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1. Introduction. Let f(x, ) be the probability density function of a variate
z involving an unknown parameter 6. For testing the hypothesis § = 6, by
means of n independent observations z; , - - - , z, on £ we have to choose a region
of rejection W, in the n-dimensional sample space. Denote by P(W. | 6) the
probability that the sample point E = (z,, --- , #,) will fall in W, under the
assumption that 6 is the true value of the parameter. For any region U, of
the n-dimensional sample space denote by g(U,) the greatest lower bound of
P(U,|8). For any pair of regions U, and T, denote by L(U., T,) the least
upper bound of -

P(Un | 6) — P(T4]6).

In all that follows we shall denote a region of the n-dimensional sample space
by a capital letter with the subscript n.

Definition 1. A sequence {W,}, (n = 1,2, ..., ad inf.), of regions is said to
be an asymptotically most powerful test of the hypothesis 6 = 6, on the level of
significance « if P(W, | 6) = « and if for any sequence {Z,} of regions for
which P(Z, | 6)) = «, the inequality

lim sup L(Z,,W,) <0

n=roo

holds.

Definition 2. A sequence {W,}, (n = 1, 2, ..., ad inf.), of regions is said
to be an asymptotically most powerful unbiased test of the hypothesis 8 = 6
on the level of significance a if P(W., | 6)) = lim g(W,) = «, and if for any se-

quence {Z,} of regions for whick P(Z,|8) = lim g(Z,) = «, the inequality

lim sup L(Z,,W,) <0

n—+o0

holds.
Let 8,(z;, --- , ) be the maximum likelihood estimate of 6 in the n-dimen-

sional sample space. That is to say, 8,(z1, ---, =) denotes the value of ¢

! Presented to the American Mathematical Society at New York, February 24, 1940,
2 Research under a grant-in-aid from the Carnegie Corporation of New York.

1

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. E:

)
www.jstor.org



2 ABRAHAM WALD

for which the product [] 7(x, , 6) becomes a maximum. Let W be the region
y=1

defined by the inequality Vb, — 6) > ¢, Wn defined by the inequality
V/n(b, — 8) < cn, and let W, consists of all points for which at least one of
the inequalities

‘\/"_L(én - 00) 2 Ay , \/ﬁ(én - 00) S — Gn
is satisfied. The constants a, , c. , ¢ are chosen such that
P(W.|6) = P(W,|6) =PW,|6)=c.

It will be shown in this paper that under certain restrictions on the probability
density f(z, 6) the sequence {W,} is an asymptotically most, powerful test of the
hypothesis § = 6, if 8 takes only values § > 6,. Similarly {W.} is an asymp-
totically most powerful test if 8 takes only values § < 6,. Finally {W,} is an
asymptotically most powerful unbiased test if 8 can take any real value.
2. Assumptions on the density function f(z, 8).
AssumprION 1. For any positive k
lim P(—k <8, — 0 <k|§) =
na=co
uniformly in 8, where P(—k < 8, — 6 < k| 0) denotes the probability that —k <
b, — 0 < k under the assumption that 0 is the true value of the parameter.
' Assumption 1 implies somewhat more than consistency of the maximum like-
lihood estimate 8, . In fact, consistency means only that for any positive &

lim P(—k <8, —0 < k|6) =

without asking that the convergence should be uniform in 6. If b, satisfies
Assumption 1 we shall say that 8, is a uniformly consistent estimate of 6. A
rigorous proof of the consistency of 6, (under certain restrictions on f(z, 6))
was given by J. L. Doob.® In an appendix to this paper it will be shown that
under certain conditions 8, is uniformly consistent.

Denote by Esy(x)] the expected value of () under the assumption that 6
is the true value of the parameter. That is to say,

B = [ v@)a,0) da.

For any z, for any positive 8, and for any 6, denote by ¢:(x, 61, 8) the greatest
@
lower bound, and by ¢u(z, 8,, 8) the least upper bound of B_I%L(M in the

a6?
interval 6, — 8§ < 8 < 6, 4+ 4.
AssumpTiON 2. There exists a positive value ko such that the expectations
Eyou(z, 01,8) and Eyea(x, 01, 8) exist and are continuous functions of 8, 61 and §

2 J. L. Doob, ‘“Probability and statistics,” Trans. Am. Math. Soc., Vol. 36 (1937).
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in the domain D defined by the inequalities: 0 < 6 < 3ko, 0 — 3ko < 61 <
0o + %ko, 00 — ko < 0 < 00 + ko. Furthermore the expectations Eslegy(x, 6; , 6)1°
and Eylps(z, 0, , 8)T exist in D and have a finite upper bound in D.

AssuMmPTION 3. There exists a postiive value ko such that

af(x 9 da f af;”;z")d =0 for Oo=ke <0< 6+ ko.

Assumption 3 means simply that we may differentiate with respect to 8 under
the integral sign. In fact

[;f(x, 0)dx =

identically in 6. Hence

a o
T L, f=,0)dz = 55,

Differentiating under the integral sign, we obtain the relations in Assumption 3.
AssuMpTION 4. There exists a positive n and a positive ko such that

E ] logaj'; (x,8)

exists and has a finite upper bound in the interval 60 — ko < 0 < 6y + ko .

3. Some propositions. Denote /7 (6, — ) by 2.(8) and dencte the proba-
bility P[z.(8) < t| 6] by ®.(t, 6).

Prorosition 1. Within the 6-interval (80 — ko, 80 + 3ko] Pa(t, 6) converges
with n — o uniformly in t and 0 towards the cumulative normal distribution with

zero mean and variance
I/E & 9" log f(x, 6)
TR

f flz,0)dz = 0.

2+

Proor: In all that follows we assume that 6 takes only values in the interval
[80 — Ko, 60 + ko], except when the contrary is explicitly stated. Furthermore
we introduce the variable §; and assume that 6, takes only values in the interval
[0 — %ko, 0o + %Fo.

Because of Assumption 3 we have

) E, 6logf(a: 0) [ af(x 0)d

Since

Ologflx,0) 1 f(z,6) 1 I:af(x, (9)]2
¢ f(z,0) o [f(z, )L~ 08

we get from Assumption 3

@ E [6 loga,Z(x, 49)]2 _Z, & lo,t(;9 gz(:v, )
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Hence

2
3 8’ log f(x, 6) > 0.

3) d@@) = —E, 7
Consider the Taylor expansion

@ ga—l—oigf"—”’) ;“&f_@«r’_"ﬂ+(0 ”>§@—§§—~W

1
where ¢’ lies in the interval [6;, 6]. Denote Vn > w by ¥.(61).

a0

For § = 8, the left hand side of (4) is equal to zero. Hence we have

1« & log fza, 8/
(5) 4a8) + [/, — o] L 3 T 108SE 00 _ g

n % a6?
or

1 <« & log f(z., 6"
(6) y”(ol) + zn(al) 7—L za: ——“302—“ = 0.
Let Q.(6:) be the region defined by the inequality
1 5~ 8” log f(xa, 6)

@ Sl TR+ d6

where » denotes a positive number less than the greatest lower bound of d(6:).
We shall prove that

® lim P[Q.(61) |6:] = 1

uniformly in 6;. Let 7 be a positive number such that

2
1 .
© Boyla, 00, ) — B, BTGB <2 =1,

for all values of 6;. Because of Assumption 2 such a 7 certainly exists.
Denote by R.(6:) the region defined by the inequality

(10) [0, — 6] < 0.

On account of Assumption 1

1y lim P[R.(6:)) 6] =1

uniformly in 6;. Since 6’ lies in the interval [6:, 0,], we have
(12) [0 — 6:] < 7o
for all points in R,(6;). Hence at any point in R,(61) the inequality

n 1 .. 0 n
(13) Zl §01(xa; 01, 'TO) z:l a Ogggf : ) Zl ¢2(xa , 01, 70)

holds.
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Let S.(61) be defined by the inequality

(14) ‘71;2‘13 o1, 81, 70) = Euyonle, 01, 70) | <
and T.(6,) by the inequality

(15) L e, 1, 1) = By, 61, 70)| < 5.
On account of Assumption 2 we have

(16) lim P[S,(61).|6] = lim P[T.(61) |61] = 1

n=w k -]

uniformly in 6, .
Denote by U.(6) the common part of the regions R.(61), Si(61) and Ta(61).
In U.(6,) we have on account of (9), (14) and (15)

0 .
17) ” Z ‘Pt'(xa, 01, 10) — Es, %‘;—Ew <v (=1, 2).

From this we obtain (7) because of (13). That is to say, the inequality (7) is
valid everywhere in U,(f,). Since

lim P[U,(6) 6] = 1

n=0

uniformly in 6;, our statement about Q.(6;) is proved. From (6) and (7) we
get that everywhere in @,(6) the inequalities hold:

Z/n(ol) yn(al) : .
18) 0 <a) < S it ) 2 0;
yn(ol) yn(ol) :

Let zx(6:) be defined as follows: z,.(ol) = z,,(ol) at any point in @.(6,), and
2e(81) = ya(6,)/d(6,) at any point outside Q.(61).

On account of (8) we obviously have

(20) lim Plzs(6) < t|6:] — Plza(6) < t|6:] =0

n=00

uniformly in ¢ and 6, .
From equation (1) it follows that Es, y»(6;) = 0. From Assumption 4 it follows
on account of the general limit theorems

(21) lim Plya(8) < ¢]6:] — [ 330D gy _

\/ 2r d(01)
uniformly in ¢ and 6;. Hence

yn(01) ] . d_(_0_1) ft —4t2201) 30 _
11=111°P[d(0) <t|6: ol dt =0
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uniformly in ¢ and 6;. -Since » can be chosen arbitrarily small, we get easily
from (18), (19), (20) and (21)

yn(al) ] - —
uniformly in ¢ and 6;. Proposition 1 follows from (21) and (22).

ProposiTION2.  Let {W,} be a sequence of regions of size a, v.e. P(W, | 6,) = a,
and let V,.(2) be the region defined by the inequality

(én - 00) '\/ﬁ < z

Let U,(2) be the intersection of V,.(2) and W, , and denote P[U,(z) | 8] by F.(2).
Denote furthermore P[W, | 60 + p/A/n] by G(u, n). . If Fu(z) converges to F(z)
and if im u, = u, then

ne=w

(23) lim G([l.,,, n) - [ e—%(uﬁ_wt)/c dF(Z)

n=eo

(22) lim

n=o

L3

where

2
¢ = —I/E,,o a logaj;gx, 00).

Proor: First we show
(24) f aF @) = a.

Denote P[V,(z) | 6] by ®.(2). On account of Proposition 1 &,(z) converges
uniformly to the cumulative normal distribution y¥(z) with zero mean and
variance ¢. It is obvious that

(25) Fu(z)) — Fua(z1) < @a(22) — Pulzr) for 22 > 21
Hence

(26) F(z) — F(z1) S ¢¥(z) — Y(z) forz. > 2.
From (25) we get

(27) Lim Fn(z')] — Fa(2) = a — Fa(2) £ 1 — &.(2).
Hence

(28) a— F@) <1—¢@).

Since F,(z) < a and therefore also F(z) < «, we get from (28)
0<a—=F(<1-y@.

Hence

(29) E F(2) = a.
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Since Fa(z) < ®.(2), we have F(z) < ¥(2), and therefore
(30) lim F(z) = 0.

The equation (24) follows from (29) and (30).

It follows easily from (26) that the integral on the right hand side of the equa-
tion (23) exists and is finite.

Let us denote 6 + pn/A/n by 6,. Consider the Taylor expansions

2 log f(za, 80) = Z log (s, 8:) + (60 ~— 6.) E 5 log f(z, )

o

(31)
+360- 0T 2 g (2., )
-and
2 log f(za, 0n) = ; 10g f(%a, 8a) + (60 — 8a) 2 5 102 f(za, 8n)
(32)

+ 40— 0 T T log i, )

where 0, lies in the interval [6;, 6.] and 6, lies in the interval [4, , 8,]. Since
6, is the maximum likelihood estimate, we get from (31) and (32)

(33) Za: lng(xa: 00) = za: Ing(xa: éﬂ) + %(00 - ,.)2 Z 802 logf(xa; n)

3
(34) 2108 f(a, 0:) = 2 log f(Za, ) + 38 — 8.)* 2 7 log f(%a, 07).
Denote by 8 a real variable which can take any value between —2u and -+ 2.
Denote by R, the region defined by the inequality
(35) |6, — 6] < o7
From Proposition 1 it follows easily that

(36) lim P(R.|6 + B/+/n) =

uniformly in 8. Denote on? by 7o . Then for almost all n the following
inequalities hold at any point in.R, :

CUNND YIRS A o f(z., 07) < 2 oa(ze; B0, 7a),

(38) Z (01(33.1, 00; Tﬂ) < Z 602 Ing(xa; ”) < E ¢2(xa; 00) 7'7&)

Denote by S, the region in which (35), (37) and (38) simultaneously hold. It
is obvious that

lim P(S, |6 + B/4/n) =
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uniformly in 8. Denote 6y + 8/A/n by 6,(8). From Assumption 2 it follows
easily that

Z ﬁoi(xu, 00, Tn)} 2

. po ad -1 ,
(39) }LEE Eﬂ»(ﬁ) { = EOo 6—02 Ing(x; 00) = —C_ (?' = 1; 2)

uniformly in 8. Furthermore the variance of ) “gi(:t——‘i—’—gﬂjl) , if 8,(B) is the

true value of the parameter 6, converges to zero with n — « uniformly in g.
Hence a sequence {A\,}, (n = 1, 2, ..., ad inf.), of positive numbers can be
given such that

(40) lim A, = 0

and

(41) lim P[T, | 6.(8)] = 1

uniformly in 8, where the region T, is defined by the inequality

(42) )D —-——‘”‘(x“’:°’ ™ 4 %] < Ann” G=1,2).

From (37) and (38) it follows that in the intersection T, of T, and S,

1v & "o, 1 -4
(43) [; Z 552 108/ (Fay 0n) + = | < Xam
and

1 3 ”. 1 -
(44) [ﬁ;ggﬁlogf(xa,en) +E‘ < Aan.

We get from (33), (84), (35), (43) and (44) that at any point in T
(45) Z Ing(xa, en) - Z Ing(xay 00) = —;% [(00 - éu)z - (on - én)z] + >‘:u

where | s | < oA, and p denotes a constant not depending on n.
On account of (36) and (41) we have
(46) lim P[T, |6.(8)] = 1

n =200

uniformly in 8.
Denote by T%(2) the intersection of U,(z) (defined in Proposition 2) and T..
Denote furthermore P[T (z) | 65] by FX(2).
Since
n[(ﬂo - én)z - (on - én)z] = n[(oo - é")2 - (00 - on + Mn/\/ﬁ)z]
= —un + 2V pa(bn — 6),
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we get from (45) and (46)
@ tim {PITi) 10 - [ e ario) = 0
uniformly in z. It is obvious that
(48) lim {P[T7()|0.] — P[U.@) |61} =0

n=

uniformly in z. Hence we get from (47)
(49) lim {P[U,,(z) | 6,13~ f ¢ R 2a0le dF:(t)} = 0
uniformly in z. It follows from (49) that for any positive L

(50) lim {P[U,,(L) |6,] — P[U.(—L)|6,] — f ’ ¢ HuR-2umt)e dF:(t)} =0,

n=00 —L

Since lim pn = p, lim [FX(f) — F.(®)] = 0 uniformly in ¢, and since im F,() =

n=c0

F(¢) uniformly in ¢, we get from (50)
L
(51 lim (PULD)| 6] = PIUL=D) |6]} = [ ¥ ().
n=co L

Now let us calculate the limit of P[V,(2) | 8. if n — <, The region V.(2) is
defined by the inequality

(52) (s — 60) V0 < =
This inequality can be written as follows:
(53) (B — 0:)Vn <2 — pin.

Since lim x4, = u, we get on account of Proposition 1

—p
Iim P[(én - 07.)’\/; <z - #n‘on] = V].é‘— f e—}tz/cdt
6o ¢ o o
—3(t~p)2/c
= — e dt
\/27rc [w
Hence
i 1 . (t—w)?/c
(55) lim P[Va(2) | 6.] = __f e gy
n=00 ( ) I ] \/27rc I— 0

uniformly in z.
For any positive e let L. denote the positive number satisfying the condition:

1 T e ® e ]_ €

0 L,
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From (56) we easily get on account of (26)

(57) 0< [w e—i(u’—wt)/ch(t) _ f.L‘ e—l(u’—‘zut)/c dF(t) < %

Since the region U.(2:) — Ua(z1) is a subset of V.(25) — Va(z1) for zz > 2z,
we have on account of (565) and (56)

(58) lim sup | {P[Us(x) |6] — PIULD |0] + PUL=LJ |6} | < 2

Since
P[Un(w) | 0] = G(un , n),
we have
(59) lirilj}olp | G(un, n) — {PIUA(Le) |8z — PIUA(~LJ) |8} | < %
From (51), (57) and (59) we get

Glun, n) — [ AW -mle gy | < ¢

(60) lim sup

n—ro0

Since e can be chosen arbitrarily small, Proposition 2 is proved.

4. Theorems on asymptotically most powerful tests.

TuEOREM 1: Let M, be the region defined by the inequality \/n (6, — 6,) > Aa,
where A, is chosen such that P(M, | 6,) = o. Then {M,} is an asymptotically
most powerful test of the hypothesis 8 = 8, , provided the parameter 6 is restricted
to values > 6.

Proor: Assume that there exists a test {W,} of size a such that

(61) lim sup L(W,, M,) = & > 0.

n—s0

Then there exists a subsequence {n'} of the sequence {n} and a sequence {6,-}
of parameter values > 6, such that

(62) lim {P(Wn’ |0n') - P(Mn' | on')} =9

The expression
(63) (0ar — 60) /1 = pu > 0

must be bounded. This can be proved as follows: Since under the assumption
¢ = 6, the distribution of /7 (8, — 6) converges to a normal distribution with
zero mean and finite variance, the sequence {4,} must be bounded. Hence M,

is defined by the inequality
(64) 01; — & 2 An/'\/ﬁ = €n
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where

(65) lime, = 0.

n==00

From Assumption 1, (64) and (65) it follows easily that if
Iim 6, = 6, > o, lim P(Mnr Io,.r) =1,

Hence on account of (62) we must have

(66) lim 6, = 6.

n=00

If there would exist a subsequence {n*} of {n’} such that lim u,. = o, then

n=eo

on account of (66) and Proposition 1 we would have lim P(M,s| 6,) = 1,

which is in contradiction to (62). Hence the expression (63) must be bounded.
Let {n”} be a subseguence of {n’} such that

(67) Hm pprr = > 0.

Denote by F.(z) the probability of the intersection of W, and the region
(6, — 8)V/'n < z under the hypothesis that § = 6,. Consider the subse-
quence {n’”’} of the sequence {n'’} such that F,..(z) converges with n — o
towards a function F(z). The existence of such a subsequence {n"”} can be
proved as follows: Denote the probability P[(6, — 6)\/n < z]| 6] by ®.(2).
On account of Proposition 1, ®,(z) converges with » — « uniformly in z towards

1 iy t2/c
(68) v = f_ e ay

where ¢ has the same value in (23).
We obviously have

(69) Fo(2:) — Fu(z1) < $u(2z2) — Pn(21)
for any pair of values z, , 2. for which z; > z;. Hence
(70) lim sup [Fa(es) — Falz)] < ¢(22) — ¢(z0).

Since F,(z) is a monotonic function of z, our statement follows easily from (70)
and the fact that ¢(z) is uniformly continuous. Hence on account of Proposi-
tion 2 we have

1) lim P(Woeor | 8perr) = f W mle gy

n==00 o OO

and

(72) lim P(M,.IH I 0,,1") = f e—}(“z_zm)/c d@(z)

n==co ]
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where
(73) ®(z) = 0forz < 2,
(74) B(z) = Y(2) — Y(zo) forz > 2,

and z is given by
(75) 1 — ¢(z0) = e
From (62), (71) and (72) we get

76) [ ¥ ap) - a) = 5 > 0.

Consider a normally distributed variate y with mean » and variance ¢. Let B
be a critical region of size « for testing the hypothesis v = 0 by a single observation
on y, i.e. B is a subset of the real axis [— 0, 4+ »]. Denotg by D(v) the inter-
section of B and the region C(v) defined by the inequality ¥y < ». Denote by
H(v) the probability of D(v) under the hypothesis » = 0. Then the power of
the test B with respect to the alternative v = u is given by the following ex-
pression

(77) [ et am).
If the region B is given by the inequality ¥ > v, where v, is chosen such that the
size of B is equal to «, then H(v) = ®(v) where the function & is defined by the

equations (73), (74) and (75). Since the latter test is uniformly most powerful*
with respect to all alternatives » > 0, for any positive u the inequality

(78) [ " e I G) — 3()] < 0

holds. Let

Y) = ! [ e gs,

2mc

It is obvious that

(79) H(vz) — H(w) < ¢(v2) — ¥(vy) for vz > 0,
and
(80) [ " dHO) = a

4 See for instance J. Neyman and E. S. Pearson, ‘‘Contributions to the theory of testing
statistical hypotheses,”’ Stat. Res. Memoirs, Vol. 1 (1936).
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On the other hand, if K(v) is a monotonically non-decreasing non-negative func-
tion of » such that

(797 K(v) — K@) < ¢(v2) — (1) forve > 0
and
(80" f_ “dEQ) = o

hold, then there exists a sequence {B®}, (i = 1, 2, .., ad inf.), of regions of
size a such that
lim H D) = K@)

=00

uniformly in ». Since (78) holds for H(») = H(v), and since
H%(w) — H® (1) < ¥(v) — ¥(v1) for v, > 1,

it is easy to see that (78) will hold also for H(») = K(v). Hence for any mono-
tonically non-decreasing non-negative function K(v) for which (79’) and (80’)
are fulfilled, also (78) must hold. Since F(v) is a distribution function which
satisfies (79’) and (80’), we have a contradiction to (76). This proves Theorem 1.

TuroreM 2: Let M, be the region defined by the inequality v/n (8. — 60) < An,
where A, 18 chosen such that P(M, | 6)) = a. Then {M,} is an asymptotically
most powerful test of the hypothesis 6 = 6y , provided that the parameter 6 is restricted
to values < 6, .

We omit the proof since it is entirely analogous to that of Theorem 1.

TaEOREM 3: Let M, be the region consisting of all points which satisfy at least
one of the inequalities

V(B — 6) < —Aa, V(b — ) > Aa.

The constant A, > 0 is chosen such that P(M, | 8) = o Then {M,} is an
asymptotically most powerful unbiased test of the hypothesis 6 = 6, .

Proor: Assume that there exists a sequence {W,} (n = 1,2, -.. , ad inf.)
of regions such that

(81) PW,|6) =«

(82) lim g(W,) = a

and

(83) lim sup L(W,, M,) = 8§ > 0.

We shall deduce a contradiction from this assumption. On account of (83)
there exists a subsequence {n'} of {n} such that TI

(84) lim {P(Wn' lon’) - P(Mn’ lan’)} = 4.

n=oQ
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The expression

(85) (8ar — B0)\/n" = pins

must be bounded. The proof of this statement is omitted, since it is analogous
to the proof of the similar statement about (63). Hence there exists a subse-
quence {n”} of {n'} such that

(86) Lm pnrr = p.

Denote by F.(z) the probability of the intersection of W, with the region
(8, — 60)\/n < zunder the hypothesis 8 = 6,. Consider a subsequence {n'”}
of {n'’} such that F,...(2) converges with n — c« towards a function F(z).
The existence of such a sequence {n'"’} can be proved in the same way as the
similar statement in the proof of Theorem 1. Hence on account of Proposition 2
and (86) we have

87) lim P(Wo | o) = [ 3295 4R ()
and
(88) lim P(Mnlu ta,.m) = f ('3—_-9("2——2“2)/c d<I>(z)
where
1 : —3¢2/c
(89) &) = 2_f e dt for z < — 2z,
e I
(90) () = ®(—2z) for —2<z<2
©1) B() = ®(—2) + \/;_ [[eea for 2>,
wC Y20
and
(92) &(—2), = }a.

From (84), (87) and (88) it follows that
(93) [t aire) - e = .

Consider a normally distributed variate y with means » and variance ¢. Let B
an unbiased critical region of size a for testing the hypothesis v = 0 by a single
observation on y, i.e. B is a subset’ of the real axis.[— », +»]. Denote by
D(v) the intersection of B with the region C(v) defined by the inequality y < ».
Denote by H(v) the probability of D(») under the hypothesis » = 0. Then
the power of the test B with respect to the alternative » = yu is given by

(94) [ ¥t am).

0
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If the region B consists of all points which satisfy at least one of the inequalities
Yy < —v,y 2> v,and if v, > 0is chosen such that the size of B is equal to «,
then H(v) = ®(v), where ®(v) is defined by the equations (89)—(92). Since the
latter test is a uniformly most powerful unbiased test,’ for any u the inequality

(95) [ e qiae) — ()] < 0
holds. Let
1 ’ —3t3/c
Y) = ——— e dt
v ) \/ 2me [-w
It is obvious that
(96) H(v)) — H(w) < ¢() — y(v1) for v, > vy,
©7) f dH() = o
and
98) [ ¢ e 2)0e G (1) has a minimum for x = 0,

On the other hand, if K(v) is a monotonicaliy non-decreasing non-negative func-
tion of v such that

(96") K@) — K@) < Y(v2) — ¥(vy) forva > vy,
97" f dK() = «,
(98") f 1 -2le 4R () hag & minimum for u = 0,

then there exists a sequence {B®} (i = 1, 2, ..., ad inf.) of unbiased regions
of size « such that

lim H? () = K()
uniformly in v. Since (95) holds for H@w) = H”@) (¢ = 1, 2, ..., ad inf.),
and since ‘

H(‘)('UZ) - Hu)(vl) < ‘p(UZ) - ‘p(vl) for ve > v, ,
it is easy to see that (95) holds also for H(») = K(v). Hence for any mono-

tonically non-decreasing non-negative function K(v) for which (96"), (97'), and
(98") are fulfilled, also (95) must be fulfilled if we substitute K(v) for H(v).

£ J. Neyman and E. 8. Pearson, 1. c., p. 29.
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Since F(v) is a distribution function which satisfies (96"), (97’) and (98’), we
have a contradiction to (93). This proves Theorem 3.

5. Appendix. Proof of the uniform consistency of 6, . It will be shown here
that under certain conditions on the density function f(z, 8), Assumption 1,
i.e. uniform consistency of 4, , can be proved.

For any open subset w of the 6-axis we denote by ¢(zx, @) the least upper
9" log f(=, 0)
62
to 8in the set w. For any function A(x) we denote by EsA(x) the expected value

of A(z) under the assumption that @ is the true value of the parameter, i.e.

bound, and by y¥(z, w) the greatest lower bound of with respect

En@ = [ : \2)f (z, 6) da.

Denote furthermore by P(6, ew | §) the probability that 8, will fall in » under
the assumption that 8 is the true value of the parameter. Finally denote by Q
the parameter space and assume that Q is either the whole real axis or a sub-

set of it.
ProposITION 8. 6, is a uniformly consistent estimate of 6, i.e. for any positive k

lim P(—k <b.—0<k|6) =1
untgformly for all 6 in Q, if the following two conditionis are fulfilled:
Condition I. For all values 8 in Q

©of(x,0) ,  [Tflx, 0 ,
e dx—-~°° P dz = 0,

Condition II. For any value 0 in Q there exists an open interval w(6) containing
and having the following three properties:

1L, lim P(0rew(8) | 6] = 1

n=o0

[

uniformly for all ¢ in Q.

I,. Ey¢'[z, w(6)] is a bounded function of 6 inQ, and the least upper bound A of
Eyolx, (8)] with respect to 8 in Q 1s negative.

I1.. Eo¢dlz, ©(6)] is a bounded function of 8 in the set Q.

Condition I means simply that we may differentiate under the integral sign.

In fact
[ s@o =1
identically in 4. Hence

gé/;:f(x, 0) dr = (;9_02 [wf(z’ 0) dz = 0.

Differentiating under the integral sign, we obtain Condition I.
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In case that w(#) is the whole axis Condition II, reduces to the condition

that 8, exists.
In order to prove Proposition 3, we show first that for any positive 4

(99) limP[(—n<%g?—l£g——§;%—’j—) <n) 0]=1

uniformly for all 8 in Q. We have on account of Condition I

d log f(x, 0) af(x, 6) _ [T of(x,0) ,
(100)  E, 5T /f(x,o)—f_w 50 4 =0

ad
Since
3 loga ,ff””’ ) I:af(:c ,0) / fe, 0)] d fgsgz 6) / 1, 6) — {Gf(:c 0) /[f - 0]2}2
we have on account of Condition I
(101) E, (a—————bga’;(”’ 0))2 - — g, T8t 0 log /z,0),

According to Condition II Es¢z, w(6)] < 0 and is a bounded function of 6~

Since E, —ﬂg%j;(i—o) < 0 and > Egyz, (0)], the left hand side of (101), i.e.

the variance of ?__lo_gaio(x_o_) is a bounded function of . From this and the
equation (100) we obtain easily (99). Consider the Taylor expansion

15~ dlogf(za, ) _ 241 < 9 logf(za,0r)
(102) %;—T——(O 0");1.2—_6—0_2————_’

where 0, lies in the interval [6, §,]. Let € be an arbitrary positive number and
denote by @.(6) the region defined by the inequality

(103) Z %0_) l

On account of (99) we have
(104) lim P[Q.(0) | 6] = 1

uniformly for all 6 in Q.
Denote by E,.(6) the region defined by the inequality

(105) L3 el 00) < 34 < 0.
On account of andition II,

(106) lim P[R.(6) | 6] = 1

n=cw0
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uniformly forall in @. Denote by B,(6) the region in which 8, ew(6). Since
in B.(6)

Ly @ g/, 00) < 157 pfee, wl@)

we have in the intersection R,(6) of R.(6) and B.(6)
1 5~ 8% log f(z. ,01)

2
n £ 2
Denote by U,(6) the intersection of Q.(6) and R,(6). It is obvious that
(108) lim P[U.@ (6] =1

(107) >

uniformly for all 8 in Q. From (102), (103) and (107) we get that in U,(6)

(109) 10— 6, < 5 = 2=

— 341 |AT

. 2¢
hmP<o—é,. < o)=1
lim P10 = 6| <7
uniformly for all 8 in @. Since e can be chosen arbitrarily, Proposition 3 is
proved.

Conditions I and II are sufficient but not necessary for the uniform con-
sistency of 8,. For sufficiently small w(8) the conditions IT, and II, are rather
weak. In fact, on account of (101) we have

& log f(x, 6)
B —g

Hence for sufficiently small intervals w(6), under certain continuity conditions,
also Eeolz, w(8)] will be negative. However, in some cases may be difficult to
verify II, for small w(f). On the other hand, for sufficiently large w(6) (cer-
tainly for w() = [— ®, + =]) II, can easily be verified, but the conditions II,
and II, might be unnecessarily strong. In cases where II;, or II, does not hold
for w(@) = [— », 4+ »] and the validity of II is not apparent, the following
Lemma may be useful:

LemMa: Proposition 3 remains valid if we substitute for Condition I1 the con-
ditions

II'. Denote by T, the set of all points at which 8, exists and

Hence on account of (108)

<0.

(110) % 45 108 e, 0 = 0

has at most one solution in 6*. Then lim P[T, | 8] = 1 uniformly for all 0 in Q, and

II”7. There exists a positive k such that for w(0) = I(8) = (6 — k, 0 + k) the
Sollowing two conditions hold:
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IL,. Es¢'lx, 1(6)] is a bounded function of 6 in Q and the least upper bound A
of Eeelz, 1(6)] with respect to 0 in Q is negative.

II7. Esylz, I(6)] is a bounded function of 8 in the set @. In cases where II,,
or IL, is not fulfilled for w(§) = [— =, + =] the verification of II and II"” may

be easier than that of II.
Our Lemma can be proved as follows: Consider the Taylor expansion

(111) 12 logf(x,,, %) = 12 logf(xa, 6) + (o* — 0) E logf(:c.,, 6
where ¢ lies in [0, 6*]. Denote by V.(6) the region defined by

(112) 1 Slea, I0) < 34 < 0.

On account of II; we have

(113) lim P[V.(6) |6] = 1

n==00

uniformly for all 8in Q. Let W,(6) be the region defined by

1_24
(114) ;&- z 5@ ].Og f(xa, 0) < e
From Condition I and Condition II; it follows easily that
(115) lim P{W.(6)|6] =
uniformly for all § in €. For all values * in the interval 1(6) we have
1. 1.9 ,
(116) = Zolza, 100)] 2 ﬁEa—WIng(xa, o).
Because of (112) and (116) we have in V., )]
11 1 E—-logf(x.,,, #) <34 <0

a6?

for all values 6* in the interval I(8). Let e be less than | kA |. Then in the
intersection W, (6) of the regions V,(8)'and W ,(8) we obviously have on account
of (114) that the values of the left hand side of (111) for * = 8 + k and 6* =
6 — k will be of opposite sign. Hence at any point of W, (6) the equation (110)
has at least one root which lies in the interval I(§). Since (110) has at most
one root in 7', and since 8, is a root of (110), we get that at any point of the
intersection W, (6) of W.(6) and T, , b, lies in I(6). Since

(118) lim P[W”(6) |6] = 1 uniformly for all 6 in @,
also
(119) lim Pld.eI(8)|6] =1

uniformly for all 8in Q. The relation (119) combined with the conditions Iy
and II is equivalent to Condition II. Hence our Lemma is proved.



