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Asymptotically-optimal Path Planning for Manipulation

using Incremental Sampling-based Algorithms

Alejandro Perez Sertac Karaman Alexander Shkolnik Emilio Frazzoli Seth Teller Matthew R. Walter

Abstract— A desirable property of path planning for robotic
manipulation is the ability to identify solutions in a suffi-
ciently short amount of time to be usable. This is particularly
challenging for the manipulation problem due to the need to
plan over high-dimensional configuration spaces and to per-
form computationally expensive collision checking procedures.
Consequently, existing planners take steps to achieve desired
solution times at the cost of low quality solutions. This paper
presents a planning algorithm that overcomes these difficulties
by augmenting the asymptotically-optimal RRT∗ with a sparse
sampling procedure. With the addition of a collision checking
procedure that leverages memoization, this approach has the
benefit that it quickly identifies low-cost feasible trajectories
and takes advantage of subsequent computation time to refine
the solution towards an optimal one. We evaluate the algorithm
through a series of Monte Carlo simulations of seven, twelve,
and fourteen degree of freedom manipulation planning prob-
lems in a realistic simulation environment. The results indicate
that the proposed approach provides significant improvements
in the quality of both the initial solution and the final path,
while incurring almost no computational overhead compared
to the RRT algorithm. We conclude with a demonstration of
our algorithm for single-arm and dual-arm planning on Willow
Garage’s PR2 robot.

I. INTRODUCTION

Motion planning algorithms intended for manipulation

tasks must quickly provide plans that not only obey the

constraints embedded in the environment, but also take ad-

vantage of the full capabilities of the platform in order for the

robot to perform challenging tasks in cluttered environments.

Along with the requirement of generating paths that leverage

the full maneuverability of the platform in some optimal

sense, at least two other major challenges play a fundamental

role in most manipulation planning tasks.

Firstly, the configuration space of most manipulation

platforms is inherently high-dimensional. Robotic arms are

typically equipped with joints that result in as many as ten

degrees of freedom, making algorithms based on a naive a

priori discretization of the configuration space impractical.

Secondly, as close proximity to certain obstacles is funda-

mental for manipulation, e.g., for the purpose of grasping, the

planning process requires high-precision collision checking

of potential trajectories. Often achieved by creating a fine

mesh of the manipulator and its surroundings, these collision-

checking procedures incur significant computational costs.

Alejandro Perez, Alexander Shkolnik, Seth Teller, and Matthew R. Walter
are with the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA {aperez,
shkolnik, teller, mwalter}@csail.mit.edu

Sertac Karaman and Emilio Frazzoli are with the Laboratory for In-
formation and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, USA {sertac, frazzoli}@mit.edu

(a) RRT (b) BT+RRT∗

Fig. 1. Given the goal of taking both arms of the PR2 from an initial pose
underneath the table to the pre-grasp pose with the end effectors near the
mug, (a) the RRT typically results a plan involving unnecessary actuation
of several joints while (b) our method identifies more efficient plans.

In light of the first challenge, sampling-based algorithms

have been shown to generate solutions swiftly in high-

dimensional configuration spaces [1]. Arguably, one of the

most widely-used algorithms of this class is the Rapidly-

exploring Random Tree (RRT) algorithm [2], which grows a

search tree starting from the initial configuration by adjoining

states sampled randomly from the configuration space.

Most sampling-based algorithms are probabilistically com-

plete, i.e., the probability that the algorithm finds a solution,

if one exists, converges to one as the number of samples

approaches infinity [1], [2]. Indeed, the probability that the

algorithm fails to find a solution, when one exists, typically

decays to zero very rapidly [2], [3]. The RRT algorithm

exhibits this property, efficiently finding an initial feasible

solution. However, the algorithm often provides solutions

that result in maneuvers that unnecessarily actuate a large

number of the platform’s joints, paths that traverse round-

about trajectories to reach nearby goal configurations, and

solutions that require jerky movements. To alleviate this

problem, it is common for the solutions returned by the

RRT algorithm to be post-processed, e.g., using smoothing

algorithms [4]. Even though these methods usually improve

the quality of the path considerably, the improvements tend

to be local and such algorithms fail to guarantee that the

resulting path is an optimal solution in any sense.

Recently, Karaman and Frazzoli [5] have shown that

the probability that the RRT algorithm converges to an

optimal solution is zero. In the same paper, they propose

an alternative method, the RRT∗, an incremental sampling-

based algorithm with the asymptotic optimality property, i.e.,

almost-sure convergence to an optimal solution. Moreover, it

was shown that the RRT∗ algorithm achieves the asymp-

totic optimality absent from the RRT, without incurring



a substantial computational overhead. These properties of

RRT∗ provide substantial benefits for manipulation planning.

Namely, they enable the planner to quickly find a feasible

motion plan and to take advantage of remaining computation

time to improve the plan, monotonically converging to the

global optimum.

In this paper, we leverage the asymptotic optimality

property of the RRT∗ algorithm to provide close-to-optimal

solutions for path planning for manipulation platforms with

high-dimensional configuration spaces. We present an imple-

mentation of the RRT∗ that significantly reduces the number

of collision checks and, therefore, the computational effort,

while still considering numerous paths at every iteration,

assuring almost-sure convergence to an optimal solution. We

extend this implementation with the Ball Tree algorithm [6]

and a memoization technique to improve the performance of

the algorithm. Our Monte Carlo evaluations and experimental

results on Willow Garage’s PR2 platform show that our

algorithm is able to plan in high-dimensional configuration

spaces, providing significant improvements in the quality of

the path without incurring substantial computational over-

head, when compared to the RRT.

II. RELATED WORK

The robot motion planning problem has been widely stud-

ied for at least three decades [7]. Although the problem has

been shown to be computationally challenging [8], several

practical approaches have been proposed. Most recently,

algorithms that take the quality of the solution into account

have received significant attention.

A popular approach is to apply a variant of optimal graph

search algorithms like A∗ to a discretization of the config-

uration space that is generated offline [9]. Such algorithms

have been successfully implemented on robotic cars [10],

and very recently applied to manipulation planning problems

involving a six-dimensional configuration space [11]. These

algorithms, however, are complete and optimal only with

respect to the resolution of this discretization. Moreover, the

number of discretization points scales exponentially with the

number of degrees of freedom, making them impractical for

manipulation platforms with a large number of joints.

A more recent line of research has been the investigation of

efficiently generating smooth trajectories using, for instance,

gradient descent [4] and stochastic optimization [12], which

have been applied to solving planning problems for manipu-

lation tasks involving up to seven-dimensional configuration

spaces. However, these algorithms are optimal only locally,

and are designed for a special class of cost functions that

only considers smoothness.

The approach proposed in this paper is globally optimal

for a wide class of cost functions, and leverages the efficiency

of sampling-based algorithms in high-dimensional configu-

ration spaces. It also has an anytime flavor in the sense that

the proposed algorithm provides a feasible solution quickly,

and monotonically improves the solution towards an optimal

one in the remaining computation time.

III. PROBLEM DEFINITION AND ALGORITHMS

A. Problem Definition

Let X ⊆ R
d, referred to as the configuration space, be a

compact set. The elements of X are called configurations.

Let Xobs, Xgoal ⊂ X be open sets, called the obstacle region

and the goal region, respectively. The set defined as Xfree :=
X \Xobs is called the obstacle-free space. A path in X is

a continuous function σ : [0, 1] → X . The path σ is said to

be collision-free, if σ(τ) ∈ Xfree for all τ ∈ [0, 1]. The set

of all collision-free paths is denoted by Σfree.

Given an initial configuration xinit, an obstacle region

Xobs, and a goal region Xgoal, the motion planning problem

is to find a collision-free path σ : [0, 1] → Xfree that starts

from the initial configuration σ(0) = xinit and reaches the

goal region σ(1) ∈ Xgoal.

Let c : Σfree → R≥0 be a cost functional that maps each

collision-free trajectory to a non-negative cost. The optimal

motion planning problem is to find a collision-free path σ∗ :
[0, 1] → Xfree that solves the motion planning problem, and

moreover minimizes the cost functional c(·), i.e., c(σ∗) =
infσ′∈Σfree

c(σ′).

B. RRT algorithm

The RRT algorithm was proposed by LaValle and

Kuffner [2] as an incremental sampling-based motion plan-

ning algorithm. In this section, we first describe some

primitive procedures that govern the RRT, and then provide

the RRT algorithm in our notation.

Sampling: The Sample procedure returns independent

uniformly distributed samples from the obstacle-free space.

Collision Checking: Given a path σ : [0, 1] → X , the

CollisionFree(σ) procedure returns true iff σ is collision-

free, i.e., σ(τ) ∈ Xfree for all τ ∈ [0, 1].
Steering: Given two configurations x, x′ ∈ X , the

Steer(x, x′) procedure returns a path σ : [0, 1] → X that

connects x and x′, i.e., σ(0) = x and σ(1) = x′. The Steer

procedure used in this paper does so with a straight path,

i.e., σ(τ) = (1− τ)x+ τ x′ for all τ ∈ [0, 1].
Nearest Vertex: Given a set V ⊂ X of configurations and

a configuration x ∈ X , the Nearest(V, x) procedure returns

the configuration in V that is closest to x with respect to the

Euclidean norm, i.e., argminx′∈V ‖x
′ − x‖.

Finally, in the description of all algorithms to follow,

each set A is equipped with add and remove, which add

and remove elements from A, i.e., A.add(a) corresponds to

setting A to A ∪ {a}.

Algorithm 1 presents the RRT algorithm. The algorithm

maintains a tree, denoted as T = (V,E), where V ⊂ X
and E ⊂ V × V are called the sets of vertices and edges,

respectively. Initially, the set vertices of vertices includes

only the initial configuration xinit and the set of edges is

empty (Line 1). In each iteration (Lines 2-8), the algorithm

samples a new configuration xnew from Xfree (Line 4),

computes the vertex xnearest that is closest to xnew (Line 4),

and generates a path σ that connects xnearest and xnew

(Line 5). If this path is collision-free (Line 6), then the new

vertex is added to the tree T as a child of xnear (Lines 7-8).



Algorithm 1: The RRT Algorithm

1 V ← {xinit}; E ← ∅; T ← (V,E);
2 for i = 1 to N do
3 xnew ← Sample(i);
4 xnearest ← Nearest(V, xnew);
5 σ ← Steer(xnew, xnearest);
6 if CollisionFree(σ) then
7 V.add(xnew);
8 E.add( (xnearest, xnew) );

9 return T = (V,E).

C. RRT∗ Algorithm

The RRT∗, first introduced by Karaman and Frazzoli [5],

is an incremental sampling-based motion planning algo-

rithm that provides an asymptotic optimality guarantee, i.e.,

almost-sure convergence to optimal solutions, which the RRT

algorithm lacks, without incurring substantial computational

overhead. In this section, we present the RRT∗ algorithm

along with a set of modifications tailored to reduce the

number of calls to the CollisionFree procedure, after

introducing some extra primitive operations employed by the

RRT∗ algorithm.

Near Vertices: Given a finite set V ⊂ X of configurations

and a configuration x ∈ X , roughly speaking, the Near(V, x)
procedure returns the set of all configurations in V that are

close to x, where we define closeness as follows. Letting

n := |V | be the number of configurations in V , we define

Near(V, x) :=
{

x′ ∈ V : ‖x′ − x‖ ≤ γ ((log n)/n)
1/d }

,
where γ is a constant independent of n [5]. In other words,

Near(V, x) is the set of all configurations in V that lie inside

a ball of volume O((log n)/n) centered at x.

Lists and Sorting: A list L is an ordered set of elements.

Just like sets, each list L is equipped with the L.add(a)
method. We will also consider lists of cost, configuration,

and path triplets, i.e., triplets of the form (ci, xi, σi), where

ci ∈ R≥0, xi ∈ X , and σi ∈ Σfree. Given a list L of such

pairs, the L.sort() method sorts the elements of L according

to their cost in the ascending order. When the algorithms

iterate through the list’s elements, they do so respecting the

list ordering.

Cost Functional: Given a vertex x of the tree maintained

by the RRT∗ algorithm, we let Cost(x) be the cost of the

unique path that starts from the root vertex xinit and reaches

x along the vertices of the tree. With a slight abuse of

notation, we denote the cost c(σ) of a path σ : [0, 1] → X
as Cost(σ) for notational simplicity.

Algorithm 2 outlines the implementation of the the RRT∗

algorithm, specifically tailored to reduce the number of

calls to the CollisionFree procedure. In what follows, we

present the algorithm.

Similar to the RRT algorithm, the RRT∗ iteratively main-

tains a tree structure, with four key phases.

In the first phase, the RRT∗ algorithm samples a new

configuration xnew from Xfree (Line 3), and computes the

set Xnear of all vertices that are close to xnew (Line 4). If

Xnear is an empty set, then Xnear is updated to include the

Algorithm 2: The RRT∗ Algorithm

1 V ← {xinit}; E ← ∅; T ← (V,E);
2 for i = 1 to N do
3 xnew ← Sample(i);
4 Xnear ← Near(V, xnew);
5 if Xnear = ∅ then
6 Xnear ← Nearest(V, xnew);

7 Lnear ← PopulateSortedList(Xnear, xnear);
8 xparent ← FindBestParent(Lnear, xnew);
9 if xparent 6= NULL then

10 V.add(xnew);
11 E.add( (xparent, xnew) );
12 E ← RewireVertices(E,Xnear, xnew);

13 return T = (V,E).

Algorithm 3: PopulateSortedList(Xnear, xnew)

1 Lnear ← ∅;
2 for xnear ∈ Xnear do
3 σnear ← Steer(xnear, xnew);
4 cnear ← Cost(xnear) + Cost(σ);
5 Lnear.add( (cnear, xnear, σnear) );

6 Lnear.sort();
7 return Lnear;

Algorithm 4: FindBestParent(Lnear, xnew)

1 for (cnear, xnear, σnear) ∈ L do
2 if CollisionFree(σnear) then
3 return xnear;

4 return NULL

Algorithm 5: RewireVertices(E,Lnear, xnew)

1 for (cnear, xnear, σnear) ∈ L do
2 if Cost(xnew) + c(σnear) < Cost(xnear) then
3 if CollisionFree(σnear) then
4 xoldparent ← Parent(E, xnear);
5 E.remove( (xoldparent, xnear) );
6 E.add( (xnew, xnear) );

7 return E

vertex in the tree that is closest to xnew (Lines 5-6).

In the second phase, the algorithm calls the

PopulateSortedList(Xnear, xnear) procedure (Line 7).

This procedure, given in Algorithm 3, returns a sorted triplets

of the from (cnear, xnear, σnear), for all xnear ∈ Xnear,

where (i) σnear is the straight path that connects xnear and

xnew and (ii) cnear is the cost of reaching xnew by following

the unique path in the tree that reaches xnear and then

following σnear (see Line 4 of Algorithm 3). The triplets of

the returned list are sorted according ascending cost. Note

that at this stage, the paths σnear are not guaranteed to be

collision-free.

In the third phase, the RRT∗ algorithm calls the

FindBestParent procedure, given in Algorithm 4, to de-

termine the minimum-cost collision-free path that reaches

xnew through one of the vertices in Xnear. With the vertices



presented in the order of increasing cost (to reach xnear),

Algorithm 4 iterates over this list and returns the first vertex

xnear that can be connected to xnew with a collision-free

path. If no such vertex is found, the algorithm returns NULL.

If the FindBestParent procedure returns a non-NULL

vertex xparent, the final phase of the algorithm inserts

xnew into the tree as a child of xparent, and calls the

RewireVertices procedure to perform the “rewiring” step

of the RRT∗ [5]. In this step, the RewireVertices proce-

dure, given in Algorithm 5, iterates over the list Lnear of

triplets of the form (cnear, xnear, σnear). If the cost of the

unique path that reaches xnear along the vertices of the tree

is higher than reaching it through the new node xnew, then

xnew is assigned as the new parent of xnear.

This implementation of the RRT∗ is only slightly different

than that presented in [5], preserving both computational

efficiency and the asymptotic optimality. This implemen-

tation is specifically tailored for cases when the collision

checking procedure is computationally expensive. Our im-

plementation avoids calling this procedure several time in

two places. Firstly, inside the FindBestParent procedure,

the CollisionFree procedure is called until a vertex xnear

that can be connected to xnew with a collision-free path

is found. The authors have empirically noticed that such a

vertex is most often found quickly without iterating through

the whole list. Secondly, in the RewireVertices procedure,

the CollisionFree procedure is called only if the cost of

the resulting path improves the cost to reach to a particular

vertex xnear ∈ Xnear.

D. Ball Tree Algorithm

The Ball Tree algorithm, presented by Shkolnik and

Tedrake [6], is a sampling-based method similar to the RRT

that approximates connected regions of free space with balls

instead of points. Treated as sets of reachable points, the

algorithm uses these balls to perform rejection sampling,

resulting in trees that are sparser than those of the standard

RRT while maintaining probabilistic completeness.

Algorithm 6 outlines the “inexact” version of the Ball Tree

algorithm. A tree is grown in a similar manner as the RRT.

Each node in the Ball Tree consists of a ball in configuration

space, and is parameterized by the location of the center of

the ball and its radius. The ball approximates a portion of

configuration space that is reachable from the center of the

ball, as the algorithm makes the implicit assumption that

any point within a ball is reachable from the ball’s center,

until proven otherwise. An edge in the tree corresponds to

a feasible (verified collision-free) action from the center of

one ball to the center of the next ball.

When a node is added to the tree, the algorithm initializes

the radius of it’s corresponding ball to r0. In our implemen-

tation, r0 is ∞. The method performs rejection sampling to

find a point in configuration space that is not within any of

the balls in the tree. Rejected samples are collision checked.

If a collision is found, the radius of the nearest enclosing ball

is reduced to the distance between the sample and the center

of the ball. Note that verifying a single point for collision is

relatively inexpensive.

Algorithm 6: The Ball Tree Algorithm

1 V ← {xinit, r = 0}; E ← ∅; T ← (V,E);
2 for i = 1 to N do
3 while true do
4 xnew ← Sample(i);
5 if InsideBall(xnew, T ) then
6 if ! CollisionFree(xnew) then
7 xnearest ← NearestBall(V, xnew);
8 TrimRadius (xnearest, ‖xnew − xnearest‖);

9 else
10 break;

11 xnearest ← NearestBall(V, xnew);
12 σ ← Steer(xnew, xnearest);
13 if CollisionFree(σ) then
14 V.add(xnew, r0);
15 E.add( (xnearest, xnew) );

16 else
17 TrimRadius (xnearest, ‖xnew − xnearest‖);

18 return T = (V,E).

When a sample is found to lie outside all balls in the tree,

the Steer procedure extends the tree towards the accepted

sample. If a collision-free path is found, a ball centered

around the sample point is added to the tree. On the other

hand, if a collision is encountered, the radius of the parent

node, xnearest, is trimmed to be equal to the length of the

collision-free portion of the path.

In this manner, the Ball Tree algorithm fills easy-to-reach

neighborhoods with balls. Using rejection sampling, the algo-

rithm focuses its attention on expanding towards unexplored

(or previously unattainable) regions of configuration space.

E. Memoized Collision Checking

Memoization [13] is a technique commonly used to avoid

redundant function calls by recording results of previous

queries. We implement this technique in the CollisionFree

procedure to alleviate the computational burden typically

associated with checking paths for collisions.

The MemoizedCollisionFree(x) procedure estimates

the collision status of a configuration x. To do so, the proce-

dure maintains and queries a cache of collision checks that

takes the form of a hash table. The HashIndex(x) function

generates the configuration state’s index within this table. In

the case of a manipulator, this function incorporates an array

of resolution values for each joint to discretize its range of

motion. Higher resolutions are assigned to joints with move-

ments that result in significant changes to the position of the

end effector. When queried, MemoizedCollisionFree(x)
uses the index returned by HashIndex(x) to search for the

matching cell in the hash table. If the cell is populated, the

stored value is returned. If no match exists, the procedure

calls CollisionFree(x) and stores the result.

This procedure results in a non-conservative approxima-

tion of a precise collision checker and is used as an admissi-

ble heuristic. In this paper we verify the final solutions with

the regular CollisionFree procedure before execution.



Fig. 2. The planner is tasked with finding a collision-free solution from (left) an initial pose in which the arm is under the table to (right) the goal pose.

F. BT+RRT∗: RRT∗ with Ball Trees and Memoization

We propose a manipulation planning algorithm that offers

two compelling advantages. Firstly, it is noticeably faster

than conventional planners at identifying an initial, low-cost,

feasible path to the goal in configuration space. Secondly,

the algorithm is uniquely able to take advantage of available

computation time to refine this solution towards an optimal

one. We achieve these characteristics by combining the Ball

Tree algorithm, which maintains sparse trees to efficiently

reach the goal, with the RRT∗ algorithm, presented in Sec-

tion III-C, which provides the anytime refinement of the tree.

The memoized collision checking procedure, meanwhile,

enables efficient implementation of the Ball Tree sampling

and steering functions.

More precisely, the algorithm operates as described in

Algorithm 2 subject to the following modifications. Firstly,

each call to the CollisionFree procedure is replaced with

the MemoizedCollisionFree process. Among them are

those calls within the RRT∗ algorithm as well as the Ball

Tree, including the collision checking that is performed as

part of the rejection sampling for the “inexact” version of the

algorithm. Secondly, until the first feasible solution is found,

the sampling step (Line 3) is replaced with Lines 2-9 of

the Ball Tree algorithm (Algorithm 6) and the TrimRadius

procedure (Line 16 of Algorithm 6) is executed whenever

the MemoizedCollisionFree(σ) procedure fails, i.e., the

path σ is not collision-free.

In the next section, this approach is evaluated in Monte-

Carlo simulation experiments and compared with other ap-

proaches, including both the RRT and the RRT∗ algorithms.

IV. RESULTS

In this section, we evaluate the effectiveness of our algo-

rithm through both simulation as well as through experiments

on the PR2 robot. We first perform a Monte Carlo study

to analyze the algorithm’s performance on two different

planning problems for the PR2 robot. The first involves

finding an collision-free path through configuration space

that brings a single, seven degree of freedom arm to a

pre-grasp pose. In the second scenario, we consider jointly

planning trajectories for both arms. The experiments were

performed in the OpenRAVE simulation environment [14].

A. Single-Arm Scenario (Seven Degrees of Freedom)

In the first scenario, we simulate an environment in which

the PR2 is at rest with its left arm underneath a table as

depicted in Figure 2. The task is to plan the trajectories of

the seven joints that bring the left arm from this initial pose

to a pre-grasp pose above the table. The primary challenge

is to negotiate the narrow region of configuration space that

is induced by the close proximity of the table.

We applied our planning method to this problem along

with the RRT, the RRT∗, and a variant of our algorithm in

which rewiring takes place only after an initial solution is

found (referred to as the BT/RRT∗). Each planner performed

memoized collision checks and ran for a total of 4000 itera-

tions. We performed a total of 100 Monte Carlo simulations

for each algorithm.

TABLE I

SEVEN DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT∗ RRT RRT∗ BT/RRT∗

Success Rate (100 runs) 100.00% 87.00% 99.00% 100.00%

First Solution
Time (s) 2.52 (3.07) 9.75 (12.52) 7.92 (10.97) 2.51 (2.48)

Cost 7.61 (2.11) 14.73 (5.49) 8.11 (1.67) 17.99 (5.63)

Final Solution
Time (s) 77.14 (4.49) 54.96 (4.75) 77.85 (3.95) 79.21 (4.47)

Cost 5.52 (0.53) 14.73 (5.49) 5.65 (0.50) 5.67 (0.51)

Time per Iteration (ms) 19.33 (1.13) 13.78 (1.19) 19.51 (0.99) 19.85 (1.12)

Table I summarizes the performance of the different mo-

tion planning algorithms. All four planners find a feasible

solution in this seven-dimensional configuration space in the

majority of the runs. Our method is successful for all of the

100 simulations as is the other planner that utilizes the Ball

Tree algorithm. The RRT∗ is successful in all but one run

while the standard RRT planner succeeds 87% of the time.

As we discuss later, the improved performance of the RRT∗

is a consequence of our variation whereby we connect a

sample with the lowest cost node in the tree that is collision

free. This has the effect of increasing the number of nodes

in the tree, improving the likelihood of finding a solution.

The algorithms differ more significantly with regards to the

time required to find a solution and its corresponding cost.

The RRT and RRT∗ required a similar amount of time to find

an initial solution, with the RRT∗ being slightly faster with

an average time of 7.92 seconds as opposed to 9.75 seconds.

We attribute this improvement to the memoized collision

checking, without which the average time required for the

RRT∗ to find the first solution is 18.96 seconds compared to

14.22 seconds for the RRT. Not surprisingly, however, the

RRT∗ yielded solutions with significantly lower cost (mean

of 8.11 radians) than those of the RRT (mean of 14.73 radi-

ans). Meanwhile, with an average time of 2.51 seconds, the

Ball Tree-only algorithm required far less time to identify
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Fig. 3. Solution cost as a function of computation time, averaged over the
set of single-arm Monte Carlo simulations for the four planning algorithms.
Vertical bars indicate standard deviation over the 100 runs while the open
circles denote the average completion time. The bottom figure presents an
inset view that compares the mean behavior of the three algorithms that
utilize the RRT∗.

an initial solution, in exchange for a greater solution cost

(mean of 17.99 radians). In contrast, our algorithm found

solutions in the same amount of time while also consistently

outperforming the other planners in terms of cost. Of the

100 Monte Carlo runs, our method returned solutions with a

mean cost of 7.61 radians in an average of only 2.52 seconds.

This performance was consistent, as demonstrated by the low

variance in the first solution time and the corresponding cost.

Upon finding the an initial solution, our algorithm forgoes

the rejection sampling of the Ball Tree and proceeds to build

and rewire the tree. In this way, the algorithm attempts to

utilize available computation time to improve the quality

of the solution. In essence, by effectively switching to an

RRT∗, one would expect our algorithm and the Ball Tree-

only variation to behave similarly to the RRT∗ given enough

iterations. Indeed, this is what we see, as Figure 3 indicates.

The plot depicts the solution cost as a function of time

averaged over the Monte Carlo simulations for each of the

four planners. The vertical bars depict the standard deviation

of the cost. Our algorithm exhibits convergence very similar

to that of the RRT∗, with the advantage of an earlier initial

solution time. This is evident in the lower plot in which the

two cost profiles are the same, but with that of our algorithm

shifted forward in time. The final solution cost after 4000

iterations is nearly identical for these two algorithms as well

as the BT/RRT∗, as reflected by the values in Table I. While

slightly lower, the average cost of the final trajectory for

the BT+RRT∗ is nearly identical to that of the RRT∗ and

the BT/RRT∗ and exhibits similarly low variance. The RRT,

on the other hand, does not refined the initial solution and

generates greater average cost.

While our algorithm is faster at finding initial solutions

whose cost is similar to the RRT∗, this does not come at the

expense of increased computational overhead. The average

time for each iteration is nearly identical to that of the RRT∗

and of the BT/RRT∗ algorithm.

B. Dual-Arm Scenario (Twelve Degrees of Freedom)

Next, we consider jointly planning the motion of both

robot arms to achieve a pre-grasp pose. We omit the roll

joint of each wrist, resulting in a twelve-dimensional search

space. In this scenario, depicted in Figure 4, the robot

starts with both arms below the table and is tasked with

finding a collision-free trajectory that ends with both grippers

positioned to execute a grasping maneuver. We performed

100 simulations of each of the four planning algorithms,

each to a total of 6000 iterations. All simulations utilized

the memoized collision checking.

Fig. 4. In the second scenario, the planner is tasked with finding an
collision-free trajectory from (left) an initial pose in which both arms are
under the table to (right) a pre-grasp goal pose.

TABLE II

TWELVE DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT∗ RRT RRT∗ BT/RRT∗

Success Rate (100 runs) 100.00% 58.00% 85.00% 100.00%

First Solution
Time (s) 9.74 (12.84) 29.92 (34.05) 24.61 (32.09) 8.94 (11.06)

Cost (rad) 8.59 (2.16) 19.76 (5.69) 8.71 (2.34) 22.13 (7.72)

Final Solution
Time (s) 135.28 (15.08) 112.41 (19.46) 131.38 (14.49) 165.28 (28.16)

Cost (rad) 7.53 (1.21) 19.76 (5.69) 7.97 (1.71) 8.83 (1.73)

Time per Iteration (ms) 22.58 (2.52) 18.77 (3.25) 21.93 (2.42) 27.59 (4.70)

Table II depicts the results of the Monte Carlo simulations.

Both algorithms that utilize the Ball Tree were able to find

a solution in each run, while the RRT and RRT∗ succeeded

58% and 85% of the time, respectively. We again attribute

the higher success rate for the RRT∗ to its choice of the best

collision-free parent when adding nodes. As with the seven

degree of freedom experiments, both the BT/RRT∗ algorithm

and our planner identify initial solutions in significantly less

time than the RRT and RRT∗. The average cost of the first

solution that our algorithm returns, however, is consistently

lower and similar to that of the initial RRT∗ solution.

The algorithm then proceeds to use the available com-

putation time to refine this solution. Figure 5 depicts the

average improvement in cost as a function of time along with

an indication of the standard deviation. We again see that

our algorithm behaves similarly to the RRT∗ with regards

to solution cost. After the maximum number of iterations,

our method yields final costs that are slightly lower than the

average RRT∗ cost, with similarly low variance. The results

suggest that the same is true of the BT/RRT∗ planner and we

expect that the three algorithms would converge if given a

sufficient number of iterations, as in the single-arm scenario.

C. Dual-Arm Scenario (Fourteen Degrees of Freedom)

In the final set of Monte Carlo evaluations, we again

consider the dual-arm scenario with the addition of the roll
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Fig. 5. Solution cost as a function of computation time for the dual-
arm planning problem with twelve degrees of freedom. The plots reflect
the average over the set of Monte Carlo simulations for the four planning
algorithms. Vertical bars indicate standard deviation over the 100 runs while
the open circles denote the average completion time.

joint for each wrist, giving a total of fourteen degrees of

freedom. We performed 100 simulations of the four planners,

allowing each to run for a total of 10,000 iterations.

TABLE III

FOURTEEN DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT∗ RRT RRT∗ BT/RRT∗

Success Rate (100 runs) 100.00% 25.00% 59.00% 99.00%

First Solution
Time (s) 34.76 (60.06) 70.78 (82.90) 106.20 (108.65) 23.81 (38.79)

Cost (rad) 9.82 (2.94) 21.00 (7.69) 10.03 (2.61) 25.46 (9.08)

Final Solution
Time (s) 374.65 (46.46) 263.16 (30.40) 380.82 (34.20) 406.00 (59.20)

Cost (rad) 8.64 (1.95) 21.00 (7.69) 9.28 (2.14) 10.58 (2.32)

Time per Iteration (ms) 37.50 (4.65) 26.34 (3.04) 38.12 (3.42) 40.64 (5.93)

Table III presents the simulation results. With a maximum

of 10,000 iterations, the RRT∗ was able to find a solution

in 59 of the runs and the RRT was successful in only 25.

The BT/RRT∗ planner identified a solution in all but one

run while our algorithm found a trajectory every time. Much

like the seven and twelve degree of freedom simulations, the

BT+RRT∗ and BT/RRT∗ Ball Tree planners return an initial

solution much sooner than the RRT and RRT∗. On average,

our algorithm takes longer than the BT/RRT∗ to isolate

an initial solution, though with the benefit of a significant

improvement in cost that resembles that returned much later

by the RRT∗, both in terms of mean cost and variance. After

10,000 iterations, the BT+RRT∗ yields an average trajectory

cost slightly better than that of the RRT∗ and BT/RRT∗.

D. PR2 Experimental Validation

In addition to the Monte Carlo simulations, we utilized

our algorithm to execute both the single-arm and dual-arm

scenarios on the actual PR2 platform. We demonstrated our

planner together with the standard RRT approximately a

dozen times for each of the two cases. In the single-arm

scenario, both algorithms were permitted 1000 iterations,

while the dual-arm application considered 2000 iterations.

Figure 1(b) presents a time lapse image that shows the typical

trajectories that result from our planner. We compare this

with the RRT solutions that typically require excessive arm

motion. The consistency with which our algorithm plans

efficient paths through configuration space supports the small

variance in the lower cost solutions found in the Monte

Carlo simulations. Videos that show single-arm and dual-arm

planning with our algorithm on the PR2 robot are available at

http://ares.lids.mit.edu/videos/manipulation/.

V. CONCLUSION

Incremental sampling-based motion planners, such as the

RRT, are able to identify feasible motion plans quickly, mak-

ing them appealing for manipulation. However, the solutions

returned by these planners are often far from optimal and

the exploration of the space is commonly sacrificed to avoid

computationally-expensive collision checking. This paper

described a sampling-based planning algorithm that leverages

the efficient planning capabilities of the Ball Tree algorithm

together with the asymptotic optimality provided by the

RRT∗. Moreover, the algorithm delays checking paths for

collision until it is absolutely necessary and leverages mem-

oization to reduce its computation time. We employed Monte

Carlo simulations to evaluate the ability of this algorithm

to provide low-cost solutions for high-dimensional planning

problems in a timely fashion. We further demonstrated the

algorithm’s performance through experiments that involved

planning single and dual-arm trajectories on the PR2 robot.
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