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Asymptotically Optimal Quantizers for 
Detection of I.I.D. Data 

Absfracf -The asymptotic probability of error for quantization in maxi- 
mum likelihood tests is analyzed. We assume quantizers with large num- 
bers of levels generated from a companding function. A theorem which 
relates the companding function to the asymptotic probability of error is 
proven. The companding function is then optimized. 

I. INTRODUCTION 

FUNDAMENTAL problem in digital communica- A tion systems is the question of how much degrada- 
tion in performance a receiver suffers given that the incom- 
ing data are quantized. A related problem is how to design 
a quantizer so that this degradation is minimized. 

Much research dealing with these questions has been 
done. Kassam [ l ]  considered the problem of how to design 
a quantizer to minimize a probability of error criterion. 

Poor and Thomas [2], [3] consider the problem of quan- 
tizer design from an asymptotic relative efficiency type of 
distortion criterion and then from an Ali-Silvey distance 

measure. Poor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], [5] subsequently considers the problem 
relative to various statistical divergences and also considers 
some novel estimation theory applications. Bucklew [6] 
considers the problem of design from a mean-squared 
error in the likelihood ratio point of view. 

None of these papers consider the probability of error as 
the design distortion measure. The error probability is 
notoriously intractable, and this fact in our opinion moti- 
vated all these other approaches. We take some first steps 
in the direction of using error probability as the distortion 
measure. For a large number of samples, the probability of 
error (in many cases) converges to zero exponentially fast. 
We propose to take the exponential rate constant as our 
distortion measure. This is tantamount to using decibels to 
measure the probability of error for large sample sizes. We 
develop a theory asymptotic in the number of quantizer 
output levels for this distortion measure based upon a 

companding model for the quantizer, and then optimize 
the asymptotic constant to obtain the optimal companding 
characteristic. 
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11. PRELIMINARIES AND OVERVIEW 

The primary theoretical tool invoked in t h s  paper is the 
well-known theorem of Chernoff [7]. Chernoff explored 
the probability of error in a maximum likelihood binary 
decision problem and derived an expression which gives 
the asymptotic efficiency of the test, i.e., the exponential 
rate at which the probability of error vanishes as the 
sample size increases. 

Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  }?= , are independent identically dis- 
tributed (i.i.d.) random variables. Consider the following 
detection problem: 

Ho: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  has distribution P 

H,  : X ,  has distribution Q. 

Assuming equal prior probabilities, the maximum likeli- 
hood detector minimizes the probability of error. Assume 
that W is a measure on R which dominates both P and Q, 
and let dP/dW and dQ/dW denote the Radon-Nikodym 
derivatives. Define the log likelihood function 

(2.1) 
dP dQ 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA log - ( x )  -log - ( x )  
dW dW 

and create the test statistic 

i L O ; ) .  
;=l 

Define e, as the total probability of error after observ- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn samples, 

Define the alpha entropy Ha, 

Chernoff s theorem says that if L(  X I )  is finite W almost- 
everywhere, then 

1 
n + m  lim - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn log e ,  = log Ha, 

where 
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Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I, which can be seen from an application 

of Holder's inequality. Also, in Lemma 2, we show that Ha 
is continuous and differentiable in a. 

Chernoff's theorem differs from the traditional Chernoff 
bound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[13]  in that the theorem clearly exhibits the expo- 
nential tightness of the bound. Exponential tightness means 

that 

exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ n ( ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ) ]  < e, < exp [.(.I + c ) ]  

for large n ,  where Z = log Ha, and c > 0. Thus any design 
which reduces I must (eventually for large n )  reduce the 
probability of error. Designs which reduce only an upper 
bound criterion may not always reduce the probability of 
error. 

We choose as our criterion of quantizer performance the 
value of Ha, in (2.3). We will actually compute the change 
in Ha, caused by quantization. It is assumed that the 
source distributions P and Q have Lebesgue densities so 
that (2.2) exists with d W =  dx. Quantization of tFe sour5e 
can be viewed as a mapping of P and Q into P and Q, 
respectively, each having finite support. If we choose W to 

be the counting measure on this support, it is clear that 
(2 .2 )  exists. It is in this way that we will apply Chernoff's 

theorem. 
Since we can compare the asymptotic performance of 

quantizers, it is desirable to find the optimal quantizer. We 
will do so asymptotically in N, the number of quantization 
levels. In Section V we define a quantization rule which 
generates a sequence of increasingly fine quantizers in- 
dexed by N .  As N becomes large the degradation (the 

change in Ha,) will vanish. The figure of merit of the 
quantization rule will be the rate at which the degradation 
vanishes. 

Our assumptions and notation are given in Section 111. 
Section IV gives a Taylor series analysis whch discerns the 
change in Ha due to quantization. In Section V we define a 
quantization rule and relate it to the change in Ha. We 

satisfy the conditions of Chernoff's theorem in Section VI 
and then optimize in Section VII. Extensions are given in 
Sections VIII and IX followed by examples in Section X. 

111. NOTATION 

Let { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA', }/": be an i.i.d. sequence of random variables. 
The two possible Lebesgue densities for the distribution of 
X ,  are 

H,: density = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( x )  

H,: density = q ( x ) .  

A large class of densities will be considered in Section 

VIII, but the core of the analysis concerns compact sets. 
Consequently, we begin with the following assumptions. 

1) A closed interval A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ a ,  b ]  ( -  00 < a < b < 00)  ex- 
ists such that { p > 0 }  = { q > 0) = A .  

2 )  Both p and q are three times continuously differen- 
tiable ( C3) on ( a ,  b )  with the third derivatives 
bounded. 

3) Min,p > 0, min, q > 0. (3.1) 

The source is mapped into discrete values through a 
quantizer. For our purposes, a quantizer will be viewed as 
a partition of the set A .  Thus the collection of points 

a,, a,, a 2 , ' .  ' 3 E 

( a ,  # a, for i f  j )  (3 .2 )  

defines a quantizer; i.e., to quantize X is to indicate which 
points of (3.2) are greater than X. The numerical value 
assigned by the quantizer is not important. 

Given any M > 0, we say that a partition (3.2) is M- 
allowable for the set A if the following conditions hold: 

1) a=a ,<a ,<a ,<  e . .  < a N = b ;  
2 )  

Given an M-allowable partition, we define the following 

a, - aJ- ,  I M / N ,  

(for each j = 1 , 2 ; . . ,  N ) :  

j =1 ,2 ;  . ., N .  

BJ = ( ' J - 1 9  

A, = a, - a J _ l  

x ,  = (a,  + a , - , ) / 2 .  (3 .3 )  

For notational simplicity we use the following conventions 

to indicate relative rates of growth. Given sequences 

( x , ) : = ~  and (y,):='=l, we write 

y, = O ( x , )  if and only if limsup - < 00, 

Y, 
y, = o ( x n )  if and only if lim - = 0. 

n - + m  /21 
n + m  X ,  

Iv. EXPANSION OF ALPHA ENTROPY 

Our goal in this section is to estimate the change in 

alpha entropy due to quantization. We first analyze the 
alpha entropy of the source. Pick any a E (0, l), M > 0, 
and any M-allowable partition. Define 

f ( x )  Li p a ( x ) q ' - * ( x ) .  

The alpha entropy (2.2) is 

Note that on any bin B,, both p and q can be approxi- 
mated by a second-order Taylor polynomial. The function 

f also has a Taylor expansion. Consider the derivatives of 
f on A :  

ap'p"- 'q ' -*+( l -  a)q'p"q-" ( 4 4  

a p l y - l q l - a -  a( l -  .)( p y p a - 2 q l - a  (4 .2 )  

+ 2 a ( 1 -  a)p 'q 'pa- lq-a 

- a(1- a)( q')2paq-a-1 

+ (1 - a)q"paq-a. 

f ' g . - =  df 

f " 'dx=  

dx 

df' 

The third derivative of f exists, but all we require is that 
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f”’ be bounded on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  By inspection of (4.2), it is clear 
that the terms in f”’ will involve positive powers of 
p ,  p‘ ,  p ” ,  p”’ and negative powers of p ,  and likewise for q. 
From (3.1) we have that p ,  p ‘ ,  p ” ,  p“‘ must be bounded 
and likewise for q. Also p - ’  and 4-l are bounded on A .  
Thus f”’ is bounded on A .  

We now apply Taylor’s theorem [t i ]. For t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE B,, 

for some z between t and x,. Because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf”’ is bounded, 
there is a K > 0 such that 

1 + ; ( t - x , ) 2 f “  ( x, ) dt I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c K It - x,I3 dt = KA:/32. (4.3) 
- J., 

Consider 

N N 

A; I ( rnax A:) A, = ( u N  - u o )  max A: = O( N a 3 ) ,  
/ = 1  * J - 1  / 

from which it follows that 

1 

2 
+ - ( t  - x, ) ’ f ” (  x,) dt 

N 

I Kh:/32 = O( N - 3 )  
J = 1  

We complete the integration to conclude that 

The f ’ ( x , )  term vanishes because x, is the midpoint of B,. 
The use of O ( N - 3 )  will become apparent when we con- 
sider sequences of M-allowable partitions. 

It is important to observe that the convergence in (4.4) is 
uniform in some neighborhood of a. To see this, return to 
the choice of the constant K in (4.3). Because f”’ is 
continuous in a, K may be chosen to bound f”’ in some 
neighborhood of a. 

We now ana1y:e the alpha entropy of the quantized 

source, denoted Ha. With each quantizer bin associate its 

probability of occurrence. Define 

j , L j R p ( x ) d x  $,A JR q ( x ) d x .  

~ 

-J -1 J 

It is then clear that 
N 

f i a =  ;;G;-“. 
j = l  

Apply Taylor’s theorem and proceed as before, noting 

that p ’” and q ”’ are bounded, 

1 

24 
j , = p ( x , ) A , +  - p ” ( x , ) A : + e , ,  e , = O ( A ; )  

1 
(ii = q( x,) A, + -q”( x j )  A; + d,,  

24 d,  = 0 ( A:).  

These equations define e, and d,. Also define 

and note that these are bounded. Thus 

N 

ea = p a  ( x ,  ) q1 - a ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , ) [ 1 + 6, A;] a [ 1 + 7) , A;] - a A,. 
/ = 1  

(4.5) 

To expand ( 4 3 ,  note that for p E (O,l ) ,  

1 

2 
(1+ t ) ’ = l+p t  + o ( t ) ,  It1 c -. (4.6) 

Clearly, 5 A2 vanishes as N -+ CO, and likewise for q,A;. 
Apply (4.k) i’n (4.5) to obtain 

N 

& = c ( p a ( x , ) q ’ - “ ( x , )  [I + &,A; + . (A ; ) ]  

ea= c Pa(X , )q ’ - “ ( x , )  

/ = 1  

. [‘+(I- ‘ ) q J A ; +  ’ / ]  

N 

J - 1  

. [ 1 + at,A; + (1 - a) q,A; + o ( A; ) ]  A, .  

The latter expression follows from an easily verifiable 
operation involving o and the fact that all terms are 

uniformly bounded. 
Due to the uniform bound on the e,, d,, and all the 

other terms, it follows that max, o(A2,) = o(max, A;) = 

o(  W2).  We emphasize that, without the uniform bounds, 

we would not be able to claim this. I t  follows that 

N 

‘a- P a ( x J ) q ’ ~ ” ( x / )  
J =1 

(4.7) 

The convergence in (4.7) is also uniform in a neighbor- 
hood of a. This is clear because errors attributable to e, 

and d .  will be continuous functions of a. 
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It is now possible to compute the change in alpha 

entropy due to quantization. Combining (4.2), (4.4), and 
(4.7) gives 

From (5.1), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg’ is bounded below by S > 0 and is Lipschitz 

continuous. Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a ( 1 - a )  N 

H a -  Ha=  ~ c Pa( x ,  1 4l - “( x ,  ) 
24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = l  

2 Let h ( x )  be continuous on A .  Then because h is 

A; + .( N - 2 ) .  (4.8) bounded and the A, vanish uniformly, 

N 

N 2 C h ( x l ) A : =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 

Note that the summation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( W 2 ) .  Also note that 

(4.9) (5.4) 
P‘ 4’ d P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- (x ) -  - (x )  = -log-(x) 
P 4 dx  4 

is the derivative of the log likelihood ratio. Define 

V. THE QUANTIZATION RULE 

In this section we construct sequences of M-allowable 
partitions according to a “companding” rule (see Bennett 
[9]). Let g be a mapping of the set A = [ a ,  b] into the unit 
interval. We say that g defines a quantization rule if it 
satisfies the following conditions: 

g is a one-one mapping (bijection) between [ a ,  b] 
and [0,1]; 
g is differentiable on ( a ,  b) with g’ Lipschtz con- 

tinuous ( l g ’ ( x ) -  g ’ ( y ) l  I Mlx  - yI for some M ) ;  

1) 

2) 

3) For some S > 0, g’ 2 6 on ( a ,  b). (5.1) 

T h s  function is continuous for x E A and bounded on 

A X [0,1]. Thus (5.4) holds for h = h ( x ,  a )  and the conver- 
gence is uniform in a. 

Lemma 1: For each a* E (0, l), an open neighborhood 

G(cy*) of a* exists such that 

/ \ 2  

lim N 2 (  da - H a )  = ( L, h ( x ,  a )  dx  (5 .6)  
A g‘(.> N + m  

The function g is used to create M-allowable partitions 
uniformly for a E G( a*). as follows. For any integer N > 1, define 

Note that we are using g to reflect a uniform partition of 
[0,1] onto A .  The partition of (5.2) is M-allowable; choose 

M = 1/6 for S in 3) of (5.1). 
We now estimate the bin length A, as a function of g’. 

We have that 
1 

s(a,>- d a , - J  = - N ’  

Apply the mean-value theorem [8] to g on each bin. For 

each j there is a E, E B, such that 

j = 1 , 2 ; - . ,  N .  

(5.3) 

Proof: It remains to be shown that the right side of 

(5.4) converges to the integral in (5.6) uniformly in a 
neighborhood of a*. Clearly, equicontinuity of the collec- 
tion of integrands over G(a* )  would be sufficient. Note 

that function h has a bounded derivative (by inspection of 
(5.5)). In fact, a neighborhood of a* must exist on which 
( d / d x ) h  (x, . ) is bounded, giving us the desired equiconti- 
nuity. 

The form of the preceeding limit differs slightly from [4] 
and [5]. The crux of our work is to prove uniformity over a 
collection of Ali-Silvey distance measures. This uniformity 
along with Chernoffs theorem will allow us to give a 
probability of error meaning to what would otherwise be 
an Ali-Silvey distance. 

We wish to substitute (5.3) into (4.8), but we need (4.8) 
to resemble a hemann sum. It is necessary to estimate A;. VI. MINIMIZATION OF ALPHA ENTROPY 

in terms of g’ (x , ) .  Consider 
To apply Chernoff s result, it is necessary to evaluate the 

l 2  

+ [ ( i&J2- ( ,) 
minimum (in a )  of Ha and Ha. We let a. be that value 
which minimizes Ha, it is assumed that a. E (0,l). At this 

point we can use a. in (5.6) to see that we have an upper 
bound to the change in asymptotic efficiency. The purpose 

of t h s  section is to show that (5.6) provides more than an 
upper bound. 

The shortcornin8 of (5.6) is that it is not necessary for 

the minimum of Ha to occur at ao. The following theorem 
shows that a. is, in fact, a good estimate. 
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Theorem i: For each N ,  let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( N )  be the value which 

minimizes Ha at each level N .  Then 

with h ( x ,  a )  defined in (5.5). 

Proof: The first step is to establish the convergence 
of y ( N ) .  We need the fact that Ha has a unique mini- 

mum. 

Lemma 2: Let P and Q be probability measures on R 
which are dominated by a measure W. Define 

Suppose that log( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( x ) / q ( x ) )  is finite W almost every- 
where. Then for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0,l) and Ha defined in (2.2); 

The proof of Lemma 2 is in [14]. It is based on a 

straightforward real variable argument. One can formally 
get the result by just pulling the derivatives through the 
integral. Observe that H," is positive so that HL is strictly 
increasing in a (unless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = q, which is trivial). Thus only 
one value of a minimizes Ha. 

Let yo be a cluster point of the y( N ) .  Then for all E > 0 
and M > 0, an N 2 M exists such that 

because H is continuous. It is true that H 2 H (which can 
be observed from an application of Holder's inequality). 
Thus 

the first inequality following from the definition of y ( N ) .  
Suppose yo # ao. Then Hyo > Ha, (strictly, because a. is 

the unique minimum) which allows us to choose E such 
that H,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > Ha, + E ,  giving 

Ha0> Hao+ E .  

Reviewing the discussion, we see that !his holds for in- 
finitely many values of N (recall that H is a function of 
N ) .  This however, violates the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi + H.  It follows 

that yo = ao. 
Let G ( a o )  be the neighborhood defined in Lemma 1. It 

follows that an M >  0 exists such that y ( N )  € G ( a o )  
whenever N 2 M. Define 

I . \ 2  

and observe that @ is continuous ( h  is continuous in a and 

~ 

bounded). From the uniformity in Lemma 1 we have that, l , h ( l / g ' ( 7 ) ) 2 d h / d t ( 7 )  d7.  (7.4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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for all E > 0, an M' 2 M exists such that 

whenever N 2 M' .  Observe that 

Multiply all terms by N 2  and apply Lemma 1 to both 

upper and lower bounds, to get 

but from the continuity of +, @(U( N ) )  -+ @(ao).  Thus the 
above inequality must imply convergence to @( ao)  as 
N + W .  

VII. OPTIMIZATION 

As a first attempt to minimize (6.1) one may apply 

Lagrange techniques to find 

for some (. The problem with this solution is that the 

function h may need to vanish, but our technical condi- 
tions say that g' cannot approach zero. To see this, exam- 
ine (5.5) and (4.9). Note that any zero-slope point of the 
likelihood function forces h = 0. 

To overcome this difficulty, we refer to the maximum 
principle of Pontryagin [lo]. We restate our problem as an 

optimal trajectory problem with constraints. Call g( t )  the 
trajectory and g ' ( t )  the control. The problem is to mini- 
mize 

with the constraints that 

g ( t ) = / ' g ' ( x ) d x ,  g ( b ) = l ,  g ' ( t ) 2 6 > 0 .  (7.2) 

This is a problem of a time-variant cost with constraints of 

fixed end time and fixed end point. 

U 

Define the Hamiltonian 

(7.3) 
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The first condition reveals that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 is constant. The sec- Define 

l 2  
ond condition is satisfied for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [’( - ) h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X )  dX, k = 0,1,2,  . . . . (7.6) 

Note that, for k 2 1, the E,  cannot increase (i.e., gk+ can 

only improve upon gk). It is to be shown that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, -+ Eo. 

g ’ ( t>  = r n a x [ i T 1 ” ~ , 6 ] .  2 h G )  (7.5) g; (4 

The third condition is satisfied for h continuous on [ a ,  b] 
with h’ havingt finitely many discontinuities (“piecewise” 

continuous), and for g’ given in (7.5). It remains to choose 
5 to satisfy (7.2). 

We now claim that t h s  solution is optimal over 6- 
bounded quantization rules, with h given in (5.5). Con- 

sider the following collection of functions on [ a ,  b]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CM = ( f :  f M ,  I f ( x ) - f ( Y ) I  

There exist ([k)r=l such that 

g { ( x )  = max [ ‘ $ k h 1 / 3 ( X ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

and it is clear that the 5, converge so that g; -+ g;. From 
Lebesgue’s dominated convergence theorem, g, -+ go. 

Consider the integrand in (7.6) and note that it con- 
verges to h/ (gh)2 .  Also, h / ( g ; ) 2  is bounded for all k .  By 
Lebesgue’s dominated convergence theorem, 

\ 

I MIX - yl, J’f( X )  dx = 1). 
Note that given any quantization rule with g ‘ 2  6, an M 
exists such that g’ E C,. 

It is easy to verify that C, is compact under the norm 
of uniform convergence (the “sup” norm). Thus any con- 
tinuous functional defined on C, must attain its minimum 
at an element of C,. Lebesgue’s dominated convergence 
theorem [ l l ]  assures us that (7.1) is continuous on C,. 

Lemma 3: Let g define a quantization rule on A with 

g‘ 2 6 > 0. Suppose h 2 0 is Lipschtz continuous on A 
with h‘ piecewise continuous. Define 

r ( X )  =max[(th(x))’/’ ,6] 

U 

where 5 satisfies 

i ‘ r ( x )  dx =l.  

Then l , ” r ( t )  dr defines a quantization rule on A and 

We call JUxr( t )  dr the 6-optimum quantization rule. 
Our main task in the proof is to find an M such that 

g’E C, and r EC,. Then note that r (x)  is the only 
element of C, whch satisfies the necessary conditions. We 
know that C, must contain the minimizing function. Thus 
it must be r ( x ) .  

This proof rests on the compactness of C,. The details 
involve application of the Ascoli-ArzelB theorem [12] of 
functional analysis, and Lebesgue’s dominated conver- 
gence theorem. A rigorous proof is omitted (but can be 
found in [14]). 

Suppose that we could allow 6 = 0 in Lemma 3. Define 

which is possibly the 6 = 0 minimization of (7.1). Let 

(8,):- be a positive sequence vanishing monotonically. 
For each k ,  let g, be the 6,-optimum quantization rule. 

Theorem 2: Let p and q satisfy (3.1). Let a. E (0,l) 
minimize Ha. Define h ( x )  = h(x ,  a,), with h(x, a )  defined 

in (5.5). For this function h ,  let E, assume its value in 

(7.7). 

Recall the maximum likelihood detector and let e,  be 
defined as in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Similarly, let e^,(N) be the de- 
tected error probability of an N-level quantized version of 
the source. Then for any > 0, there exists a quantization 

rule such that 

N 2  e^ , (N)  Eo 
lim lim -1og- < - + c .  (7.8) 

en Ha, N - W  n + m  n 

Conversely, there is no quantization rule (as defined in 
Section V) such that 

N 2  e^ , (N)  
lim lim -log- < (7.9) 

Proof: The existence of a quantization rule is guaran- 
teed by (7.7). The converse follows from Lemma 3 and the 
fact that E,  is a lower bound for the E, of (7.6). To see 

(7.8) consider 

which follows from Chernoff s result. However, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

k - H  e - H  
+ o  - 

--- H [ H 1’ - 

Thus 

because fiy(y(N) - Ha, = O( N P 2 ) .  (7.9) follows from this and 
Theorem 1. 
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d 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl z p a ( x ) q l - a ( x )  

VIII. EXTENSION TO UNBOUNDED DENSITIES uniformly for a E G(ao) .  The function h is defined in 

(5.6). 
The problem encountered in this extension is that the Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: Let and be class densities. If there is 

an M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 such that g ( x )  =1- e-5,‘ for x > M ,  then 5 log likelihood function may no longer be bounded. If it is 

the unit interval, with the resultant densities satisfying 

(3.1). This is an easy exercise left to the reader. 
We consider one-tailed densities. The two-tailed case is 

an obvious extension. The method is to define a class of 

bounded, then the random can be mapped into and G ( a o )  exist such that (8.3) holds uniformly for a E 

G(a0). 
The proof of Lemma 4 is provided in the Appendix. 

Lemma 5 is proved in [14]. 

I K x - ~ - ‘ ,  x E (O,CO), 1) gm,k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(x) for x 2 m; 

densities and prove the existence of a companding func- Theorem 3: Under the conditions of Lemma 4 or 
tion, which allows a result similar to Lemma 1. There are 

two classes of densities sharing the following properties: 

Lemma 5 

d 2  
5 )  l z p a ( x ) q l - a ( x )  

l 2  
1) { P > o } = { q > o } = [ o , ~ ) ;  
2 )  inf(,, ,,,,) p > 0 and inf,, ,,,,) q > 0 for all M > 0; 
3) both p and q are C3 on ( 0 , ~ )  with bounded third 

lim N 2 (  f i y ( N )  - Hao)  = dm ( - ) h (x,  ao)  dx, 
N + m  g’(x) 

Also for each m > 1 there is a k such that I Ke-‘”‘, X E  (O,W), 

derivatives; with y(  N )  defined in Theorem 1. 

The proof of this theorem is given in Section VI. The 

only point to prove is that + ( a )  = / ; ( l / g ’ ( x ) ) 2 h ( x ,  a) dx 
is continuous. From the proof of Lemmas 4 and 5 ,  + ( a )  < 

4) either p 2 q or p 5 q as x + CO. (8.1) 

Class 1 (Polynomial Rates): There exist a > l / a o  and 
b > 1/(1- ao)  such that 

CO for a E G(  ao). We have that h ( x ,  a)  is continuous in a, 
in fact monotone in a for large x due to (8.1). Thus cp 
must be continuous. 

It remains to optimize the function g .  Choose any 
function B which satisfies Theorem 3.  For each m E Z +  

1) 0 < liminf,,, x ‘ p ( x ) ,  limsup,,, x“p(x) < CO, 

2)  limsup,,, x ~ + ~ ~ ~ ” ( x ) I  < C O ,  

3 )  liminf,,, xhq(x) > 0, 
4) limsup,,, xb+21q”(x)l < CO. 

Also K > 0 and c > 0 exist such that 
Y 

and k E Z + ,  let gm, satisfy the following (if possible): 

l L  
lim ~ 2 (  f i a  - H,) = /Om ( - ) ( x, dx (8.3) The proof is in the preceding discussion along with the 

N-.m g ‘ ( x )  proof of Theorem 2. 



BENITZ AND BUCKLEW: ASYMPTOTICALLY OPTIMAL QUANTIZERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA323 

IX. UNIFORM QUANTIZERS TABLE I 
GAUSSIAN CASE 

We wish to establish a result similar to Theorem 3 for a 
uniform quantizer with infinitely many bins. Define the 

Partition Rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s =1.0 

partition as follows: Nonuniform -1.99 -1.17 -0.55 0 0.55 1.17 1.99 0.482 

1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj A ,  j=0 ,1 ,2 ; . . ,  

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,=(a,-,,u,), j=1,2,3; . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. (9.1) 

We shall consider the performance as A + 0. 
Lemma 6: Let p and q be either class 1 or class 2 

densities. Then a neighborhood G ( a , )  of a. exists such 
that 

uniformly for a E G(ao) .  The function h is defined in 

The proof of the lemma is in [14].' As in Section VIII, 
we establish the continuity of l , "h (x ,a )dx  in a. This 
allows the following result. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: Let p and q be either class 1 or class 2 
densities. Then 

(5.5). 

1 CO 

A + O  lim - p & ) - H a 0 ) = J  A' 0 h ( x , a , ) d x .  

X. EXAMPLES AND CONCLUSION 

Optimal and suboptimal quantizers exist for a large 
class of decision problems. In practice, it is Lemma 3 
which provides the compressor design. Observe that the 
constant 6 is arbitrary. With ever smaller choices of 6, the 

optimum compressor approaches the function 

g; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa puon'-uo~ - - - I I L 
As a first example, consider Gaussian densities 

1 [ - I ( x + s ) 2 ] .  1 
q ( x )  = - exp 

G 
Then a. = 1/2 by symmetry. The log likelihood function is 
a line and its slope (4.9) is constant. Thus g; a p1/6q1/6,  
which is a Gaussian density with mean zero and variance 
3. It is interesting that g;, the density of quantizer bins, 
does not depend on s. Table I provides a comparison of 
two eight-level quantizers, one chosen according to the 
function go and the other chosen to uniformly divide 
[ - s - 2a, s + 2a], where U' = 1 is the variance of p and q. 
The figure of merit, rate, is the asymptotic limit of 
- (l /n)log e ,  (see Section 11). Although the change in rate 
is small, any increase in rate indicates a significant de- 
crease in error probability for large sample sizes. (The 

'The limit, without the uniformity result, is already known [4] 

Uniform -3.0 -2.0 -1.0 0 1.0 2.0 3.0 0.462 
s = 0.1 
Nonuniform -1.99 -1.17 -0.55 0 0.55 1.17 1.99 0.00482 
Uniform -2.1 -1.4 -0.7 0 0 . 7  1.4 2.1 0.00479 

probability of error for n samples should be of the form 
k . exp [ n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I], where k is a slowly varying constant and I is 
a positive constant. Clearly, small variations in I cause 

tremendous variations in the error for large n . )  
A second example is the Laplacian density. Let 

1 1 
p ( x ) = 2 exp [ - Ix - s 11 2 

q ( x ) = - exp [ - Ix + s I]. 

The fact that the derivatives have discontinuities is not a 
problem. The proofs can be extended to piecewise-C3 

densities. Again a. = 1/2. The log likelihood function is a 
line for 1x1 I s and is constant elsewhere. Thus g; = 0 for 
1x1 > s and g; a p1/6q1/6 for 1x1 IS, i.e., g; is constant. 
The result is that optimal quantization is uniform for 

1x1 s s. No partitioning is necessary for 1x1 > s, because the 
likelihood function is constant. 

The following examples illustrate the effect of density 
shape and likelihood ratio on the resultant quantizer. We 

consider densities p (  x) on the unit interval tested against 
q ( x )  = 1. In this case g; a [ pao( p ' / p ) 2 ] 1 / 3 .  Note that p ' / p  
is the slope of the log likelihood function. Table I1 presents 
eight-level quantizers derived from go. Table I11 presents 
the asymptotic rates for the quantizers of Table I1 along 
with rates for eight-level uniform quantizers. Data are also 
given for corresponding four-level quantizers (the parti- 
tions are the second, fourth, and sixth points in Table 11). 

TABLE I1 
QUANTIZERS ON [0,1]. 9 = 1 

P(X) Partition 

29(x40 +0.01) 0.883 0.912 0.932 0.949 0.0964 0.977 0.989 
38(e-40" +0.001) 0.015 0.030 0.048 0.068 0.092 0.121 0.160 
40e-40' 0.036 0.077 0.126 0.184 0.258 0.361 0.526 
7.1e-40'2 0.151 0.236 0.313 0.389 0.471 0.567 0.698 
2.8eC40r4 0.361 0.461 0.537 0.604 0.669 0.738 0.825 
cos(2nx)+1.001 0.249 0.367 0.448 0.500 0.552 0.633 0.751 

Uniform 0.125 0.250 0.375 0.500 0.625 0.750 0.875 

TABLE 111 
ASYMPTOTIC RATES 

N = 8  N = 4  
P ( X )  a. Nonuniform Uniform Nonuniform Uniform 

29( x40 + 0.01) 0.56 0.317 0.250 0.312 0.167 
38(e-40" +0.001) 0.49 0.752 0.639 0.732 0.458 
40eFNx 0.27 1.351 1.224 1.295 0.964 

0.25 0.763 0.747 0.732 0.672 
2.8 e - 4 0 ~  0.25 0.410 0.398 0.394 0.364 
cos(2nx)+ 1.001 0.41 0.097 0.090 0.071 0.061 

7.1 e - 401' 
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The densities chosen are highly skewed to illustrate the 
interplay of the factors comprising zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgh. The first density is 

practically constant, except near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, causing the parti- 
tion to be skewed. The dramatic increase in rate over that 
of a uniform quantizer is of considerable significance. 
Even a four-level quantizer of t h s  design performs quite 
well. The second and third densities produce partitions 
skewed toward the origin due to the concentration of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx). The difference in the partitions is due to the additive 
constant, which causes the likelihood ratio to be nearly 
constant for x > 1/4. A comparison of the third, fourth, 

and fifth densities further illustrates the effect of likeli- 
hood ratio on the resultant partitions. It is important to 
note that, although the change in rate may seem small, it 

To prove (A.4), choose /3 E (0,1) and rewrite (A.2) as 

[ ( l - P ) N I  N - 1  

f i a -  H a =  d ,+  d , + d ,  (A.6) 
J = 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ =[(I - P ) N l + 1  

where [ .] denotes the greatest integer function. The constant p is 
related to the constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw in (A.3) by (1 - p )  = g( w). Thus we 
will examine the behavior as p -+ 0. 

The first term of (A.6) is covered in (A.3). Consider the second 
term. In a way similar to Section IV, expand the terms on each 
bin. For example, for each j there is a [, such that 

necessarily indicates a substantial decrease in error proba- 
bility for large sample sizes. 

This is possible because p" is continuous. Likewise, q, and I/J, 
exist such that 

APPENDIX 
PROOF OF LEMMA 4 

Define for each j = 1; . ., N ,  

(A.1) 

Using the fact that (1 + x)" I 1 + ax, x > - 1, it follows that 
with B, defined in (3.3). It follows that 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ha- H e =  1 d , .  

J = 1  

From Section V, we know that, for each w > 0, 
' l+-- 

l 2  [ 24 
lim N 2  d , = i w ( m )  h ( x , a ) d x  (A.3) 

uniformly in some neighborhood of ao. Observe the agreement 

J :  U J  S W 
N + m  

with Lemma 3 for bounded densities. 
Recall that we have allowed for a discontinuity in g'. This is to 

allow us more freedom in the construction of g. It will not affect 
the limit in (A.3), because the bin which straddles the discontinu- 
ity will have a value of d,, which vanishes as N - 3 .  

We have to show that a neighborhood C( a,) of a. exists such 
that the following holds. For all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > 0, a W > 0 and M > 0 exist 

N~~ perform Some algebraic manipulations to see that 

N - 1  

= [(1 P )  + 

such that 

whenever w 2 W, N 2 M ,  and a E C(a, , ) .  Given (A.3) and (A.4), 
we can say that there is a neighborhood C ( a , )  of a,, such that 
the following holds. For all c > 0, a W >  0 exists such that, for 
each w 2 W ,  there exists an M >  0 such that 

The discussion up to this point is applicable to the proofs of 
Lemmas 4-6. We now specialize to the case of Lemma 4. It is 
given that g(x) = 1 - x-'/"' on the tail of the line. Thus 

. -nz 

a,  = +) = ( 1 -  ;) 
whenever N 2 M and a E C(a, ) .  For simplicity, let i = N - j .  Then redefine 

The first implication is that /?(l/g')*h < CO. To see this, 

/,,':Z(l/g')'h > 2c. Note that there must be a value of N which 
satisfies (AS) for both w1 and w2. This lowercase cannot be true. 

it is now possible to pick w = CO in (AS). 

assume it to be false. Then pick w, > w, 2 W such that 
a,  = ( Y )  " I  3 i = 1  9 2 , . . .  , [ P l y ] ,  

With this observation it follows that the lemma is true. That is, 1 
A ,  = a,-  - a,  I k N " ' 7 ,  i = 2 3 3 9 . . . > [ P N l  
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The constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk depends on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. Using the class 1 density assump- 
tions, we analyze (A.7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a)mo 

[ B N I  
- < k 3 N [ - a u m + m + 2 ]  i[ aum-m-31 

i = 2  

Choose m such that aam - m > 2 in a neighborhood of a,, (recall 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa > l / a o ) .  Then 

The constants k, through k ,  are chosen after the choice of m. 
Note that the convergence is uniform in a neighborhood of ao. 
The q”/q“ term will vanish as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 - 0  by the same argument 
(pick m such that (1 - a)bm - m > 2). 

Continuing, 

- 
i = 2  

[ B N I  
= k ,  N [  m ( 1 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - a ) h ) +  21 m(au+( l  - a ) h )  - 51 i[ 

i = 2  

Choose m such that [ m( aa + (1 - a)b)  - 41 > 0 so that the above 
will vanish as B - 0 .  The constants k, and k ,  depend on m 
(these constants are not necessarily the same as in the previous 
discussion). The convergence is again uniform in a neighborhood 
of ao. 

Define f ( x )  =p“(x)g’-“(x) ,  and then 

[ B N I  

i = l  r = 2  
N 2  f‘‘(#,)A? I K l N 2  

[ B N I  
- < ~ ~ ~ 2 - m t  j r m - 3  

r = 2  

- < K 3 / 3 f n ‘ - 2 .  

Choose m such that cm > 2. 
The final term of (A.6) is d,. Consider the following: 

N 2 d ,  3, N 2  [ / “p(  x )  d x ]  a 

s k l N 2  [/Ram*-" dx]  a 

N m  

Choose m such that am( a - 1) > 2 in a neighborhood of ao. 
There are finitely many conditions which m must satisfy, and 

thus all the preceding constants may be chosen. Also, the inter- 
section of the neighborhoods of a. yields a neighborhood of a,,. 
Thus (A.4) is true. 
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