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Abstract—The interaction of interest-coupled decision-makers
and the uncertainty of individual behavior are prominent charac-
teristics of multiagent systems (MAS). How to break through the
framework of conventional control theory, which aims at single
decision-maker and single decision objective, and to extend the
methodology and tools in the stochastic adaptive control theory to
analyze MAS are of great significance. In this paper, a preliminary
exploration is made in this direction, and the decentralized control
problem is considered for large population stochastic MAS with
coupled cost functions. Different from the deterministic discounted
costs in the existing differential game models, a time-averaged sto-
chastic cost function is adopted for each agent. The decentralized
control law is constructed based on the state aggregation method
and tracking-like quadratic optimal control. By using probability
limit theory, the stability and optimality of the closed-loop system
are analyzed. The main contributions of this paper include the
following points. 1) The concepts of asymptotic Nash-equilibrium
in probability and almost surely, respectively, are introduced and
the relationship between these concepts is illuminated, which pro-
vide necessary tools for analyzing the optimality of the decentral-
ized control laws. 2) The closed-loop system is shown to be almost
surely uniformly stable, and bounded independently of the number
of agents . 3) The population state average (PSA) is shown to con-
verge to the infinite population mean (IPM) trajectory in the sense
of both 2-norm and time average almost surely, as increases
to infinity. 4) The decentralized control law is designed and shown
to be almost surely asymptotically optimal; the cost of each agent
based on local measurements converges to that based on global
measurements almost surely, as increases to infinity.

Index Terms—Asymptotic Nash equilibrium, decentralized con-
trol, multiagent systems, stochastic cost function, stochastic differ-
ential game.

I. INTRODUCTION

A. Motivations and Issues

I N RECENT years, analysis and control design for multia-
gent systems (MAS) have become very popular in the con-

trol community, forming an active area in the study of complex
systems. A typical kind of MAS, which we called large popula-
tion stochastic multiagent systems (LPSMAS), is focused on in
this paper. There are many practical examples for LPSMAS in
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engineering, biological, social and economic systems, such as
wireless sensor networks ([1]), very large scale robotics ([2]);
swarm and flocking phenomenon in biological systems ([3],
[4]); evacuation of large crowd in emergency ([5]), sharing and
competing for resources on the Internet ([6]), and so on.

Agents in LPSMAS are autonomous and interacting. Au-
tonomy refers to that each agent is a unity of plant, sensor, and
controller, with (relatively independent) its own performance
criteria or cost function. Agent to agent interaction is usually
due to the coupling of their dynamics or cost functions, which
leads to conflicting objectives or consistent emergence popu-
lation behavior.

Agents in LPSMAS have self-governed but limited capability
of sensing, computing (decision-making) and communicating,
leading to the decentralized control for the whole system.
Namely, decision-making of each agent can only depend on
its local state, or, under certain circumstances, include those
of others in its sensing neighborhood. While, in conventional
control systems, control laws are always constructed based upon
the overall states of the plants. So, from this point of view, con-
ventional control systems can be viewed as single-agent systems.

Agents in LPSMAS behave randomly and cohesively. Ran-
domness consists in that the dynamics of agents are always
influenced by some random noises and so evolve uncertainly.
Cohesiveness is particularly prominent in biological and social
systems, which means that every agent has the tendency of ap-
proaching the average state of the population, reflecting the re-
lationship between the microscopic agents’ behaviors and the
macroscopic population behavior. Driven by random noises, in-
dividual agent behaves as a stochastic process, but due to co-
hesiveness, the whole system often takes on some determin-
istic pattern, reflecting the emergence characteristics of complex
systems.

As mentioned above, autonomy and interaction of agents give
rise to the dynamic game-theory modeling for LPSMAS; sto-
chastic systems theory is a powerful tool to describe the uncer-
tainty of agents’ behaviors; the control design for LPSMAS is
required to be put under the framework of decentralized control
systems. So, the problem considered is actually a large scale
distributed stochastic game involving numerous agents. Just as
stabilization and optimization are two fundamental issues for
single-agent systems, for LPSMAS we are also concerned with
how to construct decentralized control laws to make closed-loop
systems stable and performances of agents optimized.

Different from conventional control systems, for LPSMAS,
we are not only concerned with the property of evolution in time
scale but also that of variation in “space” scale, here variation in
“space” scale refers to variation of the number of agents in the
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system, especially the asymptotic property of the whole system
as , such as whether the closed-loop stability and op-
timality can be retained, whether the control law is asymptot-
ically optimal. Concerning the asymptotic property is an im-
portant reason why we use LPSMAS instead of MAS for our
problem formulation. “Large population” embodies our angle of
view, which is a dynamic concept, different from the one “large
scale.” The MAS in the above-mentioned examples can be taken
as LPSMAS to study, but there does be some MAS that cannot
be viewed as LPSMAS, for example, the oligopoly models in
game theory.

B. State of the Art for MAS and Main Contributions of the
Paper

There has been much quantitative analysis on MAS, mainly
concentrated on system stability and optimality. The models
wherein used can be divided into two categories: deterministic
and stochastic models. [7]–[12] used deterministic model to in-
vestigate the temporal evolvement of MAS in swarm, network
consensus problem, coordination control and formation control,
and analyzed the closed-loop stability for the case of fixed agent
number. In swarm systems, stability usually means that agents’
states retain bounded as time goes on, called cohesive stability
([7], [8]). While in the problems such as network consensus,
coordination control, and formation control, stability usually
means agents’ states asymptotically approach certain configu-
rations as time goes on, called consensus stability ([9]–[12]).
Both of these stability concepts are presented under the condi-
tion of fixed number of agents , while, in many MAS, stability
conditions are closely related to ([13]–[15]). So, it is neces-
sary to study whether the closed-loop stability is still retained
when is changed, that is, whether the closed-loop system is
uniformly stable with respect to .

The frameworks of optimization analysis for MAS can be
divided into game-theory-based and nongame-theory-based.
Under the nongame-theory-based framework, a centralized cost
function is used to characterize the system performance, and the
objective of the control design is usually to draw the states of the
closed-loop system to the minimizer of the cost. The research in
[7] and [12] indicate that many swarm, flocking algorithms can
be viewed as optimization processes for a collective potential
function, which is in fact the centralized cost function. Under
the game-theory-based framework, each agent has its own cost
function, all of which comprise a cost group, and the objective
of the control design is usually to obtain equilibrium strategies
with respect to the cost group. [16] gave a good survey for
noncooperative game models, which are widely used in the
flow control and routing of networks ([17]–[19]).

Concerning about the optimal control of MAS with sto-
chastic dynamic game models, roughly speaking, there are
two classes of cost functions: stochastic and deterministic,
according to whether or not depending on sample paths of
the underlying probability space. Stochastic cost functions
have clearer physical interpretations and practical meanings,
however, up to now, are limited to be used in finite strategy
games ([20]–[22]). While, most of the existing research on
infinite strategy stochastic games are restricted to deterministic
costs (for instance, in the mathematical expectation form). [23]
considered discrete time, discrete state, coupled Markov game

applied to power control for CDMA communication network.
[24]–[26] studied the LQG games with scalar agent models and
deterministic discounted cost functions.

In this paper, the decentralized control for LPSMAS with
coupled stochastic cost functions is considered. The state ag-
gregation method ([25], [26]) is used to design the control law.
The closed-loop system is shown almost surely asymptotically
optimal in the sense of Nash equilibrium and almost surely uni-
formly stable with respect to , that is the closed-loop sta-
bility is retained even if the number of agents becomes arbi-
trarily large. Compared with the existing work, the paper is char-
acterized by the following points. 1) Agent models are multi-
variabled, which are not limited to be position or velocity. 2)
Not only the temporal evolvement but also the asymptotic prop-
erty of the system as are investigated. It is proved
that the closed-loop system is almost surely uniformly stable
in the sense of time average, that is, the closed-loop stability
will not be destroyed in case of proliferation of agents. 3) Sto-
chastic time-averaged cost functions are optimized, which have
a clearer and intuitive physical meaning than expectation-type
deterministic cost functions, but, in the stochastic case, the costs
to be studied are random variables (which are actually functions
defined on some probability space) rather than scalars encoun-
tered in deterministic cases. So, in this case, the cost minimiza-
tion essentially involves comparison of functions, which makes
the existing concepts of Nash-equilibria for deterministic cost
functions not suitable. Thus, to solve the decentralized optimal
control problem for LPSMAS with coupled stochastic cost func-
tions, some new concepts such as asymptotic Nash equilibria in
the probabilistic sense are introduced. To obtain the optimality
of stochastic cost functions, the analysis of the property of the
closed-loop sample paths seems to be key. This brings difficulty
to the convergence analysis of the estimates involved, due to
the essential difference between the growth rates of the sample
paths and moment paths of diffusion processes. By using the
probability limit theory, we obtain some laws of large numbers
related to the closed-loop system, with which, show that the de-
centralized control law constructed is almost surely asymptoti-
cally optimal. 4) The laws of large numbers of the closed-loop
system are presented to show the convergence of the PSA to
the IPM trajectory in the sense of both norm and time av-
erage almost surely, which, in some sense, reflects the resultant
characteristics of MAS from microscopic uncertain behaviors
to macroscopic deterministic behaviors.

C. Organization of the Paper and Notation

The following notation will be used throughout this paper.
denotes 2-norm of vectors or F-norm of matrices; de-

notes the trace of a square matrix ; denotes the transpose
of a vector or matrix ; for any given appropriate dimensional
vector and symmetric matrix ;

and denote the maximum and minimum
eigenvalue of symmetric matrices, respectively; denotes
the indicator function of a set ; denotes the family
of all dimensional continuous vector-valued functions
on ; de-
notes the family of all bounded functions in . For any

.
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The remainder of this paper is organized as follows. In
Section II, we present some relevant concepts of Nash-equi-
libria in the probabilistic sense, and the model and assumptions
of cost-coupled LPSMAS. In Section III, we first investigate
the tracking-like quadratic optimal control problem, and then,
construct the decentralized control law by state aggregation.
Main results of this paper are presented in Sections IV–VI.
In Section IV, we demonstrate that the closed-loop system is
almost surely uniformly stable. In Section V, we present the
laws of large numbers of the closed-loop system, with which we
analyze the asymptotic optimality of the decentralized control
law in Section VI. In Section VII, we use a numerical example
to verify our results. In Section VIII, some concluding remarks
are included with some further research topics.

II. PRELIMINARY CONCEPTS AND PROBLEM FORMULATION

A. Nash Asymptotically Optimal Decentralized Control

We denote a system of agents by , and the dynamic
equation for the th agent is given by

where is its state,
; is its control input,
is a sequence of independent standard Brownian

motions with proper dimension on some probability space
.

For convenience, for agent , we denote the local-measure-
ment-based admissible control set by , global-measurement-
based admissible control set by , admissible control set by

. In different problems, there may be different interpretation
and relationship of , and . For example

is adapted to
is adapted to

is adapted to

is adapted to

When , the corresponding control is called as central-
ized control; while, when , as decentralized control.

The so-called optimal decentralized control means that
the synthesis of can only be based on the local mea-
surement of agent , that is, , to minimize the
corresponding cost function , where

. For convenience, we denote a
control group of by , and its cor-
responding cost group by ,
which is a group of random variables (r.v.s.).

Below we give the definitions of asymptotic Nash-equilibria
in the probabilistic sense.

Definition 2.1: A sequence of control groups
is called an asymptotic Nash-

equilibrium with respect to the corresponding sequence of cost
groups , if for any

, there exists such that for any

Theorem 2.1: A sequence of control groups
is an asymptotic Nash-equilibrium

in probability with respect to
if and only if that there exists a sequence of nonnega-

tive r.v.s. on satisfying
and a measurable set , such that for any

, the control group is
an —Nash-equilibrium1 with respect to

.
Proof: Sufficiency: For any given , by

, there exists such that
. Since for any , the control group

is an —Nash-equilibrium
with respect to , we have for any

which leads to

(1)

Let

. Then, by (1) we have
. Thus,

Necessity: If the sequence of control groups
is an asymptotic Nash-equilibrium

in probability with respect to
, then we can take and

In this case, we have for all

That is, for any and is an
—Nash-equilibrium with respect to .

Since for any , there exists such that for
any

we have .

Definition 2.2: A sequence of control groups
is called an almost sure asymptotic

Nash-equilibrium with respect to the corresponding sequence
of cost groups , if
there exists a sequence of nonnegative r.v.s.
on , and a measurable set , such
that for any , and the control group

1For the definition of �-Nash-equilibrium, the readers are referred to Defini-
tion 4.1 of [16].
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is an —Nash-equilibrium with
respect to .

Remark 1: Asymptotic Nash-equilibrium in probability
means that even if agent changes its strategy unilaterally
among global-measurement-based admissible control set ,
the probability of its gaining a cost reduction by may be
arbitrary small, provided is sufficiently large.

Almost sure asymptotic Nash-equilibrium is to say that
when is sufficiently large, the local-measurement-based cost

of agent deviates from that based on global
measurements by only a small quantity which is almost
surely convergent to zero as .

Theorem 2.2: If a sequence of control groups
is an almost sure asymptotic

Nash-equilibrium with respect to the corresponding sequence
of cost groups , then

is also an asymptotic Nash-equilibrium in
probability with respect to .

If the sequence of control groups
of the sequence of systems

is an almost sure (in probability) asymptotic Nash-equilibrium
with respect to , then
we call it almost surely (in probability) asymptotically optimal
decentralized control in the sense of Nash-equilibrium.

Remark 2: In static game models, the utility function of agent
is usually denoted by , where .

is its strategy, belonging to , which is a number set;
is a system parameter. Here, the strategy of agent is ,
which is a stochastic process on is the state of na-
ture . In stochastic control problems with deterministic
cost functions, the costs are usually mathematical expectation
of some stochastic cost functions

In fact, this kind of cost functions involve all possible states of
nature . In engineering systems, enumerating all
is impossible, but a single long-time experiment is performed
to compute the cost function. On the other hand, for the control
law designed, we are naturally concerned with the optimality of
the closed-loop system for any given . We hope to get op-
timality with large probability, best with probability 1. So, it is
of great importance to consider how to optimize stochastic cost
functions in the probabilistic sense. There are many achieve-
ments on optimizing stochastic cost functions in the stochastic
control and optimization for single-agent systems ([27], [28]).
Naturally, it is inevitable to introduce the concepts of Nash-equi-
libria in the probabilistic sense for the optimal control of MAS
under the game-theory-based framework.

Remark 3: Nash-equilibrium is a specific form of “opti-
mality” often considered in a noncooperative game, which
says that one player cannot reduce its cost by altering his
strategy unilaterally ([16]). While in a cooperative game, what
we often encounter is Pareto optimality, which says that no
other joint strategy can reduce the cost of at least one player,
without increasing the cost of the others. In this paper, we will
focus on the noncooperative case, and design a decentralized

control law to achieve a Nash-equilibrium (asymptotically). For
(stochastic) cooperative games, the readers are referred to [29].

B. Problem Formulation

In this paper, we consider the system of agents described by
linear dynamics

(2)

where is the measurable state of agent
is its control input,

is a sequence of independent dimensional stan-
dard Brownian motions on a probability space ;

is its dynamic parameter, called param-
eter vector; are
matrix-valued continuous functions with proper dimensions;
is the dimensional noise intensity matrix;

, reflecting the impact on agent by the external envi-
ronment.

As mentioned before, denotes the system comprised of
the first dynamical equations of (2). Here, a control group of

is , and the cost function of agent
has the coupled quadratic form

(3)

where is an semi-positive definite matrix, is an
positive definite matrix, . The admissible control set for
agent is described by

is adapted to

is adapted to

Remark 4: For static games, Rosen ([30]) gave a condition
on the existence of Nash-equilibrium strategies. For stochastic
linear quadratic games, Corollary A.1 and Corollary B.2 in [16]
show that there is always a Nash-equilibrium strategy in the
linear feedback form if the dynamics of agents are noncoupled.
However, for this type of strategies, the controller of each agent,
generally speaking, will use the states of all the other agents
in the real time, and so, is not decentralized. In this paper, we
will find a sequence of decentralized control groups

, such that not only is it an almost
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sure (in probability) asymptotic Nash-equilibrium, but also en-
sures the closed-loop systems to be uniformly stable in the sense
of time average.2

The parameter vector in model (2) has the following prop-
erty: are independently sampled from the statistical
structure , where : is a distri-
bution function on the parameter vector space , called prior
distribution. We can construct the empirical distribution func-
tions by

(4)

where
.

Remark 5: In model (2), the noise intensity matrix can also
continuously depend on the parameter vector. However, this
may result in no essential difference in the controller design and
closed-loop analysis, and so, for simplicity, here we assume that
the noise intensity matrix is the same for all agents.

For the model considered, we have the following assump-
tions.

A1) The support of denoted by is compact.
A2) converge to weakly, denoted by

.
A3) For any is stabilizable
and detectable.
A4) are independent r.v.s. with identical
mathematical expectation, and independent of

; is measurable with respect to
, where .

Remark 6: The assumption of embodies the
parameter distribution of LPSMAS, which is different from
conventional control systems. In conventional control systems,
to describe a plant, we mainly use the state vector, whose
components represent a certain attribute of the plant. All
available values of the state vector comprise the state space.
For LPSMAS, the distribution information of the parameter
space is also valuable. Here, by aid of the concepts of Bayesian
statistical inference, we call the prior distribution function
on parameter space. When the number of agents becomes
arbitrarily large, tends to this given distribution .
The assumption of the compactness of its support is relatively
strong, but it is suitable for many bounded distribution in
practical systems, though not for normal, exponential and other
unbounded distributions. For example, [31] considered a sensor
network applied to environment monitoring, where a large
number of micro-senors are scattered randomly on a bounded
monitoring area . The sensed object for the network is a
scalar field on this area, and the position for each
sensor is a random variable with uniform distribution ,
all of which comprise a sequence of independent and identical
distributed (i.i.d.) r.v.s.

Remark 7: For , we are only concerned about
the statistical information, while, omitting the underlying prob-

2The definition of uniform stability in the sense of time average will be given
in Theorem 4.1.

ability space for a succinct description. In fact, we can also view
as a sequence of r.v.s. independent of Brownian

motions : we can define
the product probability space , and on

are i.i.d. r.v.s. with the common distri-
bution . Define .
Then it is known that are i.i.d. with the same dis-
tribution as . Define

. Then is a sequence
of independent Brownian motions, which is also independent of

. Instead of state equation (2), we may consider the
system of agents described by

(5)

In this paper, we view as a realization of ,
namely, there exists such that

. In fact, owing to the independency of
and , there is no essential dif-

ference between (2) and (5). Therefore, for simplicity, we will
view as a deterministic sequence when considering
the system of agents described by (2).

By the Glivenko-Cantelli theorem ([32]), it is known that

where . So, without loss of gener-
ality, we assume that satisfies

that is, Assumption A2) holds.
Remark 8: Assumption A3) is to ensure the closed-loop sta-

bility. By the continuity of and the compactness of
. It is easy to know the following.
i) For any , Riccati equation

(6)

has a unique semi-positive definite solution , where

; and are both con-
tinuous on .

ii) For any , all the eigenvalues of
have negative real part; is

continuous over ; there exists , such that
.

iii) For any , Lyapunov equation
has a unique positive definite solution

, with the property that
.

Remark 9: For a more general case, we may consider dif-
ferent expectations of initial states of agents. In this case,
we may expand the parameter vector to ,
and then introduce and as the prior and empirical
distribution functions, respectively. To avoid notational compli-
cation, we assume the same expectation of the initial states of
all agents in Assumption A4).
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III. DECENTRALIZED CONTROL LAW CONSTRUCTION

By the model (2) and the cost function (3), it can be seen
that we are going to consider a tracking-like quadratic optimal
control problem, where the reference signal for agent is

, which is unknown and cannot be used for
constructing the decentralized controller by agent , since
is adapted to . So, to design the decentralized control law, it
is key to get a good approximation for the PSA .
Precisely, the designing procedure has the following three steps:
1) solve the tracking-like quadratic optimal control problem
with a deterministic reference signal; 2) use the state aggrega-
tion method to approximate the PSA by a deterministic signal

; 3) construct the decentralized control law by using . The
local controller of each agent consists of two parts: one is the
feedback of its own state for stabilization, and the other is
the filer of for tracking the population behavior. The local
controller has the same structure and parameters as those of
the tracking-like quadratic optimal control with a deterministic
reference signal, but with the reference signal replaced by .

Intuitively, should possess the following property: if every
agent views it as the approximation of the PSA, and according
to which, makes the optimal decision, then the expectation of
the closed-loop PSA ought to approach to when the number
of agents tends to infinity. This kind of methodology for
construction of the decentralized control law is called Nash cer-
tainty equivalence principle ([33]), which has the similar spirit
to the well-known certainty equivalence principle adopted in
adaptive control, where the unknown parameters are estimated,
and the estimates are used as the true parameters to construct
the control laws. Based on the Nash certainty equivalence
principle, in Subsection III-A, Step 1) is accomplished; then
in Subsection III-B, Step 2) and Step 3) are accomplished to
realize the decentralized control law design.

A. Infinite Horizon Tracking-Like Quadratic Optimal Control

Consider the system

(7)

where are system state and output, respec-
tively; is a deterministic signal; is a -dimensional
standard Brownian motion.

The admissible control set is described by

The cost function is described by

(8)

where is semi-positive definite, is positive definite.
Theorem 3.1: If is stabiliz-

able, is detectable, then for the system (7) and
the cost function (8), we have the following results.

i) The algebraic Riccati equation
has a unique semi-positive

definite solution .
ii) All the eigenvalues of have nega-

tive real part.
iii) The differential equation

(9)

has a unique solution in

(10)

iv) The optimal control is given by

(11)

v) The optimal value of the cost function is

(12)

The proof of this theorem is put into Appendix B.

B. Infinite Population Mean and Controller Design

In the cost function (3), if is replaced by
some , then, by Theorem 3.1 we may obtain the op-
timal control for agent

(13)

where
; , which is the unique semi-

positive definite solution of Riccati (6).
Denote

. Substituting (13) into (2), we have the closed-loop
equation for agent

Taking expectation on both sides of this equation, we have

We are now in a position to approximate the PSA by state
aggregation.

First, we construct an auxiliary system

(14)
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This describes the limit system of when , which is a
continuum of agents, each agent is marked by a parameter vector

. indicates the distribution of the parameter vectors. By
(14) we have

(15)

Define an operator on

(16)

Then, from Remark 8 and , it is easy to know that
. So, is indeed an oper-

ator on .
By virtue of and (15), the auxiliary system (14) can be

rewritten as

(17)

Equation (17) especially embodies the property that the approx-
imation of the PSA should possess: if every agent views as
the approximation of , and according to which,
makes the optimal decision, then the expectation of the resulted
closed-loop PSA should converge to when . So, if
(17) has a unique solution , then it can be used as the approx-
imation of PSA, and will be called the Infinite Population Mean
(IPM) trajectory below. For convenience of the controller de-
sign, we make the following assumption.

A5) Equation (17) has a unique solution, denoted by .
Generally speaking, it seems difficult to verify this assump-

tion. However, since it is imposed on the system structure, we
can obtain some sufficient conditions which can be verified
easily. See, for instance, the condition given in Theorem 3.2
below.

Theorem 3.2: If

then (17) has the unique solution .
Proof: By the definition of it is known that for any

Thus,

which leads to

By the condition of the theorem, is a contraction on
. By the contractive mapping theorem, (17) has a unique

solution .
Remark 10: For one-dimensional systems, by a direct calcu-

lation, it can be verified that the condition of Theorem 3.2 holds
if and only if

(18)

If , then (18) always holds, regardless of the distribution
function . If and , then (18)
holds if and only if , which, intuitively,
means that a large ratio is likely to make (18) hold.

Under Assumption A5), we can construct the decentralized
controller for agent , denoted by

(19)

where

(20)

By (16) we know that the IPM depends only on the struc-
tural information of the system , the cost pa-
rameters , and the mathematical expectation of the initial
state , independent of agents’ states in the
real time. So, the control law given by (19) indeed depends only
on the local measurements of agent . In addition, if is a con-
traction on , then we can construct algorithms for
getting approximate solutions of (17), which is similar to the
proof of existence and uniqueness of the solution of ordinary
differential equations ([34]).

By now, we have accomplished the decentralized control law
design based on the tracking-like quadratic optimal control and
the Nash certainty equivalence principle. Some questions come
out naturally: as the approximation of the PSA, does the IPM
have a good property? How to characterize the approach of the
IPM to the PSA when ? Before further analysis of
the property of the IPM, we will consider the stability property
of the closed-loop system. It can be seen that the closed-loop
stability depends only on the boundness of the IPM.
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IV. STABILITY ANALYSIS

Theorem 4.1: (Almost surely uniformly stable in the sense
of time average) For system (2), if Assumptions A1), A3)–A5)
hold, then the control law (19) and its corresponding closed-loop
solution satisfies

(21)

Proof: Substituting the control law (19) into the state equa-
tion (2), we have the closed-loop solution

(22)

For is stable, we have

(23)

Denote
. Then, by Remark 8 (ii) and

(20) we get

(24)

Furthermore,

which leads to

By Lemma 12.4 of [27] we have

Thus, from (22) and (23) it follows that

(25)

This together with (19) and (24) results in
a.s.

Noticing that are independent of , by (25) we can
get (21).

Remark 11: The uniformity in Theorem 4.1 refers to that
there exists , and a nonnegative finite random

variable independent of , such that for any
. So, the

closed-loop stability is retained when becomes arbitrarily
large. This kind of stability can be viewed as a generalization
to LPSMAS for the almost sure stability in the sense of time
average of the single-agent stochastic systems ([27]).

V. LAWS OF LARGE NUMBERS OF THE CLOSED-LOOP SYSTEM

In this section, the performance of the IPM will be analyzed
as the approximation of the PSA. The analysis in Section IV
shows that the performance of the IPM has no influence on the
closed-loop stability. However, as it is well-known that the op-
timality and robustness of the adaptive control based upon cer-
tainty equivalence principle often depend on whether or not the
parameters estimate is convergent to their true values. Likewise,
the analysis in Section VI will show that the asymptotic opti-
mality of the decentralized control law based on the Nash cer-
tainty equivalence principle also depends on whether or not the
PSA converges to the IPM as increases to infinity.

The main results in this section will be summed up as The-
orems 5.1–5.2, which are actually two types of measures for
evaluating the accuracy of the IPM as the approximation of the
PSA.

For the auxiliary system (14) and the closed-loop system,
we have the following lemmas, whose proofs are put into
Appendix C.

Lemma 5.1: For the system (2), if Assumptions A1),
A3)–A5) hold, then the unique solution of the aux-
iliary system (14) is uniformly bounded and equicontinuous
on , namely, , and for any ,
there exists , such that for any

, provided .
Lemma 5.2: For the system (2), if Assumptions A1),

A3)–A5) hold, then under the control law (19), the closed-loop
solution (22) satisfies: for almost all and any given

is uniformly Lebesgue
integrable on . Here .

Lemma 5.3: For the system (2), if Assumptions A1),
A3)–A5) hold, then under the control law (19), the closed-loop
solution (22) satisfies

where is defined in Lemma 5.2.
Theorem 5.1: (Law of large numbers in the sense of
-norm) For the system (2), if Assumptions A1)–A5) hold,

then under the control law (19), the closed-loop solution (22)
satisfies

(26)

where is defined in Lemma 5.2.
Proof: By (22) and (15) we have

(27)
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This together with (22) gives

(28)

From Assumption A4) and Remark 8 (ii) it follows that

, which
together with Theorem 2.8 in [27] implies

(29)

Notice that

(30)

Then, by Lemma 5.2 and (29) we have

(31)

By (4), (14), and (27), we have

(32)

By Lemma 5.1, is uniformly bounded and equicontin-
uous. Hence, by (32), Assumption A2) and Corollary 1.1.5 in
[35], we have

(33)

Therefore, by (30) and (31) we get (26).
Theorem 5.2: (Law of large numbers in the sense of time

average) For the system (2), if Assumptions A1)–A5) hold, then
under the control law (19), the closed-loop solution (22) satisfies

(34)

Proof: Similar to (30), we have

Hence, from Lemma 5.3 and (33) we get (34).

Remark 12: From Theorem 5.1, it can be seen that the closed-
loop system satisfies: for almost all

. Theorem 5.2 presents an-
other type of measure for evaluating the approaching of the PSA
to the IPM, which emphasizes for the stationary case. Since we
select the time-averaged stationary cost function (3) for agents,
Theorem 5.2 will play a key role in the optimality analysis of
the closed-loop system in Section VI.

We can construct a subspace of

which has a clear physical meaning: a family of all di-
mensional finite average power continuous functions. It is
obvious that . We can define an equivalence rela-
tionship on denoted by : for any
if and only if .
Denote the equivalent class of by , and define on the

quotient space : for any
. It can be shown

that is a norm on , and
is a normed space. Theorem 4.1 and Theorem 5.2 tell us
that for almost all , and

.
From the point view of the decentralized control law design,

the IPM can be regarded as the approximation of the PSA. On
the other hand, it characterizes the macroscopic behavior, of
which is the approximation. In the LPSMAS
of biology and economics, there may be some intrinsic game
mechanism leading to a deterministic patten on the layer of
the macro scope. Laws of large numbers may play a role in
bridging between the microscopic uncertainty and the macro-
scopic determinacy.

VI. OPTIMALITY ANALYSIS

Below we will investigate the optimality of the decentralized
control law with respect
to the corresponding sequence of cost groups

. Particularly, in Theorem 6.1 we will show
that for any , the control group is
suboptimal in the sense of Nash-equilibrium, namely

The fact that the decentralized control law is not optimal is es-
sentially due to the information restriction of control design,
that is, the IPM is used to construct the control law instead of
the PSA. However, owing to the laws of large numbers of the
closed-loop system, the PSA converges to the
IPM almost surely. Therefore, the optimality loss incurred
by information restriction will tend to zero when the number of
agents . In fact, we can prove that . Hence,
the decentralized control law is almost surely optimal.
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Let

(35)

(36)

(37)

where refers to the closed-loop solution corresponding to
some control for the system (2); and
if otherwise. Then we have Lemmas
6.1–6.1, whose proofs are put into Appendix D.

Lemma 6.1: For the system (2) and the cost function (3), if
Assumptions A1), A3)–A5) hold, then there exists a nonnega-
tive finite random variable , such that

(38)

Lemma 6.2: For the system (2) and the cost function (3), if
Assumptions A1), A3)–A5) hold, then there exists a nonnega-
tive finite random variable , such that

Lemma 6.3: For the system (2) and the cost function (3), if
Assumptions A1), A3)–A5) hold, then we have

(39)

Lemma 6.4: For the system (2) and the cost function (3), if
Assumptions A1), A3)–A5) hold, then we have

(40)
where

(41)

Theorem 6.1: For the system (2) and the cost function (3), if
Assumptions A1)–A5) hold, then the sequence of control groups

is an almost sure asymp-
totic Nash-equilibrium with respect to the corresponding cost
groups .

Proof: From Theorem 5.2 and (41) it follows that
. By Lemmas 6.3 and 6.4 we have

which together with Definition 2.4 leads to the conclusion.

By now, we have considered the case with linearly coupled
cost function given by (3). In fact, we may consider a more
general case with the coupled cost function:

(42)

where is continuous and for a constant , satisfies

(43)

It can be seen that if 1) is Lipschitz continuous and is
positive definite, or 2) , then (43) holds. So,
(3) is a special case of (42) with .

Based on the Nash certainty equivalence principle, the design
procedure of the decentralized control law for the system (2) and
the cost function (42) is the same as that for (2) and (3). The
decentralized control law is given by

where . Here
is the unique solution of (17) with the operator redefined

as: the is replaced by in (16). Similar to Theorem
6.1, we have the following result.

Theorem 6.2: For the system (2) and the cost function (42), if
Assumptions A1)–A5) hold, then the sequence of control groups

is an almost sure asymp-
totic Nash-equilibrium with respect to the corresponding cost
groups .

Remark 13: The cost-coupled MAS considered in this paper
can be found in many engineering problems, such as the power
control of wireless communication networks ([36]), the produc-
tion output adjustment ([26]) and the distributed optimal con-
sensus ([37]). Obviously, it would be more applicable and mean-
ingful if one could extend the result of this paper to the dy-
namics-coupled case. However, in that case, the change of the
control strategy of a single agent may result in the change of the
states of all the other agents, which brings essential difficulty
to the analysis of the asymptotic optimality of the control law
synthesized based on the Nash certainty equivalence principle.
Thus, the dynamics-coupled case is a hard topic and needs fur-
ther investigation.

VII. NUMERICAL EXAMPLE

Consider a social foraging model ([8]). Different from the
deterministic noise in [8], agents are driven by Gaussian white
noises. The dynamical equation of agent in is

where is its velocity, is the damping
factor, is its mass, is the
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Fig. 1. Trajectories of agents’ states when N = 100.

nutrient profile description function,
are i.i.d r.v.s. with normal distribution

is a sequence of independent
standard Brownian motions.

The cost function of agent is described by

where .
Let

. Then, according
to Theorem 3.2, to ensure Assumption A5), it needs
only to require that . It can
be easily seen that when or ,
the above inequality holds. In this case, similar to the
method suggested by [38], from the auxiliary system (14)
one can get

, where
.

Hence, by (19) we have the decentralized control law
.

Taking
, when the number of agents , the

trajectories of the closed-loop system are shown in Fig. 1.

Letting increase from 1 to 800, the curves of are shown
in Fig. 2, where (a) is for along with , (b) is for
along with . It can be seen that the rate of approaching to
zero is approximately .

VIII. CONCLUDING REMARKS

The decentralized control problem for LPSMAS with cou-
pled stochastic cost functions is investigated, including the con-
trol design and the closed-loop analysis. For the control de-
sign, we first present the tracking-like quadratic optimal con-
trol, then the approximation of the PSA by state aggregation, at
last the decentralized control law based on the Nash-certainty
equivalence principle. For the closed-loop analysis, by proba-
bility limit theory (such as the strong law of large numbers and
weakly convergence of empirical distributions), we answer the
following three fundamental questions: 1) under the decentral-
ized control law designed, whether the closed-loop system is
stable, and whether the stability is independent of the number of
agents (namely, uniform with respect to ); 2) As ,
whether the PSA converges to the IPM; 3) whether the decen-
tralized control law designed is asymptotically optimal with re-
spect to the coupled stochastic cost functions.

It is worth pointing out that, the cost-coupled LPSMAS con-
sidered in this paper is a kind of individual-population inter-
acting MAS. For this kind of systems, the result obtained in this
paper indicates that the overall impact on a given agent by the
population of all agents is nearly deterministic with probability
one, and the individual impact is neglectable as the number of
agents increases to infinity. This phenomenon is similar in spirit
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Fig. 2. Curves of � and �

p
N with respect to N .

to the concept of Wardrop-equilibrium in the context of trans-
portation networks ([6], [39]). For the decentralized control of
this kind of MAS, many important issues are still open and need
to be investigated, such as, how to design optimal decentral-
ized (adaptive) controls for the cases with parametric uncertain-
ties, unmodelled dynamics ([40], [41]), unknown disturbances
or partial measurement information.

APPENDIX A
BASIC LEMMAS IN PROBABILITY THEORY

Lemma A.1: Consider a wide stationary -dimensional
Gaussian process with zero-mean
and continuous in mean square. If its self-covariance matrix

is absolutely integrable, that is,
, then

a.s.
Proof: It needs only to show

(A.1)

Notice that is zero-mean wide stationary Gaussian
and continuous in mean square, the covariance func-
tion satisfies

, where denotes
the -dimensional vector with the th component being 1, and
the others being 0. Then, we can conclude that the spectrum
function of is absolutely continuous, and hence,
(A.1) holds ([42]).

Lemma A.2: If all the eigenvalues of have negative real
part, then the solution of following differential equation

(A.2)

satisfies

(A.3)

where means the double factorial
of is the unique positive definite solution of

, and .
Proof: By (A.2) and Itô formula we have

(A.4)

Let . Then, by (A.4), we have
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Therefore,
. Let

. Then the above in-
equality can be rewritten as

. Noticing , by induction we
have

(A5)

Since is continuous in terms of almost surely,
. Hence, by (A.5) and the Fatou lemma we

obtain .
Furthermore, . This
together with (A.4) gives

(A.6)

Set . Then from , (A.6)
and the comparison theorem (Theorem 2.6.4 in [43]), it follows
that

(A.7)

By we have .
Hence, when , we have

. Suppose for some , we have
already got

. Then it follows from (A.7) that

. Therefore, by induction, (A.3) is true for
all .

APPENDIX B
PROOF OF THEOREM 3.1

The proofs of (i) and (ii) can be found in [44]. Here we need
only to show (iii), (iv), and (v).

(iii): The general solution of (9) can be expressed as
. Since

all the eigenvalues of have negative real part, there exists
and such that .

Let and . Then, when

, one can get the
solution (10). Furthermore, by

(B.1)

we have , i.e., . Notice that
for any initial value , the
corresponding solution is . Since

and all the eigenvalues of have positive real
part, is unbounded. Thus, the solution of (10) is unique in

, i.e., (iii) holds.
(iv), (v): From (7) and Itô formula it follows that

By (7), (9), and (10) we have

(B.2)

Let . Then, by
(B.2) we have

(B.3)

This together with (iii) implies that for all ,

(B.4)
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Recalling that and Lemma 12.3 of [27], we have

(B.5)

which together with (B.4) gives

Take

(B.6)

Then, the closed-loop system is

(B.7)

Thus, from Lemma 12.4 of [27] and (iii)

(B.8)

Let , and
. Then, we have , and by

Lemma 12.3 of [27],
. Thus, a.s. Furthermore, from

(B.7) and (iii) it follows that a.s. Thus, by
(B.6) and (B.8) we have ; by (B.1), (B.4), and (B.5),

. Hence, is the optimal control , and the cor-
responding cost value is , i.e., (11) and (12) both hold.

APPENDIX C
PROOFS OF LEMMAS 5.1, 5.2, AND 5.3

Proof of Lemmas 5.1: Let

Then (15) can be rewritten as
Hence, to prove the lemma, we need only to show that

and are uniformly bounded and equi-
continuous.

From Remark 8 (ii) we know that for any

Thus, , and are uniformly bounded. We now
show the equicontinuity of and .

By Dyson’s expansion ([45])

we have

and hence,

(C.1)

This together with

implies that there exists independent of , and
such that . Thus, by
the uniform continuity of on we see that is
equicontinuous.

Denote
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Then Notice that
from (C.1)

Then, there exists independent of , and such that
.

This together with the uniform continuity of and on
implies the equicontinuity of .

Similarly, we can show that there exists independent
of , and such that

. From this and the uniform
continuity of , and on the equicontinuity of

follows. Thus, the lemma is true.
Proof of Lemma 5.2: Let .

Then, in order to prove the lemma, by (28) we need only to show

(C.2)

(C.3)

From Assumption A4) and Theorem 2.8 in [27] it fol-
lows that

a.s. By using Assumption A4) again we have
, and hence,

.

From Remark 8 (ii) we see that
. Thus, by Jensen inequality ([32]) we have

. This together with the properties of uni-
formly integrability [see ([32], pp.94)] ensures (C.2).

We now prove (C.3). Let .
From Remark 8 (iii) and Lemma A.2 it follows that

(C.4)

Hence, by Cauchy inequality we have

This together with Theorem 2.8 in [27] implies

(C.5)

By (C.4) we get .
Therefore, by (C.5) and Jensen inequality, we know that for any
given positive integer , there is ,
such that

(C.6)

Take . Then for any and , it fol-
lows from and (C.6) that

. Thus,
. Here denotes the largest integer less than or

equal to . Noticing , by the property of uniform in-
tegrability [see ([32], pp. 102)], one can get (C.3) immediately.
Thus, the lemma is true.

Proof of Lemma 5.3.: Let

and . Then, (28)
can be rewritten as

So, to show the lemma, we need only to show

(C.7)

(C.8)

(C.9)
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Denote
. Then by Itô formula and Remark 8 (ii) one

can get

(C.10)

Hence, by Theorem 2.8 in [27] there exists ,
such that

(C.11)

From (C.10) it follows that

. By (C.11) we know that for any , there is
such that for all

(C.12)

For any , by Remark 8 (ii) there is such that

This together with (C.12) implies that

.

Therefore, by

and the arbitrari-
ness of we have (C.7).

Recall that is a wide stationary Gaussian
process with zero-mean and continuous in mean square. Then,
by some direct calculation we know that ,
where

Thus, it follows from Lemma A.1 that

Hence, (C.8) is true.
From Assumption A4) and Theorem 2.8 in [27] we have

, a.s. Similar to the proof of (C.7) one can get (C.9). Thus, the
lemma is true.

APPENDIX D
PROOFS OF LEMMAS 6.1–6.4

Proofs of Lemmas 6.1–6.2: The proof of Lemma 6.2 is very
similar to that of Lemma 6.1. So, here we only show Lemma 6.1.

Let
Then, by (35) we have

From Theorem 4.1 we know that is independent of .
Thus, (38) holds, that is, Lemma 6.1 holds.

Proof of Lemma 6.3: From (35) and Theorem 4.1 we have

Thus, (39) holds, that is, Lemma 6.3 holds.
Proof of Lemma 6.4: By the notation of Lemma 6.1 and

Lemma 6.2, let and

Then, by Lemma 6.1–6.2 we have . For any
, since
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. Thus, we need only to consider such
that satisfies the following condition:

(D.1)

From Lemma 6.1 and (37), (D.1) it follows that

(D.2)

Noticing
, by (D.2) and Lemma 6.2 we get

(D.3)

Noticing

, letting ,
by (D.3) we have

(D.4)

From (36), (37) it is easy to see that

(D.5)

where

By the Schwarz inequality, (41) and (D.4) we have

(D.6)

(D.7)

Thus, from (D.5), (D.6), (D.7) and we get (40).
Thus, Lemma 6.4 holds.
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