ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS!

By Jarosrav HAJEK

Czechoslovak Academy of Sciences and University of California, Berkeley

0. Summary. Having observed X; = a + B¢; + o¥;, we test the hypothesis
B8 = 0 against the alternative 8 > 0. We suppose that the square root of the
probability density f(z) of the residuals Y; possesses a quadratically integrable
derivative and define a class of rank order tests, which are asymptotically most
powerful for given f. The main result is exposed in the following succession:
theorem, corollaries and examples, comments, preliminaries and proof. The proof
is based on results by Héjek [6] and LeCam [8], [9]. Section 6 deals with asymp-
totic efficiency of rank-order tests, which is shown, on the basis of Mikulski’s
results [10], to be presumably never less than the asymptotic efficiency of cor-
responding parametric tests of Neyman’s type [11]. This would extend the well-
known result obtained by Chernoff and Savage [2] for the Student ¢-test. Further-
more, it is shown that the efficiency may be negative, i.e., asymptotic power may
be less than the asymptotic size. In Section 7 we consider parallel rank-order
tests of symmetry for judging paired comparisons. Section 8 is devoted to rank-
order tests for densities such that (f (z))* does not possess a quadratically in-
tegrable derivative. In Section 9, we construct a test which is asymptotlcally
most powerful simultaneously for all densities f(x) such that ( f(x)) possesses
a quadratically integrable derivative.

1. The main theorem. Consider a sequence of random vectors
iy s X, < » < o, where the X’s are independent an
X Xow,),1 = here the X’ independent and

(1.1) PXuZz|aBo)=F(z—a—B6)/c), LEt1=EN,,1Zv< x,

where F is a known distribution function, ¢,; are known constants, « and ¢ are
nuisance parameters, — o < a < ©, ¢ > 0, and B is the parameter under test.
We test the hypothesis 8 = 0 against the alternative 8 > 0.

Assume that the density f(z) = F'(z) exists and that ( f(x)) possesses 4
quadratically integrable derivative. As

(12) (@)’ = 17/ @)/ (),
it means that
(13) [ @@l do < =,

Let the constants ¢,; satisfy the Noether condition

(14) lim, e {[maxléiézv,(c,i — /[Z (evi — & ]} =0,
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- 1 e
where & = N;'>_Y%c,:, and the boundedness condition

(1.5) sup, i_; (ci — )° < .

Denoting the inverse of F by F ', let us introduce the following function:
(1.6) o(u) = —[f'(F 7 (w) /f(F(u))], 0<u<l
From (1.3) is follows that
(17) [ew au=[ s@yar=0
and
(18) [ ¢ au= [ 17 @@l d < «.

[ —00 .

If to an f there corresponds ¢, f — ¢, then to (1/¢)f((z — «)/c) there cor-
responds (1/¢)e(u):

(1.9) (1/0)f((x — &) /o) — (1/o0)e(u),

i.e., the map is invariant under translation and a change of scale only introduces
a multiplicative constant.
We shall need the following function and constants:

(1.10) a(z) = (207 [ " exp(—18) dt,
(1.11) B(K) =1 — ¢
(L12) & =3 (oc =3 [ [f'@)/f@) () da

Now let R,; be the rank of X,; in the ordered sample V,; < -+ < Vi, , ie,,
(1.13) Xvi=VvR”~, 1§1§Ny,1§1’< 0,

Furthermore, let ¢,(u) be a function defined on (0,1) and constant over intervals

(¢/N,, ({+1)/N,),0 <7 <N, , ie,
(1.14) eo(u) = 0, (¢/(N, + 1)), ({—1)/N, <u <i/N,.

Consider rank-order statistics S, expressible in the following form:
Ny

(115) Sv = Z (Cvi - Ev)¢v(Ryi/(Nv + 1))7 1=v< .
=1

Let ¢ and Q,(8, ¢) be the size and power of the test based on critical region
(1.16) S, > Kd,, 12y <,
where K. and d, are given by (1.11) and (1.12).
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DeriNtTION 1.1. If lim,,06, = € and
(1.17)  lim inf,..[@.(8, ) — Q:,k(a, B,a)]=0, —xwo<a<x,8>0,6>0,

where Q} (8, &) is the power of any other test of limiting size ¢, we say that the
test based on (1.15) is asymptotically uniformly most powerful (see Neyman
[11]). Of course, uniformness is meant with respect to «, 8 and o.

TrEOREM 1.1. Consider model (1.1) and suppose that conditions (1.3), (1.4)
and (1.5) are satisfied. Let

(1.19) | lim, e [01 [ov(w) — o(u)]? du = 0,

where ¢ 1s given by (1.6). Then the critical region (1.16) provides an asymptotically
uniformly most powerful test of limiting size €, and the asymptotic power equals

(1.20) 1 - &K, — (B/0)d,),
where ®, K. and d, are given by (1.10), (1.11) and (1.12).

2. Corollaries and examples. Step-functions ¢, form an N,-dimensional
subspace in the space of quadratically integrable functions on (0,1). The pro-
jection of ¢ on this subspace, say o, equals

/N,

(21) AN+ D) =N [ ey, 1Sis N
If we extend the definition of ¢y to the whole interval (0,1) according to (1.14),
we easily see that (1.19) is satisfied.

Let V,y < +++- < V,n, be the ordered sample referring to ¥ and « = 8 = 0
and o = 1,80 that Z,; < -+ < Z,w, , where Z,; = F(V,;), is an ordered sample
from the uniform distribution over (0,1). Put

22) @@/ (N, + 1) = Bl=('(V.) /f(Vui))] = Ele(Zs)], 1=4i=N,,

and complete the definition of ¢, accordingto (1.14). Then, on account of Lemma
6.1 of [6], o1 satisfies the condition (1.19), too. So we get
COROLLARY 2.1. Let the conditions (1.3), (1.4) and (1.5) be satisfied. Put

Ny

and
(2.4) S = Z=jl (e — &)t (Rui/ (N, + 1)),

where ¢y and of are defined by (2.1) and (2.2). Then the critical regions S > Kd,
and S+ > K.d, both provide an asymptotically most powerful test of limiting size €
and of asymptotic power (1.20).

Another step-function of particular interest is defined as follows:

(2.5) oy (i/(N, + 1)) = ¢(¢/ (N, + 1)), 1<iZN,.
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TABLE 1
E 1@ o o)

1| e sign o sign (u — 3)

2| VIS | VEL = eV 4 eevi 2/50 - 3)

3| @0 oxp (— 3a) | = &)

4] oxp (@ - o9 -1 - lg-w
5 %[d)_(lj(i;x 0] 19 (2n)4 2L [_i((li:fx)_ _122](1;); x_}f ;)% FT ge Fig. 1

Here, of course some continuity properties are needed. From Lemma 2.2 of [6]
it follows that monotoneity of ¢ is sufficient. Obviously, it also suffices, if ¢ is
continuous and bounded on (0,1). So we get

CoROLLARY 2.2. Let the conditions (1.3), (1.4) and (1.5) be satisfied. Put

(2.6) ﬁ=§@wwwmwm+m

and suppose that ¢(u) ts either monotoneous or continuous and bounded. Then the
critical region Sy > K.d, provides an asymptotically most powerful test of limiting
size € and of asymptotic power (1.20).

In Table 1 there are listed five various densities together with corresponding
logarithmic derivatives and functions ¢(u). The functions ¢(u) are drawn on
Tig. 1 (see page 1128).

The first density in Table 1 is called double exponential. The corresponding
S¥-test may be called median test, because in the two-sample problem (when
the ¢,;’s attain only two different values) it consists in counting the number of
observations from the first sample, which are greater than the median of the
pooled sample.

The logistic density is listed as the second one. The constant /3 has been
introduced to get comparable curves in Fig. 1. All three tests based on S, SF
and Sy, respectively, reduce to the Wilcoxon test [14].

The density No. 3 is normal. The Sj-test is called the Fisher-Yates-Terry-
Hoeffding test and S;-test is called van der Waerden’s test [13].

The fourth density has been obtained by the transformation ¥ = & from the
exponential density ¢ 7, y = 0. So testing location changes of the former density
may be reinterpreted as testing scale changes of the latter one. The Si-test may
be called the I. R. Savage test, who showed [12] that

Ny

L+l /W + 1) = 2, (/).

J=Ny—t
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Fic. 1. The curves ¢(u) are numbered according to Table 1

The last distribution is a convolution of the normal distribution with zero
mean and ¢ = 0,3 and of the uniform distribution over the interval (0,3). In this
case the rank order tests emphasize the role of the tails of the ordered sample.

3. Some comments.
3.1. The two sample problem. If

C”'ZO, 1§i§n,,

=A,, n, <i=N,,

(3.1)

we get the two sample problem as a special case of our regression model. As-
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sumptions (1.4) and (1.5) then reduce to

(3.2) lim, max{n;* — N;,(N, —n,) ™" — N;} =0
and
(3.3) sup, n,ALZ (1 — (n,/N)) < o,

respectively. Obviously, (3.2) is equivalent to the requirement that the sizes
of the two samples, n, and N, — n,, both tend to «. Otherwise, however, they
may be quite arbitrary. For example, the ratio n,/N, may tend to 0 or 1.

3.2. Nwisance parameters. Introducing the nuisance parameters « and ¢ avoids
some artificial assumption concerning the constants ¢,; and, furthermore, makes
the knowledge of F more plausible. If the distribution functions of X,; were
F(x; 60 + Be,:), we would have assumed that > ¥ 6 = 0, or at least

N, -1
N,,éf (Zl cfl) ad 0, -
in order to get a situation, where asymptotically most powerful tests may be
found among the rank-order tests. For this reason we have confined ourselves to
a regression model, though the model with P(X,; < z) = F(x; 6y + Bc.s) could
be discussed with our methods, too.

3.3. We do not assume that f(z) > 0, — © < £ < 0, so that individual

admissible distributions may not be absolutely continuous with respect to each

other.
3.4. The best parametric test statistic of Neyman’s type [11] has the following

simple form:
Xﬂi — &
. f(._Tﬂ>
M= =2 (i —&) L
=1

f(X vi ‘_ dy) ’
Gy

where &, and 6, are some proper estimates of « and ¢. If the estimates & and ¢
satisfy the invariance conditions

(34)

(3.5) a(bXn+a, -, 0Xw, +0a) = b8(Xn, -+, Xowv,) +a

and

(3.6) 6(0Xn+a, -, bX\w, +a) = b6( X, -+, Xow,),

then the distribution of M, will be invariant with respect to o and o. If, moreover,
() Az

(37) lim R 7 =0,

=1 =)
g g

where F refers to « = «, 8 = 0, 0 = o, then it may be shown, by methods of



1130 JAROSLAV HAJEK

Section 5, that the critical region M, > K.d, provides an asymptotically uni-
formly most powerful test of limiting size ¢ and of asymptotic power (1.20).
Discussion of the M,-test will be continued in Section 6.

3.5. Transformation of the observations. This may considerably enlarge the
scope of the regression model (1.1). For example, if

(3.8) P(X,; £ z) = Flo'"exp ((— & — fen) /o)),
where F(0) = 0, then we have
(3.9) P(log X,; £ y) = Flexp((y — a — Bc,:) /0)],

so that the transformed observations log X,; obey the model (1.1) with F(y)
replaced by F(exp(y)). Just in this way we have obtained the density No. 4 in
Table 1 from the density ¢, y > 0.

If (3.8) still holds, and the distribution is symmetrical about zero (i.e.,

F(z) + F(—z) = 1), then the absolute values |X,i|, ---, |X,y,| represent a
sufficient statistic. Furthermore, we have
(3.10) P(log |X,il £ y) = 2F[exp((y — @ — Bei) /o)] — 1,

so that the transformed observations log |X,.| obey the model (1.1) with F(y)
replaced by 2F(exp(y)) — 1.

In this manner our model may be used not only to detect location trends but
also to detect scalar trends in one-sided and symmetrical distributions. So, for
example, all particular cases considered by Capon [1] fall within the scope of
model (1.1). Paper [1] is methodically based on the paper by Chernoff and
Savage [2]. From the point of view of our particular problem, however, the as-
sumptions imposed in [2] are too restrictive.

3.6. If ¢ were known, say ¢ = 1, all assertlons would remam valid. If a were
known, then we would have to suppose that N ,cy( Zz=1 i) — 0.

3.7. In order to remove assumption (1.5), we need to prove that d, — « en-
tails the power of test (1.16) tends to 1. It is very plausible, but we failed to
prove it.

3.8. Given the function ¢(u), we can construct f(z) as follows. First we estab-
lish

(311) fw) = = oo,

and then, provided the integral exists,

(3.12) ww) = [ IO,

The integral (3.11) exists, for example, if f(u) is positive for 0 < % < 1. Then,

upon eliminating the parameter u, we get f(x).
3.9. The distributions with non-decreasing ¢(u) are called strongly unimodal.
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Ibragimov [7] proved that the convolution of f(z) with every unimodal g(z) is
a unimodal distribution, if and only if f(z) is strongly unimodal.

4. Preliminaries.

Contiguity. Let {P,} and {Q.} be two sequences of probability measures de-
fined on a sequence of measurable spaces {¥,, %}, 1 £ » < .

DeriNtTION 4.1. If for any sequence of events {4,}, 4, ¢ %, , P,(4,) — 0 entails
Q,(A4,) — 0, we say that the probability measures @, are contiguous to the
probability measures P, , 1= v < .

Contiguity implies that the singular part of @, tends to zero as v — «, and
that any sequence of random variables {Y,} converging to Y in P,-probability
converges to Y in Q,-probability as well.

Let {B,} be a sequence of events such that P,(B,) = 1 and @, is absolutely
continuous with respect to P, on B,, 1 £ v < . Put

r, = dQ,/dP, on B,,
(4.1)
=0 on ¥ —B,,

where dQ,/dP, denotes the usual Radon-Nikodym derivative. The probability
measures @, are contiguous to the probability measures P, , if and only if, first,
(4.2) lim, [ r, dP, = ity Q(B) = 1,

and, second, to any e > 0 there exists ¢ & > 0 such that

(43) [P(A,) < 6] = > [ f

Condition (4.3) means, however, that the likelihood ratios r, are uniformly
integrable.

Let us mention two well-known criteria for uniform integrability of a sequence
of functions {h,}. First, one called the Vallée Poussin theorem, is based on bound-
edness of integrals

(44) supy [ bl X)) dP, < =,

r, dP, = Q,(A,N B,) <e:|, 12y < w.

v

where ¥(f),¢t = 0, is any function such that ¥(¢) T o, if t — o, and {¥(¢) is
bounded from below. For example, we can take ¥(¢) = ¢, or log ¢.

The second criterion may be formulated as follows: If P, = P, h, are non-
negative and h, — h in P-probability, then the sequence {h,} is uniformly P-
integrable, if, and only if,

(4.5) lim, .., f h, dP = f h dP.
Observe that from the Fatou lemma it follows

lim, .., inf f h, dP = / h dP.
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LeCam (8] recognized that the condition P, = P may be avoided, if we replace
the convergence in probability by convergence in distribution. He derived a
basic result, which will be presented below as Lemma 4.1.

Denote

(4.6) F,(x) = P,(r, < 2).

The sequence {r,} converges in distribution, if there exists a distribution function
F(z) such that

(4.7) lim,,F,(z) = F(x)
in all continuity of points of F(z). Since
12 Q(r,>2) 2 xP.(r,>1x) =2[1l — F,(2)],
it holds that ‘
(4.8) F.(z) 21— (1/x), x> 0.

From (4.8) it follows that the sequence {F,} is relatively compact, i.e., from
every subsequence {k} < {»} we can draw a further subsequence {j} < {k} such
that (4.7) holds true for » running through {5}, and every F(z) such that (4.7)
holds true is a distribution function.

Lemma 4.1 (Le Cam). Keep the above notations. The probabilily measures Q, are
contiguous to the probability measures P, , if, and only if, for any subsequence
{7} < {»},F;(x) — F(x) in continuity poinis of F(x) implies

(4.9) | mar@) =1

Proor.

Sufficiency. Suppose that, to the contrary, for some subsequence {k} < {v}
there exist a sequence of events {4} and a positive number ¢ > 0 such that
P.(Ar) — 0 and

(4.10) Qr(4:) 2 ¢ ke {k}.

Obviously, we can assume that the events are of the form 4, = {r. = zx} with
2 — «. Draw a further subsequence {7} C {k} such that F;(x) — F(z) in con-
tinuity points of F(z). If 2, is a continuity point of F(x), then from (4.10) and
A; = {r; = z;} it follows that

1 — ¢ = lim supj.. Q;(r; < x;)

= limj,, Q;(r; < xp) = limy,e f r; dP;

{ri<zo}
o x4

= lim,-_,wf zdFi(z) = f xz dF(x),
—0 —0

which contradicts (4.9), since 2, may be arbitrarily large.
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Necessity. Suppose that for some ¢ > 0

f zdF(z) <1 — 2
¢

where F(z) is the limit of subsequence {F;}. Now, if

W(B) = [ zdF@)»1,
the proof is finished. In the opposite case, for every continuity point x,

© z0

e > a0) = [ wdbi(@) >1 - [ adr() z 2
zp —_

which entails the existence of random events A; = {r; > z;}, ; — =, such that

(4.10) holds true, whereas P(r; > z;) = 1 — Fj(z) — 0, on account of z; — «

and (4.8). The proof is terminated.

Now we shall analyse the most important case where P, and ), are two prob-
ability distributions of a vector (X,1, - -+, X,»,), whose components are inde-
pendent. In this case, under rather general conditions, the only possible limits
of subsequences {F;} are log-normal distributions. Let us have

Ny
(4.11) P(X,i<2:i,1<5=N,) =[] Pu(X,i <),
=1
Ny
(4.12) QXi<2i,1=i=N) =] Qi(X,i £ 22)
=1
and put
(4:13) rvi=dQvi/dPVi, 1 éié Nv,l é v < °°,

on sets B,; such that P,;(B,;) = 1 and @Q,; is absolutely continuous with respect
to P,;, otherwise put 7,; = 0. If p,;(z) and g,:(x) are densities corresponding to
distribution functions P,; and @, , respectively, then

(4.14) ri(z) = gi(z) /poi(2), if pyi(x) > 0,

and 7,;(x) = 0 otherwise.
Introduce the statistics.

v,
(4.15) W, =22 ((n)'—1)
=1
and
N,
(4.16) L, = Z log 7,:,

=1
and suppose that for every ¢ > 0
(4.17) lim, . emaxi <i<n, Pri(|rvi — 1] > €) = 0.
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Let Q[Y, | P] — Ray, by] denote that the distribution of b;*(Y, — a,) under
P, tends to the normal distribution with mean 0 and variance 1. A gimilar mean-
ing will be ascribed to Y, | Q] — Rla, , b].

The following lemma has been compiled from LeCam’s results [8], [9].

Lemma 4.2 (Le Cam). Assume that (4.17) holds true and that LW, | P,] —
N—16", o°]. Then

(1) the probability distributions Q, are contiguous to the probability measures
pP,,

(2) W, — L, — %o in P,probability and YL, | P,] — R[—1d", ],

(3) if &Y, | P,] — Na, b’] and Y, , L, | P,] tends to a bivariate normal dis-
tribution with correlation coefficient p, then

(4.18) Y, | @] — Na + pbo, b7].
Proor. Upon setting w,; = 2((7'”-)% — 1), we easily find that

N, 1

(410)  Lo=W,— 1> uk [ RO —N) &/ + Pl
=1 0

Now, on account of (4.17) and of convergence of W, to the normal distribution,

we have for any ¢ > 0

(4.20) limy.e P{maxi<i<n, [ty > ¢ = 0,

which implies that the last term in (4.19) has the same limiting distribution
as 1> Y ul,, if any. Furthermore, the limiting distribution of Do¥r s will
be the same as that of 12 us:(8), where

u,i(é) = Uy;, if [u,,i] < 9,
(4.21)
= 0 otherwise.
For any & > 0 the mean value of > ¥ ur(8) equals asymptotically o and the
variance is clearly less than 6°%". This implies that > ¥ uii — o in Prproba-
bility, which concluded the proof of assertion (2).

Since 7» = exp (L,), (2) entails F,(x) — F(z), where F(¢") is the normal
distribution function with parameters [—%c”, ¢’]. This implies that (4.9) holds
true, and hence, according to Lemma 4.1, assertion (1) holds true.

It remains to prove (3). Let F,(u, v) be the distribution function of (Y., L,)
and F(u, v) be the limiting bivariate normal distribution. Obviously,

Qv( Yv < x) = f Ty de 'I' Qv(Av)

{Yy<z}
_ f_w f_: ¢ dF,(u,v) + Q,(4,),

where Q,(4,) — 0 because of contiguity. For the same reason, the r,’s are uni-
formly integrable, and hence

limf f e”dF,,(u,v)=[ f e’ dF (u,v)
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Now, after easy computations,

f. f_ ¢ dF(u,v) = L f_ b0 r (1 — oD
-exp {v — [2(1 — p2)]_1{[(u - a)z/bZ] — [2p(u — a)(v + %0'2)/170'] + [0+ %0-2)2/0-2]} |
= b—1(27r)_§ /;: exp[—3((u — a — pb0)2/b2)] du,

which concludes the proof.

Remark 4.1. The notion of contiguity has been developed independently by
LeCam and the present author. In the original version of this paper the less
efficient criterion (4.4) had been used, which lead to much weaker results. Then,
under the influence of LeCam’s ideas, the paper was revised and put in the
present form.

In conclusion, we formulate a lemma concerning functions possessing a
quadratically integrable derivative.

LemMa 4.3. Let s(z), —o < z < «, be an absolutely continuous function
possessing a quadraticolly integrable derivative s'(x). Then

(422) B [ {(ise = B) = s(@)/R) — £ @)} da = 0

Proor. From

(e = 1) = s@my =[am [[ s a] s am [ Kl a
it follows that
@) [ s -0 - s@lnf b < [ F@] an

Furthermore, ' [s(z) — s(x — h)] — s'(x) almost surely, so that, due to (4.23)
and Fatou’s lemma,

(4.24) im0 [: {[s(z — B) — s(x)]/h}? dx = [: [s"(2)]? de.

However, (4.24) implies, according to the above-mentioned criterion (4.5),
that the functions h~*[s(x) — s(z — k)]’ are uniformly integrable, which entails
(4.22). The proof is finished.

b. Proof of the main theorem. Put

(5.1) s(x) = (f(=))},
so that
(5.2) §'(z) = 3" )/ (F(@))}.

Consequently, if (1.3) is satisfied, s(z) has a quadratically integrable derivative.
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Now take a particular alternative, say [@ = ao, 8 = Bo, ¢ = o], and asso-
ciate with it the particular hypothesis [@ = a0 + Bif, , 8 = 0, ¢ = a0]. Denoting
the distribution under the alternative and the hypothesis by @. and P,, re-
spectively, we can express the statistic (4.15) in the form

(5.3) W, = 223 (10 — 76 + 78)/3(Y,0)) — 1}
where

(5.4) Y. = [Xui — a0 — BB}/ o0,

and

(5.5) v = Bo/oo -

Let E denote the mean value referring to P, . We easily see that, because of
Lemma 4.3, '

(56) ) w
~ =k [ F@Pa = -1 [ @/ b,

where the sign ~ denotes that the ratio of both sides tends to 1 as A — 0. Con-
sequently, in view of (5.3),

(5.7) EW,~ -4 d:,

where v and d: are given by (5.5) and (1.12).
Now we shall approximate W, by

(5.8) T, = g (ci — B (V) /F(T)].

Under the hypothesis, obviously,
(5.9) Var T, = d; .

Furthermore, upon setting h,; = v¢,s — & ,

¥y, J— . 4 A2
E(W, — EW, — vT,)* < 4ZE[M 114 .f(Yn):l
1=1

8(Y,:) 2" f(Y,s)
(5.10) v, . ( B ) .
< 47 (o — e,)zf[s 2= hi) = 8(@) s'(x)] dz.
=1 hvi
From (1.5), (5.9), (5.10) and Lemma 4.3 it follows that
(5.11) lim,.. E(W, — EW, — vT,)* = 0.

Furthermore, introducing the statistic

Ny

(5.12) T;k = Z (Cw: - EV)¢V(F(Yvi))7

=1
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and consulting (1.19), we can see that
N, 1
(513} ]imv—mo E(Tv - T:k)z = ]-imv-)oo Z (Cvi - év)2f [ﬁov(u) - ¢(u)]2 du = 0.
y=1 1]

Now, (5.7), (5.11) and (5.13) imply

(5.14) P, lim,e (W, — Y do — 4T,) =0
and
(5.15) P, lim,., (Ty — T,) =0,

where P, lim denotes the limit in P,-probability. Furthermore, according to
Theorem 3.1 of [6],

(5.16) lim, . E(S, — T3)* = 0,
which in conjunction with (5.13) implies

(5.17) P, limy,e (S, — T,) = 0.
However, it is easy to see ([5], Th. 4, p. 103), that
(5.18) T, | P,] — N0, d2],

and, consequently, on account of (5.14),

(5.19) {W,|P) > R—¥'d,+ di].

Now observe that if the assertion of Theorem 1.1 were not true, there would
exist a subsequence {j} C {#} such that d} — d°, and that the assertion would
still be false for the problem reduced to this subsequence {j}. So we may assume,
without any loss of generality, that

(5.20) lim,, d> = d’.

Upon making use of Lemma 4.1, we conclude that the distributions @, are con-
tiguous to the distributions P, , and that

(5.21) P, lim,.e (I, — 3 & —4T,) =0
Now (5.21), (5.17) and contiguity imply that
(5.22) Q limy,w (L, — 3" d" — 48,) =0

Consequently, the best critical region for distinguishing the particular alterna-
tive @, from the particular hypothesis P, , known to be based on the statistic
L, (Neyman-Pearson lemma), may be asymptotically approximated by the
test (1.16). Since the statistic S, is distribution free, the test has the correct
limiting size for all possible particular hypotheses, and, consequently, it is really
asymptotically uniformly most powerful.

It remains to find the limit of [S, | @.]. From contiguity and (5.17) it follows
that, if one of the limits exists,

(5.23) limv—wo 8[8,. | Qv] = limv»oo g[Tw ] Qw]
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However, as we have seen, LT, | P,] — N[0, d°], and, further, on account of
(6.21) {[L,, T, | P,] tends to a degenerated bivariate normal distribution with
correlation coefficient p = 1 and variances v* d° and d° referring to L, and T, ,
respectively. Consequently, according to assertion (3) of Lemma 4.1,

(5.24) lim,.., YT, | Q] = N[y &, &).

Now, from (5.23) and (5.24) we easily conclude (1.20), and the proof is com-
pleted.

6. Asymptotic efficiency. If the true density, say g(z), differs from the supposed
one, say f(z), then the tests based on S, will be no longer asymptotically most
powerful. Denote

(6.1) Y(w) = —lg'(G7(w)/g(G (w))],

where G(z) = [ g(y) dy, so that ¥(u) parallels ¢(u), given by (1.6). Assume
that

(62) [vw = [ @)@ & < =,

v—

and introduce the correlation coeflicient

@) o=][ eenwa] /[[ dwa voal.

TurorREM 6.1. Let the conditions (1.3), (1.4), (1.5), (1.19) and (6.2) be satisfied.
Then the asymaptotic power of the test S, > K.d, equals

(6.4) 1 — ®(K. — p(8/0) d.),

where p 18 given by (6.3).
Proor. Let P, correspond to ¢ and to o = ay + 86, 8 = 0, ¢ = o9, and
let @, correspond to G and @ = ay, B = B, ¢ = oo. Introduce statistics

(6.5) L, = ; log [g(Ys: — vews + 76 /g(Y,0)],
and
(6.6) T, = ; (ci ~ &)o(G(Y,0)).

Now, upon following literally the pattern used in proving Theorem 1.1, we prove
that (5.23) still holds with out redefined @, and T, , and that L., T, | P,]
tends to the bivariate normal distribution with correlation coefficient p given by
(6.3). Hence the result.

The number o’ is usually called the efficiency. In the two-sample problem
where n,/N, — A, 0 < A < 1, the efficiency may be interpreted as the ratio of
sample sizes needed to attain the same power. In the general regression problem
the sample size N, should be replaced by the sum D+ (¢,: — &)°. However, even
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then the interpretation fails if p < 0. This case may arise only if ¢ and ¢ both
are non-monotoneous, for example, if

elu) = —u, O0<u=i
= U 2 i’ <u é %7
=1— u, f<u<l,
and
q/(u):_u) 0<'M§%,
= 6_14" % < u é %7
= _75117 % <us=s %;
=u i<u<l
The functions f(u) = —[¢ o(\) d\ and g(u) = —[¢ ¢(A) d\ are positive for

0 < u < 1, so that, according to Subsection 3.8, the corresponding densities
exist. However, the correlation coefficient equals ’

p = —(10/16+/73),

so that the asymptotic power is less than the limiting size, provided that
lim, . inf d, > 0. So, in a wider model, where F is not known, the S,(p)-test
with non-monotoneous ¢ may not be unbiased.

Now we shall compare the efficiency of the rank-order tests with the efficiency
of the test based on Neyman’s statistic M, given by (3.4). Suppose that there
exist numbers a(g) and o(g) such that

f(Xn—a) o (Xn—a@\T
— |
(6.7) lim E g _ ( a(g) ) | _

e =)

where FE refers to the hypothesis that P(X,; < z) = G(z), 172 N,,
1 £ v< «=. Moreover, in concordance with (3.5) and (3.6) let us assume that

(6.8) a(gap) = ba(g) + a,

and

(6.9) o(gas) = ba(g),

where

(6.10) Jap(z) = (1/0)g((x — a)/b), —wo <g< o, b>0.

Put go = ga,» with a and b chosen so that
(611) a(gg) = 0, 0'(90) = 1
Introduce another correlation coefficient

(6.12) p* = C/(4B)},
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where

(6.13) 4 = [ @)/0@)P oo de,

©19) B = [ Y@L 0@ de —{ [ 1@/ ale) ao)

and
(6.15) C = f_: [f' () /f ()] [g0(x) /go(z)]go(x)dz.

Under the above assumption, the asymptotic power of Neyman’s M,-test equals

An interesting question arises: what is the relation of p and p*? If f is the normal
density, then Chernoff and Savage [2] proved that

(617) P* = p,

with equality only if ¢ = f up to a change of location and scale. Directly from
the definition of p* it follows that it does not depend on changes of location and
scale (the same is true of p, because of (1.9)). If f is normal and & = & and
& = s, where s is the sample standard deviation, then (6.11) means that in
computing p* according to (6.12) through (6.15) we restrict outselves to den-
sities with zero means and unity variances. The thesis by Mikulski ([10], re-
marks on p. 17) strongly supports the conjecture that (6.17) hold true generally.
To avoid misunderstandings, let us point out that Mikulski’s paper aims at
disproving the conjecture and succeeds in doing it in the two-sample problem,
where, however, nuisance parameters are not involved. Upon introducing the
nuisance parameters ¢ and ¢ and using invariant estimates & and ¢, the distribu-
tion of the statistic M, becomes independent of changes of location and scale,
which brings it closer to the statistic S, . The solution of the corresponding
variational problem is then to be chosen in the class of densities satisfying the
side conditions (6.11). The author hopes to explore the question in a subsequent

paper.
7. Tests of symmetry. Let f(z) be symmetric density, i.e.,
(7.1) f(z) = f(—2), —o <z < .

Consider the hypothesis that the X,.’s are independent and have a common
probability density f(z/¢), where ¢ is a nuisance parameter (¢ > 0), against
the alternative that the densities equal f((x — Be,.)/¢), where

N,
(7.2) limvw{maxlgg, i/ 035} =0
=1
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and
Ny
(7.3) sup, 2 ch; < .
i=1
Now let R,; be the rank of |X,; in the sequence |X,q, - - - , |X,n,| rearranged

according to ascending magnitude. Put
Ny

(74) Sy = 2 criew(Ryi/ (N, + 1)) sign X,:,
=1

and extend the definition of ¢,(u) to the whole interval (0,1) according to (1.14).
Furthermore, set

(7.5 o(w) = [/ (F (G + 3) fU (G + b))
and .
(76) & =Y [ @] ) dn

TrarEorEM 7.1. Let the conditions (1.3), (7.1), (7.2) and (7.3) be satisfied. Let
(1.19) hold true for ¢, used in (7.4) and ¢ defined by (7.5).

Then the critical region S, > K. d,, where S, , K. and d» are given by (7.4),
(1.11) and (7.6), respectively, provides an asymptotically uniformly most powerful
test of B = 0 against 8 > 0 with limiting size e and asymptotic power (1.20),
where d, is given by (7.6).

Proor. The proof would be just the same as in Theorem 1.1. Usually the ¢’s
are constant, so that S, = 28,-const, where
(7.7) S, = D e(Rui/(N, + 1)).

Xy;>0

Special forms of ¢, are obtained by setting ¢u(u) = oo(3 + 2u), ¢, (w) = o7 (& + Lu)
and ¢,(u) = or (% + Lu), where ¢, , of and o) are given by (2.1), (2.2) and
(2.5), respestively. Upon taking ¢(u) = sign (u — %), appearing in the first
row of Table 1, and putting ¢, = o, (3 + Lu), we get the sign test, based on
the statistic
(7.8) S, = > 1.

X, 750
Upon taking ¢(u) = 2u — 1, we get the Wilcoxon test [14] for paired comparisons,
based on the statistic ‘

(7.9) (N, + 1)8, ZORM- .

Xyi>

8. A test for the uniform distribution. Let f(x) be a density and set
_ a [ 1
(8.1) fo(z) = o7 (2) f_ flz —y) exp<_§ (y2/02>> dy.

It may be easily seen that f,(z) satisfies condition (1.3) for any f and ¢ > 0.
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So we can take, for every ¢ > 0, one of the statistics Sy, S+ and S}, defined in
Section 2, and observe what happens with the critical region when ¢ — 0. At
least in some cases, we obtain a limiting critical region, and may hope that it
has some good asymptotic properties.

Let us illustrate this idea in the case of the uniform distribution over (0,1).
The probability density of its convolution with the normal probability density
equals

o) = em [ o (—é W) "

-+(0)-+(5)

Put ¢,(u) = —fo(F7'(u)/f.(F7 (u)). Then ,
odw) _ _fofe — 1 _ [ff, _ ffr'f.f] P
where, for fixed 4, 0 < v < 1, f(z) — 1 and fo—0,if ¢ — 0. So
N L e
0o(u) fe

[e—%z%ﬂ _ e—%(x—l)zlﬂ]

Q=

This in conjunction with 4 ~ x shows that
(82) lim,o lgo () /0o (u) | = o 0<u<l, u#3i
Now consider the statistic (2.6), where we drop the index ». From (8.2) if follows
that the critical region generated by the statistic

N
(8.3) Sy = X_)l (ci — E)es(R:/(N + 1))

converges to one generated by the statistic
(8.4) W =0,L,- - Iym,

where the right side represents the development of W in the triadic system,
[IN] = iN for N even and $(N — 1) for N odd, and I, --- Ipw are random
variables defined as follows:

(8.5) I, =2, if oy, > €y,
=1, if Coy_y, = Cpy 5
=0, if epy_, < Cpy s

where D, , - -+, Dy is a random permutation of (1, :-- , N) defined by

(8.6) RDk = k;

i.e. D; is the ordinal number of the observation whose rank (according to mag-
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nitude) is k. For example, if we have the following ¢’s and «’s,

¢t} 1 2 3 4 5 6

(87) z; 1 56 28 —1 96 103 8
c; | 1 1 0 O 11

then to the largest and smallest observation there corresponds ¢; = 1 and ¢; = 0,
respectively, so that ¢p, — ¢p, = ¢ — ¢ = 1, and I; = 2, ete. So
we get W = 0.201.

The test may be used for testing the hypothesis that the X’s are uniformly
distributed over (a, b), where both a and b are unknown, against the alternative
that X, is uniformly distributed over (¢ — Bc¢;, b — Bc.), where a, b, are un-
known and the ¢’s are known.

Obviously, the limiting distribution of W is not normal even under
the hypothesis. Nevertheless the corresponding test might be asymptotically
most powerful. The discussion of this problem would go however, beyond the
scope of the present paper.

9. A universal asymptotically most powerful test. Now we shall construct a
test, which is asymptotically most powerful for all densities f(x) satisfying (1.3).
However interesting this construction may be from the point of view of theory,
it is of little use in practice because of slow convergence. First we generalize
Theorem 1.1.

Lemua 9.1. If the values of the funciions ¢, are random and under the hypothesis
independent of the vectors (X1, -+, Xow,), 1 £ v < o0, and if condition (1.19)
is replaced by

(91) 1Mo P,{]{; [0 (u) —(l/a)go(u)]2 du > ela = a,8 = 0,0 = }

=0 forevery ¢>0, —wo <a< ®,6>0,

then Theorem 1.1 stdll holds.

Proor. Let P,{-} and the conditional mean value E,[- | ¢,] given ¢, refer to
some particular hypothesis @ = a, 8 = 0, ¢ = o. Let 7, and T be given by
(5.8) and (5.12). Then from (9.1) and from Theorem 3.1 of [6] it follows that
for every ¢ > 0

(9.2) lim,... PAEL(S, — TH? | 0] > ¢ =0,
and
(9.3) li.l'nu—wo Pu{Ev[(T:k - Tﬂ)2 lﬁav] > 6} = (.

Now, (9.2) and (9.3) imply (5.17). All other parts of the proof of Theorem
1.1 need no modification. The proof is finished.

ReMARK 9.1. The function (1/¢)e(u) corresponds to the density f((x — «)/c)
according to (1.9).
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Now we shall split the sample (X,;, ---, X,»,) into two subsamples
(X, ,Xg)and (X,x, 41, -, Xuw,), where K, is chosen so that
(9.4) lim,,, K, = o, lim,. [K,/(N, — K,)] = 0,
and

N, Ny
(95) hm{ Z (C”' - 5»)2/2 (cvi - év)z} = 17
v>0 | i=K,+1 i=1
where
N,
(9.6) &= (N, —K)" 2 .
i=K,+1

This is always possible in view of (1.4). Condition K, — o« will enable us to
find a o, satisfying (9.1) and depending on (X,;, ---, X,x,) only. Condition
(9.5) shows, on the other hand, that the S,-test based on the subsample
(Xog,+1, -, Xon,) will have the same asymptotic power as the same test
based on the whole sample (X,1, ---, X,»,). So our problem will be solved by
application of the S,-test, with ¢, determined from (X,, ---, Xix,),
to (X,z,41, -+, X,n,). The first subsample (X,;, -+, X,g,) will be small
enough not to decrease the efficiency and large enough to get an estimator of
¢(u) which is consistent in the sense of (9.1).
Lemma 9.2. Introduce numbers m, ,

(9.7) K} <m, £ K} + 1,

and sequences 0 = hy < hy < ++ ¢ < b, < by, 11 = K, such that

(98)  lim max il gy e =Rl
v>o 0Z57<n, K;: vow0 07 n, K§

and set, for 1 = 7 = n,,
(99) k,,j = h,,]' + my , lyj = huj —_ M, .

Let Vi < -++ < Vg, be the observations X, , - -+ , Xux, rearranged according to
ascending magnitude. Suppose that (9.4) is satisfied. Finally, for h,;/K, <
7'/(Nv — K, + 1) = hvj+1/Kv, 1 =275 <mn,, put

(910) ¢V[7:/(Nv - K, + 1)] = %K;&{(kaj - Vly,')_l - (kaj+1 - Vlyj+1)_1]7

and set o1/ (N, — K, + 1)] = 0 otherwise. Complete the definition of ¢(u) so
as to be constant over ntervals [i/(N, — K,), (( + 1)/(N, — K,))],
0=<i<N,—K,.Then (9.1) holds true for any density satisfying (1.3).

Proovr. Obviously, it suffices to prove (9.1) for @« = 0, ¢ = 1. Then the random
variables U,; = F(X,:),1 £ ¢ £ K,, will be uniformly distributed over (0,1)
and Z,; < --- < Zu,, where Z,;, = F(V,;), will be the ordered sample from
the uniform distribution. We know that

(9.11) EZ,; = i/(K, + 1),
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and

(9.12) Var Z,; = (i(K, — i + 1)/(K, + D¥K, + 2)) < (1/K,).

Consequently, by the Tchebyshev inequality, the probability of the event A4, ,
4, = U {Ika»j — [bi/ (K, + D] > (m,,/K,)KI%}

(9.13) =1 n
u jgl{lzﬂ,,- — i/ (K, + D] > (m/K,) K Y

is of order (n./K,)(K;*m,/K,)™ ~ K;™, so that P,(4,) — 0. This implies
that for every ¢ > 0

(914) limy_m P,{ma,xiéjén, K,T“"’I[Z,,k” —_ Z,l”.]_l — %(K,,/m,) i> e} = (.

On the other hand, from Z,; = F(V,;) it follows that

(915) ka,,]- - ZVlyi = (Vﬂkyj - VVlyj)f<B”J')7
where
(916) Vyl,,i é ij é Vvk”- 1 é .7 _S.. ny .

Hence (9.10) may be rewritten as follows:

’L‘ L f(Bv) f(Bv'+1) :|
9.17 | e} = 3K [: d - ! .
( ) ¢ <Nv - Kﬂ + 1) ? ka,,j - Zvl,,j Zﬂk,,i+1 - Zvl,,“,l

Now from boundedness of f(z) (implied by (1.3)) and from (9.14) it follows
that for every ¢ > 0

limy s Py{maxs,/x,<i/ (8, &, +1) ghyn, 15, l0[1/ (Ny — K, + 1)]
— K¥[f(By;) — f(Byiw)])l > ¢ = 0.

Moreover, from (9.7), (9.8), (9.9), (9.16) and P,(4,) — 0, 4, given by (9.13),
it follows that for every ¢ > 0

(9.19)  lim,.o P{maxigign, K3/ (F(Byjn) — F(B,))] — 1] > ¢ = 0

The relations (9.18) and (9.19) imply that it suffices to prove (9.1) for the step
function defined by

(9.20) &,(¢/ (N, — K, + 1)) = {[f(By;) — f(Bojs)l/[F(By,11) — F(B,))]}
if (h;y/K) < (/(N,— K, +1)) £ (hju/K), 127<n,

= 0 otherwise

(9.18)

and by the requirement to be constant over intervals (¢/(N, — K.), (¢ + 1)/
(N, — K,)),0=£7<N,— K,.Put C,; = F(B,;), 1 £j = n,, and observe
that

/-Cyj+1
d
J(B) = f(Bus) _ o, P M

921 _ )
(9.21) F(Burn) = F(B.) ~  Com =G
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and, on account of (9.16),

(922) Zvl,,j é Cvj é Z"k"i ) 1 éj é ny .
In view of P,(4,) — 0, 4, given by (9.13), we have
(9.23) lim, . P,{max; < j<n, [Cri — (hvi/Ky)| > 4(m,/K,)} = 0,

and, on account of n,m,/K, — 0, for every ¢ > 0,
(9.24) - lim,,. P, {Z [ij — (hvj/Ky) [ > e} = (.
=1

Introduce another step function &, ,

_ f(By) — f(Byja)
F(B,jn1) — F(By;)

= 0 otherwise.

(9.25) #(u) if Ci<uzgChp, 1Z2j<n.

Now, because ¢(u) is quadratically integrable, to any ¢ > O there exists a.
8 > 0 such that

(926) maXo<ijgn, IC,,]' - C,,j+1l < 5, C,,o = 0, Cvn+1 =1
entails

1
(9.27) [ @ —ewitau <o

(We remind the reader of relation (9.21).) Now (9.26) is, obviously, fulfilled
for every 6 > 0 with limiting probability 1, and, consequently, for every ¢ > 0,

(9.28) My Py{/ol B (u) — o(w)* du > e} = 0.

On the other hand, from the very definitions of @, and &, , it follows that

(9.29) [ ew) =g du <2 [ # au

where the Lebesgue measure of A, tends to 0 in P,-probability in view of
K,/(N, — K,) —0 and (9.24). This, in connection with uniform integrability
of functions . corresponding to all possible divisions [Cyy, -+ + , Cn,], and on ac-
count of (9.28), implies, for every e > 0,

(9.30) lim,o P,{fol (3 (u) — o(u)] du > e} = (.

The proof is terminated.

TaroreM 9.1. Let assumptions (1.3), (1.4) and (1.5) be satisfied. Let K, satisfy
the conditions (9.4) and (9.5). Let V,u < --- < V.,x, be the ordered subsample
(X1, -+, Xox,) and let R,: denote the rank of X, in the subsample (X,x,+1, *** ,
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Xw,), K, <12 N,,l £ v < . Let v be defined by (9.10) and &, by (9.6). Then
the critical regron

Ny

3 (evi — &)ew(Roi/(N» — Kv + 1))

=K1
N, 1
> K. [ > (e — 5;:)2[ ot (u) du:l
0

i=Ky+1

(9.31) ,

provides an asymptotically uniformly most powerful test of 8 = 0 against 8 > 0
with limiting size € and asymptotic power (1.20) for all densities in question.
Proor. The proof follows immediately from Lemmas 9.1 and 9.2.
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