Asymptotically Optimal Strategy-Proof Mechanisms for Two-Facility Games

Pinyan Lu
Microsoft Research Asia
pinyanl@microsoft.com

Xiaorui Sun*
Shanghai Jiao Tong University
sunsirius@sjtu.edu.cn
Zeyuan Allen Zhu*
Department of Physics,
Tsinghua University
zhuzeyuan@hotmail.com

Yajun Wang
Microsoft Research Asia
yajunw@microsoft.com

Categories and Subject Descriptors

F. 2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity; J. 4 [Computer Applications]: Social and Behavioral Sciences-Economics

General Terms

Algorithms, Theory, Economics

Keywords

Game theory, Algorithmic mechanism design, Social choice, Strategy-proof

1. INTRODUCTION

We start with a typical problem in economics: the government plans to build several libraries in a city to serve a local community. All residents report their home addresses so that the government can decide the most appropriate library locations. Every resident wants to be as close to one of the libraries as possible; meanwhile, the government wants to minimize the sum of distances between each resident and her nearest library, which is called the social cost. In many cases, the government cannot trust the self-reported addresses from residents, because people are selfish, and could report false addresses for personal benefits.

This type of problem is called the facility game. In this game, agents report their locations and accordingly a mechanism chooses positions to build facilities. A mechanism is also called a social choice function in the Economics literature. Specifically, agents and facilities are located in some metric space. To model real problems, the distance function could be the Euclidean distance, the shortest path distance (in a graph), or any other metric. An agent may misreport her location if she can reduce her own cost. To avoid such misreport, the strategy-proofness is introduced in game theory, which is the main focus of this paper. In a strategy-proof mechanism, no agent can unilaterally benefit from misreporting. A stronger requirement is called group strategy-proofness. In a group strategy-proof mechanism, no group of agents can misreport their locations such that each member can strictly benefit. Formal definitions of the these concepts are given in Section 2.

The facility game has a rich history in social science literatures. There has been some partial characterizations of the strategy-proof mechanisms for some metric spaces, e.g.

[^0][^1]a facility on a line $[6,19,4,25]$ or on a general network [23]. However, these works have not considered the optimizations or approximations over the social cost.

The study of algorithmic aspect of mechanism design problem was initiated by the seminal work of Nisan and Ronen [20] in 1999. During the past decade, a significant body of work has been done for optimization problems from a mechanism design point of view $[15,2,10,14]$. Most of the work deals with mechanisms which employ payment. In particular, the well known Vickrey-Clarke-Groves (VCG) mechanism $[26,8,12]$ is strategy-proof, which gives an optimal solution for our facility game if payment is allowed.

However, in many social choice settings, monetary transfer may be unavailable due to legal or ethical issues as noted by Schummer and Vohra [24]. Voting is one perfect example. More recently, Procaccia and Tennenholtz formally initiated the study of approximate mechanism design without money in their seminal paper [21]. This type of work can also be traced back to the work on incentive compatible learning by Dekel et al. [9]. From a more algorithmic viewpoint, Procaccia and Tennenholtz studied strategy-proof mechanisms that give provable approximation ratios on social cost. A mechanism is called γ-approximate, if for every input instance, the social cost for the outcome is no more than γ times that of an optimal assignment. We are interested in studying both upper and lower bounds of the approximation ratios for possibly randomized strategy-proof mechanisms. We note that here the lower bound is due to the cost of strategy-proofness rather than the computational complexity. Same type of lower bounds were proved for mechanisms (with payment) for scheduling unrelated machines $[7,13,18,16]$.

For the two-facility game on a line, Procaccia and Tennenholtz [21] gave an upper bound of $n-2$ and a lower bound of 1.5 for deterministic strategy-proof mechanisms. The lower bound was later improved to 2 [17]. In addition, Lu, Wang and Zhou [17] obtained an upper bound of $n / 2$ and a lower bound of 1.045 for randomized strategy-proof mechanisms. To close the huge gaps for both deterministic and randomized cases is an important open problem in this direction. Our work resolves this problem by proving asymptotically tight bounds for both cases.

Besides, Alon et al. [1] studied the facility game in a general metric space rather than a line. They gave an almost complete characterization of the feasible strategy-proof approximation ratios, but under the condition that there is solely one facility. In this paper, we analyze the game with two facilities, and prove our results in any general metric space. Notice that this generalization is non-trivial and our work is a joint extension of the work by Procaccia and Tennenholtz [21] and the work by Alon et al. [1].

1.1 Our Results

We study the approximation ratios of strategy-proof mechanisms for two-facility games in generalmetric spaces. It is the first time that facility games with more than one facility are considered in general metric spaces. We obtain three main results.

Our first result is a linear lower bound of the approximation ratio for deterministic strategy-proof mechanisms. This is noticeably the first super constant lower bound for the two-facility game, and even holds in the line metric space. It confirms one conjecture in [21]. Moreover, the proof idea
is new, and we highlight two key concepts we employ and may be of independent interest.

- Partial group strategy-proofness. In a partial group strategy-proof mechanism, a group of agents at the same location cannot benefit even if they misreport their locations simultaneously. As noted in [21], there is a lower bound of $\Omega(n)$ for group strategy-proof mechanisms of the two-facility game. However, a strategyproof mechanism may not be group strategy-proof. To overcome such obstacle, we introduce the concept of partial group strategy-proofness and prove that it can be implied from the strategy-proofness. Our lower bound is benefited from this observation.
- Image set ${ }^{1}$. This is defined as the set of possible facility locations when a group of agents varies their reported locations within the entire space, fixing the locations of other agents. This concept allows an investigation of infinite number of location profiles simultaneously, while previous lower bounds are obtained by analyzing only constant many profiles.
We remark here that the above two concepts are defined for general facility games in an arbitrary metric space.

Our second result is a randomized strategy-proof mechanism with a constant approximation ratio for the two-facility game, working in general metric spaces. In comparison, the previous best known upper bound is $O(n)$ and works only in the line metric space. Together with our first result, this mechanism indicates that randomness is indeed an essential power in (money-less) strategy-proof mechanism design. This new mechanism is very intuitive. The first facility is allocated uniformly over all reported locations; the second facility is assigned to another reported location with probability proportional to its distance to the first facility. We call it the Proportional Mechanism. Although the mechanism seems natural, the proof of its strategy-proofness and the analysis of its approximation ratio are both involved.

Our third result is a deterministic mechanism with an $O(n)$ approximation ratio for the circle metric space. A circle is $S^{1} \subset \mathbb{R}^{2}$, and the distance of two points on S^{1} is the length of the minor arc between them. This is noticeably the first bounded deterministic mechanism for two-facility games over metric spaces other than the line. It is also worth pointing out that this mechanism is group strategy-proof.

We summarize our results and the state of the art in the following table.

	Deterministic	Randomized
Line	UB $:(n-2[21])$	UB $: \mathbf{4}\left(\frac{n}{2}[17]\right)$
	LB $: \frac{\mathbf{n - 1}}{\mathbf{2}}(2[17])$	LB $:(1.045[17])$
Circle	UB $: \mathbf{n}-\mathbf{1}(\mathrm{N} / \mathrm{A})$	UB $: \mathbf{4}(\mathrm{N} / \mathrm{A})$
	LB $: \frac{\mathbf{n}-\mathbf{1}}{\mathbf{2}}(2[17])$	LB $:(1.045[17])$
General	UB $: \mathrm{N} / \mathrm{A}$	UB $: \mathbf{4}(\mathrm{N} / \mathrm{A})$
	LB $: \frac{\mathbf{n}-\mathbf{1}}{\mathbf{2}}(2[17])$	LB $:(1.045[17])$

Table 1: Our results are in bold. The expressions in brackets are previous results (N/A means no previous known bound).

We recall that even for the line metric space, the previous best upper and lower bounds are $O(n)$ and $\Omega(1)$ respectively,

[^2]in both deterministic and randomized settings. This work significantly improves our understanding of: 1) the power of (money-less) strategy-proof mechanism for facility games; 2) the power of randomness in (money-less) strategy-proof mechanism design.

1.2 Related Work

The facility game problem has a rich history in social science literatures. Consider the case that we are building one facility in a discrete set of locations (alternatives). Agents are reporting their preferences for the alternatives. The renowned Gibbard-Satterthwaite theorem [11, 22] showed that if the preferences on the alternatives for agents are arbitrary, the only strategy-proof mechanism is the dictatorship when the number of alternatives are greater than two.

In real life, agent preferences on the locations are not arbitrary. In particular for the facility game over a real line, agents should have single-peaked preferences, where peaks are at agents' own locations. This kind of admissible preference was first discussed by Black [6]. Later, Moulin [19], Barberà and Jakson [4], and Sprumont [25] characterized the class of all strategy-proof mechanisms for the one-facility game in the real line. Interested readers may refer to the detailed survey by Barberà [3]. Notably, the characterization for the strategy-proof mechanisms with two or more facilities (even over a line) is wide open.

In additional to the social cost, Procaccia and Tennenholtz [21] and Alon et al. [1] also considered another optimization target, the maximum cost. They obtained lower and upper bounds for the approximation ratios of strategyproof mechanisms for this target. Another extension of the facility games was studied in [21] and [17]. In this game, an agent may have more than one location and is aiming to minimize the overall cost of all the locations she have.

2. PRELIMINARIES

Let (Ω, d) be a metric space where $d: \Omega \times \Omega \rightarrow \mathbb{R}$ is the metric. The distance between any two points $x, y \in \Omega$ is $d(x, y)$. Recall that for all $x \in \Omega, d(x, x)=0$.

Let $N=\{1,2, \ldots, n\}$ be the set of agents. The location reported by agent i is $x_{i} \in \Omega$. We denote $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a location profile.

In the k-facility game, a deterministic mechanism outputs k facility locations according to a given location profile \mathbf{x}, and thus is a function $f: \Omega^{n} \rightarrow \Omega^{k}$. Assuming the set of facility locations to be $f(\mathbf{x})=\left\{l_{1}, l_{2}, \ldots l_{k}\right\}$, the cost of agent i is her distance to the nearest facility:

$$
\operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)=\min _{j=1, \cdots, k}\left\{d\left(l_{j}, x_{i}\right)\right\}
$$

A randomized mechanism is a function $f: \Omega^{n} \rightarrow \Delta\left(\Omega^{k}\right)$, where $\Delta\left(\Omega^{k}\right)$ is the set of distributions over Ω^{k}. The cost of agent i is now her expected cost over such distribution:

$$
\operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)=\mathbb{E}_{\mathbf{l} \sim f(\mathbf{x})}\left[\min _{j=1, \cdots, k}\left\{d\left(l_{j}, x_{i}\right)\right\}\right]
$$

Let $\mathbf{x}_{-i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ be the location profile without agent i. We write $\mathbf{x}=\left\langle x_{i}, \mathbf{x}_{-i}\right\rangle$. Similarly, when $S \subset N$ is a set of agents, we denote \mathbf{x}_{-S} the location profile of agents outside S. We write $\mathbf{x}=\left\langle\mathbf{x}_{S}, \mathbf{x}_{-S}\right\rangle$, the location profile satisfying that agents in S report locations \mathbf{x}_{S} while other agents report locations \mathbf{x}_{-S}. For simplicity, we denote $f\left(x_{i}, \mathbf{x}_{-i}\right)=f\left(\left\langle x_{i}, \mathbf{x}_{-i}\right\rangle\right)$ and $f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right)=f\left(\left\langle\mathbf{x}_{S}, \mathbf{x}_{-S}\right\rangle\right)$.

The social cost of a mechanism f on a location profile \mathbf{x} is defined as the total cost of all n agents:

$$
S C(f, \mathbf{x})=\sum_{i=1}^{n} \operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)
$$

We note that in the randomized case, this social cost is an expected value. For a location profile \mathbf{x}, denote $\operatorname{OPT}(\mathbf{x})$ the optimal social cost. We say that a mechanism f has an approximation ratio γ, if for all profile $\mathbf{x} \in \Omega^{n}$,

$$
S C(f, \mathbf{x}) \leq \gamma \mathrm{OPT}(\mathbf{x})
$$

In this paper, we stick to the case of $k=2$ which we name it the two-facility game. Besides the general metric space, we also study two special cases: the line metric space and the circle metric space. The line metric is simply the Euclidean metric on the real line; the circle metric is defined as the length of the minor arc between any two points on $S^{1} \subset \mathbb{R}^{2}$. Our definitions of line and circle are consistent with that in [1].

Now, we give formal definitions of strategy-proofness and group strategy-proofness.

Definition 2.1. A mechanism is strategy-proof if no agent can benefit from misreporting her location. Formally, given agent i, profile $\mathbf{x}=\left\langle x_{i}, \mathbf{x}_{-i}\right\rangle \in \Omega^{n}$, and a misreported location $x_{i}^{\prime} \in \Omega$, it holds that

$$
\operatorname{cost}\left(f\left(x_{i}, \mathbf{x}_{-i}\right), x_{i}\right) \leq \operatorname{cost}\left(f\left(x_{i}^{\prime}, \mathbf{x}_{-i}\right), x_{i}\right)
$$

Definition 2.2. ${ }^{2}$ A mechanism is group strategy-proof if for any group of agents, at least one of them cannot benefit if they misreport simultaneously.

Formally, given a non-empty set $S \subset N$, profile $\mathbf{x}=$ $\left\langle\mathbf{x}_{S}, \mathbf{x}_{-S}\right\rangle \in \Omega^{n}$, and the misreported locations $\mathbf{x}_{S}^{\prime} \in \Omega^{|S|}$, there exists $i \in S$, satisfying

$$
\operatorname{cost}\left(f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right), x_{i}\right) \leq \operatorname{cost}\left(f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right), x_{i}\right)
$$

2.1 Partial Group Strategy-Proofness

Inspired by the group strategy-proofness, we define the partial group strategy-proofness:

Definition 2.3. A mechanism is partial group strategyproof if for any group of agents at the same location, each individual cannot benefit if they misreport simultaneously.

Formally, given a non-empty set $S \subset N$, profile $\mathbf{x}=$ $\left\langle\mathbf{x}_{S}, \mathbf{x}_{-S}\right\rangle \in \Omega^{n}$ where $\mathbf{x}_{S}=(x, \ldots, x)$ for some $x \in \Omega$, and the misreported locations $\mathbf{x}_{S}^{\prime} \in \Omega^{|S|}$, we have:

$$
\operatorname{cost}\left(f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right), x\right) \leq \operatorname{cost}\left(f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right), x\right)
$$

Intuitively, the definition says that a group of overlapping agents cannot "group-misreport" and benefit. By definition, we have the following:

$$
\begin{aligned}
& \text { group strategy-proofness } \\
\Rightarrow & \text { partial group strategy-proofness } \\
\Rightarrow & \text { strategy-proofness. }
\end{aligned}
$$

In the following, we show that one reversal direction also holds:

[^3]Lemma 2.1. In a k-facility game, a strategy-proof mechanism is also partial group strategy-proof.

Proof. We embrace the same notations as in Definition 2.3. In addition, we let $S=\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$, and $x_{s_{i}}^{\prime}$ be the misreported location for agent s_{i} in \mathbf{x}_{S}^{\prime}. Consider the following sequence of profiles :

$$
\begin{array}{ll}
P_{i}(0 \leq i \leq l): & s_{j} \text { reports } x \text { for } 1 \leq j \leq i \\
& s_{j} \text { reports } x_{s_{i}}^{\prime} \text { for } i<j \leq l ; \\
& \text { other agents report } \mathbf{x}_{-S}
\end{array}
$$

By definition, we have

$$
\operatorname{cost}\left(f\left(P_{0}\right), x\right)=\operatorname{cost}\left(f\left((x, \ldots, x), \mathbf{x}_{-S}\right), x\right)
$$

and

$$
\operatorname{cost}\left(f\left(P_{l}\right), x\right)=\operatorname{cost}\left(f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right), x\right)
$$

We are to prove that $\operatorname{cost}\left(f\left(P_{0}\right), x\right) \leq \operatorname{cost}\left(f\left(P_{l}\right), x\right)$.
In profile P_{i} where $1 \leq i \leq l$, agent s_{i} is at location x. We consider the scenario that agent s_{i} misreports to $x_{s_{i}}^{\prime}$, and this is exactly P_{i-1}. By the strategy-proofness of f, agent s_{i} cannot benefit from this misreport: $\left.\operatorname{cost}\left(f\left(P_{i}\right), x\right)\right) \leq$ $\operatorname{cost}\left(f\left(P_{i-1}\right), x\right)$. Summing up these inequalities for all $i=$ $1,2, \ldots, l$, we complete the proof.

We remark that our lower bound result in the next section will be proved with the aid of the notion of partial group strategy-proofness. The definition of partial group strategyproof is not restricted to the two-facility game; or rather it also works for k-facility games for any k. This fact may be of independent interest.

3. LINEAR LOWER BOUND FOR DETERMINISTIC MECHANISMS

In this section, we give a linear lower bound of $\frac{n-1}{2}$ on the approximation ratio for deterministic strategy-proof mechanisms. This bound is constructed in the line metric space, which naturally extends to other more general metric spaces. The previous known lower bounds are only constants [21, 17].
For the two-facility game on the real line, choosing the leftmost and the rightmost points in the location profile is a deterministic strategy-proof mechanism with an approximation ratio of $n-2$ [21]. Therefore, our lower bound implies that this simple mechanism is asymptotically optimal.

3.1 Image Set

We first explore some properties of the k-facility game. These properties will be used for our two-facility case, but may be of independent interest for further studies.

We define the concept of image set. For a given mechanism f, the image set of agent i with respect to a location profile \mathbf{x}_{-i} is the set of all possible facility locations when agent i varies her reported location:

$$
\mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)=\cup_{x_{i} \in \Omega} f\left(x_{i}, \mathbf{x}_{-i}\right)
$$

The following lemma states that a strategy-proof mechanism f always outputs some location in $\mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)$ that is closest to agent i. Intuitively, the image set represents agent i 's power. If f outputs the best solution for agent i within her power, agent i does not have the incentive to lie.

Lemma 3.1. Let f be a strategy-proof mechanism for the k-facility game, $\left\langle x_{i}, \mathbf{x}_{-i}\right\rangle \in \Omega^{n}$. We have:

$$
\operatorname{cost}\left(f\left(x_{i}, \mathbf{x}_{-i}\right), x_{i}\right)=\inf _{y \in \mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)} d\left(y, x_{i}\right)
$$

Proof. We assume for contradiction that there exists $y^{*} \in \mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)$ such that $d\left(y^{*}, x_{i}\right)<\operatorname{cost}\left(f\left(x_{i}, \mathbf{x}_{-i}\right), x_{i}\right)$.

By the definition of image set, there exists x_{i}^{*} satisfying $y^{*} \in f\left(x_{i}^{*}, \mathbf{x}_{-i}\right)$. Consider the scenario that agent i is at x_{i}. She can misreport to x_{i}^{*}, experiencing a lower cost of $d\left(y^{*}, x_{i}\right)$ than her current cost of $\operatorname{cost}\left(f\left(x_{i}, \mathbf{x}_{-i}\right), x_{i}\right)$. This contradicts the assumption that f is strategy-proof.

This lemma implies that if an agent misreports to one of the current facilities, this facility will stay at the same location. Formally, we have:

Corollary 3.2. Let f be a strategy-proof mechanism for the k-facility game. Let $\mathbf{x}=\left\langle x_{i}, \mathbf{x}_{-i}\right\rangle$ be a location profile. If $z \in f(\mathbf{x})$, we must have $z \in f\left(z, \mathbf{x}_{-i}\right)$.

Proof. By the definition of image set, $z \in \mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)$ because $z \in f(\mathbf{x})=f\left(x_{i}, \mathbf{x}_{-i}\right)$. According to Lemma 3.1, $\operatorname{cost}\left(f\left(z, \mathbf{x}_{-i}\right), z\right)=\inf _{y \in \mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)} d(y, z)$. But the right hand side is 0 since $z \in \mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)$. This implies $z \in f\left(z, \mathbf{x}_{-i}\right)$.

The following result is another direct corollary of Lemma 3.1.

Corollary 3.3. Let $\mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)$ be an image set of a strategyproof mechanism for the k-facility game in metric space (Ω, d). Then $\mathrm{I}_{i}\left(\mathbf{x}_{-i}\right)$ is a closed set of Ω under the topology induced by the metric $d(\cdot)$.

Now we extend the definition of image set from single agent to the multi agent. Given mechanism f, we define the image set of S with respect to \mathbf{x}_{-S} as follows:

$$
\mathrm{J}_{S}\left(\mathbf{x}_{-S}\right)=\bigcup_{\mathbf{x}_{S} \in \Omega^{|S|}} f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right)
$$

Using partial group strategy-proofness, Lemma 3.1, Corollary 3.2 and Corollary 3.3 have the corresponding multiagent counterparts.

Lemma 3.4 (Extending 3.1). Let f be a strategy-proof mechanism for the k-facility game. Let $S \subset N$ be a nonempty set of agents, $\mathbf{x}_{S}=(x, \ldots, x)$, and $\mathbf{x}_{-S} \in \Omega^{n-|S|}$. We have:

$$
\operatorname{cost}\left(f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right), x\right)=\inf _{y \in \mathrm{~J}_{S}\left(\mathbf{x}_{-S}\right)} d(y, x)
$$

Proof. Assume the statement is false, there exists $y^{*} \in$ $\mathrm{J}_{S}\left(\mathbf{x}_{-S}\right)$ such that $d\left(y^{*}, x_{i}\right)<\operatorname{cost}\left(f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right), x\right)$.

By the definition of image set, there exists \mathbf{x}_{S}^{\prime} satisfying $y^{*} \in f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right)$. By the partial group strategy-proofness (Lemma 2.1) of f, agents in S for profile $\left\langle\mathbf{x}_{S}, \mathbf{x}_{-S}\right\rangle$ cannot "group-misreport" to \mathbf{x}_{S}^{\prime} and benefit. Therefore, we have

$$
\operatorname{cost}\left(f\left(\mathbf{x}_{S}, \mathbf{x}_{-S}\right), x\right) \leq \operatorname{cost}\left(f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right), x\right) \leq d\left(y^{*}, x_{i}\right)
$$

resulting in a contradiction.
Similarly, we have the following two corollaries.
Corollary 3.5 (Extending 3.2). Let f be a strategyproof mechanism for the k-facility game. Let $S \subset N$ be a set of agents, and $\mathbf{x}_{-S} \in \Omega^{n-|S|}$, we have:

$$
\forall x \in \mathrm{~J}_{S}\left(\mathbf{x}_{-S}\right), x \in f\left((x, \ldots, x), \mathbf{x}_{-S}\right)
$$

Corollary 3.6 (Extending 3.3). $\mathrm{J}_{S}\left(\mathbf{x}_{-S}\right)$ is closed in Ω.

3.2 Proof of the Lower Bound

In this section we state and prove our main lower bound theorem.

Theorem 3.7. Any deterministic strategy-proof mechanism for the two-facility game in the line metric space has an approximation ratio of at least $\frac{n-1}{2}$.

Our lower bound is obtained by a careful study of the behavior of any mechanism on the following set of profiles

$$
\mathbf{x}(a, b)=(\underbrace{a, a, \ldots, a}_{(n-1) / 2}, \underbrace{b, b, \ldots, b}_{(n-1) / 2}, 1)
$$

where $a \leq b \leq 1$ are two parameters. Intuitively, when $a=-1$ and $b=0$, a mechanism with a good approximation ratio should allocate one facility near a and the other facility near b; when the distance between a and b is very small, it should allocate one facility near a (and hence b) and the other near 1. However, we will show that a strategy-proof mechanism cannot do well in both cases.

We notice that in $\mathbf{x}(a, b), \frac{n-1}{2}$ agents are at a same location a and another $\frac{n-1}{2}$ agents are at a same location b. This configuration enables us to adopt the partial group strategy-proofness.

Let S_{a} (resp. S_{b}) be the $\frac{n-1}{2}$ agents at location a (resp. b). Then $\mathbf{x}_{-S_{a}}$ (resp. $\mathbf{x}_{-S_{b}}$) is the location profile that agents in S_{b} (resp. S_{a}) report b (resp. a) and the last agent reports 1. We define:

$$
\begin{aligned}
& \mathrm{I}_{a}(b)=\mathrm{J}_{S_{a}}\left(\mathrm{x}_{-S_{a}}\right)=\mathrm{J}_{S_{a}}((b, \ldots, b, 1)) ; \\
& \mathrm{I}_{b}(a)=\mathrm{J}_{S_{b}}\left(\mathrm{x}_{-S_{b}}\right)=\mathrm{J}_{S_{b}}((a, \ldots, a, 1))
\end{aligned}
$$

Lemma 3.8. Let f be a deterministic strategy-proof mechanism for a line metric space with an approximation ratio smaller than $\frac{n-1}{2}$. Then $a \in f(\mathbf{x}(a, b))$ for all $a \leq b \leq 1$.

Proof. The lemma is obvious when $b=1$. Consider $\mathrm{I}_{a}(b)$ for $b<1$. We first show that $\mathrm{I}_{a}(b) \cap(-\infty, b)=(-\infty, b)$, by assuming for contradiction that there exists some $c<b$ satisfying $c \notin \mathrm{I}_{a}(b)$.

Figure 1: The definition of c, a_{*} and $a_{*}+\epsilon$
Notice that when $a \rightarrow-\infty$, any mechanism with a bounded approximation ratio will place a facility close to a and hence on the left side of c. This indicates that $\mathrm{I}_{a}(b) \cap(-\infty, c) \neq \emptyset$. Therefore $a_{*}=\sup _{x \in \mathrm{I}_{a}(b)}\{x<c\}$ is well defined. Since $\mathrm{I}_{a}(b)$ is closed according to Corollary 3.6, we have $a_{*} \in \mathrm{I}_{a}(b)$.

Now we have $a_{*}<c<b$, as shown in Figure 1. According to definitions above, we have $\left(a_{*}, c\right] \cap \mathrm{I}_{a}(b)=\emptyset$. For any $0 \leq \epsilon<\left(c-a_{*}\right) / 2$, the closest point to $a_{*}+\epsilon$ in the image set $\mathrm{I}_{a}(b)$ is a_{*} (this point is unique). Thus by Lemma 3.4, $a_{*} \in f\left(\mathbf{x}\left(a_{*}+\epsilon, b\right)\right)$. We fix $\epsilon=\frac{c-a_{*}}{3} \leq \frac{b-a_{*}}{3}$, and consider the following profile:

$$
\mathbf{x}^{\prime}=(\underbrace{a_{*}+\epsilon, a_{*}+\epsilon, \ldots, a_{*}+\epsilon}_{(n-1) / 2}, \underbrace{b, b, \ldots, b}_{(n-1) / 2}, a_{*}) .
$$

Using the fact that $a_{*} \in f\left(\mathbf{x}\left(a_{*}+\epsilon, b\right)\right)$ and Corollary 3.2, we know $a_{*} \in f\left(\mathbf{x}^{\prime}\right)$. However, no matter where the second facility is placed by f, the social cost is at least $\frac{(n-1) \epsilon}{2}$. This
contradicts that f has an approximation ratio smaller than $(n-1) / 2$, because the optimal social cost in profile \mathbf{x}^{\prime} is only ϵ. In sum, we must have $\mathrm{I}_{a}(b) \cap(-\infty, b)=(-\infty, b)$.

Finally, using Corollary 3.5, it is clear that for any $a<b$, $a \in f(\mathbf{x}(a, b))$. For the case of $a=b$ the result is trivial.

Using analogous techniques we can prove the following lemma, whose proof is omitted here due to space limitation.

Lemma 3.9. Let f be a deterministic strategy-proof mechanism for the line metric space with an approximation ratio smaller than $\frac{n-1}{2}$. We have $b \in f(\mathbf{x}(a, b))$ for all $a \leq b \leq 1$.

Proof of Theorem 3.7. We consider profile

$$
\tilde{\mathbf{x}}=(\underbrace{0,0, \ldots, 0}_{(n-1) / 2}, \underbrace{\frac{1}{n^{2}}, \frac{1}{n^{2}}, \ldots, \frac{1}{n^{2}}}_{(n-1) / 2}, 1) .
$$

By Lemma 3.8 and 3.9, any strategy-proof mechanism f with an approximation ratio smaller than $\frac{n-1}{2}$ will place facilities at $\frac{1}{n^{2}}$ and 0 , achieving a social cost of 1 . However, the optimal social cost for $\tilde{\mathbf{x}}$ is only $\frac{1}{2 n}$ by placing facilities at 0 and 1 . This contradicts the assumption that f has an approximation ratio smaller than $\frac{n-1}{2}$.

3.3 Discussions

Our lower bound is constructed in the line metric space, which directly applies to other general metric spaces. It also holds for any metric space which can be locally viewed as a line, such as the circle. On the line, there is an upper bound of $n-2$, which asymptotically matches our lower bound. However, this lower bound may not be tight for more general metrics. For example, there is no known upper bound for deterministic mechanisms in metric spaces other than line and circle (to be shown in Section 5). It could be the case that the approximation ratio is actually unbounded for general metric spaces.

Our technique can be extended to show a linear lower bound for the k-facility game when $k>2$. It is unknown whether this bound is tight even on the line. In particular, it remains an open question that whether a deterministic mechanism exists for three-facility games with any bounded approximation ratio even in the line metric space.

4. PROPORTIONAL MECHANISM

In the previous section, we proved that there is no deterministic strategy-proof mechanism with a good (sub-linear) approximation ratio. In this section, we propose the first randomized mechanism with a constant approximation ratio. Notice that the best known randomized mechanism [17] has an approximation ratio of $n / 2$, and works only in the line metric space. Our mechanism works for general metric spaces.

Proportional Mechanism.

Given a profile $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$, the locations of the two facilities are decided by the following random process:

Round 1: Choose agent i uniformly at random from N. The first facility l_{1} is placed at x_{i}.

Round 2: Let $d_{j}=d\left(l_{1}, x_{j}\right)$ be the distance from agent j
to the first facility l_{1}. Choose agent j with probability $\frac{d_{j}}{\sum_{k \in N} d_{k}}$. The second facility is then placed at $x_{j} .{ }^{3}$

The Proportional Mechanism always allocates facilities on the reported locations. The probability of the placement of the second facility is proportional to its distances to the first facility. This is where the name "Proportional" comes from.

The Proportional Mechanism has the following nice property. Every term in the expected cost has a form of $\frac{X}{Y} Z$, where X, Y, Z are some distances. $\frac{X}{Y}$ is a ratio which indicates a probability, and Z is a cost. However, we can also view $\frac{Z}{Y}$ as a ratio, and X as a cost. This small observation is used extensively both in the proof of strategy-proofness and the analysis of the approximation ratio.

4.1 Strategy-Proofness

Theorem 4.1. The Proportional Mechanism for the twofacility game is strategy-proof.

Proof. We use $\operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)$ to denote the expected cost of the agent i conditional on that the first facility is at x_{k}. It is clear that $\operatorname{cost}_{i}\left(f(\mathbf{x}), x_{i}\right)=0$. The total cost for agent i is
$\operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)=\frac{1}{n} \sum_{k=1}^{n} \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)=\frac{1}{n} \sum_{k \neq i} \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)$.
Consider profile $\mathbf{x}^{\prime}=\left\langle x_{i}^{\prime}, \mathbf{x}_{-i}\right\rangle$, in which agent i misreports her location from x_{i} to x_{i}^{\prime}. To prove the strategyproofness, it is sufficient to prove that for all $k \neq i$,

$$
\operatorname{cost}_{k}\left(f\left(\mathbf{x}^{\prime}\right), x_{i}\right) \geq \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)
$$

Now we fix the first facility on x_{k}. We recall that $d_{i}=$ $d\left(l_{1}, x_{i}\right)=d\left(x_{k}, x_{i}\right)$ and $\operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)$ is
$\frac{\sum_{j=1}^{n} d_{j} \min \left\{d_{i}, d\left(x_{i}, x_{j}\right)\right\}}{\sum_{j=1}^{n} d_{j}}=\frac{\sum_{j \neq i} d_{j} \min \left\{d_{i}, d\left(x_{i}, x_{j}\right)\right\}}{\sum_{j=1}^{n} d_{j}}$.
Let $d_{i}^{\prime}=d\left(l_{1}, x_{i}^{\prime}\right)$. The cost of agent i if she misreports, i.e. $\operatorname{cost}_{k}\left(f\left(\mathbf{x}^{\prime}\right), x_{i}\right)$ is

$$
\frac{\sum_{j \neq i} d_{j} \min \left\{d_{i}, d\left(x_{i}, x_{j}\right)\right\}}{\sum_{j=1}^{n} d_{j}+\left(d_{i}^{\prime}-d_{i}\right)}+\frac{d_{i}^{\prime} \min \left\{d_{i}, d\left(x_{i}, x_{i}^{\prime}\right)\right\}}{\sum_{j=1}^{n} d_{j}+\left(d_{i}^{\prime}-d_{i}\right)} .
$$

Comparing the above two expressions, we have the following relation:
$\operatorname{cost}_{k}\left(f\left(\mathbf{x}^{\prime}\right), x_{i}\right)=\frac{\operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right) \sum_{j=1}^{n} d_{j}}{\sum_{j=1}^{n} d_{j}+\left(d_{i}^{\prime}-d_{i}\right)}+\frac{d_{i}^{\prime} \min \left\{d_{i}, d\left(x_{i}, x_{i}^{\prime}\right)\right\}}{\sum_{j=1}^{n} d_{j}+\left(d_{i}^{\prime}-d_{i}\right)}$.
If $d_{i}^{\prime} \leq d_{i}$, the first term on the right hand side is already greater than $\operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)$, while the second term is nonnegative. Therefore we only need to consider the case that $d_{i}^{\prime}>d_{i}$. We have,

$$
\begin{aligned}
& \operatorname{cost}_{k}\left(f\left(\mathbf{x}^{\prime}\right), x_{i}\right)-\operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right) \\
= & \frac{-\left(d_{i}^{\prime}-d_{i}\right) \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)}{\sum_{j=1}^{n} d_{j}+\left(d_{i}^{\prime}-d_{i}\right)}+\frac{d_{i}^{\prime} \min \left\{d_{i}, d\left(x_{i}, x_{i}^{\prime}\right)\right\}}{\sum_{j=1}^{n} d_{j}+\left(d_{i}^{\prime}-d_{i}\right)}
\end{aligned}
$$

So it is sufficient to show that

$$
\begin{equation*}
d_{i}^{\prime} \min \left\{d_{i}, d\left(x_{i}, x_{i}^{\prime}\right)\right\}-\left(d_{i}^{\prime}-d_{i}\right) \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right) \geq 0 \tag{1}
\end{equation*}
$$

We prove this for two cases.

[^4]- If $\min \left\{d_{i}, d\left(x_{i}, x_{i}^{\prime}\right)\right\}=d_{i}$, inequality (1) holds because $d_{i}^{\prime} \geq d_{i}^{\prime}-d_{i}$ and $d_{i} \geq \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)$. Here the latter holds because agent i can at least choose the first facility, which is at x_{k}, to serve him with cost $d\left(x_{i}, x_{k}\right)=$ d_{i}.
- If $\min \left\{d_{i}, d\left(x_{i}, x_{i}^{\prime}\right)\right\}=d\left(x_{i}, x_{i}^{\prime}\right)$, inequality (1) holds because $d_{i}^{\prime} \geq d_{i} \geq \operatorname{cost}_{k}\left(f(\mathbf{x}), x_{i}\right)$ and $d\left(x_{i}, x_{i}^{\prime}\right) \geq d_{i}^{\prime}-$ d_{i}. Here the latter is due to the triangle inequality in the metric space (Ω, d) since $d_{i}^{\prime}=d\left(l_{1}, x_{i}^{\prime}\right)$ and $d_{i}=$ $d\left(l_{1}, x_{i}\right)$.
This completes the proof.
From the above proof, we can see that our Proportional Mechanism is strategy-proof even in a slightly stronger sense. An agent does not have the incentive to lie even if she has seen the random bits in the first round of the mechanism.

4.2 Approximation Ratio for Social Cost

In this section, we estimate the approximation ratio of our Proportional Mechanism in general metric spaces and prove the following theorem.

Theorem 4.2. The approximation ratio of the Proportional Mechanism for the two-facility game is at most 4 for any metric space.

For a location profile \mathbf{x}, let f_{α} and f_{β} be the locations of the two facilities in one optimal solution. Let α be the set of agents that are strictly closer to f_{α} than to f_{β}, and β be the rest. We use OPT_{α} to denote the summation of costs of agents in α and OPT_{β} the summation of costs of agents in β. Clearly, $\mathrm{OPT}=\mathrm{OPT}_{\alpha}+\mathrm{OPT}_{\beta}$.

Similarly, let $\operatorname{cost}_{\alpha}$ (resp. $\operatorname{cost}_{\beta}$) be the total costs of agents in α (resp. β), assuming facilities are chosen according to our Proportional Mechanism. Let F_{α} (resp. F_{β}) be the event that the agent chosen by the mechanism at the first round is in α (resp. β). Since our mechanism is randomized, both $\operatorname{cost}_{\alpha}$ and $\operatorname{cost}_{\beta}$ are random variables. We need to bound the expected cost of our mechanism, which is $\mathbb{E}\left[\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right] . \quad F_{\alpha}$ and F_{β} are two exclusive random events, which form a partition of the whole probabilistic space. Therefore, the cost $\mathbb{E}\left[\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right]$ is equal to
$\operatorname{Pr}\left(F_{\alpha}\right) \mathbb{E}\left[\left(\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right) \mid F_{\alpha}\right]+\operatorname{Pr}\left(F_{\beta}\right) \mathbb{E}\left[\left(\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right) \mid F_{\beta}\right]$.
Next two lemmas bound the expected values $\mathbb{E}\left[\left(\operatorname{cost}_{\alpha}+\right.\right.$ $\left.\left.\operatorname{cost}_{\beta}\right) \mid F_{\alpha}\right]=\mathbb{E}\left[\operatorname{cost}_{\alpha} \mid F_{\alpha}\right]+\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\alpha}\right]$. Similar results can be deduced for $\mathbb{E}\left[\left(\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right) \mid F_{\beta}\right]$.

Lemma 4.3. $\mathbb{E}\left[\operatorname{cost}_{\alpha} \mid F_{\alpha}\right] \leq 2 \mathrm{OPT}_{\alpha}$
Proof. Note that $\mathbb{E}\left[\operatorname{cost}_{\alpha} \mid F_{\alpha}\right] \leq \frac{1}{|\alpha|} \sum_{i \in \alpha} \sum_{j \in \alpha} d\left(x_{i}, x_{j}\right)$ if we completely ignore the second facility. Since $\mathrm{OPT}_{\alpha}=$ $\sum_{i \in \alpha} d\left(x_{i}, f_{\alpha}\right)$, by triangle inequality, we have $|\alpha| \cdot \mathrm{OPT}_{\alpha}=$ $\sum_{i \in \alpha}|\alpha| \cdot d\left(x_{i}, f_{\alpha}\right)=\frac{1}{2} \sum_{i \in \alpha} \sum_{j \in \alpha}\left(d\left(x_{i}, f_{\alpha}\right)+d\left(x_{j}, f_{\alpha}\right)\right) \geq$ $\frac{1}{2} \sum_{i \in \alpha} \sum_{j \in \alpha} d\left(x_{i}, x_{j}\right)$. The lemma follows.

Lemma 4.4. $\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\alpha}\right] \leq 2 \mathrm{OPT}_{\alpha}+4 \mathrm{OPT}_{\beta}$.
Proof. We define

$$
\operatorname{cost}_{\beta}^{k, i}=\sum_{j \in \beta} \min \left\{d\left(x_{k}, x_{j}\right), d\left(x_{i}, x_{j}\right)\right\}
$$

to be the cost of the agents in β given the condition that the first chosen agent is k and the second one is i in the

Figure 2: Definitions of D, d_{i} and e_{i}

Proportional Mechanism. We denote $P(i \mid k)$ as the probability that the second chosen agent is i conditional on that the first chosen one is k. Then we have,

$$
\begin{align*}
\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\alpha}\right]= & \sum_{k \in \alpha} \frac{1}{|\alpha|} \sum_{i \in \alpha} \operatorname{cost}_{\beta}^{k, i} \cdot P(i \mid k)+ \\
& \sum_{k \in \alpha} \frac{1}{|\alpha|} \sum_{i \in \beta} \operatorname{cost}_{\beta}^{k, i} \cdot P(i \mid k) \tag{2}
\end{align*}
$$

For first term in Eq.(2), we ignore the second facility and bound the total costs of agents in β using their distances to $l_{1}\left(=x_{k}\right)$.

$$
\begin{align*}
& \sum_{k \in \alpha} \frac{1}{|\alpha|} \sum_{i \in \alpha} \operatorname{cost}_{\beta}^{k, i} P(i \mid k) \\
& \leq \sum_{i \in \alpha} \frac{1}{|\alpha|} \sum_{k \in \alpha}\left(\sum_{j \in \beta} d\left(x_{k}, x_{j}\right)\right) \frac{d\left(x_{k}, x_{i}\right)}{\sum_{j \in N} d\left(x_{k}, x_{j}\right)} \tag{3}\\
& \leq \sum_{i \in \alpha} \frac{1}{|\alpha|} \sum_{k \in \alpha} d\left(x_{k}, x_{i}\right) \leq 2 \mathrm{OPT}_{\alpha}
\end{align*}
$$

where the last inequality is due to Lemma 4.3.
For the second term in Eq.(2), we will bound the internal summation for any fixed $k \in \alpha$. So we fixed the first facility $l_{1}\left(=x_{k}\right)$ and denote $d_{j}=d\left(l_{1}, x_{j}\right)$. As shown in Figure 2 , we define $D=d\left(l_{1}, f_{\beta}\right)$ to be the distance between l_{1} and the optimal facility in β. Furthermore, for agent j in β, let $e_{j}=d\left(f_{\beta}, x_{j}\right)$ be the distance from agent j to the optimal facility in β, and denote $s_{j}=d_{j}-e_{j}$. It is clear that $\mathrm{OPT}_{\beta}=\sum_{j \in \beta} e_{j}$.

Notice that s_{j} can be negative by our definition. However, we always have $\sum_{j \in \beta} s_{j} \geq 0$, since otherwise l_{1} is a strictly better facility location for agents in β than f_{β}, contradicting the optimality of f_{β}.

Now we calculate the total costs for agents in β :

$$
\begin{align*}
& \sum_{i \in \beta} \operatorname{cost}_{\beta}^{k, i} P(i \mid k) \\
& =\sum_{i \in \beta}\left(\sum_{j \in \beta} \min \left\{d_{j}, d\left(x_{i}, x_{j}\right)\right\}\right) \frac{d_{i}}{\sum_{j \in N} d_{j}} \tag{4}\\
& =\sum_{i \in \beta} \frac{e_{i}+s_{i}}{\sum_{j \in \beta} e_{j}+s_{j}}\left(\sum_{j \in \beta} \min \left\{e_{j}+s_{j}, d\left(x_{i}, x_{j}\right)\right\}\right) .
\end{align*}
$$

By triangle inequality, we have $d\left(x_{i}, x_{j}\right) \leq e_{j}+e_{i}$, and we
continue to bound the above equation:

$$
\begin{align*}
& \sum_{i \in \beta} \operatorname{cost}_{\beta}^{k, i} P(i \mid k) \\
\leq & \left.\sum_{i \in \beta} \frac{e_{i}+s_{i}}{\sum_{j \in \beta} e_{j}+s_{j}} \sum_{j \in \beta} \min \left\{e_{j}+s_{j}, e_{j}+e_{i}\right\}\right) \\
= & \sum_{i \in \beta} \frac{e_{i}+s_{i}}{\sum_{j \in \beta} e_{j}+s_{j}} \sum_{j \in \beta} e_{j} \tag{5}\\
& +\sum_{i \in \beta} \frac{e_{i}}{\sum_{j \in \beta} e_{j}+s_{j}} \sum_{j \in \beta} \min \left\{s_{j}, e_{i}\right\} \\
& +\sum_{i \in \beta} \frac{s_{i}}{\sum_{j \in \beta} e_{j}+s_{j}} \sum_{j \in \beta} \min \left\{s_{j}, e_{i}\right\} .
\end{align*}
$$

The first term of the last summation is exactly $\sum_{j \in \beta} e_{j}=$ OPT_{β}. For the second term, we relax $\min \left\{s_{j}, e_{i}\right\}$ to s_{j}. Because $\sum_{j \in \beta} e_{j}+s_{j} \geq \sum_{j \in \beta} s_{j}$, the second term is bounded by $\sum_{j \in \beta} e_{j}=\mathrm{OPT}_{\beta}$.
For the third term, we relax $\min \left\{s_{j}, e_{i}\right\}$ to e_{i}. By triangle inequality, we have $e_{j}+D \geq d_{j} \Rightarrow s_{j} \leq D$ and $d_{j}+e_{j} \geq D$. Therefore,

$$
\begin{align*}
& \sum_{i \in \beta} \frac{s_{i}}{\sum_{j \in \beta} e_{j}+s_{j}} \sum_{j \in \beta} \min \left\{s_{j}, e_{i}\right\} \\
\leq & \sum_{i \in \beta} \frac{s_{i}|\beta| e_{i}}{\sum_{j \in \beta} e_{j}+s_{j}} \tag{6}\\
\leq & \sum_{i \in \beta} e_{i} \frac{|\beta| \cdot D}{\sum_{j \in \beta} e_{j}+s_{j}} \leq 2 \mathrm{OPT}_{\beta},
\end{align*}
$$

where the last inequality is because (using the fact that $\left.\sum_{j \in \beta} s_{j} \geq 0\right)$

$$
\sum_{j \in \beta} 2 e_{j}+2 s_{j} \geq \sum_{j \in \beta} 2 e_{j}+s_{j}=\sum_{j \in \beta} d_{j}+e_{j} \geq|\beta| \cdot D
$$

To put things together, we have

$$
\begin{equation*}
\sum_{i \in \beta} \operatorname{cost}_{\beta}^{k, i} P(i \mid k) \leq 4 \mathrm{OPT}_{\beta} \tag{7}
\end{equation*}
$$

Substituting Eq. (3) and Eq. (7) to Eq. (2), we have $\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\alpha}\right] \leq 2 \mathrm{OPT}_{\alpha}+4 \mathrm{OPT}_{\beta}$. This completes the proof.

We are ready to prove the main theorem of this section.
Proof of Theorem 4.2. The theorem follows by the following chain of inequalities.

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right] \\
& \leq \max \left\{\mathbb{E}\left[\left(\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right) \mid F_{\alpha}\right], \mathbb{E}\left[\left(\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta}\right) \mid F_{\beta}\right]\right\} \\
& =\max \left\{\mathbb{E}\left[\operatorname{cost}_{\alpha} \mid F_{\alpha}\right]+\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\alpha}\right], \mathbb{E}\left[\operatorname{cost}_{\alpha} \mid F_{\beta}\right]+\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\beta}\right]\right\} \\
& \leq \max \left\{2 \mathrm{OPT}_{\alpha}+2 \mathrm{OPT}_{\alpha}+4 \mathrm{OPT}_{\beta},\right. \\
& \\
& \left.\quad 2 \mathrm{OPT}_{\beta}+4 \mathrm{OPT}_{\alpha}+2 \mathrm{OPT}_{\beta}\right\} \\
& =4\left(\mathrm{OPT}_{\alpha}+\mathrm{OPT}_{\beta}\right)=4 \mathrm{OPT} .
\end{aligned}
$$

in which the bounds of $\mathbb{E}\left[\operatorname{cost}_{\alpha} \mid F_{\beta}\right]$ and $\mathbb{E}\left[\operatorname{cost}_{\beta} \mid F_{\beta}\right]$ are due to the symmetric versions of Lemma 4.3 and Lemma 4.4.

4.3 Discussion

It is worth noting that this upper bound of 4 is tight for our Proportional Mechanism even for the line metric space. Consider the location profile $\mathbf{x}=(\epsilon, 0,0, \ldots 0,1)$, it can be
shown that its approximation ratio tends to 4 as the number of agents is sufficiently large and $\epsilon \rightarrow 0$.

We note that the Proportional Mechanism is not group strategy-proof. It would be interesting if one can find a group strategy-proof mechanism with a constant approximation ratio.

We also examine two possible extensions of our Proportional Mechanism to the three-facility game. The first is to allocate the first two facilities the same as this section, but the third one in some agent w.p. proportional to her minimal distance to the first two facilities. Unfortunately we have found a non-trivial counter-example and shown that this mechanism is not strategy-proof. ${ }^{4}$

Another extension is a strategy-proof three-facility mechanism on the real line. The first two facilities are located at the leftmost and the rightmost reported locations. For the third facility, it is randomly chosen among the rest of the agents w.p. proportional to their minimal distances to the first two facilities. This mechanism guarantees a linear approximation ratio.

5. MECHANISM FOR CIRCLE

In this section, we consider the circle metric space $\left(S^{1}, d\right)$, where $S^{1} \subset \mathbb{R}^{2}$ is a circle in the two dimensional Euclidean space and the distance $d(x, y)$ for $x, y \in S^{1}$ is the length of the minor arc spanned by x and y. We can normalize the circle so that its circumference is 1 . Notice that the $\frac{n-1}{2}$ deterministic lower bound in Section 3 can still be applied here, because a circle can be locally viewed as a line. Now we give a deterministic group strategy-proof mechanism with an approximation ratio of $n-1$. This is tight up to a constant factor of 2 .

Circle Mechanism.

Given profile $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$, the first facility is allocated at x_{1}, the location of the first agent. As shown in Figure 3 (a), we denote \hat{x}_{1} the antipodal of x_{1}, and there form two semi-circles with x_{1} and \hat{x}_{1} as endpoints. We call one of the semi-circle the left circle \mathfrak{L} and the other the right circle \mathfrak{R} ${ }^{5}$. Let A and B be the set of agents on \mathfrak{L} and \mathfrak{R} respectively. We assume agents at location x_{1} and \hat{x}_{1} (if any) appear in only A, and thus $A \cap B=\emptyset$. Define $d_{A}=\max _{i \in A} d\left(x_{1}, x_{i}\right)$ and $d_{B}=\max _{i \in B} d\left(x_{1}, x_{i}\right)$ (if B is empty, let $d_{B}=0$). We allocate the second facility as follows:

- If $d_{A}<d_{B}$, facility l_{2} is placed on \mathfrak{R} with distance $\min \left\{\max \left\{d_{B}, 2 d_{A}\right\}, 1 / 2\right\}$ to l_{1}.
- If $d_{A} \geq d_{B}$, facility l_{2} is placed on \mathfrak{L} with distance $\min \left\{\max \left\{d_{A}, 2 d_{B}\right\}, 1 / 2\right\}$ to l_{1}.
In this mechanism, the first facility is always allocated at the location of the first agent as a dictator. Let us break the circle at point \hat{x}_{1} to make it a straight line and think the location of first agent as the origin. In this way, we can understand the intuition of the mechanism more clearly.

[^5]

Figure 3: Mechanism on the Circle

After breaking the circle into a line, the coordinate of the rightmost (resp. leftmost) agent is d_{B} (resp. $-d_{A}$). If the distance from the rightmost agent to the origin is larger $\left(d_{B}>d_{A}\right)$, we put the second facility on the right side at location $\max \left\{d_{B}, 2 d_{A}\right\}$. Otherwise, we put the second facility on the left side at location $-\max \left\{d_{A}, 2 d_{B}\right\}$. We can verify that the this line mechanism is group strategy-proof and has a linear approximation ratio.

However, when we transfer it back to the circle case, the location $\max \left\{d_{B}, 2 d_{A}\right\}$ (resp. $-\max \left\{d_{A}, 2 d_{B}\right\}$) may go across \hat{x}_{1} to the left circle \mathfrak{L} (resp. right circle \mathfrak{R}), which breaks the strategy-proofness. Therefore we put a cutoff at \hat{x}_{1} for the circle mechanism, which means that we allocate the second facility at exactly \hat{x}_{1} if $\max \left\{d_{B}, 2 d_{A}\right\}$ is greater than $\frac{1}{2}$ (resp. if $-\max \left\{d_{A}, 2 d_{B}\right\}$ is smaller than $-1 / 2$).

In the following proof, we shall keep this line interpretation in mind. For example, we call the agent farthest from l_{1} in A the leftmost agent and the agent farthest from l_{1} in B the rightmost agent.

5.1 Group Strategy-Proofness

Theorem 5.1. The Circle Mechanism is group strategyproof.

Proof. We assume for contradiction that the Circle Mechanism f is not group strategy-proof. Then there exists a profile $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$, a group of agents $S \subset N$ and their misreported locations \mathbf{x}_{S}^{\prime} such that for every agent $i \in S$, it is better off by the collusion, i.e.

$$
\operatorname{cost}\left(f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right), x_{i}\right)<\operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)
$$

Without loss of generality, we assume $d_{A} \geq d_{B}$ for the given profile \mathbf{x}, and the case $d_{A}<d_{B}$ is similar. So l_{2} lies on \mathfrak{L} in $f(\mathbf{x})$.

The cost for the first agent is 0 in $f(\mathbf{x})$, so she cannot reduce her cost by any means and hence $1 \notin S$. This tells us that l_{1} is still located as x_{1} in $f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right)$, and we assume $f\left(\mathbf{x}_{S}^{\prime}, \mathbf{x}_{-S}\right)=\left\{l_{1}, l_{2}^{\prime}\right\}$. We denote by C_{1} the arc from l_{1} to l_{2} in an anti clockwise direction and by C_{2} the arc from l_{1} to l_{2} in an clockwise direction. Then all agents in A are on C_{1} and all agents in B are on C_{2}.

Obviously, l_{2}^{\prime} can not be at l_{1} or l_{2} because otherwise no agent is better off. Therefore we have the following two cases:

Case 1: $l_{2}^{\prime} \in C_{1}$. We first see that no agent in B can benefit from this misreport, because for an agent in B, either l_{1} or l_{2} will be her closer facility than the new l_{2}^{\prime}. Therefore we have $S \subset A$ and $d_{B}^{\prime} \geq d_{B}$.

Now, the colluded agents are all on C_{1}, and to benefit themselves, l_{2}^{\prime} must still lie on C_{1} with $d\left(l_{1}, l_{2}^{\prime}\right)$ strictly smaller than $d\left(l_{1}, l_{2}\right)$. This happens only when $d_{A}^{\prime}<$ d_{A} according to our mechanism because agents in B do not lie. To have this, the leftmost agent in A must be in S and lie. Call this agent x_{p}. We cannot have $l_{2}=$ x_{p} because otherwise agent p has already experienced a zero cost and has no incentive to lie. So we have $l_{2} \neq x_{p}$. In this case, we have
$d\left(l_{1}, l_{2}^{\prime}\right) \geq \min \left\{2 d_{B}^{\prime}, 1 / 2\right\} \geq \min \left\{2 d_{B}, 1 / 2\right\}=d\left(l_{1}, l_{2}\right)$, contradicting our assumption that $d\left(l_{1}, l_{2}^{\prime}\right)<d\left(l_{1}, l_{2}\right)$.

Case 2: $l_{2}^{\prime} \in C_{2}$. For similar reason as Case 1, no agent in A can benefit from the misreport, and thus $S \subset B$. As a result, $d_{A}^{\prime} \geq d_{A}$. We further discuss three subcases regarding the location of l_{2} and l_{2}^{\prime}.

Subcase 2.1: $l_{2}=\hat{x}_{1}$. To result in $l_{2}=\hat{x}_{1}$, either $d_{A}=\frac{1}{2}$ or $d_{B} \geq \frac{1}{4}$.
If $d_{A}=\frac{1}{2}$, we must have $l_{2}^{\prime}=l_{2}$ because agents in A do not lie. No agent can benefit in this scenario. If $d_{B} \geq \frac{1}{4}$, we have $d_{A}^{\prime} \geq d_{A} \geq d_{B} \geq \frac{1}{4}$. To benefit themselves, l_{2}^{\prime} must lie on the right circle \mathfrak{R} because all the colluded agents are in B. But this cannot be the case since

$$
\min \left\{\max \left\{d_{B}^{\prime}, 2 d_{A}^{\prime}\right\}, 1 / 2\right\} \geq \min \left\{2 d_{A}^{\prime}, 1 / 2\right\}=\frac{1}{2}
$$

Subcase 2.2: $l_{2} \neq \hat{x}_{1}$ and l_{2}^{\prime} is on \mathfrak{L} (including \hat{x}_{1}). Since $l_{2} \neq \hat{x}_{1}$, we have $d_{B}<\frac{1}{4}$. So the distance from any agent $j \in B$ to l_{2}^{\prime} is at least $d\left(x_{j}, l_{1}\right)$ because $l_{2}^{\prime} \in \mathfrak{L}$. It is clear that any agent in B cannot thus benefit because her closest facility is still l_{1}.
Subcase 2.3: $l_{2} \neq \hat{x}_{1}$ and l_{2}^{\prime} is on \mathfrak{R} (excluding \hat{x}_{1}). Then we have $d_{B}<\frac{1}{4}$ and $d_{A} \leq d_{A}^{\prime}<\frac{1}{4}$. So for any agent $k \in B, d\left(x_{k}, l_{2}^{\prime}\right)$ is at least $2 d_{A}^{\prime}-d_{B}$, which is at least d_{B} since $d_{B} \leq d_{A} \leq d_{A}^{\prime}$. This is already larger than or equal to its distance to the first facility which is d_{B}. This is a contradiction.

The theorem follows.

5.2 Approximation Ratio for Social Cost

Theorem 5.2. The approximation ratio of the Circle Mechanism is at most $n-1$.

Proof. For a given profile \mathbf{x}, consider the optimal solution using notations α and β defined in Section 4.2. We denote I_{α} the minimal arc covering all agents in α, and I_{β} the minimal arc covering all agents in β. It can be easily verified that $I_{\alpha} \cap I_{\beta}=\emptyset$. Let $\left|I_{\alpha}\right|$ be the length of I_{α} and $\left|I_{\beta}\right|$ be the length of I_{β}. Obviously OPT $\geq\left|I_{\alpha}\right|+\left|I_{\beta}\right|$.

Without loss of generality, we assume $l_{1}=x_{1} \in I_{\alpha}$ and $d_{A} \geq d_{B}$, so the second facility $l_{2} \in \mathfrak{L}$ according to our mechanism.

Similar to Section 4.2, we let $\operatorname{cost}_{\alpha}=\sum_{i \in \alpha} \operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)$ be the summation of costs of agents in α, and $\operatorname{cost}_{\beta}=$ $\sum_{i \in \beta} \operatorname{cost}\left(f(\mathbf{x}), x_{i}\right)$. It is clear that $\operatorname{cost}_{\alpha} \leq(|\alpha|-1)$ OPT, because $l_{1} \in I_{\alpha}$ and any agent in α is at most $\left|I_{\alpha}\right| \leq$ OPT far from l_{1}, except $x_{1}=l_{1}$ itself who has zero cost. Next we are to prove that $\operatorname{cost}_{\beta} \leq|\beta| \mathrm{OPT}$, which is enough to show our $n-1$ upper bound because cost $=\operatorname{cost}_{\alpha}+\operatorname{cost}_{\beta} \leq$ ($n-1$) OPT.

If $l_{2} \in I_{\beta}$, the distance from each agent in β to its closest facility is at most $\left|I_{\beta}\right|$. Thus, $\operatorname{cost}_{\beta} \leq|\beta|\left|I_{\beta}\right| \leq|\beta|$ OPT.

If $l_{2} \notin I_{\beta}$, let p be the leftmost agent on \mathfrak{L}, and q be the rightmost agent on \mathfrak{R}. We know that $d\left(l_{1}, x_{p}\right)=d_{A}$ and $d\left(l_{1}, x_{q}\right)=d_{B}$. If both x_{p}, x_{q} are in I_{β} (Figure $3(\mathrm{~b})$), we will have a contradiction: according to the mechanism, l_{1} and l_{2} are on different arcs with x_{p} and x_{q} as endpoints, but I_{β} which contains both x_{p} and x_{q} must contain either l_{1} or l_{2}. This contradicts the assumption of $l_{1} \in I_{\alpha}$ or $l_{2} \notin I_{\beta}$ respectively. Therefore, at least one of $x_{p} \in I_{\alpha}$ and $x_{q} \in I_{\alpha}$ hold.

- If $x_{p} \in I_{\alpha}$ (Figure 3 (c)), $\left|I_{\alpha}\right| \geq d_{A}$ because both x_{1} and x_{p} are in. But each agent in β is at most $d_{B} \leq d_{A}$ far from l_{1}. This implies

$$
\operatorname{cost}_{\beta} \leq|\beta| d_{A} \leq|\beta|\left|I_{\alpha}\right| \leq|\beta| \mathrm{OPT}
$$

- If $x_{p} \notin I_{\alpha}$, we have $x_{q} \in I_{\alpha}$ (Figure 3 (d)). We have $\left|I_{\alpha}\right| \geq d_{B}$ because both x_{1} and x_{q} are in. So all agents in β are located on \mathfrak{L}, and thus each agent in β is no more than $d\left(l_{1}, l_{2}\right) / 2$ far from either l_{1} or l_{2}. Furthermore, based on the facts of $l_{2} \notin I_{\beta}$ and $x_{p} \in I_{\beta}$, we deduce that $l_{2} \neq x_{p}$. In this case, $d\left(l_{1}, l_{2}\right) \leq 2 d_{B}$ according to the mechanism. In sum, we still have

$$
\begin{aligned}
\operatorname{cost}_{\beta} & \leq|\beta| \frac{d\left(l_{1}, l_{2}\right)}{2} \leq|\beta| d_{B} \\
& \leq|\beta|\left|I_{\alpha}\right| \leq|\beta| \text { OPT. }
\end{aligned}
$$

This completes the proof.

5.3 Discussion

We remark here that the approximation ratio of the Circle Mechanism cannot be improved. Consider the profile $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $d\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{3}\right)=0.1$ and $x_{3}=$ $x_{4}=\ldots=x_{n}$. But x_{2} and x_{3} are on different sides of x_{1}. In this case, $\mathrm{OPT}=0.1$ but the mechanism will give cost $=0.1(n-1)$.

As noted, the mechanism here is motivated by the mechanism on a line. We do not know a mechanism with a bounded ratio for any slightly more complicated metric space. For example, for a star with three branches, we do not know how to extend our Circle Mechanism to this case. Furthermore, we can prove that if we fix the first facility as a dictator, no mechanism has a bounded ratio.

6. OPEN PROBLEMS AND DISCUSSION

In this section, we summarize some open problems related to this work.

1. The first remaining problem is to close the constant gaps both for deterministic (between $n-2$ and $\frac{n-1}{2}$)
and randomized (between 4 and 1.045) mechanisms in the line metric space.
2. It is interesting to explore deterministic mechanisms for the general metric spaces or the special metric spaces other than line or circle. To design a deterministic mechanism with any bounded ratio would be instructive. It is also possible that one can show that the approximation ratio is actually unbounded.
3. As noted in the paper, our Proportional Mechanism is not group strategy-proof. It remains open to provide a group strategy-proof randomized mechanism with a constant approximation ratio.
4. Another natural extension is to consider the game with three or more facilities. Our linear lower bound for deterministic mechanisms can be easily extended to more facilities. However, no deterministic mechanism with any bounded ratio has been known yet even for the line. It is significant if one can provide such a mechanism or prove that it does not exist. For a randomized setting, we can give a mechanism with a linear approximation ratio for the three-facility game in the line metric space. It would be very interesting to explore whether we can still get mechanisms with constant approximation ratio for games with more facilities.

Acknowledgments

We thank Zhenming Liu for stimulating discussions and commenting on a draft of this paper. We also thank Wei Chen, Mingji Xia and Yuan Zhou for helpful discussions.

7. REFERENCES

[1] N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. Strategyproof approximation mechanisms for location on networks. CoRR, abs/0907.2049, 2009.
[2] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 482-491, 2001.
[3] S. Barberà. An introduction to strategy-proof social choice functions. Social Choice and Welfare, 18(4):619-653, 2001.
[4] S. Barberà and M. Jackson. A characterization of strategy-proof social choice functions for economies with pure public goods. Social Choice and Welfare, 11(3):241-252, 1994.
[5] S. Barbera and B. Peleg. Strategy-proof voting schemes with continuous preferences. Social Choice and Welfare, 7(1):31-38, 1990.
[6] D. Black. On the rationale of group decision-making. The Journal of Political Economy, pages 23-34, 1948.
[7] G. Christodoulou, E. Koutsoupias, and A. Vidali. A lower bound for scheduling mechanisms. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1163-1170, 2007.
[8] E. H. Clarke. Multipart Pricing of Public Goods. Public Choice, 11:17-33, 1971.
[9] O. Dekel, F. Fischer, and A.D. Procaccia. Incentive compatible regression learning. In Proceedings of the

19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 884-893, 2008.
[10] P. Dhangwatnotai, S. Dobzinski, S. Dughmi, and T. Roughgarden. Truthful approximation schemes for single-parameter agents. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 15-24, 2008.
[11] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, pages 587-601, 1973.
[12] T. Groves. Incentives in Teams. Econometrica, 41:617-631, 1973.
[13] E. Koutsoupias and A. Vidali. A lower bound of $1+\phi$ for truthful scheduling mechanisms. In Proceedings of the 32nd International Symposium of Mathematical Foundations of Computer Science (MFCS), pages 454-464, 2007.
[14] R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 595-604, 2005.
[15] D. Lehmann, L. I. Oćallaghan, and Y. Shoham. Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM, 49(5):577-602, 2002.
[16] P. Lu. On 2-player randomized mechanisms for scheduling. In Proceedings of the 5th International Workshop of Internet and Network Economics (WINE), pages 30-41, 2009.
[17] P. Lu, Y. Wang, and Y. Zhou. Tighter bounds for facility games. In Proceedings of the 5th International Workshop of Internet and Network Economics (WINE), pages 137-148, 2009.
[18] P. Lu and C. Yu. Randomized truthful mechanisms for scheduling unrelated machines. In Proceedings of the 4th International Workshop of Internet and Network Economics (WINE), pages 402-413, 2008.
[19] H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437-455, 1980.
[20] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35(1-2):166-196, 2001.
[21] A.D. Procaccia and M. Tennenholtz. Approximate mechanism design without money. In Proceedings of the 10th ACM Conference on Electronic Commerce (ACM-EC), 2009.
[22] M. A. Satterthwaite. Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10(2):187-217, 1975.
[23] J. Schummer and R. V. Vohra. Strategy-proof location on a network. Journal of Economic Theory, 104, 2001.
[24] J. Schummer and R. V. Vohra. Mechanism design without money, chapter 10. Cambridge University Press, 2007.
[25] Y. Sprumont. The division problem with single-peaked preferences: a characterization of the uniform allocation rule. Econometrica, pages 509-519, 1991.
[26] W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders. Journal of Finance, 16:8-37, 1961.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 EC'10, June 7-11, 2010, Cambridge, Massachusetts, USA.
 Copyright 2010 ACM 978-1-60558-822-3/10/06 ...\$10.00.

[^1]: *This work was done when the two authors were visiting Microsoft Research Asia.
 ${ }^{\dagger}$ Partially supported by the National Innovation Research Project for Undergraduates (NIRPU) of $\$ 180$.

[^2]: ${ }^{1} \mathrm{An}$ anonymous reviewer pointed out that a similar idea is used in [5].

[^3]: ${ }^{2}$ Here we use the weak notion of group strategy-proofness which follows the definitions in $[21,1]$. Some other work defines the strong group strategy-proofness by asking that it cannot be the case that all the deviating agents do not lose and at least one strictly gains.

[^4]: ${ }^{3}$ If all the agents report the same location, our mechanism places the second facility also on this location.

[^5]: ${ }^{4}$ This counter-example is as follows: there exist n_{0} agents at location $0, n_{1}$ agents at location $1, n_{2}$ agents at location $1+x$ and 1 agent at location $1+x+y$. Here n_{0} is sufficiently large such that we can assume the first facility l_{1} to be always located at 0 . In this configuration, let $y=100, x=10^{5}$, $n_{1}=50$ and $n_{2}=4$. After a careful calculation one may find out that the agent at location 1 may have the incentive to misreport to location $1+x$.
 ${ }^{5} x_{1}$ and \hat{x}_{1} are assumed to be in both \mathfrak{L} and \mathfrak{R}.

