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Asymptotically Optimal Model Estimation for

Quantization
Alexey Ozerov and W. Bastiaan Kleijn

Abstract—Using high-rate theory approximations we introduce
flexible practical quantizers based on possibly non-Gaussian
models in both the constrained resolution (CR) and the con-
strained entropy cases. We derive model estimation criteria
optimizing asymptotic (with increasing rate) quantizer perfor-
mance. We show that in the CR case the optimal criterion is
different from the maximum likelihood criterion commonly used
for that purpose and introduce a new criterion that we call
constrained resolution minimum description length (CR-MDL).
We apply these principles to the generalized Gaussian scaled
mixture model, which is accurate for many real-world signals.
We provide an explanation of the reason why the CR-MDL
improves quantization performance in the CR case and show
that CR-MDL can compensate for a possible mismatch between
model and data distribution. Thus, this criterion is of a great
interest for practical applications. Our experiments apply the
new quantization method to controllable artificial data and to
the commonly used modulated lapped transform representation
of audio signals. We show that both the CR-MDL criterion and
a non-Gaussian modeling have significant advantages.

Index Terms—Constrained resolution, high-rate theory, model-
based quantization, asymptotically optimal model estimation,
minimum description length, maximum likelihood.

I. INTRODUCTION

H IGH-RATE (HR) theory approximations, as applied to

quantization [1], form a powerful tool allowing to derive

analytical asymptotic expressions of quantizer performance.

These expressions are usually applied in the following con-

texts:

• application 1: to analyse asymptotic behavior of Lloyd-

optimal vector quantizers [2], [3],

• application 2: to optimize asymptotic performance of

some pre-defined structured quantizers [4], [5],

• application 3: to build practical quantizers, given some

parametric representation θ (also referred to hereafter as

model) of the data distribution pS(s) [6], [7].

In this work we are mainly interested by the third applica-

tion. It facilitates the design of practical quantizers with the

following attractive properties:

• flexibility: the quantizers can be built in real time for any

value of the rate from the continum of values,
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• low storage requirements: one does not need to store

codebooks, only model parameters need to be stored,

• low computational load: the computational complexities

of both encoder and decoder are low and independent of

the particular rate value.

Such flexible quantizers were recently successfully applied

to audio coding [8]–[10], but can be applied for coding of

any data, e.g., images or video. Moreover, while HR theory is

(asymptotically) valid for high rates, flexible quantizers give

in practice satisfactory results for low rates as well [9], [10].

To build such model-based flexible quantizers it is usually

implicitly assumed that the model is able to represent the data

distribution “perfectly”, and the maximum likelihood (ML)

criterion is generally used for model estimation [6]–[10]. Thus,

except for two works [11], [12] (we discuss the novelty of our

proposal, as compared to these works below), the question

of model estimation is not very carefully addressed in terms

of the best rate-distortion (RD) tradeoff, which is the real

objective of quantization.

Assuming that the HR theory assumption holds, we are

looking in this paper for model estimation strategies leading

to the best RD tradeoff. We consider a k-dimensional random

source vector S and assume that its distribution admits a

probability density function (pdf) pS(s). Let source vector S
be quantized (e.g., as in [6] or [7]) using a probabilistic model

θ ∈ Θ from a family of models Θ, characterized by its pdf

fS(s|θ). The problem of optimal model estimation consists

of choosing a particular θ∗ ∈ Θ that leads to the best RD

tradeoff.

It is implicitly assumed in the state-of-the-art [6]–[10] that

there exist θ ∈ Θ such that fS(s|θ) = pS(s). However,

this assumption is almost never verified in practice for the

following (possibly redundant) reasons:

• one cannot consider an arbitrary parametric family of

distributions, since we do not know yet how to build

practical flexible quantizers in the most general case,

• one cannot use an arbitrary model order, since model

transmission would cost too much [13], or data over-

fitting would lead to a decrease of overall quantization

performance [14],

• and may be most importantly, the real data distribution

often does not fit the model distribution in practice,

whatever the parametric family.

In summary, the flexible quantizers of application 3 are usu-

ally derived based on theoretical results from application 1.

However, while in application 1 it is suitable to consider only
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one data distribution pS(s)1, it is not suitable for application

3, as explained.

The main goal of this work is to compensate for possible

mismatch between the data and model distributions during

the model estimation step. This goal can be achieved by the

following two options: (i) adjust the model, or (ii) adjust the

resulting quantizer density. Here we chose following the first

option, since, in our opinion, it is the most promising one. To

be more precise, our methodology consists of the following

steps:

• assume the model family Θ includes the “right data

model”, i.e., a θ ∈ Θ such that fS(s|θ) = pS(s) exists,

and derive, e.g., as in [3], [15], the quantizer centroid

density function (see Sec. II-A below) expressed in a

parametric form (i.e., via θ) that is optimal in terms of

the RD tradeoff,

• keep the parametric form of the obtained quantizers, and

derive the so called operational rate-distortion function

(RDF) 2, for example as in [15], but, in contrast to [15]

and in line with [16], [17], assuming fS(s|θ) 6= pS(s),
i.e., remove the “right data model” assumption,

• optimize model θ such as to have the best RD tradeoff,

i.e., minimize the operational RDF.

In other words, in the last step we approach the philosophy of

application 2. Indeed, we just consider a family of the quan-

tizers parameterized by θ ∈ Θ, we forget about underlying

probabilistic model, and we are simply looking for the θ∗

optimizing the operational RDF.

We apply the proposed methodology to both constrained

entropy (CE) (variable rate) and constrained resolution (CR)

(fixed rate) quantizers, assuming a quite general (possibly non-

Gaussian) model distribution. Analyzing operational RDFs for

both the CE and CR cases we show that the ML criterion

results in optimal performance for the CE case but not for the

CR case. For the CE case, the result is consistent with the

minimum description length (MDL) principle [18], [19]. We

call the new model estimation criterion for CR quantization

CR-MDL. Our framework is quite general and can be applied

to a large range of model distributions. In the experimental

part we use generalized Gaussian distributions (GGD) and so-

called generalized Gaussian scaled mixture models (GGSMM)

as source models and apply them to synthetic data (sequences

sampled from some GGDs) and real data (modulated lapped

transform (MLT) coefficients of speech).

Concerning the two abovementioned existing works, Duni

and Rao [11] develop a similar CR-quantization framework in

a particular case of GMMs, and [12] is our previous contribu-

tion, where we also consider optimal parameter estimation for

the Gaussian case. Here we formulate our framework first in

the case of any model, and then in a practical case of flexible

quantizers derived from possibly non-Gaussian distributions

including for example GGD, mixtures of GGDs, etc. Both

1In fact, in application 1 there is no parametric model at all, and non-
parametric (and non-flexible) Lloyd-optimal vector quantizer approaches the
HR theory optimal quantizer for pS(s), as rate goes up.

2Given a quantizer specified by its centroid density function and some
data specified by its distribution, the operational RDF, as introduced in [15],
represents the expected RD relation for the quantizer, as applied to the data.

the formulation of flexible quantizers and the derivation of

optimal parameter estimation criteria for the non-Gaussian

case3 are new results. Moreover, in contrast to [11], in our

experiments we provide a systematic comparison between CE

quantization and CR quantization using both the ML and

CR-MDL criteria. Finally, in contrast to [11] and [12], our

derivations of asymptotically optimal model estimation criteria

are based on theoretical mismatch results in high-resolution

quantization theory [16], [17].

In summary, this paper includes the following contributions,

as compared to the state of the art:

1) Both the CR [6] and the CE [7] probabilistic model-

based quantization schemes are extended to a wider class

of non-Gaussian models.

2) As compared to [11], [12], asymptotically optimal model

estimation criteria are derived in the general case of

any model and for the proposed practical non-Gaussian

model-based quantizers using theoretical results from

[16], [17].

3) The advantages of both non-Gaussian modeling and

optimal estimation criteria are demonstrated for quan-

tization of speech MLT coefficients using GGSMM. To

our best knowledge, while Gaussian models have been

used for quantization of linearly transformed speech

coefficients [8]–[10], [12], such non-Gaussian model-

based schemes were not yet studied in this context.

The remainder of this paper is organized as follows. A

quite general formulation of a model estimation framework

is given in section II. However, in this section we do not

consider how to build flexible quantizers for such a general

case. Thus, in section III the framework is reformulated for the

case of practical flexible quantizers, considering a particular

class of parametric model families. Experiments on CE and

CR GGD model-based quantization of synthetic and real data

using different parameter estimation criteria are presented in

Section IV. In Section V the proposed framework is discussed

and some conclusions are drawn.

II. GENERAL FORMULATION

In order to provide a better understanding of our frame-

work, we use a general formulation. However, such a general

formulation is not directly applicable for practical flexible

quantizers, and the corresponding reformulation will be given

in section III.

To derive operational RDFs and their mismatched versions,

i.e., when fS(s|θ) 6= pS(s), we here follow the results

by Zador [2], Bucklew [16], Gray et al. [3], [15], [17]

and [20]. Under some assumptions, asymptotic validity of

operational RDFs was shown in [2], and in [16] and [17] for

the mismatched cases. Lower and upper bounds of achievable

performance were studied in [3]. We here leave aside the study

of achievable performance bounds, and, instead, are interested

in optimizing the quantizer’s asymptotic performance, i.e., the

3As it will be explained in details later, in this paper we consider GMM-
based quantization as quantization using a single Gaussian with parameters
varying in time. This is in fact the case, since for quantization of one source
vector only one pre-selected Gaussian component is used [6], [7].
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operational RDF. The adverb “asymptotically” in the paper’s

title reflects this point.

A. Quantizers

We consider again the source vector S with data distribution

pdf pS(s) and model distribution pdf fS(s|θ) (θ ∈ Θ). We first

suppose that a θ ∈ Θ exists such that fS(s|θ) = pS(s). Let s
be a particular realization of the source vector S, and Q(s) be

its quantized version. For quantization we consider the mean

r-th power distortion measure:

dr(s,Q(s)) =
1

k
‖s −Q(s)‖r =

1

k

(

k
∑

i=1

(si −Q(s)i)
2

)

r
2

.

(1)

Let {Qm}+∞

m=1 be a sequence of quantizers with a total num-

ber of reconstruction points {Lm}m (such that Lm → +∞
while m → +∞). Assuming these quantizers are optimal

for data with pdf fS(s|θ), point density function Λ(s|θ) is

defined as (see e.g., [3]) a continuous function such that

for any “reasonable” subset S ⊂ R
k the ratio between

reconstruction points in S and Lm tends to
∫

S
Λ(s|θ)ds when

m → +∞. Here we use a so called centroid density function

gC,m(s|θ) that relates to the to point density function Λ(s|θ)
as gC,m(s|θ) = LmΛ(s|θ).

It can be shown [3], [20] that the mean distortion Dm =
E[d(S,Qm(S))] can be expressed “asymptotically” as:

Dm =

∫

Rk

fS(s|θ)C(r, k,Gk(s))gC,m(s|θ)− r
k ds, (2)

where C(r, k,Gk(s)) is the normalized moment of inertia

or coefficient of quantization [20], and Gk(s) indicates the

geometry of the cell used for quantization of vector s.

More precisely, equation (2) is valid “asymptotically” in the

sense that the right part of (2) divided by Lm tends to Dm/Lm

when m → +∞. For the sake of simplicity, we use in (2) and

in other expressions below the equality sing (=) instead of

the approximation (≈). Moreover, and for the same reason,

we drop the index m in all expressions below.

Assuming optimal geometry and that Gersho’s conjecture

[21] holds, i.e., for optimal geometry the normalized moment

of inertia does not vary with the cell index (Gopt,k(s) =
Gopt,k), we can write:

D = Cr,k

∫

Rk

fS(s|θ)gC(s|θ)− r
k ds, (3)

where Cr,k = C(r, k,Gopt,k).
We would like to derive the optimal centroid density func-

tion gC(s|θ) under the following two constraints on the rate:

1) Constrained entropy, when each source vector can be

quantized with any number of bits, and only the first-

order entropy of the quantization indices is constrained.

It can be shown [3], [20] that under HR theory assump-

tions this constraint is equivalent to:

−
∫

Rk

fS(s|θ) log2

fS(s|θ)
gC(s|θ)ds ≤ R, (4)

with R denoting the average rate (in bits per vector).

2) Constrained resolution, when each source vector can be

quantized with at most R bits, which in terms of centroid

density function is equivalent to:

log2

∫

Rk

gC(s|θ)ds ≤ R, (5)

with R denoting the constant rate.

To derive optimal centroid density functions one can min-

imize mean distortion D expressed by Eq. (3) under the

corresponding rate constraint ((4) or (5)) using, e.g., the

Lagrange multiplier method (see [3], [20]). In the CE case the

optimal centroid density is constant and related to the average

rate as follows:

log2 gopt,CE
C (s|θ) = R +

∫

Rk

fS(y|θ) log2 fS(y|θ)dy, (6)

and in the CR case the optimal centroid density can be written

as:

gopt,CR
C (s|θ) = 2R fS(s|θ) k

k+r

∫

Rk fS(y|θ) k
k+r dy

. (7)

B. Operational rate-distortion functions

By substituting Eqs. (6) and (7) into Eq. (3), it follows

that in both the CR and CE cases and under HR theory

assumptions the (average) rate R (in bits per vector) is related

to the (average) distortion D (per dimension) via the following

so-called operational RDF:

R = −k

r
log2 D + ψ(θ), (8)

where in the CE case the term ψ(θ) is:

ψCE(θ) =
k

r
log2 Cr,k −

∫

Rk

fS(s|θ) log2 fS(s|θ)ds, (9)

while in the CR case it is:

ψCR(θ) =
k

r
log2

[

Cr,k

(
∫

Rk

fS(s|θ) k
k+r ds

)

k+r
k

]

. (10)

Recall that all the derivations above were done under the

assumption fS(s|θ) = pS(s) (see Sec. II-A). However, as

discussed in the introduction, in the most practical situations

the true data density pS(s) does not belong to the family of

model densities {fS(s|θ)}θ∈Θ and can only be approximated

by a member from this family (pS(s) ≈ fS(s|θ)) with more

or less success.

C. Mismatched operational rate-distortion functions

Now we relax the assumption fS(s|θ) = pS(s), but we

still consider optimal quantizers derived under this assumption

(i.e., a uniform quantizer in the CE case and a quantizer with

centroid density gopt,CR
C (s|θ) (7) in the CR case). Under these

assumptions, we are looking for model parameter estimation

criteria, that are optimal in terms of quantization performance.

The assumption fS(s|θ) 6= pS(s) leads to the replacement of

the first entry of fS(·|θ) in Eqs. (3) and (6) by pS(·). Doing

that and performing similar derivations, one can find, under

certain conditions (see Theorem 2 of [17] and Theorem 2
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of [16] or Appendix A), the following operational RDF

(analogous to (8)):

R = −k

r
log2 D + ψ(θ, S), (11)

with

ψCE(θ, S) =
k

r
log2 Cr,k −

∫

Rk

pS(s) log2 fS(s|θ)ds, (12)

ψCR(θ, S) =
k

r
log2






Cr,k

∫

Rk pS(s)fS(s|θ)− r
k+r ds

(

∫

Rk fS(y|θ) k
k+r dy

)− r
k






. (13)

Such mismatched operational RDFs (i.e., when an optimal

quantizer is derived for model distribution fS(s|θ), but applied

to data having a different distribution pS(s)), were already

reported by Bucklew [16] for the CR case and by Gray

and Linder [17] for the CE case. Moreover, these works

provide rigorous mathematical conditions that are sufficient

for asymptotic validity of (11), (12) and (13). Here, we use

these results for model estimation.

D. Optimal model estimation

We see from equation (11) that under HR theory assump-

tions the mismatched operational RDF (for both CR and CE

cases) is a linear function with slope −k/2 and intercept

ψ(θ, S), relating the rate and the logarithm of distortion. Thus,

to minimize the distortion D for any (high) rate R, one must

look for model parameters θ minimizing the term ψ(θ, S),
which is equivalent to, respectively for the CE and CR case,

θopt
CE = arg max

θ

∫

Rk

pS(s) log fS(s|θ)ds, (14)

θopt
CR = arg min

θ

∫

Rk pS(s)fS(s|θ)− r
k+r ds

(

∫

Rk fS(y|θ) k
k+r dy

)− r
k

. (15)

Note that the criteria for estimation of the optimal model

distribution in the CE and the CR cases are different.

E. Case of empirical data distribution

In many practical situations we do not know the true data

distribution (i.e., pS(s)), and we have only a sequence of

observed vectors s = {sn}N
n=1 (sn ∈ R

k) that we would like

to quantize. In that case one can obtain the following empirical

mismatched RDF (see Appendix A for derivations):

R = −k

r
log2 D + ψemp(θ, s), (16)

with

ψemp
CE (θ, s) =

k

r
log2 Cr,k − 1

N
log2

N
∏

n=1

fS(sn|θ), (17)

ψemp
CR (θ, s) =

k

r
log2






Cr,k

1
N

∑N
n=1 fS(sn|θ)− r

k+r

(

∫

Rk fS(y|θ) k
k+r dy

)− r
k






. (18)

In contrast to (11), which requires knowledge of the underlying

probability distribution, the operational rate distortion relation

(16) is useful for real-world data. It predicts the rate-distortion

relation for a set of N data points s = {sn}N
n=1 for the case

that the signal model fS(·|θ) is assumed.

The optimal model estimation criteria (analogous to (14)

and (15)) become:

θopt
CE = θML = arg max

θ

N
∏

n=1

fS(sn|θ), (19)

θopt
CR = θCR MDL = arg min

θ

∑N
n=1 fS(sn|θ)− r

k+r

(

∫

Rk fS(y|θ) k
k+r dy

)− r
k

. (20)

Thus, in the CE case the ML criterion is optimal in terms of

quantization performance, which is consistent with the mini-

mum description length (MDL) principle [18], [19]. However,

in the CR case we have an optimal model estimation criterion

that in general is not equivalent to ML. We call this new

criterion CR-MDL.

F. Discussion

Unfortunately, except in the scalar case (k = 1), we do

not know how to design analytically practical flexible coders

(including the quantization and the indexing) in the above-

described general situation4. As a result, the Gaussian model is

usually considered in practice (see, e.g., [9], [10]), i.e., fS(s|θ)
is set to be Gaussian. The more general GMMs are considered

in [6]–[8], [22]. However, GMM-based quantization consists

of selecting a suitable Gaussian component and using only

this component for quantization, which results in loss of

optimality when the components overlap [7]. In other words

this quantization is locally Gaussian. Thus, while we are

aware that GMMs can approach any distribution with more

or less success, we consider here GMM-based quantization

as quantization using a Gaussian model with time varying

parameters.

The most common approach to build flexible coders in

this case is to first decorrelate quantized source vector using

the Karhunen-Loeve transform (KLT), and then quantize the

vector components independently using corresponding scalar

quantizers (see [7] for CE case and [6] for CR cases). For such

schemes, the memory advantage of vector quantization versus

scalar quantization (see, e.g., [20], [23]) is taken into account

because of the KLT. However, the space filling advantage and

the shape advantage (for the CR case) are not used. For the CE

case Zhao et al. [7] proposed also using general lattices instead

of Z-lattices (scalar quantizers) in the KLT domain, and the

resulting scheme takes into account the space filling advantage.

The situation is more complex in the CR case, one approach

taken was to apply scalar companders and general lattices

in the KLT domain [22] (instead of scalar quantization [6]),

but the centroid density of such a quantizer can be far from

the optimal centroid density (7), which in principle cannot be

implemented via scalar companders [24].

4More precisely, in such a general situation, the quantization is difficult,
but not the indexing, for the CR case, and the indexing is difficult, but not
the quantization, for the CE case.
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For the sake of simplicity and consistency between the CR

and CE cases we here consider scalar quantizers in some

transformed domain (e.g., as in [7] and [6]), but extend them

to a more general case of non-Gaussian distributions.

III. PRACTICAL FLEXIBLE QUANTIZERS

We consider an N -length sequence S = {Sn}N
n=1 of k-

dimensional real-valued source vectors5, and the correspond-

ing sequence of observations s = {sn}N
n=1 (sn ∈ R

k) to

quantize.

A. Source model

Let a source vector Sn be modeled by a distribution with

pdf:

fSn(s|θn) =

k
∏

i=1

λ
−1/2
n,i η

(

[Λ−1/2
n UT

n (s − µn)]i

)

, (21)

where µn is a vector, Un is an orthogonal matrix (UT
n Un = I),

Λn = diag{λn,1, . . . , λn,k} is a diagonal matrix, and η(·)
is a scalar pdf. In other words, we assume that after some

translation (by µn), rotation (by UT
n ) and dimension-wise

scaling (by Λ
−1/2
n ), the components Xn

i (i = 1, . . . , k) of

the resulting random vector Xn = Λ
−1/2
n UT

n (Sn − µn) are

independent and identically distributed (i.i.d.) with pdf:

fXn
i
(xi|θn) = η(xi). (22)

Note that the samples Sn
i are generally not distributed with

pdf η(·) (up to some scaling and shift). The Gaussian case

forms an exception on this rule. Given the pdf η(·), such a

source model can be parameterized as:

θ , {θn}N
n=1 , {µn, Un,Λn}N

n=1. (23)

Let us remark that estimation of such a model, assuming

all parameters are free, is not efficient, since there are more

parameters than data samples and such an estimation would

lead to a serious data overfitting. Thus, there should be some

additional structure that reduces the number of free parameters.

For example, one can assume that the set of model parameters

is limited to {θ̃q}Q
q=1 (Q << N ) and that they are shared

between several observations, i.e., θn = θ̃q(n) (e.g., as for

GMMs [6], [7]). In that case the source vectors {Sn|q(n) =
q} are i.i.d. and the estimation becomes reliable if the set

{n|q(n) = q} is sufficiently large. Particular model structures

will be specified in the experimental section IV, and we do not

do so at that level of presentation for the sake of generality.

B. Practical quantization schemes

For quantization we consider the average mean squared-

error (MSE) (a particular case of r-th power distortion measure

(1) with r = 2):

d2(s,Q(s)) = (1/k) ‖s −Q(s)‖2 , (24)

5In contrast to the previous section we assume here that the random vector
is dependent on the index n. This is because we want the model (as will be
introduced below) be dependent on n.

which is a single letter distortion measure, i.e., for a vec-

tor it equals to the mean of the distortions for the vector

components. We consider a quantization scheme based on

scalar quantization of the independent components that can

be summarized as follows:

1) Transform vector sn into the “independent” domain:

yn = UT
n (sn − µn). (25)

2) Quantize each dimension yn
i with a scalar quantizer:

QYi

Λn,η(·) : yn
i → ŷn

i , (26)

that is optimal for the i-th dimension of source Y n =
UT

n (Sn − µn) under one of the rate constraints (CR

or CE), assuming that the HR theory assumptions are

valid.6

3) Transmit codeword index of ŷn
i to the decoder to-

gether with side information about model parameters

θn = {µn, Un,Λn}, that can be quantized as well (if

necessary).

4) Reconstruct the quantized vector: ŝn = Unŷn + µn.

The presented quantization scheme is a generalization of

several model-based quantization schemes, such as GMM-

based quantization [6], [7] (we consider GMM-based quan-

tization as Gaussian model-based quantization, see Sec. II-F),

autoregressive model-based quantization [9], [10], and GGD-

based flexible quantization that we would like to explore in

the experimental part of this paper. Note that the GGD model

was already used for quantization (e.g., in [25]). However, the

quantizers used in [25] are not flexible, since they are based

on Lloyd-Max scalar quantization.

C. Optimal scalar quantizers

In this section we derive expressions for optimal (in terms

of minimal overall MSE) scalar quantizers QYi

Λn,η(·) (26) for

both the CE and CR cases.

1) Constrained entropy: For the CE case with MSE distor-

tion, uniform quantization is asymptotically optimal [1]. Thus,

QYi

Λn,f(·) is a scalar quantizer with a constant step size ∆.

Using an arithmetic coder as an entropy coder of the codeword

indices, the effective codeword length Ln (in bits) is:

Ln = −
∑k

i=1
log2

∫ ŷi+∆/2

ŷi−∆/2

fY n
i

(yi)dyi, (27)

where

fY n
i

(yi) = λ
−1/2
n,i η(yiλ

−1/2
n,i ) (28)

is the model pdf of the i-th component of vector Y n =
UT

n (Sn − µn).

6Given that Xn
i are i.i.d. with pdf η(·) (22) and Y n

i = λ
1/2
n,i Xn

i , the

resulting expressions for the optimal scalar quantizers Q
Yi

Λn,f(·)
are indeed

independent of µn and Un, since the MSE distortion measure (24) is invariant
under the transform UT

n (· − µn), as a result of the orthogonality of Un.
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2) Constrained resolution: Let Rn,i be the number of bits

spent for i-th dimension of the n-th vector. Since the MSE

distortion (24) is a single letter distortion the scalar quantizer

QYi

Λn,η(·) must minimize the MSE of the i-th dimension.

According to (7) (for k = 1) such an optimal scalar quantizer

(under HR assumptions) has the following centroid density:

gn,i(yi) = Ln,i

fY n
i

(yi)
1
3

∫

R
fY n

i
(zi)

1
3 dzi

, (29)

where Ln,i = 2Rn,i is the number of levels, and fY n
i

(yi) is

given by (28). Substituting (29) into (3) (for k = 1) one can

write the average MSE distortion for the i-th component of

the n-th vector:

Dn,i =
Cs

L2
n,i

(
∫

R

fY n
i

(zi)
1
3 dzi

)3

(30)

where Cs = C2,1 = 1/12 is the coefficient of quantization of

a scalar quantizer Since the MSE distortion is single letter,

the average MSE distortion for the vector Y n is Dn =
1
k

∑k
i=1 Dn,i.

In order to find Ln,i = 2Rn,i we minimize MSE distortion

Dn under the rate constraint
∑k

i=1 Rn,i ≤ R. By using the

Lagrange multiplier method we find:

log2 Ln,i = Rn,i =
1

2
log2 In,i +

1

k

[

R −
k

∑

l=1

1

2
log2 In,l

]

,

(31)

with In,i =
(

∫

R
fY n

i
(zi)

1
3 dzi

)3

. Using (28), equations (29)

and (31) can be rewritten as:

gn,i(yi) = Ln,i

η(yiλ
−1/2
n,i )

1
3

∫

R
η(ziλ

−1/2
n,i )

1
3 dzi

, (32)

log2 Ln,i = Rn,i =
R

k
+

1

2
log2

(

λn,i/
∏k

l=1
λ

1/k
n,l

)

. (33)

We see that equation (33) is identical to that arrived in [6]7

for a Gaussian pdf η(·). So, this expression is valid for any

scalar pdf η(·); it is independent of the particular form of η(·),
and depends only on Λn and total rate R. In other words,

that means that for a single letter distortion measure the bit

allocation between scalar CR quantizers having up to some

scaling the same point density would be independent of the

particular form of this density.

Finally, the scalar quantizer QYi

Λn,η(·) with centroid density

(32) can be implemented via companding8 as follows:

1) Compute xi = yi/
√

λn,i.

2) Apply the optimal scalar compressor corresponding to

the pdf η 1
3
(·) (η 1

3
(xi) , η(xi)

1
3 /

∫

R
η(zi)

1
3 dzi):

ui = ξ 1
3
(xi),

where ξ 1
3
(·) is the cumulative distribution function (cdf)

of a random variable with pdf η 1
3
(·) (i.e., ξ 1

3
(xi) =

∫ xi

−∞
η 1

3
(zi)dzi).

7Note that our derivations are almost the same as in [6], with difference
that we do not assume that orthogonal transform UT

n is the KLT and that η(·)
is a Gaussian pdf.

8Note that companding is optimal for the scalar case.

3) Quantize ui with a scalar quantizer QUi

Ln,i
: ui → ûi

uniform on the interval (0, 1) with Ln,i levels computed

using (33).

4) Reconstruct ŷi =
√

λn,iξ
−1
1
3

(ûi).

D. Mismatched operational rate-distortion functions

We consider a sequence of vectors s = {sn}N
n=1, and

we assume that these vectors are quantized under HR theory

assumptions as described in sections III-B and III-C using a

model θ = {µn, Un,Λn}N
n=1. One can show that in this case

the mismatched operational RDF (analogous to (11)) can be

written as:

R = −k

2
log2 D + ψflex(θ, s), (34)

with

ψflex
CE (θ, s) =

k

2
log2 Cs −

1

N
log2

∏

n

fSn(sn|θ), (35)

ψflex
CR (θ, s) =

k

2
log2

[

Cs

(
∫

R

η(zi)
1
3 dzi

)2
]

+

+
k

2
log2

1

kN

N
∑

n=1

|Λn|
1
k

k
∑

i=1

η
(

yn
i /

√

λn,i

)− 2
3

, (36)

where yn = UT
n (sn−µn). For the CE case (Eqs (34), (35)) this

result is a straightforward consequence of (27). A derivation

of the result for the CR case (Eqs (34), (36)) is given in

Appendix B.

E. Optimal model parameter estimation

As before, we see from equations (34) and (35) that in the

CE case and under HR theory assumptions the ML criterion

is optimal in terms of quantization performance, and that this

is not true in the CR case. Thus, in the case of flexible CR

quantization we introduce the following new model estimation

criterion:

θflex
CR MDL = arg min

θ
φ(θ, s), (37)

where the term φ(θ, s) defined as

φ(θ, s) =

N
∑

n=1

|Λn|
1
k

k
∑

i=1

η
(

yn
i /

√

λn,i

)− 2
3

, (38)

is obtained from the term ψflex
CR (θ, s) (36) by some simpli-

fications such that the new criterion (37) is equivalent to

minimizing the term ψflex
CR (θ, s).

IV. EXPERIMENTS

The goals of the experiments presented in this section

are: (a) to check whether the rate and distortion of the

practical flexible quantizers follow the theoretically predicted

asymptotic behaviour at high rates, (b) to see in the CR

case and for different situations, which improvement can be

obtained using the optimal CR-MDL criterion, as compared

to the ML criterion (as in [6]), for high and low rates, (c) to
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investigate, whether the newly proposed non-Gaussian model-

based quantizers (with parameters optimized via asymptoti-

cally optimal criteria) applied to some real data can bring

an improvement, as compared to the Gaussian model-based

quantizers [7], [11]. For that, we first provide some results

on quantization of synthetic sources, i.e., when we know

exactly the distribution the data were sampled from. Then,

we provide some practically useful results on quantization of

MLT coefficients of speech.

As non-Gaussian source models we use either centered

GGDs or their mixtures. The pdf of a centered GGD with

shape parameter ν and standard deviation σ can be written as:

fGGD(s|ν, σ) =
να(ν)

2σΓ(1/ν)
exp

[

−
∣

∣

∣
α(ν)

s

σ

∣

∣

∣

ν]

, (39)

where α(ν) =
[

Γ(3/ν)
Γ(1/ν)

]1/2

, and Γ(·) denotes the Gamma

function defined as: Γ(z) =
∫ +∞

0
t−1+ze−t dt.

A. Synthetic scalar sources

In the simple case of scalar quantization (k = 1) we assume

that

• the data sequence follows a GGD with unit variance and

the shape factor νdata:

pS(s) = fGGD(s|νdata, 1), (40)

• the model parametric family of pdfs consists of GGD

pdfs with the same shape factor νmodel (νmodel 6= νdata

in general) and different standard deviations (i.e., θ =
{σ}σ):

{fS(s|θ)}θ = {fGGD(s|νmodel, σ)}σ, (41)

and we simulate the following three synthetic examples with

different degrees of mismatch between the true data distribu-

tion and the family of model distributions:

• Example 1: νdata = 2 (Gauss.), νmodel = 1 (Laplacian),

• Example 2: νdata = νmodel = 1.5 (no mismatch),

• Example 3: νdata = 1 (Laplacian), νmodel = 2 (Gauss.).

1) Implementation issues: In the simulations presented

below we optimized the ML criterion (19) and the CR-MDL

criterion (37) with respect to (w.r.t.) to the parameter σ. Since,

in contrast to the ML criterion, the CR-MDL criterion has no

closed-form solution for this model, we used either Newton’s

method or a gradient descent algorithm, depending on the

criterion convexity (in the case of the GGDs the criterion is

not always convex). Some implementation details about the

quantization and the CR-MDL criterion optimization are given

in appendices C-A and C-B, respectively.

2) Simulations: For each of three examples considered the

following was performed. A data sequence s = {sn}N
n=1 of

length N = 1000000 was drawn from pdf pS(s). Model

parameters, denoted as θML and θflex
CR MDL, were estimated

using criteria (19) and (37) respectively. Data histograms and

estimated model pdfs are represented on the top row of Fig. 1.

The data sequence s was quantized for different rates between

0 and 30 bps in the following three scenarios:

(i) CR-ML: CR quantization using model θML estimated

with the ML criterion,

(ii) CR-OPT: CR quantization using model θflex
CR MDL esti-

mated with the CR-MDL criterion,

(iii) CE-OPT: CE quantization using model θML estimated

with the ML criterion.

The bottom row of Fig. 1 show the experimental and theoreti-

cally predicted (via Eq. (34)) results relatively to the CE-OPT

theoretical performance.

3) Discussion: One can note from Fig. 1 that the exper-

imental results follow the theoretically predicted asymptotic

behaviour starting from some high rate (20 bps). Performance

improvement obtained using optimal CR-MDL criterion, as

compared to ML, is huge for the third example (about 40 dB in

distortion), moderate, but still important, for the first example,

and, as expected, there is no improvement for the second

example. In fact, when there is no mismatch between data

and model distributions, both criteria should lead to the same

parameter estimation. Note also that for the third example the

asymptotic behaviour of CR quantization with ML-estimated

model is very poor, even if the rate is high (20 bps). This is

probably because a heavy-tailed data distribution is modeled

by an ML-estimated light-tailed distribution leading to very

large quantization cells, i.e., the HR assumptions are violated.

The CR-MDL criterion makes the asymptotic behaviour of CR

quantization significantly better. Finally, we note that the CR-

MDL criterion brings as well some improvement, as compared

to ML, for low rates (e.g., starting from 5 bps).

B. Real multidimensional sources: Quantising speech MLT

coefficients with GGSMM

In this section we investigate the CR-MDL criterion in

the case of real (non-synthetic) multidimensional sources,

i.e., when we do not know the “real” data distribution. We

consider quantization of modulated lapped transform (MLT)

coefficients of speech. Gaussian models are usually used to

encode discrete Fourier transform (DFT) [8], MLT [12] or

time-domain [9], [10] coefficients of speech. Here we would

like to check whether using non-Gaussian (e.g., Laplacian)

models for quantization of MLT coefficients of speech can

be more advantageous, as compared to Gaussian models.

Our motivation is based on our preliminary study [12] and

on some works on speech enhancement [26] and separation

[27] showing that using Laplacian distributions for speech

DFT coefficients can be more advantageous, as compared to

Gaussian distributions. More precisely, we consider a so-called

generalised Gaussian scaled mixture model (GGSMM). To

our best knowledge, such non-Gaussian models were not yet

studied in application to quantization of linearly transformed

speech samples.

1) GGSMM and coding scheme: Let s = {sn}N
n=1 be a

sequence k-dimensional MLT vectors to be quantized. Each

vector is assumed to be a realization of a source vector Sn

with pdf:

fSn
(s|θest

n , θfix) =

k
∏

i=1

fGGD(s|ν, hnσq(n),i), (42)
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Fig. 1. Results on data sampled from GGDs with shape factors (SFs) νdata = 2, 1.5, 1 and quantized by GGD-based quantizers with SFs νmodel =
1, 1.5, 2. Top row: data histograms (gray bars), ML-estimated model pdfs (blue dashed lines), CR-MDL-estimated model pdfs (red solid lines). Bottom row:
Experimental results for a set of rates between 0 and 30 bps (circles, triangles or squares) and HR theory predicted RD curves given by equation (34) (lines).
The following three scenarios were considered: (i) CR-ML (circles and dashed line), (ii) CR-OPT (triangles and solid line), (iii) CE-OPT (squares and
dotted line). All the results are plotted relative to the CE-OPT theoretical performance.

where σq = [σq,i]
k
i=1 (q = 1, . . . , Q) are so-called character-

istic spectral patterns, q(n) is the index of a spectral pattern

selected for n-th MLT vector, and hn is a non-negative gain ac-

counting for vector’s energy. In terms of notations of equation

(21) we have Un = Ik (Ik being the (k × k) identity matrix),

µn = 0, λi,n = h2
nσ2

q(n), and η(·) = fGGD(·|ν, 1). As for

coding scheme, parameters θest
n , {q(n), hn} are estimated

for every vector, quantized if necessary, and transmitted to the

decoder, and a so-called dictionary of characteristic spectral

patterns θfix , {σq}Q
q=1 is fixed and supposed to be known,

once estimated in a training phase, by both the coder and the

decoder. To allow reconstruction of the encoded MLT vector

at the decoder, component index q(n) and gain hn need to

be transmitted as well. The index q(n) is losslessly encoded,

and the logarithm of gain hn is lossy encoded using a single

Gaussian model and the same HR quantization strategy. As

we have found in [13], the asymptotically optimal rate for

gain (or more generally model) quantization is fixed, i.e., it is

independent on the overall rate.

2) Data and parameters: For evaluation and training, we

used respectively 100 and 360 narrow-band speech signals (5

and 15 minutes of speech) randomly selected from respectively

the evaluation and training sets of the TIMIT database. The

MLT was computed with offset k = 128 (16 ms). Finally, we

had about 20000 and 60000 MLT vectors for evaluation and

training, respectively.

3) Parameter optimization: For GGSMM-based coding

scheme we are interested in comparing coding scenarios (i) -

(iii) described in section IV-A for different values of the shape

factor ν and of the number of model components Q. In order to

provide a fair comparison, all the parameters without exception

are re-trained for every particular configuration defined by the

triple ((l), ν,Q). To optimize parameters for training (θfix and

θest , {θest
n }n) or coding (θest only), we used an iterative

procedure consisting in updating in turn a subset of parameters

(gains, characteristic spectral patterns, or component indices),

given other parameters fixed.9 As for updates used for gains

{hq(n)
n }n,q(n) and characteristic spectral patterns {σq}q, the

corresponding optimization sub-problems for the ML criterion

allow closed form solutions, and for the CR-MDL criterion

we used one iteration of Newton’s method or gradient descent

algorithm, as in section IV-A. The first and second derivatives

of the corresponding criterion are quite similar in spirit to those

presented in appendix C-B for the scalar GGD case, and they

are omitted here for brevity.

Note that the studied coding scheme in the CR case is

9Such an optimization procedure is more in line with the segmental
K-means algorithm [28] for GMMs rather than with the Expectation-
Maximization (EM) algorithm [29] (as e.g., used in [6]–[8]). In our opinion
such a way of model training (i.e., when we look for the optimal sequence
of component indices, instead of integrating over all possible sequences, as
in EM) is more consistent with the common coding strategy [6], [7], where
every vector is quantized using only one mixture component.
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Fig. 2. Top row: Zero-rate distortion for different numbers of GGSMM components, scenarios and shape factors (left), zoom on the CR curves (middle),
zoom on the CE curves (right). Scenarios: (i) CR-ML (dashed line), (ii) CR-OPT (solid line), and (iii) CE-OPT (dotted line). Shape factors (SF): ν = 1
(diamonds), ν = 1.5 (x-marks), and ν = 2 (stars). Bottom row: Experimental results for a set of rates between 1 and 30 bps (circles, triangles or squares)
and HR theory predicted RD curves given by equation (34) (lines). Scenarios: (i) CR-ML: (circles and dashed line), (ii) CR-OPT (triangles and solid line),
(iii) CE-OPT (squares and dotted line). Shape factors: ν = 1 (left), ν = 1.5 (middle), and ν = 2 (right).

not entirely consistent with conventional GMM-based CR

quantization, as described in, e.g., [6]. In fact, in [6] every

source vector is quantized with every component, and the

component leading to the lowest distortion is selected then,

while we are using either the ML or the CR-MDL criterion

for component selection. The former strategy is obviously

the optimal one, but it also means that the selected model

parameter (we consider that the sequence of component in-

dices forms a part of the model) depends on the rate and the

quantizer implementation. Since we here prefer staying in the

rate-independent model estimation scenario, we leave aside

this “optimal component selection strategy” for component

selection, and continue using the ML or the CR-MDL cri-

terion. However, we performed some experiments using this

“optimal component selection strategy”, and noticed that it

does not improve the results drastically and does not alter

our conclusions on the comparison between ML and CR-

MDL criteria. For example, in the case of GSMM with 64
components (the case we study below, that is represented on

the bottom right subfigure of figure 2) the “optimal component

selection strategy” combined with the ML criterion (as in [6])

allows dividing by two the gap of about 50 dB between the CR

quantization performances obtained using the ML and the CR-

MDL criteria. However, this last method leads to a very chaotic

performance behaviour (this is due to the model parameter that

changes with rate), and the remaining gap of 25 dB is still

large.

4) Simulations: In our experiments we consider a so called

zero-rate distortion D0 defined as

log2 D0 =
2

k

(

ψflex(θ, s) + Rfix
mod

)

, (43)

where Rfix
mod is the fixed rate used for transmission of the

model (components and gains). Let Rtot = R + Rfix
mod be

the total rate. It is easy to see from Eq. (34) that the zero-

rate distortion D0 corresponds to (HR asymptotic) distortion

for Rtot = 0. It is in fact a measure of asymptotic coding

performance.

a) Shape factors and number of GGSMM components:

We have computed zero-rate distortion for all three settings

(i)-(iii), for shape factors ν = 1, 1.5, 2, and for the number

of components Q varying as log2 Q = 0, 1, . . . , 9. The results

are shown on the top row of figure 2. First, we see again

that, as compared to the ML criterion, the CR-MDL criterion

significantly improves and stabilizes the performance in the

CR case. Second, the CR-ML performance closely approaches

the CR-OPT performance for Laplacian distribution (ν = 1)

with many components, thus the mismatch between the ML

and the CR-MDL criteria is lowest for this model. This result

indicates that the mixture of Laplacian distributions with many

components is probably the most appropriate model for speech
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among all the models considered. Finally, while the Laplacian

distribution leads to the best results (i.e., the best RD tradeoff)

for the CE-OPT case for all values of Q, in the CR-OPT case

Laplacian distribution gives the best results for small values of

Q, but this tendency inverts for large values of Q. The heavy

tails of the Laplacian distribution aid in the quantization of

outliers for low Q, while the smooth shape around the mode of

a Gaussian facilitates accurate modeling of an arbitrary smooth

distribution at high Q. These results show that there are some

practical situations, where using non-Gaussian models can be

beneficial, as compared to Gaussian.

b) Coding: Here we check whether the effective quanti-

zation performances approach theoretically predicted ones at

high-rates, and also we would like to see what happens at low

rates. For that we perform with the GGSMM-based coding

scheme the experiments similar to those reported on Fig. 1

for all settings (i)-(iii), number of components Q = 64, and

for shape factors ν = 1, 1.5, 2. The results are shown on the

bottom row of figure 2. Note that, these results, in contrast

to those from Fig. 1, are plotted in the absolute scale, and

not relatively to the CE-OPT theoretical performance. In fact,

we see that real quantization results approach their high rate

asymptotics in all cases. Again, in line with what was observed

in the synthetic data case (see Fig. 1), the asymptotic behavior

is quite poor in the CR-ML case, notably for ν = 1.5 or 2,

and usage of the optimal criterion allows stabilizing it. Finally,

while quantization results approach their asymptotics only for

high rates, we see that for low rates (e.g., 5 - 10 bits per

sample) the CR-MDL criterion outperforms systematically the

ML criterion in the CR case.

5) Summary: In the CR case the CR-MDL criterion outper-

forms systematically the ML criterion (used in [6]) for high

and moderately low rates (see the bottom row of figure 2). As

compared to quantization using mixtures of Gaussian distribu-

tions with HR-optimally estimated parameters [7], [11], using

mixtures of Laplacian distributions is beneficial for a small

number of components (up to 16) in the CR case (see the top

middle row of figure 2) and for any number of components we

have tested in the CE case (see the top right row of figure 2).

Thus, both the optimal estimation criteria and non-Gaussian

modeling have their advantages for this task.

V. DISCUSSION AND CONCLUSION

We have proposed a framework of asymptotically optimal

model estimation for quantization. This framework generalizes

previous works to a wider family of model distributions,

including non-Gaussian ones. We have evaluated the proposed

estimation criteria and quantization schemes on synthetic data

and speech MLT coefficients. Experiments showed that in the

CR case the proposed CR-MDL criterion outperforms the ML

criterion in all cases, thus compensating for the mismatch

between model and data distributions.

It should be noted that such a “suboptimality” of the ML

criterion for quantization in the CR case is related with other

works and remarks in the literature. For example, Samuelsson

[8] has tuned some factor (that equals to
√

3 according to

theory) for his GMM-based quantization scheme10 so that to

optimize the performance. While no motivation was given in

[8] for this tuning, our frameworks provides an obvious one.

In fact, this factor scales with model standard deviations, and

the goal of this tuning was to compensate for the mismatch

between model and data distribution.

Our experiments on quantization of MLT speech coefficients

with flexible quantizers based on such non-Gaussian models

(e.g., scaled mixtures of Laplacian distributions) show that

they can be advantageous, as compared to Gaussian models.

The advantage of Laplacian distributions for speech was al-

ready shown for other applications (e.g., speech enhancement

[26] and source separation [27]), and we confirm it for the

coding application.

As for further research, an interesting direction would be to

develop practical flexible model-based quantizers for hybrid

rate constraints in-between CR and CE (e.g., as in [3]) and

to derive corresponding optimal model estimation criteria. A

practical advantage of such quantizers is that they would be

able to avoid the most severe outliers in distortion of CR

quantizers and the outliers in rate of the CE quantizers.

APPENDIX A

DERIVATION OF THE EMPIRICAL MISMATCHED

OPERATIONAL RDF (EQS (16), (17), (18))

Let s = {sn}N
n=1 a sequence of vectors to quantize. Let

A = {Am}m∈Z be a partition of R
k into half-open cubes of

side length ε > 0:

Am =
{

s ∈ R
k
∣

∣

∣
Ji(m) ≤ si

ε
< Ji(m) + 1, i = 1, . . . , k

}

,

where Ji(m) = [J1(m), . . . , Jk(m)] is a bijective mapping

between Z and Z
k. We consider a histogram-based empirical

density estimate with pdf

p̂S(s|s, ε) =
1

εkN

∑N

n=1

∑

m∈Z

1Am
(sn), (44)

where 1A(·) is the indicator function of a subset A ⊂ R
k.

For the results on mismatched operational RDFs (11), (12),

(13) to be applicable to the data and model distributions with

pdfs p̂S(s|s, ε) and fS(s|θ), one needs to assure the sufficient

conditions of Theorem 2 of [17] and of Theorem 2 of [16] are

satisfied.

Sufficient conditions of Theorem 2 of [17] are:

CE.1 Differential entropy h(fS , θ) =
−

∫

Rk fS(s|θ) log fS(s|θ)ds exists and it is finite.

CE.2 For every optimal quantizer Q its entropy

HfS ,θ(Q) = −
∑

j

∫

Vj
fS(s|θ)ds log

∫

Vj
fS(s|θ)ds

(where Vj denotes quantization cells and the

summation is over all cells) exists and it is finite.

CE.3 fS(s|θ) = 0 implies pS(s) = 0 for all s.

CE.4 pS(s)/fS(s|θ) is bounded.

Sufficient conditions of Theorem 2 of [16] are:

CR.1 There exist δ > 0 such that
∫

Rk ‖s‖r+δ(pS(s) +
fS(s|θ))ds < +∞.

10From [8]: “The factor cc in the encoding and decoding was experimen-
tally tuned to maximize either SNR or PESQ for each model at rate 2 (the
same factor was used at the other rates).”
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CR.2 pS(s) and fS(s|θ) satisfy
∫

Rk pS(s)fS(s|θ)− r
k+r ds

(

∫

Rk fS(y|θ) k
k+r dy

)− r
k

< +∞ (45)

We assume that for every θ and all the CE quantizers Q we

consider here conditions CE.1 and CE.2 are satisfied. We also

assume the model pdf fS(s|θ) to be continuous and positive

in R
k. Finally, we assume that there exist δ > 0 such that

∫

Rk ‖s‖r+δfS(s|θ)ds < +∞ and that
∫

Rk fS(y|θ) k
k+r dy <

+∞. With these assumptions and because of the fact that

p̂S(s|s, ε) has a bounded support in R
k conditions CE.3, CE.4,

CR.1 and CR.2 are satisfied.

Thus, we can write the mismatched operational RDFs

equations (11), (12), (13) for p̂S(s|s, ε) and fS(s|θ). Doing so,

and tending ε to zero we obtain, due to continuity of fS(s|θ),
the empirical mismatched operational RDFs expressed by (16),

(17) and (18).

APPENDIX B

DERIVATION OF THE CR MISMATCHED OPERATIONAL RDF

FOR FLEXIBLE QUANTIZERS (EQS (34), (36))

Since, because of orthogonality of Un, the MSE distortion

measure is invariant under transform UT
n (·−µn), we can con-

sider quantization of transformed data vectors y = {yn}N
n=1

(yn = UT
n (sn −µn)) instead of quantization of s = {sn}N

n=1,

without any loss of generality.

Let Rn,i be the rate spent for quantization of i-th dimension

of vector yn, and Dn,i be the corresponding expected distor-

tion. Rewriting the CR empirical operational RDF defined by

Eqs (16) and (18) in the particular case of r = 2, k = 1,

Cr,k = Cs, R = Rn,i, D = Dn,i, N = 1, and s1 = yn
i , we

have the following relation between Rn,i and Dn,i:

Rn,i = −1

2
log2 Dn,i +

1

2
log2

CsfY n
i

(yn
i )−

2
3

(

∫

R
fY n

i
(zi)

1
3 dzi

)−2 , (46)

where fY n
i

(yi) is given by (28).

The overall average distortion D (per dimension) can be

expressed as

D =
1

kN

k
∑

i=1

N
∑

n=1

Dn,i. (47)

Using (47), Dn,i expressed via (46), Rn,i expressed via

(33), and expression (28) for fY n
i

(yi), we obtain equation (34)

with ψflex
CR (θ, s) defined by (36).

APPENDIX C

MISCELLANEOUS DETAILS ON IMPLEMENTATION

A. CR quantization with GGD

Here we consider the case of scalar CR quantization based

on a GGD, i.e., when η(·) = fGGD(·|ν, 1) (see Sec. III-B). To

implement the optimal scalar compressor ξ 1
3
(·) and expander

ξ−1
1
3

(·) (see Sec. III-C2) in this case, one only needs to

compute the cdf of the corresponding GGD and its inverse.

This simplification results from the fact that for the GGD

η 1
3
(x) = 3−1/νη(3−1/νx) (note that this is not a general

property).

The cdf of the centered GGD with unit variance and shape

parameter ν can be written as:

ξ(x) =
1

2

[

1 + sign(x)γ

(

1

ν
, (α(ν)|x|)ν

)]

, (48)

where γ(a, y) is the lower incomplete Gamma function defined

as (we are using the Matlab definition of this function):

γ(a, y) =
1

Γ(a)

∫ y

0

ta−1e−t dt. (49)

The inverse cdf is computed similarly using the inverse up-

per incomplete Gamma function γ−1(a, y), i.e., the inverse

of γ(a, y) w.r.t. y. In our Matlab implementation we used

gammainc and gammaincinv functions to compute γ(a, y)
and γ−1(a, y).

B. CR-MDL criterion optimization for GGD

In the case of the GGD model considered in the experimen-

tal section IV-A the term φ(θ, s) (38) becomes:

φ(σ, s) = χ(ν)σ2
N

∑

n=1

exp

[

2

3

α(ν)ν

σν
|sn|ν

]

, (50)

where χ(ν) = 3
2
ν

(

2Γ(1/ν)
να(ν)

)2

is a constant that is independent

on σ. To minimize this term we use either Newton’s method

or a gradient descent algorithm w.r.t. log σ, instead of σ, since

that incorporates a non-negativity constraint in the optimiza-

tion. The first and the second derivatives of φ(σ, s) w.r.t. log σ
needed for this optimization can be expressed as:

∂

∂ log σ
φ(θ, s) = χ(ν)σ2 [2ζ0 − ν ζ1] , (51)

∂

∂2 log σ
φ(θ, s) = χ(ν)σ2

[

2ζ0 + ν(ν − 3)ζ1 + ν2ζ2

]

, (52)

where

ζl =
N

∑

n=1

[

2

3

α(ν)ν

σν
|sn|ν

]l

exp

[

2

3

α(ν)ν

σν
|sn|ν

]

, l = 0, 1, 2.
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