since (1 − b)1−b > bb for small b > 0. Next, if we
write

(1− sn/n)
αn = exp[−αn{− log(1− sn/n)}],

and use the approximation − log(1 − x) = x + o(x), for x ≈ 0, then we get a
lower bound on the ω-integral of the form:

c exp
{

−2sn log(n/sn)− αsn + o(sn)
}

, n → ∞,

for c = α/(1 + α) > 0. Putting these pieces together, gives the lower bound

Dn > c exp
[sn
2
{κ− 2α− log(1 + κσ2) + o(1)} − 2sn log(n/sn)

]

.

Set η = 1
2{κ− 2α− log(1 + κσ2)} ∈ R to complete the proof.

3.3. Concentration

In the frequentist problem of estimating a sn-sparse vector θ under squared ℓ2-
error loss, it is known that the minimax rate is proportional to εn := sn log(n/sn);
see Donoho et al. (1992). Following Castillo and van der Vaart (2012), our goal
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Fig 1. Portion of the feasible region Rβ in (5), with β = 200, for (κ, σ2). Solid black line
corresponds to the curve σ2 = (1− κ)−1.

here is to show that Qn concentrates asymptotically on n-balls, centered at θ⋆,
with square radius proportional to εn. More precisely, for a constant M > 0, let

AMεn = {θ ∈ R
n : ‖θ − θ⋆‖2 > Mεn};

then we will demonstrate that Qn(AMεn ) → 0 with Pθ⋆ -probability 1.
The theorem below requires a restriction on (κ, σ2). In particular, we require

that, for some β > 1, (κ, σ2) reside in the feasible region

Rβ =
{

(κ, σ2) :
1

σ2(1 + β/σ2)1/β
− 1

σ2 + β
<

κ[(1− κ)β − 1]

β − 1

}

. (5)

We are particularly interested in large β, so that κ arbitrarily close to 1 can
be included. Figure 1 displays a portion of the region Rβ , for β = 200. The
condition σ2 = (1− κ)−1 discussed in Section 2 defines the boundary of Rβ , for
large β and κ ≈ 1.

Theorem 1. For any fixed β > 1, take (κ, σ2) in the feasible set Rβ. If θ
⋆ is sn-

sparse, then there exists M > 0 such that Qn(AMεn ) → 0 with Pθ⋆-probability 1.

Proof. Let Nn be the numerator for Qn(AMεn) in (3), i.e.,

Nn =

∫ 1

0

∫

AMεn

n
∏

i=1

( pθi(Xi)

pθ⋆
i
(Xi)

)κ

Π̃Xi,ω(dθi) π̃(dω).

Taking expectation of Nn, with respect to Pθ⋆ , we get

Eθ⋆(Nn) =

∫ 1

0

∫

AMεn

n
∏

i=1

∫

R

( pθi(xi)

pθ⋆
i
(xi)

)κ

Π̃xi,ω(dθi)pθ⋆
i
(xi) dxi π̃(dω).

Write Jω(dθi) for the measure defined in the i-th product term. Split this into
discrete and continuous pieces:

Jω(dθi) =

∫

( pθi(xi)

pθ⋆
i
(xi)

)κ

Π̃xi,ω(dθi)pθ⋆
i
(xi) dxi
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= ω
{

∫

( pθi(xi)

pθ⋆
i
(xi)

)κ

pθ⋆
i
(xi) dxi

}

δ0(dθi)

+ (1− ω)
{

∫

( pθi(xi)

pθ⋆
i
(xi)

)κ pθi/σ(xi/σ)

σ
pθ⋆

i
(xi) dxi

}

dθi.

For clarity, we shall work with the discrete and continuous parts separately.
Discrete part. Using the Renyi divergence formula for normal distributions,

the discrete term simplifies to ω exp{−κ(1−κ)
2 (θi − θ⋆i )

2} δ0(dθi).
Continuous part. An application of Hölder’s inequality, with coefficients β

β−1
and β, whose reciprocals sum to one, gives

∫

( pθi(xi)

pθ⋆
i
(xi)

)κ pθi/σ(xi/σ)

σ
pθ⋆

i
(xi) dxi

≤
{

∫

( pθi(xi)

pθ⋆
i
(xi)

)

κβ

β−1

pθ⋆
i
(xi) dxi

}

β−1
β

{

∫

(pθi/σ(xi/σ)

σ

)β

pθ⋆
i
(xi) dxi

}
1
β

.

For (κ, σ2) ∈ Rβ , we have κβ
β−1 < 1. Then the same Renyi divergence formula

used above gives exp{−κ
2
β(1−κ)−1

β−1 (θi − θ⋆i )
2}. The second term in the upper

bound equals
1√
2πσ2

{ σ

(σ2 + β)1/2
e
− β

2(σ2+β)
(θi−θ⋆

i )
2}1/β

.

After some tedious algebra, this can be rewritten as

exp
{1

2

( 1

σ2(1 + β/σ2)1/β
− 1

σ2 + β

)

(θi − θ⋆i )
2
}

N(θi | θ⋆i , σ2(1 + β/σ2)1/β).

Combining the two terms in the upper bound, ignoring the normal density, gives

exp
[

−1

2

{κ[(1 − κ)β − 1]

β − 1
−
( 1

σ2(1 + β/σ2)1/β
− 1

σ2 + β

)}

(θi − θ⋆i )
2
]

.

For (κ, σ2) in the feasible region Rβ in (5), the coefficient on (θi − θ⋆i )
2 in the

exponential term above is negative.
We can now find a constant c > 0, depending on (κ, σ2, β), such that

Jω(dθi) ≤ e−c(θi−θ⋆
i )

2{ωδ0(dθi) + (1− ω)N(θi | θ⋆i , σ2(1 + β/σ2)1/β) dθi}.

Then Jn
ω (dθ) :=

∏n
i=1 Jω(dθi) is upper bounded by exp{−c‖θ − θ⋆‖2} times a

probability measure in θ on R
n. Therefore, by definition of AMεn ,

Eθ⋆(Nn) =

∫ 1

0

∫

AMεn

Jn
ω (dθ) π̃(dω) ≤ e−cMεn .

Next, take M such that cM > 2, and then take K ∈ (2, cM). Then Markov’s
inequality gives the upper bound

Pθ⋆(Nn > e−Kεn) ≤ Le−(cM−K)εn .



Minimax empirical Bayes 2197

This upper bound has a finite sum over n ≥ 1, so the Borel–Cantelli lemma
gives that Nn ≤ e−Kεn , with Pθ⋆-probability 1 for all large n. Putting together
this bound on Nn and the one on Dn from Lemma 1, we get

Nn

Dn
≤ 1 + α

α
e−(K−2)εn−ηsn+o(sn). (6)

Since sn = o(εn), the exponent diverges to −∞ regardless of the sign on η.
Therefore, Qn(AMεn) → 0 as n → ∞ with Pθ⋆ -probability 1.

Remark 1. The εn concentration rate is driven primarily by the beta prior on
the weight ω. In particular, it comes from the term (sn/n)

2sn in the lower bound
(4) in Lemma 1. This means that the prior for θ, given ω, should be selected so
that it does not interfere with the correct rate coming from the lower bound on
the denominator of Qn.

Remark 2. Castillo and van der Vaart (2012) show that the minimax concen-
tration rate will not hold if the prior on non-zero θ has too light of tails, e.g.,
Gaussian. A way to understand this point, from our perspective, is that the
Gaussian conditional prior interferes with what the beta prior for the weight ω
is doing. As we have demonstrated, this does not necessarily mean that Gaussian
is wrong, but that some adjustments should be made to prevent this interference.

3.4. Asymptotic minimaxity of the posterior mean

Since the empirical Bayes posterior concentrates around the right place and the
right rate, it ought to produce an estimator of θ with good properties. For this
problem, perhaps the most natural choice of estimator is the empirical Bayes
posterior mean,

θ̂n =

∫

θ Qn(dθ)

Next we show that θ̂n is a minimax estimator if θ⋆ is sn-sparse.

Theorem 2. Take (κ, σ2) as in Theorem 1. If θ⋆ is sn-sparse, then there exists

a universal constant M ′ > 0 such that Eθ⋆‖θ̂n − θ⋆‖2 ≤ M ′εn for all large n.

Proof. Start by considering the quantity
∫

‖θ − θ⋆‖2Qn(dθ). Split this integral
into two via the partition R

n = AMεn ∪ Ac
Mεn

for M as in Theorem 1. On
Ac

Mεn
, ‖θ− θ⋆‖2 is bounded above by Mεn, and Qn(A

c
Mεn

) ≤ 1 trivially. So, we
immediately get

∫

Ac
Mεn

‖θ − θ⋆‖2 Qn(dθ) ≤ Mεn.

For the integration over AMεn , we again look at the numerator and denominator
of Qn separately, as in the previous subsection. The denominator has the same
lower bound as in Lemma 1. Take n large enough that, with Pθ⋆-probability 1,
the lower bound in the lemma holds; then the expectation of the ratio can be
bounded by upper bounding the expectation of the numerator, together with the
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lower bound on the denominator. Expectation of the numerator, with respect
to P

n
θ⋆ , proceeds just like in the proof of Theorem 1. This time, we get

∫ 1

0

∫

AMεn

‖θ − θ⋆‖2Jn
ω (dθ) π̃(dω),

where Jn
ω (dθ) is exp(−c‖θ− θ⋆‖2) times a probability measure for θ in R

n, just
as in the proof of Theorem 1. Since the function x 7→ xe−cx is monotonically
decreasing for large enough x, we can see that, for large n, ‖θ−θ⋆‖2 exp(−c‖θ−
θ⋆‖2) < Mεn exp(−cMεn) on AMεn . Therefore, the expectation is eventually
bounded by Mεn exp(−cMεn). Combining this with the lemma’s lower bound,
we can find ν > 0 such that, for large n,

Eθ⋆

∫

AMεn

‖θ − θ⋆‖2 Qn(dθ) ≤ Mεne
−νεn .

But ‖θ̂n − θ⋆‖2 ≤
∫

‖θ− θ⋆‖2 Qn(dθ) by Jensen’s inequality, so Eθ⋆‖θ̂ − θ⋆‖2 ≤
Mεn(1 + e−νεn). Take M ′ = 2M to complete the proof.

3.5. Effective posterior dimension

Besides posterior concentration around θ⋆ at the minimax rate, it is desirable if
the majority of the posterior mass is concentrated in a roughly sn-dimensional
subspace of Rn, where it is presumed that θ⋆ resides. Castillo and van der Vaart
(2012) show that their fully Bayes posteriors have effective dimension propor-
tional to sn. An interesting question, therefore, is if a similar result obtains for
our empirical Bayes posterior. In this section we show that, under the conditions
of Theorems 1–2, the posterior distribution for 1−ω puts vanishingly small mass
above snn

−1 (up to a logarithmic factor), so that ω tends to concentrate around
1 − snn

−1. That this provides some information about the effective dimension
of the posterior can be seen from the following expression:

E(ω | X) =
α

α+ 1 + n−1
+

1

α+ 1 + n−1

E(Dθ | X)

n
, (7)

where Dθ = #{i : θi = 0}; this fact derives from the full conditionals in Sec-
tion 4.1 below. So, if α is not too large, and ω concentrates around 1 − snn

−1,
then Dθ concentrates around n− sn. Therefore, the posterior distribution for θ
must reside on a space with effective dimension proportional to sn

Theorem 3. Let δn = Kεnn
−1, where εn = sn log(n/sn) as before, and K > 0

is a suitably large constant. Then, under the conditions of Theorem 1,

Eθ⋆{P(1− ω > δn | X)} → 0 as n → ∞.

Proof. Write the numerator of P(1 − ω > δn | X) as

Nn =

∫ 1−δn

0

∫

Rn

n
∏

i=1

( pθi(Xi)

pθ⋆
i
(Xi)

)κ

Π̃Xi,ω(dθi) π̃(dω).
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This is similar to the first display in the proof of Theorem 1. Just as in that
proof, we get the following bound on the expectation:

Eθ⋆(Nn) ≤
∫ 1−δn

0

n
∏

i=1

∫

R

e−
c
2 (θi−θ⋆

i )
2{ωδ0(dθi) + (1 − ω)N(dθi | θ⋆i , v)} π̃(dω),

where c > 0 is a constant and v = v(σ2, β) is a variance term that depends on
σ2 and β. Each integral in the inside product is bounded above by 1, so we get

Eθ⋆(Nn) ≤
∫ 1−δn

0

π̃(dω) = αn

∫ 1−δn

0

ωαn−1 dω ≤ e−αnδn = e−Kαεn .

From Lemma 1, we have that the denominator of P(1 − ω > δn | X) is lower
bounded by exp{−2εn + O(sn)} with probability 1 for large n. So, for large n,
we get

Eθ⋆{P(1− ω > δn | X)} ≤ Eθ⋆(Nn)e
2εn+O(sn) ≤ e−(Kα−2)εn+O(sn).

If we pick K such that Kα > 2, then the fact that sn = o(εn) implies that this
upper bound approaches zero as n → ∞, proving the claim.

Since the logarithmic term log(n/sn) is small, the practical implication of
this result is that the posterior distribution of ω concentrates around 1−snn

−1.
The simulation results displayed in Figure 3 below confirm this.

4. Numerical results

4.1. Computational considerations

Computation of the empirical Bayes posterior mean can be carried out via a
simple Gibbs sampler for ω and θ = (θ1, . . . , θn) based on the full conditionals:

θi | ω,X ind∼
{

δ0 with prob. ∝ ωe−
κ
2 X

2
i

N(Xi,
σ2

1+κσ2 ) with prob. ∝ 1−ω√
1+κσ2

,
i = 1, . . . , n (8a)

ω | θ,X ∼ Beta(αn+Dθ, 1 + n−Dθ), (8b)

where Dθ = #{i : θi = 0}. That is, first sample from the θ | ω conditional
posterior in (8a), then from the ω | θ conditional posterior in (8b). Repeat this
process to obtain a sample from the full posterior. R code for this Gibbs sam-
pling procedure is available at http://www.math.uic.edu/~rgmartin. Once

the posterior sample is available, the empirical Bayes estimator θ̂, the posterior
mean, is obtained by computing a coordinate-wise average of the posterior θ
samples. Besides the posterior mean, many other quantities of interest can be
calculated. For example, inclusion probabilities, P(θi 6= 0 | X), i = 1, . . . , n, can
be easily calculated. Also, in a function estimation problem, where θ1, . . . , θn
are coefficients attached to the fixed basis functions, the posterior samples of
the unknown functions are readily available.

http://www.math.uic.edu/~rgmartin
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Table 1

Mean square errors, based on 100 replications, sampling X of dimension n = 200. First
three rows are from Bhattacharya et al. (2014); last two rows corresponds to the proposed

empirical Bayes methods. Boldface font indicates the column winner

sn 10 20 40
A 7 8 7 8 7 8

DL1/n 16 14 33 31 66 60
EBMed 26 26 57 56 119 119
PMed1 23 22 49 48 102 102

EBMα=0.25 13 13 25 25 47 48

EBMα̂ 14 14 26 27 52 50

Theory and experience suggest that good numerical results are obtained for
large κ and large σ2. Throughout, we use κ = 0.99 and σ2 = (1−0.99)−1 = 100,
on the boundary of the feasible region. Other values of (κ, σ2) like these give
similar numerical results. Equation (7) suggests that relatively small values of
α are appropriate, so that the ω posterior can learn from X through Dθ. Here
we consider two different strategies for handling α.

• Based on experience, we have found that α decreasing in n works well.
(This has no consequence on the results in Theorems 1–3.) In particu-
lar, in the three examples below, with n = 200, 500, 1000 we take α =
0.25, 0.10, 0.05, respectively.

• Alternatively, one could use the data to choose α. For example, a method-
of-moments estimator of α can be obtained as follows. First, estimate D =
Dθ via universal hard thresholding, i.e., D̂ equals the number of Xi such
that |Xi| ≤ (2 logn)1/2. Under the assumed prior, D has a beta–binomial
distribution, with expectation n2α/(nα + 1). If we set this expectation
equal to D̂, then solving for α gives a method-of-moments estimator, in
particular, α̂ = D̂{n(n− D̂)}−1.

4.2. Simulation studies

For illustration, we first reproduce a simulation study presented in Bhattacharya
et al. (2014). In particular, we take samples X = (X1, . . . , Xn) of dimension
n = 200 from the normal mean model Xi ∼ N(θ⋆i , 1). Recall the sparsity level
sn is the number of non-zero θ⋆i ’s. In this case, we consider sn = 10, 20, 40, and
the signals are fixed at values A = 7, 8. Table 1 displays estimates of the mean
squared error obtained from 100 replications of X . In addition to the proposed
empirical Bayes posterior mean estimator (EBM), based on κ = 0.99, σ2 = 100,
and either α = 0.25 or α̂, the methods being compared are a Dirichlet–Laplace
estimator (DL) of Bhattacharya et al. (2014), an empirical Bayes median esti-
mator (EBMed) of Johnstone and Silverman (2004), and a fully Bayes posterior
median estimator (PMed1) of Castillo and van der Vaart (2012). A few other
methods have been considered in the literature recently, and some comments
on why they are omitted from comparison here are given in Remark 3 below.
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Fig 2. Plot of the empirical Bayes posterior inclusion probability P(θi 6= 0 | X) for i =
1, . . . , n. Here n = 200, sn = 10, and θ⋆

1
= · · · = θ⋆

10
= 7.

Here, we find that our proposed empirical Bayes estimator, with fixed α = 0.25,
is the top performer overall, with the data-driven α case close behind.

Consider a single sample X under the simulation setting described above,
with n = 200, where the first sn = 10 entries in θ⋆ equal A = 7, and the
remaining entries are zero. For the given X , the Gibbs sampler is run to obtain
a sample from our empirical Bayes posterior distribution of θ. In Figure 2 we
plot the posterior inclusion probability P(θi 6= 0 | X) as a function of the indices
i = 1, . . . , n. It is evident that the empirical Bayes posterior is able to clearly
identify the correct model.

As a second example, we reproduce a simulation study presented in Castillo
and van der Vaart (2012). In this case, we look at n = 500, sn = 25, 50, 100,
and signals fixed at A = 3, 4, 5. Table 2 displays estimates of the mean squared
error based on 100 replications. This time, the methods are two fully Bayes

Table 2

Mean square errors, based on 100 replications, sampling X of dimension n = 500. First
eight rows are from Castillo and van der Vaart (2012); last two rows corresponds to the

proposed empirical Bayes methods. Boldface font indicates the column winner

sn 25 50 100
A 3 4 5 3 4 5 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319

PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300

HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245

EBMα=0.10 139 99 54 237 159 89 386 245 152

EBMα̂ 141 97 48 232 153 90 379 235 155
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Fig 3. Posterior distributions for ω when n = 500 and A = 5 for two values of sn. In each
case, κ = 0.99, σ2 = 100, and α = 0.10.

posterior mean estimates (PM1 and PM2), two fully Bayes component-wise
posterior medians (PMed1 and PMed2), Johnstone and Silverman (2004) em-
pirical Bayes mean (EBM) and median (EBMed), and hard thresholding (HT)
and hard thresholding oracle (HTO) rules. Our proposed empirical Bayes esti-
mator, based on both α = 0.10 and α̂, is competitive when A = 4, and clearly
dominates when A = 5, just like in the previous illustration. Interestingly, the
empirical Bayes estimators are the better performers overall in this case.

One rather unusual observation is that some of the methods have, for given
sn, a mean square error increasing in the signal size A. We find this behavior
to be counterintuitive, since it should be easier to detect stronger signals. The
two thresholding estimators have decreasing mean square error as A increases,
as does our proposed estimator.

To follow up on the mean square error results in Table 2, we also display the
posterior distribution of ω for two separate runs. As indicated from Theorem 3,
the posterior distribution for ω should concentrate around 1− snn

−1. For both
cases in Figure 3, the posterior concentrates where we expect it would.

As a final example, consider a n = 1000 dimensional mean vector, with the
first 10 entries of θ⋆ equal 10, the next 90 entries equal A, and the remaining
900 entries equal zero. Mean square errors for two Dirichlet–Laplace estimators
in Bhattacharya et al. (2014) and our empirical Bayes estimator, based on α =
0.05, are displayed in Table 3. Here we consider a range of A, from A = 2 to
A = 7. For the smaller signals, A ≤ 4, the Dirichlet–Laplace estimator, with
prior weight 1/2 is the best, but our estimator, with either α = 0.05 or α̂,
is better for larger signals, A > 4. The larger weight Dirichlet–Laplace prior
estimator is dominated by our empirical Bayes estimator.

Remark 3. There are a number of existing methods available for this problem
besides those included in our comparisons here. These include the lasso (Tib-
shirani, 1996), the Bayesian lasso (Park and Casella, 2008), the horseshoe prior
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Table 3

Mean square errors, based on 100 replications, sampling X of dimension n = 1000. First
two rows are from Bhattacharya et al. (2014); last row corresponds to the proposed

empirical Bayes posterior mean. Boldface font indicates the column winner

A 2 3 4 5 6 7
DL1/2 368 679 671 374 214 160
DL1/n 268 316 267 213 193 177

EBMα=0.05 320 416 291 172 137 129

EBMα̂ 323 415 282 176 136 129

estimator (Carvalho, Polson and Scott, 2010), the empirical Bayes estimators
of Jiang and Zhang (2009), Brown and Greenshtein (2009), and, most recently,
Koenker and Mizera (2014). Some of these methods, including a version of ours,
are compared more extensively in Koenker (2014). Those estimators without
minimax guarantees, such as Koenker–Mizera, can only be motivated by finite-
sample simulation studies which are necessarily narrow. On the other hand,
our estimator has the desired minimax property and also has the best overall
finite-sample performance among those provably minimax competitors.

5. Discussion

The paper has considered a classical problem of estimating a sparse high-
dimensional normal mean vector, and we have proposed a novel empirical Bayes
solution. Though the stated prior itself may seem overly informative, we show
that the prior induces a sort of shrinkage effect, preventing the posterior from
tracking the data too closely. We go on to prove that the empirical Bayes poste-
rior concentrates around θ⋆ at the minimax rate, that its mean is an asymptotic
minimax estimator, and that its effective dimension agrees with that of the true
sparse mean vector.

The mathematical device used in our asymptotic analysis is an alternative
representation of the empirical Bayes model with a fractional likelihood. As
in Walker and Hjort (2001), this fractional likelihood posterior is a powerful
tool, though our concentration results do not follow immediately from theirs.
With this adjustment, the prior changes to a very simple one, which we have
called Π̃X . The key to success of our empirical Bayes posterior in the asymptotic
framework is the particular beta prior on ω, under Π̃X . From this prior, and
the lower bound derived in Lemma 1, the minimax rate εn = sn log(n/sn)
drops out almost automatically. As we indicated, to push through the minimax
concentration result, we only need the conditional prior on θ, given ω, under Π̃X ,
to not interfere with the dynamics induced by the prior on ω. Intuitively, there
should be many priors that would accomplish this. We showed that an empirical
Bayes prior obtained by centering a Gaussian prior at the observations, under
Π̃X , minimax concentration follows relatively easily. Castillo and van der Vaart
(2012) have similar results, e.g., they make sure the prior for θ does not interfere
by requiring suitably heavy tails.
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In addition to the good large-sample properties, our empirical Bayes proce-
dure is easy to compute, and, in a number of cases, the finite-sample performance
of our empirical Bayes posterior mean is considerably better than that of ex-
isting methods with comparable large-sample properties (Remark 3). Since our
method admits a full posterior distribution, any other feature, such as the inclu-
sion probabilities displayed in Figure 2, useful in the signal detection problem,
can be readily calculated.

A possible extension of the method presented herein is as follows. Suppose
that each Xi and θi are r-vectors, where r = rn possibly depends on n. Collect-
ing some of the variables together in vectors introduce a group structure. This
structure appears in a variety of applications, and this has motivated develop-
ments in model selection and estimation with grouped variables (e.g., Yuan and
Lin, 2006). Abramovich and Grinshtein (2013) prove asymptotic minimaxity of
a Bayes method in this grouped setting, and we expect that similar results can
be derived based on the ideas presented here.

Finally we mention that the techniques introduced in this paper for deal-
ing with sparsity have already been applied to the high-dimensional (p ≫ n)
regression problem; see Martin, Mess and Walker (2014).
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