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1. Introduction and summary. Let (4,.27) be a measurable space and let © be an
open subset of the k-dimensional Euclidean space &,. For each €0, let P, be a
probability measure on /. Let {X,,n =0} be a discrete parameter Markov
process defined on (¥, , Py), X, taking values in the Borel real line (R, #).
Finally, let «, be the o-field induced by the first n+1 random variables
Xy, Xy, - ++, X, from the process and let P, , be the restriction of P, to the o-field
A,

Under suitable conditions on the process, the followiﬁg results are derived. Let
0, be an arbitrary but fixed point in © and let A,(6,) be a k-dimensional vector
defined in terms of the random variables X,, X;, - -, X,; A,*(8,) stands for a
certain truncated version of A,(f,)..By means of A, *(0,) and s eé,, one defines a
probability measure R, ,, n = 0. The first main result is that the sequences {P, ,}
and {R, ,} of probability measures with i =n*(@—0,), 0 ©, are differentially
equivalent at the point ,. (See Definition 5.1.) This is shown in Corollary 5.1. It is
also proved in Corollary 5.2 that the sequence {A,*(8,)} is differentially sufficient
at 0, (see Definition 5.2) for the family {P, 4; 0 ©} of probability measures. Next,
let {h,} be a bounded sequence of /’s in &, and set 6, = 0,+4, n~*. Then for
hypotheses testing problems, Theorem 6.1 allows one to restrict oneself to the class
of tests depending on A,(6,) alone, at least as far as the asymptotic power of the
test under alternatives of the form P, ,_is concerned.

In Section 7, these results are applied to the case of testing hypotheses about a
real-valued parameter. More specifically, asymptotically most powerful tests for
testing the hypothesis 8 = 6, against one-sided alternatives are constructed. This is
covered in Theorem 7.1.1. Also an asymptotically most powerful unbiased test for
testing the same hypothesis as above against two-sided alternatives is constructed in
Theorem 7.1.2.

The first of these problems was also dealt with in Johnson and Roussas [2] but
the approach is different here. The second problem is solved in Wald [8] for the
independent identically distributed case. However, both the assumptions and
approach are different here in addition to the Markovian character of the random
variables involved.

Section 6 treats the general situation where © is an open subset of &,. Theorem
6.1 together with Theorem 6.3 provide a way for studying the corresponding
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hypothesis testing problem in the k-dimensional parameter case. Finally, at the end
of the last section, an outline is presented of forthcoming results for that case.

These results extend, under substantially weaker conditions, the work of
Wald [8], [9] to Markov processes. The method of proof relies heavily on the
development in LeCam [3].

Unless otherwise stated, limits will be taken as the sequence {n}, or subsequences
thereof, tends to co. Integrals without limits will extend over the entire appropriate
space. For hed,, I’ stands for its transpose. All bounding constants will be finite

numbers.

2. Notation and assumptions. Let © be an open subset of the k-dimensional
Euclidean space &, and for each 0 ©, let {X,, n = 0} be a discrete time parameter
real-valued Markov process defined on the probability space (%, &, Py) with
initial and transition distributions p,( - ) and py( -, - ), respectively. It will be assumed
in the following that the probability measures {P, 4, 0€©}, n = 0 are mutually
absolutely continuous, where P, , stands for the restriction of P, to the o-field
&/, induced by the random variables X, X, - -, X,,. Therefore for any 0, ¢’ €9,
we will have [dPg ,/dP o] = q(Xy; 0,0, [dP; o,/JdP; o] = q(X,, X;; 6, 0').
Furthermore, let g(X; ] X0;0,0)=q(Xo, X1;0,0)q(Xy; 0,0, ¢;00,0)=
[q(X;| X;_1; 0,0)F and f;(6,0) = [q(X;-, X;; 0,00, j=1,"--, n, so that
f©,%(6,0)dP, 4 =1. There is no loss in generality by assuming that © contains
the origin in the &, space and we will do so.

The results in this paper are derived under the following set of assumptions and
an additional one presented in Section 7.

AssUMPTION 1. For each 0 € ©, the Markov process {X,, n = 0} is stationary and
metrically transitive (ergodic). (See, e.g., Doob [1] page 457.)

AssUMPTION 2. The probability measures {P, 5, 0€©}, n=0 are mutually
absolutely continuous.

AssumPTION 3. (i) For each 8 ©, the random function ¢, (8, &) is differentiable
in quadratic mean (q.m.) with respect to 8’ at (8, 8) when P, is employed.

Let ¢ (8) be the derivative of ¢, (0, 8’) with respect to 6’ at (0, 6). Then,
(ii) ¢, (0)is &, x ¥-measurable, where ¥ denotes the o-field of Borel subsets

of ®.
Let I'(0) be the covariance function defined by I'(8) = 4&, [¢, (6) ¢,'(6)]. Then,
(iii) I'(6)is positive definite for every 6 € ®.

ASSUMPTION 4. For every e ®, the random function f; (8, 8') is continuous in
P, g-probability at (6, 0).

For an arbitrary but fixed 6 € ®, we will be interested in sequences 8, — 6. Then,
from Assumption 2 it follows that [dP, o /dP, o] = q(X,; 0, 0)[[}=1 @76, 6,) is
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well defined outside a Py-null set for all e ®. Therefore outside this set we can
define the random variable A,[P, , ; P, 4] as follows

A[P, 4,;Py.0] =log[dP, 4 /dP, ;] =log[q(X,;0,6,)[T}=19,%(0.06,)]-
In the sequel the probability measures P, , and P, will be used interchangeably.
3. Preliminary results. For 4, 4 € &, the following theorem holds true.
THEOREM 3.1. Under Assumptions Al, A2, A3(i), A3(ii) and A4, we have
(@) L{ALP, 0,5 Pr,o]| Po} = N(=$H'T(O)h, FT(O)h).
(i)) L{ALP, 0,5 Po,o]| Po,} > NGHT(O)h, KTO)h),
where 0, = 0+h,n"* and h, - h.
The first conclusion of this theorem is Theorem 3.2.1 in Roussas [6] and the

second is Theorem 2 in Roussas [7].
The k-dimensional random vector A,(6) is defined by

(3.1) A0) =2n"23"_ ¢,(0).

The function A, (6) plays a central role in the development.
The following theorems are also true.

THEOREM 3.2. Under the same assumptions as those in Theorem 3.1, we have
Z[A(6)| Ps] = N(O, T(9)).
This is Theorem 3.2.1 in Roussas [6].

THEOREM 3.3. Under the same assumptions as those in Theorem 3.1, we have
A[P, o,; Py ol —WA0)—> —A(h,0) in P,-probability,

where A(h, 0) = $H'T(0) h.

This is Theorem 3.1.1 in Roussas [6].

Heuristically, this last theorem states that exp [— A(h, 8)+ /A, (0)]dP, o approxi-
mates dP, , . However, the integral of the approximating measure may not even
be finite. The next few sections are devoted to the construction of an exponential
family which does approximate dP, , .

Now we recall from LeCam [3] two of several equivalent definitions of the con-
cept of contiguity which will be used in this paper.

DEerINITION 3.1. Two sequences {P,} and {Q,} of probability measures defined
on (Z, &) are said to be contiguousif for any sequence {7} of random variables we
have 7, — Oin P -probability if and only if 7, - 0 in Q,-probability.

DEFINITION 3.2. Let {P,} be as in Definition 3.1 and {7,} be a sequence of
random variables. Then we say that the sequence {Z(T, | P,)} is relatively compact
if for every {n'} < {n} there is a further {m} = {n'} such that {#(T,| P,)} converges
(in the weak sense) to a probability distribution.

Now assume that y, defined by x, = A[Q,; P,] exists. Then
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DEFINITION 3.3. The sequences {P,} and {Q,} are said to be contiguous if
{&(x,| P} is relatively compact. Furthermore, if {m}<{n} is such that
{ Lt | P,)} converges to a probability distribution ZL(y), say, then &(expy) = 1,
where the expectation is calculated under £ (y).

The following result follows from Theorem 3.1(i) and Theorem 2.1(6) in
LeCam [3] and is isolated here for easy reference.

PROPOSITION 3.1. Under the same assumptions as those in Theorem 3.1, we have
that the sequences {P, o } and {P, 4} are contiguous.

Proor. By Theorem 3.1(i), {Z{A[P,q,; Pu,ol | Pp}} s, trivially, relatively
compact and the limit law £(y) is N(=3#'T(0)h, K’ T(6)h). Furthermore it is easily
seen that &(exp ) = 1 and Theorem 2.1(6) in LeCam [3] completes the proof.

4. Some lemmas. In this section, some lemmas are collected for use in later
sections of the paper. Let W be a bounded convex symmetric neighborhood of 8,
in &, Without loss of generality—and with conceptual advantages-—we may
assume that W is the closed sphere of radius 1 centered at 6, On &, define the
real-valued function p by p(r) = sup {#'t; he W}. Then p(1) = 8o/t +sup {(h—0o)'t;
he W} = 0yt +||t|), where || - | is the usual norm in &,. Consequently, there is no
restriction if it is assumed that 6, = 0 when defining the function p and we will do
so. Thus, it will be assumed that W is the unit sphere centered at the origin with
the function p defined on &, by

(4.1) p() = |-
It follows that p is continuous and therefore Theorem 3.2 implies that
4.2) L{p(A,) | Po] = ZLLp(8) | P,

where A is a k-dimensional random vector such that Z(A \ Py) = N, I,
A, =A,(0), and I denotes I'(0).
Now we are in a position to proceed with the lemmas.

LEMMA 4.1. For every 4 > 0, we have &y[exp A p(A)] < oo.
PROOF. Let A = (A, -+, A). Then A £Y5-1|A;| and therefore
&0 lexp Ap(8)] = &, [exp A A £ &0 [exp (] =1]A]]
‘ =& ([Ti=1exp AlA ;) <TT=1 0" (expka|A)])

by a generalized version of the Holder inequality. But & (exp ki‘AJ.D < 00 since
Ajisnormal,j=1,-"-, k. This completes the proof of the lemma.

Consider the random vectors A,, A and for each « > 0, define the following
truncated random vectors A, A%,

(4.3) Af =A,, if p(A) <a; A*=A, if p(A) <o
=0, otherwise 0, otherwise.

Then the following lemma is true.
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LEMMA 4.2. For every o > 0, we have Z(A,*| Py) — ZL(A*| Py).

Proor. For every bounded, continuous, real-valued function fon &,, it is easily
seen that [f(1)dL(A*| Po) = [f(1)dL(A*| Py), since L(A, | Py) — Z(A| Py) and
the set of discontinuities of f{tI < (?)} is a subset of the surface of the sphere of
radius o, centered at the origin, which is assigned (k-dimensional) Lebesgue
measure zero and hence Z(A | P;) measure zero.

Lemma 4.2 and the continuity of p also imply that

(4.4) Z[p(A7) | Pyl = ZL[p(A") | P,] for every o>0.

By the definition of p and A*, A%, it follows that p(A%) < o, p(A,%) £ a for every
o > 0 and all n. Thus whereas &, [exp Ap(A,)] need not be finite, the expectations
&, [exp Ap(A*)] and &, [exp Ap(A,*)] are finite for every o, 4 > 0 and all n. What is
more, the following lemma holds true.

LemMA 4.3. For every a, A > 0, we have
&olexp Ap(A,1)] = &o[exp Ap(A%)].

ProoF. Since the distributions Z[p(A%) | Po] and ZL[p(A,") | Po)] have support
confined to the interval [0, ], the result follows from (4.4) and the Helly-Bray
lemma.

LemMMA 4.4. For every 4 > 0, we have
&olexp Ap(A")] = Eo[exp Ap(A)] as - 0.
ProoF. Wehave
&o [exp Ap(A%)] = &¢ {exp Ap(A)rpa)<(A) }-

Now exp {Ap(A) I 5ay<o1(A)} is bounded by exp Ap(A) (independent of &) which is
Py-integrable. Also, since exp {Ap(A) I (a)<a(A) } = exp [Ap(A)] as a« — oo, the
Dominated convergence theorem applies and gives the result.

Now let {«,}, {¢,} be two sequences such that 0 < «,f o0 and 0<¢, [0 as
v — c0. Let 4 > 0 be specified later. For every «,, &, and 4 as above, there exists
a positive integer N, = N(a,, &,, 4) such that

@5) | olexp Ap(A, )] - Eolexp Ap(A™)]

This is possible according to Lemma 4.3. Clearly {N,} can be chosen so that
N, 1 o0. Then, we define a sequence {A,*} of k-dimensional random vectors by

<e,, n=zN, v=1,2,-.

(4.6) AF=A% for n suchthat N,£n<N,.q, v=1,2,:"
Clearly,
|g0[explp(An*)]_(g)o[explp(Aav)] =e, N,En<Nyyp,v=12-

by (4.5). Thus
Eolexp Ap(A, )]~ Eolexp Ap(A™)] -0 as n— oo(v > ).
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But &g [exp Ap(A™)] — &g [expAp(A)] as v— oo by Lemma 4.4. Therefore

& lexp Ap(A,*)] - &5 [exp Ap(A)].
The following result has been established.

LEMMA 4.5. Let the sequence {A,*} be defined by (4.6). For every 1 > 0, we have
8olexp Ap(A,*)] - So[exp Ap(&)].

From the definition of A,*, we have A, * =A,* =A, I (s, <a,1(A) for n such that
N, £n <N, Thus(A,* #4,) = [p(A,) 2 o] and

4.7) Po(A,* # A,) = Pofp(A,) Z 0,].

But f[p(An)|P0]—>$[p(A)|PO] by (4.2) and a,— oo as v— oo (which implies
n — o). Therefore, taking the limits in (4.7) as v — oo, we get

(4.8) Po(A* #A) 0.
Since £(A, | Po) — N(O, I') by Theorem 3.2, it follows from (4.8) that
4.9 PL(AF { Py)— N, IN).

Now let C, = (A,* #A,) and Z, = I.,. Then, for ¢ >0, we have Po(|Z,| 2 ¢) =
Py(Z,=1)=Py(C,) -0 by (4.8). That is, Z,—» 0 in P,-probability and this
implies that Z, — 0 in P, -probability by Proposition 3.1. Here 6, = h,n"*%, where
h,, he &, and h, — h. Thus we have the following proposition.

PROPOSITION 4.1. Let A,, A,* be as above and set 0, = h,n™*, where h,, he &, and
h, — h. Then

Po(A*#A)>0 and P, (A* #A,)—0.
The following lemma will also be needed.

LEMMA 4.6. Let {Y,} be a sequence of m-dimensional random vectors and let
{Z,} be a sequence of random variables such that |Z,| < M for all n. Let Q be a
probability measure on £ and let £(Y, ] Q) — A*, where A* is a probability measure
on the m-dimensional Borel o-field. Then if {£(Y,, Z,|Q)} converges (weakly), it
converges to a probability measure on the (m -+ 1)-dimensional Borel o-field.

PrOOF. Denote by F, the cdf of (Y,, Z,). Then the proof consists of showing that
lim sup {1—F, («, 8]} » 0, where F,(a, f] denotes the variation of F, over the
(m+ 1)-dimensional interval («, 8]. However, this follows readily from our
assumptions.

For simplicity, we set A, = A[P, 4 ; P, o], and then recall that 6, = h,n"%, h,,
he &, and h, — h. The following lemma will be needed in the sequel.

LemMA 4.7, Let {Y,}, {Z,} be two sequences of random variables and let Y, Z be
random variables such that £(Y,, Z, | Py LY, Z I P,). Assume that A,—Y,—c,
a constant, in Py-probability. Then

°g(Ym Zn|P0n)_)eXp(y+c)"g(Y; ZiPO)’
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where here and in the sequel the notation £ ¥ stands for a probability measure which
is absolutely continuous with respect to the probability measure ¥ and has density f.

PrOOF. We have £(Y,, Z,| Po) - L(Y, Z| P,) if and only if £(c, Y,+c, Z,| Po)
- %(c, Y+CZZ|PO) for every ¢y, ¢, in R. Also ¢; A,—c; Y, = ¢, ¢ in Py-prob-
ability. Hence £(c, A,+¢; Z,| Pg) > Llc, (Y+c)+c, Z| Po] for every ¢y, ¢, in R
which is equivalent to Z(A,, Z,| Po) = L(Y+c, Z| P). By setting Y+c = U, we
then have Z(A,, Z, | Py) > LU, Z | Py). Then Theorem 2.1 in LeCam [3] implies
that

LA Zo| Py) > LUy, Zo | Po), where
dP(Ug2u,Zy 2 z)=expudP(ULu,Z<2)
=expudP(Y 2u~v,Z £ z).
The substitution ¥ — ¢ = y completes the proof.

5. Differential equivalence of certain probability measures. In this section,
heé&, and {h,} is taken to be a bounded sequence in &,. Then &,(exph'A,*)
is finite as has been seen. Set

(5.1) exp B,(h) = &o(exp A, %)
and define the probability measures R, , on &, as follows
(52) Rn, h(A) = exp[_Bn(h)] jA eXp (h,An*) dPn,Oa AEﬂn‘

Replacing # by 4,, we get R, ; and then the probability measures P, , and R, ,.
are differentially equivalent. (See Definition 5.1.) More precisely, we have the
following theorem.

THEOREM 5.1. For any bounded sequence {h,} in &, and 0, defined by 0, = h,n"*,
we have ||R, ,— Py q,|| = 0, where || || is the norm associated with convergence in
variation; that is,

||Rn,hn_Pn, o

; Aed,].

=2 sup [|Rn, h,.(A) - Pn, 0,,(A)

Proor. The proof is by contradiction. Assume that ||R, , — P, q,]|+>0. Then
there exists an ¢> 0, {m}< {n} and {h,}< {h,} such that ||R,, ,.~Pn,o,| > 2¢
for all m. Equivalently, sup {[Rm,,,m(A)—P,,,, o,(A)|; Ae } > ¢ for all m. Then
there exists 4, €, such that |R,, , (4,)— Py, o,(A)| > ¢ for all m. Since {#,,} is
bounded, there exists {A,}<{h,} such that h,—h, say. Thus we have
|R,, w{A)— P, gr(A,)| >¢forall rand A, — h. Bysetting Z, = [, , thelast relationship
becomes

(5.3) |fZ.dR, , —[Z,dP,,|>¢ forall r.

The remaining part of the proof consists in arriving at a contradiction of (5.3)-
Since the process of doing so is rather long, it would be more suggestive to break
the various auxiliary results into lemmas. Toward this end, we begin.
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LEMMA 5.1. There exists a subsequence {s} of {r} and a random variable Z with
0 < Z £ 1 such that

{Z,dP,,,— [Zexp (W' A+c)dP,,
where c = — A(h, 0), to be shortened to A(h), and h is the limit of {h}.

Proor. Let p, = Z(h,/AFZ,|Py). Then there exists {u}<={u,} such that
s — 4. Lemma 4.6 applies with m =1, Y, = h/A* Z,=1,,0 =P, and i*
being the N(0, h'Th) measure. Therefore p is a probability measure and we let
p=LMHA, Z|P,), where 0 £ Z < 1. Then
(5.4) L(hyA*, Z, | Py)— Z(WA, Z | Py).

Now A,— kA, — ¢ in Py-probability by Theorem 3.3, while 2, A;—A/A* -0 in
Py-probability by (4.8). Thus A,—#'A* - ¢ in P,-probability and Lemma 4.7
applies and gives
(5.5) L(h/A*, Z| Py) > exp(y+ )L (W A, Z| Py).
Next jzsdpes = .f[O,l] zdZ(Z, | Py) =j[0,1]><R zd%(hJ/ A, Z, | Py,)

- j[b,,]¥Rzexp(y+c) dZ (WA, Z| Py)
by (5.5) and this is equal to | Z exp (h'A + ) dP,. The proof is completed.

LEMMA 5.2. Let {s} be asin Lemma 5.1. Then
() [(Z,exphy' A*)dPo — [ (Zexp k' A)dPo, and
(ii) fexph/A*dPy— [exph' AdP,.

Proor. Since {#,} is bounded, one can choose 4 > 0 sufficiently large so that
A7Y|hy|| < 1 for all n. Then A~ * h,e W for all n, which implies that A~ A, ¢ < p(1)
for all #, and this is equivalent to

(5.6) h,'t < Ap(t) forall n.

We may assume that this is the A used in defining A,* in (4.6). Now let B =
{teé,; ||t|| < r}. Then since &ylexp Ap(A)] < co by Lemma 4.1, one can choose r
sufficiently large so that

(5.7 [peexp[Ap(D]dL(A| Po) < &.

Let t, = Z(A,*, Z,| P,). Then, by Lemma 4.6, there exists {z,,} < {r,} such that
T — 7 and 7 is a probability measure. Let 1 = L(A, Z I P,). Since 1, — 7 implies
that L(W'Ay., Z,, | Po) > L(W'A, Z| P,), we may assume that the sequence {s}
of Lemma 5.1 is a subsequence of {m’'}. Thus we have t,— 7. Also, since
L(A* | Py) » L(A| Py) and Iy(t) exp Ap(t) is bounded and its discontinuity set is
a subset of the surface of B which is assigned Lebesgue measure zero and hence
ZL(A| Py)-measure zero, we have

(5.8) §5exp Ap(1) dL(A* | Po) = [5exp Ap() dL(A | Po).
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Now
Eolexp Ap(A,*)] = [exp Ap(t) dL(A* | Po)— [exp Ap(1) dZL(A | Po)
= &olexp Ap(A)]
by Lemma 4.5. This result together with relation (5.8) then imply that
(5.9) §5eexp Ap(2) dL(A* | Po) > [ exp Ap(t) dL(A | Py).
Relations (5.7) and (5.9) imply that
(5.10) [peexpAp()dL(A* | Po) <26 for s sufficiently large.

Next |fi0,17x e (Z €xp hy'1) dt,— {0, 17x 5 (z €xp I't) d1| < fi0,17x 5e €XP Ap(D) d7s+
2 ft0,11x e €Xp Ap(f)dr by (5.6) and the fact that A, — k. The bound is equal to
[peexp Ap(f) dL(A* | Po)+2 [peexp Ap(f) dL(A| Py). Relations (5.7) and (5.10)
imply that

(5.11) |fc0,11% Be (zexp hy't) dt,— [0, 17x pe (zexp h'H) d1| < 4e

for s sufficiently large.
Now we concentrate on the set [0, 1] x B. On this set, we have

|zexphy t—zexph't| < |z| [exph, t—exph't| < |exph/t—exp h't| < M,y ||h,—h|],
where M is a constant. Therefore
|§c0.13x 8 (zexP A1) dr— f10,17x 5 (z exp I'1) d1|
=< |fio,11x8(zexp 1) dT,— [0, 11x s (z €Xp H'1) d1 |
+{ft0,11x5(z€Xp WD) dt,— [10,11x s (z €XP W' 1) d7]
< My ||hy=B||+|fi0,11x 5 (zexP h'D) dt,— fi0,17x 5 (zexp A'f) dT| > 0,

since h, — h, t,— 1, and the integrand is bounded and continuous except on a
subset of the surface of [0, 1] x B, where B can be chosen so that the surface of
[0,1] x B has 7-measure zero. Thus we have

(5.12) fro.11x5(zexp hy't)dt,— [0 11xp(zexp WD) dT| S &
for s sufficiently large. Relations (5.11) and (5.12) then imply that
(5.13) Jto.11x e (zexp b 1) dty > [0, 17x 6 (z€XP W' ) dr.
Finally, relation (5.13) is rewritten as

(5.14) [(Z,exph/A*)dPy — [(Zexph'A)ydP,

which is the first part of the lemma. From an argument entirely similar to that
employed to establish relation (5.13) (Z is merely removed), it is seen that

fto,17x8eXp h'tdt,—> [0 11xpexp h'tde

which is equivalent to [exph,’A* dP, — {exp’AdP, and this is the second part
of the lemma. .
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LeMMA. 5.3. Let {s} and {h,} be as in Lemma 5.1. Then
[{Z exp[h/A* — A(h)]} dPo - [[Zexp (W A+ )] dP,.

Proor. We know that £(h'A | Py)is N(O, ”'Th) and A’'Th = —2c. Thus the right-
hand side of (ii) in Lemma 5.2, being the moment generating function of A’'A
evaluated at ¢z =1, is equal to exp(3#'Th) = exp(—c). That is, jexp WAdP, =

exp(—o).
It follows that A(h,) — —c, and exp [— A(h,)] — exp c. This result together with

relation (5.14) gives
[{Zsexp[h/A* — A(hy)]} dPy — [[Zexp (WA +c)] dP,
as was to be shown.
LEMMA 5.4. Let {s} and {h,} be as in Lemma 5.1. Then ‘
IZS dR, ., —_st dPg4 — 0.

ProoF. From Lemma 5.1 and Lemma 5.3, one obtains

(5.15) [Z,dPy,—[{Z,exp [h/A* — A(h)]} dPy —> 0.
Now, from the definition of R; '
(5.16) [Z.dR;,, = [{Z,exp[—By(h)]exp h/A*} dP,

= exp [~ By(h)] | [Z,exp h,/A*]dP,.

But exp By(h) = fexph/A*dPy > [exph'AdP, by Lemma 5.2(ii), and
[exph'AdP, = exp(—c) as was seen in the proof of Lemma 5.3. Furthermore
A(hy) » —c and hence

5.17) exp B,(h,) —exp A(hy) — 0.
Employing relation (5.16) and Lemma 5.2(i), together with relation (5.17)
(5.18) [Z,dR;,, —[{Z,exp [h/ A — A(h)]} dPy — 0.

Finally, relations (5.15) and (5.18) imply that
[Z,dR,, —[Z,dP,4 —0
as asserted.
Now we complete the proof of Theorem 5.1 by observing that Lemma 5.4
contradicts relation (5.3) (with r replaced by s).
This theorem has two important corollaries whose formulation requires the
following definitions.

DerINITION 5.1. Let {Q}} and {Q{3)} be two sequences of probability measures
on &/, Then we say that these two sequences are differentially (asymptotically)
equivalent at the point 8, if, for each bounded set Cin &,

sup {||05.d — Qi%|; 0€ ©, n*(0—0o)e C} 0.
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COROLLARY 5.1. The sequences {FP,g}, {Rus,} With h,= Ont are differentially
(asymptotically) equivalent at the point 0.

PROOF. Let R, = R, ,, where h, = On*, and set Q19 = P, g Q% = R} 4. Assume
that for a bounded set C of &, sup {||0t}d —Q%||; 0 ®, On* e C} does not converge
to zero. Then there exists {m}< {n} and a sequence {0,,} with 6,,m* e C such that
l0$,.— 02, || > & some & > 0 and for all m. Reverting to the original measures,

this becomes || Py, g, = Rl > ¢ for all m, where 6,, = h,m™* and h,, e C for all m;
but this contradicts the theorem and completes the proof of the corollary.

DEFINITION 5.2. A sequence {V,} of {,}-measurable functions, or the sequence
{#,} of the o-fields induced by them, is said to be differentially (asymptotically)
sufficient at 8, for the family {P, o; 0€©} if there is a family {Q, o; 0€®} such
that the sequences {P, o} and {Q,.o} are differentially equivalent at 6o and for
each n, V,, or the o-field 4,, is sufficient for the family {Q, ,; 0 € ol

COROLLARY 5.2. The sequence {A,*} is differentially (asymptotically) sufficient
at 0 for the family {P, o; 0€®}.

ProOF. From the definition of R, , and for each n, one has [dR,, 4/dP, o} =
exp[— B, (W) exp(W'A,*), heC, = {he&; h= On*, 6 ©}; equivalently
[dR, /dP, o] = exp[ — B, (0n*)] exp (n*6'A,*), 0€ O,
where R, =R, with h = On*. Thus, for each n, A,* is sufficient for the family

{R, 4; §€®} or, equivalently, for the family (R, 4; heC,}. Since {P, o}, {Ry, 4} are
differentially equivalent at the point 0 by Corollary 5.1, the proof is completed.

6. Asymptotic properties of tests based on A, and asymptotic distribution of {A,}.
In this section, two main results are presented. The first asserts that from the
asymptotic power viewpoint, any test may be based on A, alone. The second
provides the asymptotic distribution of {A,} under the moving measure P, 4,. More
precisely, we have :

TurOREM 6.1. Let {Z,} be a sequence of random variables such that |Z,| =1,
nz landsetZ, = &p, (Z,|Ay)- Then

Sup lca"’(Z,,l P"yon) - g(zn l Pn,B,.)l - 0’

where 0, = hn™* and the sup is taken over all sequences {Z,} of random variables
bounded by 1 in absolute value and over all W’s in a bounded set C.

PROOF. We have, €(Z,| Pys,)—E(Z,| Poo,) = Li(n, D)+ 1y(n, W)+ 15(n, ), where
Il(ns h) = (;(Zn I Pn,Gn)_(g)(Zn l Rn,h)
12(n9 h) = é‘(zn l Rn,h)_éa(zn l Rn,h)
13(’1’ h) = (g(zn I Rn,h) '—‘”p(zn I Pn,()n)‘

Now, with the sup as above, sup|I;(n, )| < sup{||Ry = Pna,||; heC}. If the
right-hand side of this last relation does not converge to zero, there exists
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{m} < {n} and a sequence {h,} of #’s in C such that ||R,,;,,— Pu,,|| > & for allm;
but this contradicts Theorem 5.1 and thus sup |7,(», A)| - 0. In the same way it is
seen that sup |Z5(n, #)] - 0. Thus we need only show that sup |I,(n, #)| - 0. To see
this, we observe that

8Z,|Ryi) = EEp, (Za| A | Rus] = [[6p,(Z,| AD]dR,,,
= [[&p,o(Zs| A)]exp[— B,(W)]exp (A, ") dP, o
= &p, {€p, (Zs| A)exp[— B,(M)]exp(W'A,™)}
= 61, o[Er,o{Znexp [~ B,(W)]exp (WA, [ Ar}]
because A,* is a function of A,. Thus the last expression reduces to
ol Zaexp [ —B,(W)]exp(h'A,™)}

and this is equal to §(Z, | R, ;). Therefore I,(n, #) = 0 and the proof of the theorem
is completed.

According to this last result, if {Z,} is any sequence of tests, where Z, has level
a,, then one can always replace Z, by Z, = &5, (Z, | A,) which has the same level.
Furthermore, the asymptotic power will remain unchanged. Thus in searching for
an optimal test, for example in the sense of maximizing the power under the
alternatives considered above, one may restrict attention to tests based only on A,

Next let 4, h,e&, with h, » h and, for 0e®, set 0, =0+h,n"*. We also set
A0) = A[P,,,; Pnol. Then Theorem 3.2 provides the asymptotic distribution of
A,(0) under P, ,. In statistical applications, the asymptotic distribution of A,(0)
under P, , is also needed. With this in mind, we establish the following theorem.

THEOREM 6.2. Let h, h,e &, withh, —» hand let 6, = 0+h,n"*, 0 ©. Then
ZL[AL0)| P, o,] - NI (O)h, I(6)).
PROOF. Letc’ =(cy, ", ¢)and ¢y, c;€R,j=1,"++, k. Then
6.1) ' co A(0)+ ' A0) = co[AL0)—h,ALO)]+[coh, +JALD).
By Theorem 3.2, we then have
(6.2) L{[coh, +cJALO)| P, o} = NO, T*0, b)),

where I'*(0, h) = (co &' +¢)T(0)(coh+c). Therefore, relation (6.1), together with
Theorem 3.2 and Theorem 3.3, gives

(6.3) LLeo AO)+¢ B(0) | P o] = N(—1co T(O)h, T*(0, h)).
Letd' = (cg, ¢4, ", ¢). Then

o A+ ALD) = d' (A"(9)>

A,(6)
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~1W'T(O)h
, WT(Oh HT(6)
hil 1 ' — 0 * = A
while —1co WT(O)h = d 5 and T*0, h) d(r(g)h e d
0
Thus relation (6.3) states that
— L1k
A®) ST WT(O)h WT(6)
& d’( ! )P,,,,, S N|d' 0 ,d d
A 0)/1 :
0 @Ok  T(0)
and this is equivalent to
TR frvom wro)
64)  Z{AL0), AO]|P, o} > N o
0 r@h I

Let the distribution on the right-hand side of relation (6.4) be the joint distribution,
under P,, of the random variables A* and A, that is, £(A*, A ] P,) where
L(A*| Py) = N(—3H'T(0)h, H'T(O)h) and Z(A | P) = N(0, I'(9)). Then relation
(6.4) implies, by Theorem 2.1(6) in LeCam [3],

(6.5) L{IANO), ALO)]| Py g} = exp (DL(A¥, A| Py).

But
~fexp(/l) dL(A*, Al Py = “exp(i) dZ[A* l A|P9] dZL(A | Py

and Z[A*|A | P}is normal with mean
E(AN* | Pp)+32,, 25, [A—-&(A | Pl = —1hT(Oh+HTOT YO A
= —3Ih'T(G)h+ WA
and variance
21~ 212257 2y = KT (O)h—HTOI YOI (6)h = H'T(O)h— W' T(O)h = 0.
(See, e.g., Rao [5] page 441(v)). Hence
§(=w, 11D (1) dLTA* | A|P,] = exp[ -3 T(O)h+h'A] if
A2 ~-1hT(O)h+hA
and zero otherwise. Letting (— oo, 7] stand for a k-dimensional interval, relation
(6.5) states that
PIAO) £ 2, AO) S|Py 6]~ f(- 0,0 f(- 0, inXP (D AL(A*, A| Py),
which implies that
P[AD) 2 t| Py 5,17 f(= w0, ) L= 0, n€XP(A) dL(A*, A| Py)] d.
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But the right-hand side of the last relation is equal to
J(=o, nexp [ =3 T(O)h+ h' 6] dL(A | Py)
and by taking into consideration that #(A [ Py) = N(0, T(H)), this integral becomes
§(=w,nexp[— TR T(O)h+ h'8)(2m) ™2 | T(B)| " *exp [— 30T~ '(6)6]d6
=[(=w,n(2R) | T(O)| Fexp { - 1[5 —T(O)R] T~ Y(O)[5—T ()]} do.

Therefore Z[A(0)| P, 5.1 ~ N(T'(8)h, T(6)) as was to be seen.

Theorem 6.1 shows that, from an asymptotic power viewpoint, any test can be
based on A,. Proceeding further along the same path, the next theorem asserts that
one can actually base all tests on A * rather than A,. The significance of this fact
is apparent: the original family of distributions can be treated asymptotically as if it
were an exponential family, where A,* plays the all important role of the statistic
appearing in the exponent of an exponential family.

THEOREM 6.3. Let {Z,}, n = 1 be a sequence of test functions and set 0, = hn™ %,
heé&y. Then, we have

sup {69, Z,(A,) — €4, Z,(A")|; he K} 0,
where K is any compact subset of &,.
Proor. We recall that A, * is defined as follows
AF =4, if p(A)<a,
=0, otherwise, where «,1 0.

Let Q% ,(B)=P,(A,eB), Q% (B)= P, (A,*€B), where B varies over the k-
dimensional Borel o-field %,. Set B, = {p(z) < «,} — {0}. Then A,* = A, pointwise
on A,*"(B,) =A,”(B,) so that Py (A,€B,) = Py (A,*€B,). Next for any Be %,
we have

1.{(BOB,) = 0} (BNB,),
1,(BNB,") £ 0% .(B,") = Py (A, # A )+ Py (A, = 0), and
03,/(BnB,) £ 03 .(B,") = Py [p(A,*) 2 0,]+ Py, (A,* = 0) = Py (A,* = 0),
since [p(A¥) 2 o, ] = 0.
In terms of these relations,
|04,.(B)~ 0%, (B)| = |0}, (BB,)— @} (BB,
(6.6) < 01, (BnB,")+ 0} (BnB,)
= Py, (8, # A,") + Py, (B, = 0)+ Py, (A,* = 0).
Clearly, (A,* = 0) = (A, # A,*)+(A, = 0). Therefore (6.6) becomes
|04, (B)— 0%, (B)| < 2[ Py (A, # A,*)+ Py (A, = 0)]
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and hence

sup {lQ;{, n(B) - Qg, n(B)

;s Bedy} < 2[Py (A, # A+ Py (A, = 0)].

Also
sup {|Q} (B)— Q5 (B)|; Be B, he K}

S 2sup {[Py (A, # A)+ Py (A, =0)]; heK}.

Now the right-hand side of this last relation converges to zero for, if not, there is
{m}={n} and h,eK with h,—h such that at least one of the sequences
{Po, (A # B™)}s {Py, (A, = 0)} does not converge to zero. Here 6,,* = h,,m™*.
This is a contradiction since Py(A,, # A,*) =0, Py(A,, = 0) = 0 and the same is

true for the above sequences by contiguity. Now
lgl?n Zn(An) _(’?0,. Zn(An*)l = | jZ(t) dg(An | POn)_I Z(t) dg(An* | Pl)n)ls

where 0 < z(¢r) £ 1, teé,. The right-hand side of this last relation is bounded by
||@% ,— Q% .|| which converges to zero by the previous result. This completes the
proof of the theorem.

7. Some applications to hypotheses testing problems. In this section, we further
extend the results of Wald [8] along the lines suggested by LeCam [3]. More general
hypotheses are considered than in Johnson and Roussas [2] although the nuil
hypothesis is required to be simple. As expected from the terminology of the
previous sections, the asymptotically optimal tests may be based on the sequence
{A,}. In the present paper, we treat in detail the one-dimensional parameter
situation considered in Johnson and Roussas [2] from the viewpoint of differential
(asymptotic) sufficiency. At the end of this section, some preliminary remarks are
also made in anticipation of k-dimensional parameter results.

7.1. One-dimensional ®. Modifying slightly the definitions of Wald [8] with
respect to the significance level requirement, we have

DEFINITION 7.1.1. A sequence of tests {4,} with &, 4,— « is said to be an
asymptotically most powerful test of Hy: 0 = 8, against H,: 0 > 0, of asymptotic
size a, if for any other sequence of tests {w, } with &,, w, — o, we have

(7.1.1) lim sup [sup(&y w,~ & A,; 0 > 0,, 6€®)] £ 0.
A similar expression is required to hold with 8 > 8, replaced by 6 < 6, if the
alternative is H,: 0 < 6,.

DEFINITION 7.1.2. A sequence of tests {4,} is defined to be an asymptotically most
powerful unbiased test of the hypothesis Hy: 6 = 8,, of asymptotic size «, if
&gy Ay — o with lim inf [inf (& A,; 0 # 6,; 0€O®)] = «, and if for any other sequence
of tests {w,} satisfying &, w, —> o and lim inf{inf (&, w,; 0 # 0y; 0€O®)] = a, we
have

(7.1.2) limsup [sup (& w,—Egl,; 6 # 0,,0€@)] £ 0.

Once more, without loss of generality, we take 8, = 0.
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The form of the asymptotic distribution of {A,}, under P, , and P, ,, where
6, = hn™*, suggests a form for tests based on A,. Namely, for a fixed (0 < o < 1),

let
(7.1.3) ¢1,.(A) =1, if A,>c¢,
=, if A, <c,

where ¢, = £,, the upper ath quantile of the N(0, I'), and &, ¢, ,(A,) — «. Further,
set

(7.1.4) 02, (A) =1, if A,<a, or A,>b,
=0, if a,<A,<b,

where lim (~a,) = limb, = &5, so that & ¢,,(A,) = a.

For both sequences of tests, a critical function may assume any value on the
boundary of its critical region.

In order to show that the first and the second tests are optimal in the sense of
Definition 7.1.1 and Definition 7.1.2, respectively, we must employ one further
assumption which was verified for a number of interesting cases in Johnson and
Roussas [2]. '

AssUMPTION 5. Let {0,} be a sequence of elements of @ with 8, > 0 for each .
The condition lim 8, n* = co implies that A, — oo in P, -probability.

AssumPTION 5. Let {6,} be a sequence of elements of @ with 0, < 0 for each n.
The condition lim 6, #* = — co implies that A, — — oo in P, -probability.

We first restate the resuit for one-sided tests from Johnson and Roussas [2]
which was established without the concept of differential (asymptotic) sufficiency.

THEOREM 7.1.1. Under Assumptions 1-5, the test ¢, , defined by (7.1.3) is
asymptotically most powerful for testing Hy: 0 = 0 against the alternative H,: 6 > 0,
0ec0®.

We have an analogous theorem for the alternative H,:0 <0, 0e®, under
Assumptions 1-5',

The proof of these results parallels the proof of Theorem 7.1.2 below and
therefore will be omitted.

To Theorem 7.1.1, we also have the following Corollary.

CoroLLARY 7.1.1. Under Assumptions 1-4, the test ¢, , defined by (7.1.3) is
asymptotically locally most powerful. That is, the test satisfies (7.1.1) when the
alternatives are further restricted to s for which n*(0—0,) £ C for an arbitrary
fixed C.

Of course, we again have an analogous result for the alternative H,: 0 < 0, 8 ©®.

The proof of the next theorem requires the results on the differential (asymptotic)
sufficiency of the truncated version A, *.
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THEOREM 7.1.2. Under Assumptions 1-3, 5', the test ¢, , defined by (7.1.4) is
asymptotically most powerful unbiased for testing Hy: 0 = 0 against the alternative
Hy:0+#0,0c0.

For the proof of this theorem some auxiliary results will be needed which are
formulated below as lemmas. The first is one version of the extended Helly-Bray
lemma and the proof is included because it is brief.

LemMma 7.1.1. Let G, — G, a continuous cdf of a random variable, and let {g,}, g
and h be continuous functions satisfying
(i) 9.(x)| = h(x) for all x,
(ii) g,(x) — g(x) uniformly on finite intervals, and
(iii) [hdG,— [hdG.
Then
(7.1.5) §9,dG,~ [gdG.

Relation (7.1.5) also holds for the modified functions g,* =1, ,.,9, and g* =
I, v 9, Where a, — a, b, —b with a, b, finite or infinite.

Proor. Givenan ¢ > 0, select ¢ and d such that
(7.1.6) f=w, eyt G+ f(4, ) 1 dG < &. Then
(7.1.7) §e=w, 190l 4Gat f(a, ) |9 4G £ [~ o, 1 F 4G+ [(4, ) 1 AG,

and the r.h.s. converges to the L.h.s. of (7.1.6) according to condition (iii) and the
Helly-Bray lemma. Then on the interval (¢, d),

(7.1.8) ”(c, d19n dGn—j(c, d].quI = f(c,d]lgn—gl dGn'*‘”(c, d]gdGn_j(c, d]gdGI

and the first term on the r.h.s. converges to zero by condition (ii) and the second by
the Helly-Bray lemma.

Note that the bound (7.1.7) also holds for the modified functions g,* and g*
so that it is clearly sufficient to treat the case where a and b are finite. Since G is
continuous, there exist an a, > 0 such that

(7.1.9) fa—ao,a+a01 M AG+ [b-ap. b+ag1 NG < €.

For sufficiently large n, 0 = g,* = g* outside the interval (a—a,, b+a,) and
9n* = g, 9% = g on (a+ay, b—ay). For the latter interval, use the method leading
to (7.1.8). Also

f(aao, a+ao119n" | 4Gn+ §b=ao, b+ a0 |Fn" | G S ia=ao, a+a01 P AGu+ (5o, b+a01 I 4G
and this converges to the Lh.s. of (7.1.9) which compietes the proof.
LeMMA 7.1.2. Consider the sequence of tests {¢,(A,*)}, n = 1, defined as follows
=1, if AY<a,® or AX>b,*
(7.1.10) @A =7.* or vy,* if A*=a,* or A*=D0b,% respectively,
=0, if a,* <A*<b,*
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where the constants a,*, b,*, v, *, and y,* are defined through the relations
(7'1'11) 67@0 (pn(An*) =a, éaO[An*(pn(An*)] = a@@O An*‘
Then a,” - —&,, and b, — &, 5, where &, is the upper pth quantile of the N(0, ).

Proor. The proof is by contradiction. In the first place one may neglect asymp-
totically the contribution due to randomization. In fact, if x, — x, where x may be
finite or + o, one has Py(A,* < x,) —D*(x,) — 0; here ®* stands for the distribu-
tion function of the N(0, I') distribution. Thus by continuity of ®*, Py(A,*<x,)—
®*(x). Therefore

Po(A,* = x,) £ Po(A,* = x,+8) = Po(A,* £ x,—8) > O¥*(x+) —D¥(x—¢)

and letting ¢ — 0, one obtains Py(A,* = x,) — 0. Now assume that both {a,*} and
{b,*} are unbounded. Then there are three cases to consider: there exist sub-
sequences {a,*} and {b,*} such that g,* > — o0 and b,,* - o0, or a,,* - o0 and
b,* - o, ora,* - —ooand b,,* - — co. In the first case one has, for m sufficiently
large,

< é i}fa+[j.(—oo,am*+l)d$(Am*'P0)+j(bm*—1, ) dg(Am* IPO)]
S 30+ [ ta 00 LA [ Po) + [0, ) 4L (A | Po)

and this converges to 2o. Thus we arrive at a contradiction. For the second case,
one has a 2 *7 "' d.£(A,* | P,) and this converges to 1. The third case is treated
in a similar fashion. Now let one of the sequences {a,*}, {b,*} be unbounded, for
example, the sequence {a,*} and the other be bounded. Then there exist subsequences
{a,*}and {b,,*} such that a,,* - —c0and b,,* — b finite. Thus

& = LM [J o o, gty LA | Po)+ [, ary AL (A* | Po)]
= ]. - hm I[am*’ bm*]‘dg(Am*l Po) = 1 —q)*(b)

so that b = ¢,. Next, §,A,* =j'xd,5€(A,,*lPo)—>jdeD* by Lemmas 7.1.1 and
4.5 and this is equal to zero. On the other hand, limé&,[A, *¢.(A,")] =
LM [ o, gy X ALK | PO+ J(oyr, oy X LA * | Po)] = 1im [, 0. oy X AL (A, * | Po)
by Lemma 7.1.1 and this last limit equals [, ,,,xd®* by the same lemma. There-
fore, taking the limits of both sides of the second relation in (7.1.11) through the
subsequence {m}, one has 0 = [, ., xd®* which is a contradiction. The case that
{a,*} is bounded and {b,*} unbounded is treated similarly. Finally, consider the
case that both {a,*} and {b,*} are bounded and let {a,*}, {b,*} be subsequences
such that a,* —»a, b,* - b, where both a and b are finite. In the first place,
lim &, A, * = 0 as was seen above. Next

hm éDO[Am*(pm(Am*)] = hm [j(— 0, m*) X dg(Am* | PO)+j[bm*, w0) X dg(Am* l PO)]
= _hm j[ﬂm*, bm¥] X dy(Am* l Po) = —"[[a’ b1 p d(D*

by Lemma 7.1.1. Therefore, by taking the limits of both sides of the second relation
in (7.1.11) through the subsequence {m}, one has fj, ,; xd®* = 0 which can happen
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only if @ = —b. By taking the limit of the first relation in (7.1.11) through the sub-
sequence {m}, one also has ®*(h) —®*(a) = 1 —a or ®*(b) — ®*(~b) = 1 —a which
implies that b = &,/,. The proof of the lemma is completed.

It is worthwhile to remark that the power satisfies

(7.1.12) 0, Pl Bn™) = [ 1212 222 AP

under alternatives 8, = h,,m~* with h, = h, where ®, denotes the distribution
function of N(I'h, I'). This follows directly from the last two lemmas.

Proor oF THEOREM 7.1.2. Let {¢, ,} be defined by (7.1.4) and let {w,}=
{w Xy, Xy, , X,)} be any other sequence of tests with &, w, — « and

lim inf inf (g ,; 0 # 0, 0 O) — a.

Assume, for contradiction, that the left-hand side of (7.1.2) takes the value
108 > 0. That is, there exist sequences {m}< {n} and {6,,} with 8,,€© and 6,, # 0
for all m, satisfying

(7.1.13) lim (&, 0, — &g, @3, ) = 106.

Passing to a further subsequence if necessary, it is clear that at least one of the
following cases must occur: (a) 6,m*—> o0 (or —ow), (b) 6,m* -0, or
(¢) 0,,m* - h#0.

Consider case (c) first. According to Theorem 6.1, we can restrict ourselves to
the conditional expectation @, of w,, given A,. Thus, writing 0,, for 4, m~* where
h,, = h, we have

(7.1.14) éagmam(An)_éaom(ngm(Am) > 96 fOI' m > Nl‘
Further, for every test function ¥,(A,), we have
(71 15) Iéaf),, l/jn(An) - (”@8" lpn(An*)l é 2Pn, Gn(An #* An*)

By Proposition 4.1, the right-hand side of (7.1.15) with » replaced by m converges
to zero.
Specializing this to @,, ¢, , and utilizing (7.1.14), we have

(7.1.16) Eo,, DoA™ — &5, 02, (A, > 856 for m > N,.

By Theorem 6.2 and Proposition 4.1, we have £(A,,* | P, s,) = N('h,T). Thus
(7.1.17) |66, 02, lAn™) = f1x126.,,dP4| <& for m > Ny,

where @, denotes the distribution function of N(I'#, I'). Select «, > o such that
(7.1.18) [fi512 602 498 = 13124, 4Py < 6.

Form > N, €[@,,(A,,*)] < a4 since &y @,,(A,,*) = a.

The test ¢,(A,*) defined in (7.1.10) with a replaced by «, is most powerful
unbiased of level «;,. (See, ¢.g., Lehmann [4] page 126.) Therefore it is most powerful
among all unbiased tests of level < o,. For each m, any test that does not reject
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outside of an interval can be improved, in terms of power, by a test of that form
(see Ferguson, T.S. 1967, Mathematical Statistics, Academic Press for a specialized
version of a more general result due to Karlin). The asymptotic unbiasedness
then leads to the inequality &, @,(A,") = &, @,(A,*) for m> Ns. Also
Eo,, OumlA*) > j Ix|2e,. @s according to the remark following Lemma 7.1.2,
so that

160, Pul D) = f(x1260,,dP4| <8 for m > No.
This, together with (7.1.17) and (7.1.18), gives
Eo,, Pn(An ™) — &, @2 (A <30 for m>N,.

Finally combining this result with the fact that &, @,(A,*)—&,, @u(A,™) <0,
we get

By, DA — 84, 02, w(A,*) <36 for m > Ny

which contradicts (7.1.16).

If case (a) holds, the contradiction is obtained from Assumptions 5 and 5’ since
g)ﬂm (pZ, m(Am) - L

If case (b) holds, the argument given in Theorem 4.1 of Johnson and Roussas [2]
leads to a contradiction of (7.1.13). Namely, an application of Proposition 3.1
from that paper shows that ||P,, s, — P, || = O so that all tests have asymptotic
power equal to their level.

The above proof shows that the test (7.1.4) is asymptotically locally most
powerful unbiased without Assumptions 5 and 5'. That is,

COROLLARY 7.1.2. Under Assumptions 1-4, the test ¢, , defined by (7.1.4) is
asymptotically locally most powerful unbiased. (See also Corollary 7.1.1.)

7.2. k-dimensional ©. It is also possible to obtain results similar to Wald [9]
for testing a simple hypothesis in the multi-parameter situation. On the basis of
Theorem 6.1 and Theorem 6.3, one may construct a sequence of tests which is
asymptotically optimal. The criterion could be that of best average power over a
family of surfaces, best constant power over a family of surfaces, or that of a most
stringent test. These problems will be treated in detail in a forthcoming paper.
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