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Abstract— This paper proposes a control algorithm based on
adaptive dynamic programming to solve the infinite-horizon
optimal control problem for known deterministic nonlinear
systems with saturating actuators and non-quadratic cost func-
tionals. The algorithm is based on an actor/critic framework
where a critic neural network is used to learn the optimal
cost and an actor neural network is used to learn the optimal
control policy. The adaptive control nature of the algorithm
requires a persistence of excitation condition to be a priori
validated, but this can be relaxed by using previously stored
data concurrently with current data in the update of the critic
neural network. A robustifying control term is added to the
controller to eliminate the effect of residual errors, leading to
asymptotically stability of the closed-loop system. Simulation
results show the effectiveness of the proposed approach for a
controlled Van-der Pol oscillator and also for a power systems
plant.

Index Terms— Saturating actuators, approximate dynamic
programming, asymptotic stability, optimal control, reinforce-
ment learning.

I. INTRODUCTION

Optimal control deals with the problem of finding a

control law for a given system and user defined optimal-

ity criterion. It can be derived using either Pontryagin’s

maximum principle (a necessary condition), or by solving

the Hamilton-Jacobi-Bellman (HJB) equation (a sufficient

condition). However, either approach is typically intractable.

Adaptive control techniques on the other side are designed

for online use but cannot typically optimize user-defined

performance indices.

Adaptive dynamic programming techniques were proposed

by Werbos [1, 2] and bring together the advantages of

adaptive and optimal control to obtain approximate and

forward in time solutions to difficult optimization problems

[3–5]. But all the existing algorithms — such as the ones

developed in [6–10] and most of the references therein — can

only guarantee uniform ultimate boundedness of the closed-

loop system, i.e. a “milder” form of stability [11] in the

sense of Lyapunov, and require an a-priori knowledge of a

persistence of excitation condition.
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The need for adaptive controllers with the ability to learn

optimal solutions, while still guaranteeing asymptotic stabil-

ity motivates our research. The algorithm proposed uses the

structure of a reinforcement learning algorithm called Policy

Iteration (PI), which is inspired by behavioral psychology

[12]. This two step algorithm has an actor/critic structure

which involves two neural networks (NNs): one, the critic

NN, is trained to become an approximation of the Value

function solution at the policy evaluation step, while the

second one is trained to approximate an optimal policy at

the policy improving step.

In industrial applications, physical inputs to devices (such

as voltages, currents, flows, and torques) [12] are subject

to saturations, which must be considered in the optimal

control problem. To the best of our knowledge, there are

no asymptotically stable online solutions to the continuous

time HJB equation with saturations since they add addition

nonlinearities to the HJB and make the problem more diffi-

cult. This challenge is also addressed here.

Related work

In [13], the authors propose a nonquadratic functional

that involves bounded control inputs but do not provide

solutions to the HJB equation and based on that, the authors

in [14] used neural networks to solve the HJB offline. A

novel iterative two-stage dual heuristic programming (DHP)

to solve the optimal control problem for a class of switched

discrete-time systems subject to actuators saturation has been

introduced in [15].

The work of [16] develops a learning framework for

computing the HJB solution of discrete time systems under

bounded disturbances, but the authors only prove uniform

ultimate boundedness. In [17] the authors derive a gain

condition for global asymptotic stability that allows the

presence of dynamic uncertainties with unmeasured state

and unknown system order/dynamics. However, the policy

iteration algorithm is not performed in a synchronous man-

ner, i.e. here the policy evaluation and policy improvement

steps take place simultaneously. Recently the authors in

[18] proposed an approximate dynamic programming method

to solve the optimal control problem for complex-valued

systems. Several adaptive/critic designs have been applied

in real applications, such as [19], where the authors propose

an intelligent adaptive/critic controller to provide a nonlinear

optimal control to a smart grid operation in an environment

with high short-term uncertainty and variability.

Temporal Difference (TD) algorithms [12], [20], incre-

mentally update the policies based on each individual ex-



perience. The combination of experience replay [21, 22]

and fitted Q iteration [23, 24], with on-line TD methods

have been shown in the past to speed up learning in low-

dimensional control problems. But again, due to the large

state space, value function approximation is a necessity,

violating the assumptions for guaranteed convergence and

thus leaving room for asymptotic performance gains as well.

The authors in [25, 26] have shown that DHP algorithms can

eventually find an optimal solution without the explicit need

for stochastic exploration, but the value learning algorithms

(i.e. TD, TD♣0q) could not. Especially the work of [26] states

that for any given plant, data from optimal and suboptimal

action strategies can be used without difficulty in system

identification which means that DHP has less excitation

problems. There is an extensive research work on Markov

Decision Processes (MDPs) and linear discrete-time systems

that is not readily applied to control systems, does not take

into account input constraints and does not have proper

convergence proofs. In this direction, the effort of “residual

gradients” [27] or “Galerkinized” methods [26, 28, 29],

where the critic NN weights do not converge to the optimal

values in the stochastic case [30, 31], but converge only

in the deterministic case. The aforementioned limitations of

“Galerkinized” methods have been overcome in [32] where

the authors solved this problem under standard technical

assumptions. In [33] the authors propose a variant of DHP

that has a guaranteed convergence, under certain smoothness

conditions and a greedy policy, when using a general smooth

nonlinear function approximator for the critic.

In MDPs, it is known that conventional TD methods do not

use trajectory data efficiently, since after a gradient update,

the state transitions and rewards are ignored. The Least

Squares Temporal Difference Learning algorithm (LSTD)

[34] on the other side, is known for its efficient use of sample

experiences compared to pure TD. In spite of the fact that it

is initially appealing to attempt to use LSTD in the evaluation

step of a policy iteration algorithm, this combination can be

problematic. LSTD is more accurate than TD(0), but more

algorithmically complex. This can be easily seen when the

value function approximator involves a very large number of

basis sets. The LSTD algorithm is very similar to Heuristic

Dynamic Programming (HDP) [35], but it involves extra

advantages that include, convergence with arbitrary initial

conditions and recursive formulation.

The authors in [36] propose a generalized value iteration

algorithm for discrete-time systems to overcome the disad-

vantage of traditional value iteration algorithms by allowing

an arbitrary positive semi-definite function as initialization.

Our work in this paper is focused on a “Galerkinized” asymp-

totically stable algorithm for known deterministic nonlinear

continuous-time systems.

There is a lot of research work on approximate dynamic

programming for linear systems [26, 37] where the persis-

tence of excitation condition used also in adaptive control

[38] needs to be satisfied in order to guarantee convergence

of the critic NN. For nonlinear systems, there is no clear

development. Recent adaptive optimal control algorithms

with approximate dynamic programming [6, 8, 39] require a

persistence of excitation (PE) condition that is essentially

analogous to space exploration in reinforcement learning

[12]. This condition is restrictive and often difficult to guar-

antee in practice. Hence, convergence cannot be guaranteed.

The work of [40] from the adaptive control side, and the

works of [41] and [42] from the reinforcement learning

side propose some frameworks that rely on concurrently

using current and recorded data for adaptation to obviate

the difficulty of guaranteeing convergence with PE. Recently

the authors in [43] have used concurrent learning in optimal

adaptive control but they only prove a “milder” form of

stability, namely uniform ultimate boundedness of the closed-

loop signals by using an approach that is based on integral

reinforcement learning.

Contributions

The contributions of this paper lie in the development of

an adaptive learning algorithm to solve an infinite horizon

optimal control problem for known deterministic nonlinear

systems, while taking into account symmetric input con-

straints. The algorithm proposed is an appropriate combi-

nation of adaptive control, optimization and reinforcement

learning. A novelty of our approach lies in the use of

concurrent information to relax the persistence of excitation

condition. By “concurrent” it is meant that current and stored

data is used for the adaptation process, which facilitates the

convergence of the algorithm. In fact, we prove asymptotic

stability of the closed-loop system, which includes the online

updates of the critic and the actor neural networks using state

measurements.

The paper is structured as follows. In Section II we

formulate the optimal control problem with saturated inputs.

The approximate solution for the HJB equation is presented

in Section III. The proof of asymptotic stability of the closed

loop is presented in Section IV. Simulation results for a

power system plant and a controlled Van-der Pol oscillator

are given in Section V. Finally, Section VI concludes and

discusses about future work.

Notation

The notation used here is standard: R
� is the set of

positive real numbers and Z
� is the set of positive integer

numbers. The superscript ✍ is used to denote the optimal

solution of an optimization, λmin♣Aq is the minimum eigen-

value of a matrix A and 1m is the column vector with m

ones. The gradient of a scalar-valued function with respect to

a vector-valued variable x is defined as a column vector, and

is denoted by ∇ ✕ ❇④❇x. A function α : R� Ñ R is said

to belong to class K♣α P Kq functions if it is continuous,

strictly increasing and α♣0q ✏ 0.

II. PROBLEM FORMULATION

Consider the nonlinear continuous-time system given by

✾x♣tq ✏ f♣x♣tqq � g♣x♣tqqu♣tq; x♣0q✕ x0, t ➙ 0 (1)



where x♣tq P R
n is the state vector, u♣tq P U ❸ R

m is the

control input, f♣x♣tqq P R
n and g♣x♣tqq P R

n✂m are known

functions. We assume that the x♣tq is available for full state

feedback.

It is desired to minimize the following infinite horizon cost

functional

V ♣x♣0qq ✏
➺ ✽
0

r ♣x♣τq, u♣τqq dτ, ❅x♣0q (2)

with

r♣x, uq ✏ Q♣xq �Rs♣uq, ❅x, u (3)

with functions Q♣xq positive definite and Rs♣uq non-negative

❅u P U . Since the present paper is concerned with providing

an asymptotically stable framework for solving the HJB

equation we will provide the following definition.

Definition 1: [11] Given an autonomous, time-invariant

nonlinear system of the form ✾x♣tq ✏ f♣x♣tqq with x♣tq P R
n,

f : Rn Ñ R
n and f continuous and an equilibrium point

given as xe, i.e. f♣xeq ✏ 0. Let ψ♣t; 0, x̄q denote the unique

solution x♣tq to ✾x♣tq ✏ f♣x♣tqq that corresponds to x♣0q ✏ x̄.

Then the equilibrium point xe is said to be asymptotically

stable, if ❅ǫ P R
� there exists a δ P R

� such that,

x̄ P B♣xe, δq ñ
★
ψ♣t; 0, x̄q P B♣xe, ǫq, ❅t ➙ 0

limtÑ✽ ψ♣t; 0, x̄q ✏ xe,

where B♣x̄, ǫq denotes the open ball centered at x̄ of radius

ǫ, i.e. the set, tx P R
n : ⑥x✁ x̄⑥ ➔ ǫ✉. ❧

The optimal control problem is to find an admissible control

u✍♣tq such that the equilibrium point of the closed-loop

system (1) is asymptotically stable on R
n in the sense of

Definition 1 and the value V is finite. To force bounded

inputs, (e.g. ⑤ui⑤ ↕ ū,❅i P t1, . . . ,m✉) we follow the

approach in [13] and use a nonquadratic penalty function

of the form,

Rs♣uq ✏ 2

m➳
i✏1

➺ ui

0

�
θ✁1♣viq

✟T
̺idvi,❅u,

with weighting factor ̺i P R
�, i ✏ t1, . . . ,m✉ and

with abuse of notation we can write the component-wise

operations in compact form as

Rs♣uq ✏ 2

➺ u

0

�
θ✁1♣vq✟TRdv, ❅u,

where R is a diagonal positive definite matrix consisting of

the ̺i → 0, i ✏ t1, . . . ,m✉ terms, v P R
m, and θ♣☎q is

a continuous, one-to-one real-analytic integrable function of

class Cµ, µ ➙ 1, used to map R onto the interval ♣✁ū, ūq
satisfying θ♣0q ✏ 0. Also note that Rs♣uq is positive definite

because θ✁1♣vq is monotonic odd. E.g., one could select

Rs♣uq ✏ 2

➺ u

0

�
θ✁1♣vq✟TRdv

✕ 2

➺ u

0

�
ū tanh✁1♣v④ūq✟TRdv → 0,❅u. (4)

The optimal value function is defined as,

V ✍♣x♣tqq ✏ min
uPU

➺ ✽
t

r♣x, uqdτ, ❅x, t ➙ 0, (5)

subject to the state dynamics in (1). The Hamiltonian of (1)

associated with the cost function (2)-(3), can be written as,

H♣x, u,∇V ♣xqq ✏ ∇V ♣xqT �f♣xq � g♣xqu✟
�Q♣xq �Rs♣uq, ❅x, u. (6)

The constrained optimal control K̄✝♣xq (i.e. u♣tq :✏ K̄✝♣xq)
for the system (1), with cost (3), (4), (5), can be obtained

using the stationarity condition in the Hamiltonian (6):

K̄
✝♣xq ✏ argmin

u
H♣x, u,∇V ♣xqq

ñ ∇V ✍♣xqT g♣xq � 2Rθ✁T
�
K̄
✝♣xq✟ ✏ 0

ñ K̄
✍♣xq ✏ ✁θ

✂
1

2
R✁1gT ♣xq∇V ✍♣xqT

✡
, ❅x. (7)

The corresponding optimal cost and optimal control satisfy

the following HJB equation,

H✍♣x, K̄✍♣xq,∇V ✍♣xqq✕ ∇V ✍♣xqT �f♣xq� g♣xqK̄✍♣xq✟
�Q♣xq �Rs♣K̄✍♣xqq ✏ 0, ❅x. (8)

The next result provides a sufficient condition for the exis-

tence of the optimal control solution.

Theorem 1: Suppose there exists a positive definite and

radially unbounded smooth function V P C1 that satisfies

V ♣0q ✏ 0 and

H♣x, K̄✍♣xq,∇V ♣xqq ✏ 0, ❅x (9)

with H♣☎q given by (8) and K̄✍♣xq given by

K̄
✍♣xq ✏ ✁θ

✂
1

2
R✁1gT ♣xq∇V ♣xqT

✡
, (10)

and that the closed-loop system (1) and (10) has a locally

Lipschitz right hand size with state x P R
n, i.e. x ÞÑ f♣xq�

g♣xqK̄✍♣xq. The origin is a globally asymptotically stable

equilibrium point of the closed-loop system (1) with control

(10) and the control policy (10) minimizes the cost (5).

Proof of Theorem 1. Because of (6) and (9) (since we have

assumed that V is a positive definite and radially unbounded

function that solves the HJB), the time derivative of V along

closed-loop solutions satisfies

✾V ✏ ∇V ♣xqT ♣f♣xq � g♣xqK̄✍♣xqq ✏ ✁Rs♣K̄✍♣xqq ✁Q♣xq
↕ ✁Q♣xq,

where we used (9) with K̄✍♣xq given by (10). Using V as a

Lyapunov function, we conclude that the origin is a globally

asymptotically stable equilibrium point of (1).

Now since V is smooth and V ♣0q ✏ 0, as tÑ✽, then one

has,

V ♣x♣0qq �
➺ ✽
0

∇V ♣xqT �f♣xq � g♣xqK̄✍♣xq✟ ✏ 0. (11)



Since the function V ♣xq is smooth, converge to zero as tÑ
✽ (due to asymptotic stability) and V ♣0q ✏ 0, using (11) we

can write (2) as,

V ♣x♣0q;uq ✏
➺ ✽
0

�
Rs♣uq �Q♣xq✟dt� V ✍♣x♣0qq

�
➺ ✽
0

∇V ✍♣xqT ♣f♣xq � g♣xqK̄✍♣xqqdt, ❅u.

By subtracting zero (using the HJB equation) we have,

V ♣x♣0q;uq ✏
➺ ✽
0

✂�
Rs♣uq ✁Rs♣K̄✍♣xqq✟

�∇V ✍♣xqT g♣xq♣u✁ K̄
✍♣xqq

✡
dt� V ✍♣x♣0qq, ❅u. (12)

By noting that, ∇V ✍♣xqT g♣xq ✏ ✁2Rθ✁T ♣K̄✍♣xqq in (12)

and after completing the squares we have,

V ♣x♣0q;uq ✏
➺ ✽
0

✂�
2♣
➺ u

0

♣θ✁1♣vqqT dv ✁
➺ K̄

✍♣xq

0

♣θ✁1♣vqqT dvq✟
✁Rθ✁T ♣uq♣u✁ K̄

✍♣xqq
✡
dt� V ✍♣x♣0qq, ❅u.

We can complete the squares and hence we have,

V ♣x♣0q;uq ✏
➺ ✽
0

Rs♣u✁ K̄
✍♣xqqdt� V ✍♣x♣0qq, ❅u.

Now by setting u :✏ K̄✍♣xq one can show that,

V ✍♣x♣0qq ↕ V ♣x♣0q;uq,
from which the result follows.

The following section provides approximate techniques to

converge to the solution of the HJB equation (8).

III. APPROXIMATE SOLUTION

The structure used for our approximate solution is moti-

vated by the Policy Iteration Algorithm that follows, where

ǫac is a small number used to terminate the algorithm when

two consecutive value functions differ by less than ǫac. In the

linear case, this algorithm reduces to Kleinman’s algorithm

[44].

Algorithm 1: Policy Iteration for Nonlinear Systems
1: procedure
2: Given admissible policies µ♣0q and i ✏ 1

3: while ⑥V µ♣iq ✁ V µ♣i✁1q

⑥ ➙ ǫac, ❅x do

4: Solve for the value V ♣iq♣xq using Bellman’s equation

Q♣xq�∇V
µ♣iq

T

♣f♣xq�g♣xqµ♣iqq�Rs♣µ
♣iqq ✏ 0, V

µ♣iq♣0q ✏ 0,

5: Update the control policy µ♣i�1q using

µ
♣i�1q ✏ ✁θ

✂
1

2
R
✁1

g
T ♣xq∇V

µ♣iq
T
✡

6: i✕ i� 1

7: end while
8: end procedure

The next subsection lays the foundation for updating the

two steps 4 and 5 in Policy Iteration simultaneously by using

data collected along the closed-loop trajectory.

A. Critic neural network and recorded past data

The first step to solve the HJB equation (8) is locally to

approximate the value function V ✍♣xq in (5) with a critic

neural network (NN), within a set Ω ❸ R
n that contains the

origin, as follows

V ✍♣xq ✏W ✍Tφ♣xq � ǫ♣xq, ❅x (13)

where W ✍ P R
N is an ideal weight vector satisfying ⑥W ✍⑥ ↕

Wm; φ♣xq : Ω Ñ R
N , φ♣xq ✏ rϕ1♣xq ϕ2♣xq . . . ϕN ♣xqsT

are the NN activation functions such that ϕi♣0q ✏ 0 and

∇ϕi♣0q ✏ 0, ❅i ✏ 1, . . . , N ; N is the number of neurons in

the hidden layer; and ǫ♣xq is the NN approximation error.

One should pick the NN activation functions ϕi♣xq, ❅i P
t1, 2, . . . , N✉ as quadratic, radial basis or sigmoid functions

so that they define a complete independent basis set for V ✍.

In this case, V ✍ and its derivatives

∇V ✍♣xq ✏
✒ ❇
❇xφ♣xq

✚T
W ✍ � ❇

❇xǫ♣xq
✖ ∇φ♣xqTW ✍ �∇ǫ♣xq, ❅x P Ω. (14)

can be uniformly approximated on any given compact set

Ω. According to Weierstrass Higher Order Approximation

Theorem [45], [14], as the number of basis sets N increases,

the approximation error on a compact set Ω goes to zero, i.e.,

ǫ♣xq Ñ 0 as N Ñ✽. We shall require a form of uniformity

in this approximation result that is common in neuro-adaptive

control and other approximation techniques [38, 45]. This

assumption also involves the approximate HJB defined by

H✍♣x, K̄✍♣xq,W ✍T
∇φq✕W ✍

∇φ♣f♣xq � g♣xqK̄✍♣xqq
�Q♣xq �Rs♣K̄✍♣xqq ✏ ǫH , ❅x, (15)

which is obtained by using (14) in (8) and that leads to the

residual error

ǫH ✕ H✍♣☎q✁H♣☎q ✏ ✁∇ǫT ♣f♣xq�g♣xqK̄✍♣xqq, ❅x, (16)

where for brevity we have omitted the arguments of H and

H✍.

Assumption 1 (Critic Uniform Approximation):

The critic activation functions φ, the value function

approximation error ǫ, their derivatives, and the Hamiltonian

residual error ǫH are all uniformly bounded on a set

Ω ❸ R
n, in the sense that there exist finite constants

φm, φdm, ǫm, ǫdm, ǫHm P R
� such that ⑤φ♣xq⑤ ↕ φm,

⑤∇φ♣xq⑤ ↕ φdm, ⑤ǫ♣xq⑤ ↕ ǫm, ⑤∇ǫ♣xq⑤ ↕ ǫdm,

⑤ǫH♣xq⑤ ↕ ǫHm, ❅x P Ω. In order to get ǫ small we

also assume that we have a large number of basis sets, i.e.

N Ñ✽. ❧

Since the ideal weights W ✍ for the (approximate) value

function V ✍♣xq that appear in (13) are unknown, one must

consider the critic weight estimates Ŵ P R
N , associated with

the approximate value function:

V̂ ♣xq ✏ ŴTφ♣xq,❅x. (17)



Our objective is to find an update law for the weight

estimates Ŵ so that they converge to the ideal values W ✍,

and thus provide a good estimate

Ĥ♣x, u, ŴT
∇φq✕ ŴT

∇φ♣f♣xq � g♣xquq
�Q♣xq �Rs♣uq, ❅x, u, (18)

for the (approximate) Hamiltonian.

Definition 2: [38] A vector signal Φ♣tq is exciting over the

interval rt, t� TPEs, with TPE P R
� if there exists β1, β2 P

R
� such that β1I ↕ ➩t�T

t
Φ♣τqΦT ♣τqdτ ↕ β2I,❅t with I

an identity matrix of appropriate dimensions. ❧

There is a need to develop a learning framework to find

a tuning law for Ŵ in order to achieve convergence of (18)

to the (approximate) Hamiltonian (15) along the closed-loop

trajectories. But in order to attain that, one would typically

need persistency of excitation (see Definition 2) for the

vector ω♣tq defined by

ω♣tq✕ ∇φ
�
x♣tq✟ ✁f�x♣tq✟� g

�
x♣tq✟u�t✟✠, (19)

along the closed-loop trajectories [38]. To weaken the need

to guarantee a-priori, a persistency of excitation condition

in the sense of Definition 2 for infinite-time, we follow

the approach proposed in [46] that uses past recorded data,

concurrently with current data. To this effect, we define the

Hamiltonian error corresponding to the data collected at the

current time t:

e♣tq✕ Ĥ
✁
x♣tq, u♣tq, Ŵ ♣tqT∇φ�x♣tq✟✠✁H✍♣x, K̄✍♣xq,∇V ✍q

✏ Ĥ
✁
x♣tq, u♣tq, Ŵ ♣tqT∇φ�x♣tq✟✠,❅x, u

where the latter equality is due to (8), and the error corre-

sponding to data previously collected at times t0, t1, . . . , tk ➔
t,

ebuffi
♣ti, tq✕ Ĥ

✁
x♣tiq, u♣tiq, Ŵ ♣tqT∇φ�x♣tiq✟✠

✕ Ŵ ♣tqT∇φ♣x♣tiq♣f♣x♣tiqq � g♣x♣tiqqu♣tiqq
�Q♣x♣tiqq �Rs♣u♣tiqq.

We draw attention to the reader that, while the error

ebuffi
♣ti, tq uses past state and input data x♣tiq and u♣tiq, re-

spectively, it is defined based on the current weight estimates

Ŵ ♣tq.
The current and previous errors defined above can be

combined into the following (normalized) global error

E♣tq ✏ 1

2

✂
e♣tq2

♣ω♣tqTω♣tq � 1q2 �
k➳

i✏1

e2
buffi

♣ti, tq
♣ω♣tiqTω♣tiq � 1q2

✡
, ❅t,

where ω♣tiq✕ ∇φ
�
x♣tiq

✟ ✁
f
�
x♣tiq

✟� g
�
x♣tiq

✟
u
�
ti
✟✠

.

The tuning for the critic NN is obtained by a gradient-

descent-like rule as follows:

✾̂
W ✏ ✁α ❇E

❇Ŵ
✏ ✁α ω♣tqe♣tq

♣ω♣tqTω♣tq � 1q2 ✁ α

k➳
i✏1

ω♣tiqebuffi
♣ti, tq

♣ω♣tiqTω♣tiq � 1q2

✏ ✁αω♣tq
�
ω♣tqT Ŵ ♣tq �Rs♣u♣tqq �Q♣x♣tqq✟

♣ω♣tqTω♣tq � 1q2

✁ α

k➳
i✏1

ω♣tiq
�
ω♣tiqT Ŵ ♣tq �Q♣x♣tiqq �Rs♣u♣tiqq

✟
♣ω♣tiqTω♣tiq � 1q2 ,

(20)

❅t → ti ➙ 0, where α → 0 is a constant gain that determines

the speed of convergence. Defining the weight estimation

error of the critic by

W̃ ✕W ✍ ✁ Ŵ P R
N . (21)

We conclude from (20) that the error dynamics can be written

as,

✾̃
W ✏ ✁Nom � Pert (22)

where,

Nom♣tq✕ α

✂
ω♣tqω♣tqT

♣ω♣tqTω♣tq � 1q2

�
k➳

i✏1

ω♣tiqω♣tiqT
♣ω♣tiqTω♣tiq � 1q2

✡
W̃ ♣tq, (23)

can be viewed as defining the nominal error dynamics and

Pert♣tq✕ α

✂
ω♣tq

♣ω♣tqTω♣tq � 1q2 ǫH♣tq

�
k➳

i✏1

ω♣tiq
♣ω♣tiqTω♣tiq � 1q2 ǫH♣tiq

✡
(24)

a perturbation term, bounded as ⑥Pert⑥ ↕ α
2
♣k�1qǫHm, that

would be zero if the Hamiltonian errors ǫH were absent. To

derive this expression for
✾̃
W ✏ ✁ ✾̂

W , we used (20) together

with the fact that Q♣x♣tqq�Rs♣u♣tqq ✏ ✁W ✍Tω♣tq� ǫH♣tq
which is a consequence of (8) and (16).

Theorem 2: Suppose that tω♣t1q, . . . , ω♣tkq✉ contains N

linearly independent vectors and that the tuning law is given

by (20). Then for every given control signal u♣tq we have

that,

d⑥W̃ ♣tq⑥2
dt

✏ ✁2W̃ ♣tqTNom ↕ ✁2αλmin♣Λq⑥W̃ ⑥2 (25)

with Λ ✕
➦k

i✏1

ω♣tiqω♣tiq
T

♣ω♣tiqTω♣tiq�1q2 → 0 along solutions to

(22). ❧

Remark 1: Typical adaptive optimal control

algorithms [9] do not have the extra past-data terms➦k
i✏1

ω♣tiqω♣tiq
T

♣ω♣tiqTω♣tiq�1q2 in the error dynamics (22) and thus

need a persistence of excitation condition on
ω♣tq

♣ω♣tqTω♣tq�1q

(typically of the form β1I ↕ ➩t�T

t

ω♣tqω♣tqT

♣ω♣tqTω♣tq�1q2 ↕ β2I

with constants β1, β2, T P R
�) that holds for every t from

t ✏ 0 to t ✏ ✽. This is equivalent to requiring that the

matrix
➩t�T

t

ω♣tqω♣tqT

♣ω♣tqTω♣tq�1q2 P R
n✂n be positive definite

over any finite interval. This is equivalent to requiring

that the signal ω♣tq contains at least n spectral lines. This

condition cannot be verified during learning especially for

nonlinear systems. In Theorem 2, the “relaxed” persistence

of excitation condition comes through the requirement that



at least N of the vectors tω♣t1q, . . . , ω♣tkq✉ must be linearly

independent, which is equivalent to the matrix Λ being

positive definite. In practice, as one collects each additional

vector ω♣tiq, one adds a new term to the matrix Λ and one

can stop recording points as soon as this matrix becomes

full-rank (i.e. tk time has been reached). From that point

forward, one does not need to record new data and the

assumption of Theorem 2 holds, regardless of whether or

not future data provides additional excitation. The selection

of the times ti is somewhat arbitrary, but in our numerical

simulations we typically select these values equally spaced

in time. ❧

Remark 2: It is assumed that the maximum number

of data points to be stored in the history stack (i.e.,

t0, t1, . . . , tk ➔ t) is limited due to memory/bandwidth

limitations. ❧

Proof of Theorem 2. Consider the following Lyapunov func-

tion

L ✏ 1

2α
W̃ ♣tqT W̃ ♣tq. (26)

By differentiating (26) along the error dynamics system

trajectories one has,

✾L ✏ ✁W̃ ♣tqT
✁ ω♣tqω♣tqT
♣ω♣tqTω♣tq � 1q2�Λ

✠
W̃ ♣tq�W̃ ♣tqTPert,

(27)

which is negative definite as long as,

⑥W̃ ⑥ → ⑥Pert⑥
λmin♣Λq .

Equation (25) follows from this and the fact that
ω♣tqω♣tqT

♣ω♣tqTω♣tq�1q2 → 0, ❅t. Since tω♣t1q, . . . , ω♣tkq✉ has N

linearly independent vectors, the matrix Λ is positive definite,

from which the exponential stability of the nominal system

follows.

B. Actor neural network

One could use a single set of weights with a sliding-mode

controller as in [47] to approximate both V ✍ and its gradient

∇V ✍, but instead we independently adjust two sets of

weights: the critic weights introduced in (17) to approximate

V ✍ and the actor weights introduced below to approximate

∇V ✍ in the expression of the optimal control policy (7).

While this carries additional computational burden, the flex-

ibility introduced by this “over-parameterization” will enable

us to establish convergence to the optimal solution and

guaranteed Lyapunov-based stability, which seems difficult

using only one set of weights.

The optimal control policy (7) can be approximated by an

actor NN as follows,

K̄
✍♣xq ✏W ✍

u
T
φu♣xq � ǫu♣xq,❅x (28)

where W ✍
u P R

N2✂m is an ideal weight matrix, φu♣xq
are the actor NN activation functions defined similarly to

the critic NN, N2 is the number of neurons in the hidden

layer, and ǫu is the actor approximation error. As before, the

NN activation functions must define a complete independent

basis set so that K̄✍♣xq can be uniformly approximated on

Ω, as expressed by the following assumption.

Assumption 2 (Actor Uniform Approximation): The actor

activation functions in φu and the actor residual error ǫu
are all uniformly bounded on a set Ω ❸ R

n, in the sense

that there exist finite constants φum, ǫum P R
� such that

⑤φu♣xq⑤ ↕ φum, ⑤ǫu♣xq⑤ ↕ ǫum, ❅x P Ω. In order to get ǫu
small we also assume that we have a large number of basis

sets, i.e. N2 Ñ✽. ❧

Since the ideal weighs W ✍
u are not known, we introduce

actor estimate weights Ŵu P R
N2✂m to approximate the

optimal control in (28) with ˆ̄
K♣xq (i.e. u♣tq :✏ ˆ̄

K♣xq) as,

ˆ̄
K♣xq ✏ ŴT

u φu♣xq, ❅x. (29)

Our goal is then to tune Ŵu such that the following error is

minimized

Eu♣tq ✏ 1

2
trace

✥
eTu ♣tqeu♣tq

✭
, ❅t, (30)

where

eu ✕ ŴT
u φu � θ

✁1
2
R✁1gT ♣xq∇φT Ŵ

✠
P R

m.

is the error between the estimate (29) and a version of (7)

in which V ✍ is approximated by the critic’s estimate (17).

The tuning for the actor NN is obtained by a gradient-

descent-like rule as follows:

✾̂
Wu ✏ ✁αu

❇Eu

❇Ŵu

✏ ✁αuφueu

✏ ✁αuφu

✁
ŴT

u φu � θ
�1
2
R✁1gT ♣xq∇φT Ŵ ✟✠T

, (31)

where αu → 0 is a constant gain that determines the speed

of convergence. Defining the weight estimation error for the

actor by

W̃u ✕W ✍
u ✁ Ŵu P R

N2✂m, (32)

and after taking into consideration that (7) with (13) is

approximated by (29), the error dynamics can be written as

✾̃
Wu ✏ ✁αuφuφ

T
u W̃u ✁ αuφuθ

�1
2
R✁1gT ♣xq∇φTW ✍

✟T
� αuφuθ

�1
2
R✁1gT ♣xq∇φT Ŵ ✟T

✁ αuφuθ
�1
2
R✁1gT ♣xq∇ǫ✟T ✁ αuφuǫu. (33)

Remark 3: Note that the third term of (33) is a function

of Ŵ but since this signal appears inside the saturation

function θ♣☎q, this term is always bounded and will be treated

appropriately in the stability analysis that follows. ❧

A pseudocode (with inline comments to provide guidance

following after the symbol ➍) that describes the proposed

adaptive-optimal control algorithm has the following form,
Algorithm 2: Adaptive-Optimal Control Algorithm with

Relaxed PE
1: Start with initial state x♣0q, random initial weights

Ŵu♣0q, Ŵ ♣0q and i ✏ 1

2: procedure



3: Propagate t, x♣tq using (1) and u♣tq :✏ ˆ̄K♣xq ➍✥
x♣tq comes from integrating the nonlinear system (1) using

any ordinary differential equation (ode) solver (e.g. Runge
Kutta) while the time t comes from the Runge Kutta integration
process, i.e. rti, ti�1s, i P N where ti�1 :✏ ti�h with h P R

�

the step size
✭

4: Propagate Ŵu♣tq, Ŵ ♣tq ➍
✥

integrate
✾̂
Wu as in (31) and

✾̂
W as in (20) using any ode solver (e.g. Runge Kutta)

✭
5: Compute V̂ ♣xq ✏ ŴTφ♣xq ➍ output of the Critic NN,

6: Compute ˆ̄K♣xq ✏ ŴT
u φu♣xq ➍ output of the Actor NN

7: if i ✘ k then ➍
✥
tω♣t1q, ω♣t2q, . . . , ω♣tiq✉

has N linearly independent elements and tk is the time instant
that this happens

✭
8: Select an arbitrary data point to be included in the

history stack (c.f. Remarks 1-2)
9: i ✕ i� 1

10: end if ➍ when the history stack is full
11: end procedure

Remark 4: Note that the algorithm runs in real time in a

plug-n-play framework and we do not have any iterations.

Everything happens simultaneously as we receive new state

measurements along the trajectories. One measures the state

x♣tq and integrates the tuning laws (20) and (31) by using any

ordinary differential equation (ode) solver (e.g. Runge Kutta)

and then compute V̂ ♣xq ✏ ŴTφ♣xq and ˆ̄
K♣xq ✏ ŴT

u φu♣xq.
Numerical methods implemented in modern software pack-

ages are mostly adaptive algorithms where, at each step, the

step size h is adjusted based on an estimate of the error at that

step. In general as h is decreased the calculation takes longer

but is more accurate. However, if h is decreased too much

the slight rounding that occurs in the computer (because it

cannot represent real numbers exactly) begins to accumulate

enough to cause significant errors. For many higher order

systems, it is very difficult to make the Euler approximation

effective. The explicit Runge Kutta methods for non-stiff

problems provide computations that are linear to the size

of the problem. For stiff problems more accurate, and more

elaborate techniques were developed. ❧

Remark 5: For the proposed method, the involved com-

putation is dominated by the training algorithm for Ŵ

and Ŵu in order to approximate V̂ ♣xq ✏ ŴTφ♣xq and
ˆ̄
K♣xq ✏ ŴT

u φu♣xq which are all variables of the state. If

one does the calculations of the right hand side of (20) and

(31) in the order of parentheses then, for the critic one has

quadratic growth with the number of basis sets N , for the

actor one has linear growth with mN2 and linear growth

with the number of states n. Thus the complexity is given

as O♣n � N2 � mN2q with the term N2 dominating the

other two terms. In order to evaluate the performance of

the implemented algorithm, we note that the computational

complexity is similar to LSTD [34] (e.g. O♣n2q) but worst

than DHP, HDP [35] and Temporal Difference (TD) learning

[48] that all have linear complexity with respect to the total

number of parameters (e.g. O♣nq). Also, we should mention

that instead of selecting arbitrary or equally spaced data

points as in our work, one can compute the singular values

of the history stack matrix and update the history as in [40].

But these computations are very expensive and will boost

the algorithmic complexity. ❧

C. Stability analysis

The regularity assumption is needed for the stability results

presented below.

Assumption 3: The process input function g is uniformly

bounded on a set Ω ⑨ R
n, i.e. ⑥g♣xq⑥ ➔ 1④2, ❅x P Ω. ❧

To remove the effect of the NN approximation errors ǫ, ǫu
(and their partial derivatives) and obtain a closed-loop system

with an asymptotically stable equilibrium point, one needs

to add a robustifying term to the control law (29) following

the work of [49] and use:

ˆ̄
K♣xq ✏ ŴT

u φu♣xq � η, ❅x, (34)

where

η ✕ ✁B ⑥x⑥2 1m�
A� xTx

✟ , ❅x, (35)

with A a positive constant, B P R
� satisfies ❅x P Ω

B ⑥x⑥2 ➙ A� xTx

♣Wmφdm � ǫdmq
✧

1

2α

✂✁k � 1

2

✠
ǫHm

✡2

� �φumū� φumǫum
✟2 � φum

2

�
Wmφdm � ǫdm

✟2
� 2♣2φumūq2 � ♣Wmφdm � ǫdmq2 � ǫ2um

✯
. (36)

The following theorem is the main result of the paper and

proves asymptotic stability of the learning algorithm of the

resulting closed-loop dynamics (1), (35):

✾x ✏ f♣xq � g♣xq�♣W ✍
u ✁ W̃uqTφu♣xq � η

✟
, (37)

Theorem 3: Consider the closed-loop dynamics given

by (37) together with the tuning laws for the critic

and the actor NNs given by (20) and (31), respectively.

Suppose that the HJB equation (8) has a positive defi-

nite, smooth solution, the Assumptions 1, 2, and 3 hold

and that tω♣t1q, ω♣t2q, . . . , ω♣tkq✉ has N linearly indepen-

dent elements. Then, there exists a triple
�
Ωx ✂ ΩW ✂

ΩWu

✟ ⑨ Ω with Ω compact such that the solution Z̃ :✏�
x♣tq, W̃ ♣tq, W̃u♣tq

✟ P �Ωx ✂ ΩW ✂ ΩWu

✟
exists globally

and converges asymptotically to zero for all neural network

weights W̃ ♣0q inside ΩW , W̃u♣0q inside ΩWu
and state

x♣0q inside Ωx, provided that the following inequalities are

satisfied,

α →
❞

1

8λmin

�➦k
i✏1

ω♣tiqω♣tiqT

♣ω♣tiqTω♣tiq�1q2

✟ (38)

φum → 1�❄
65

8
. (39)

When the set Ω that appears in the Assumptions 1, 2, and 3

is the whole R
n, then the triple ΩW ✂ ΩWu

✂ Ωx can also

be the whole R
n. ❧

Remark 6: For the inequality (38) to hold, one needs to

pick the tuning gain α for the critic NN sufficiently large.

But as noted in adaptive control [38], large adaptive gains



can cause high frequency oscillations in the control signal

and reduced tolerance to time delays that will destabilize the

system. There are not any systematic approaches to pick a

satisfactory adaptation gain, hence trial and error, intuition or

Monte Carlo simulations can serve as guidelines. Regarding

(39), since φum is simply an upper bound that appears in

Assumption 2, one can have it as large as needed. However,

one must keep in mind that a large value for φum, requires

an appropriate value for the function B (see (36)) in the

robustness term in (35). This dependence is clear, from the

quadratic terms of φum in (36) (see

✧
1

2α

✂✁
k�1

2

✠
ǫHm

✡2

��
φumū�φumǫum

✟2�φum

2

�
Wmφdm�ǫdm

✟2 �2♣2φumūq2�
♣Wmφdm�ǫdmq2�ǫ2um

✯
) that increase when one picks larger

values for φum. ❧

Remark 7: By denoting as Z̃ ✕ r xT W̃T W̃T
u sT

from the conclusion of Theorem 3 we have that

✎✎✎Z̃✎✎✎ Ñ 0

which implies ⑥x⑥ Ñ 0, it is straightforward that as tÑ ✽
then from (34) we have (29). ❧

Remark 8: In case the approximation holds over the entire

space, i.e. Ωx ✏ R
n, one can conclude global existence of

solution provided that the HJB solution V ✍ is norm coercive

(i.e., V ✍♣xq Ñ 0 ñ x Ñ 0), as this suffices to

guarantee that the Lyapunov function V that we use in the

proof of Theorem 2 is also norm coercive (see [11]). ❧

IV. PROOF OF THEOREM 3

Consider the following Lyapunov function

V ✕ V ✍ � W̃T W̃ � 1

2αu

tracetW̃T
u W̃u✉, (40)

where V ✍ is the optimal value function in (5) that is the

positive definite and smooth solution of (8) (see Theorem 1),

and Vc :✏ W̃T W̃ is the Lyapunov function considered in

Theorem 2. Since V is positive definite, there exist class-K

functions γ1♣.q and γ2♣.q then,

γ1
�⑥Z̃⑥✟ ↕ V ↕ γ2

�⑥Z̃⑥✟,
for all Z̃ ✕ r xT W̃T W̃T

u sT P Br where Br ⑨ Ω is a

ball of radius r P R
�. By taking the time derivative of the

first term with respect to the state trajectories with u♣tq (see,

(37)) and the second term with respect to the perturbed critic

estimation error dynamics (23), using (25), substituting the

update for the actor (31) and grouping terms together, then

(40) becomes,

✾V ✏ ∇V ✍♣xqT �f♣xq ✁ g♣xqW̃T
u φu

� g♣xq♣K̄✍♣xq ✁ ǫuq ✁ g♣xqB ⑥x⑥2 1m�
A� xTx

✟✟

✁ ❇Vc
❇W̃

T✂ ω♣tqω♣tqT
♣ω♣tqTω♣tq � 1q2 �

k➳
i✏1

ω♣tiqω♣tiqT
♣ω♣tiqTω♣tiq � 1q2

✡
W̃

� ❇Vc
❇W̃

T✂ ω♣tq
♣ω♣tqTω♣tq � 1q2 ǫH♣tq

�
k➳

i✏1

ω♣tiq
♣ω♣tiqTω♣tiq � 1q2 ǫH♣tiq

✡

� tracetW̃T
u

�✁ φuφ
T
u W̃u ✁ φuθ

✂
1

2
R✁1gT ♣xq∇φT W̃

✡T

✁ φuθ

✂
1

2
R✁1gT ♣xq∇ǫ

✡T

✁ φuǫu
✟✉, t ➙ 0,

✏ T1 � T2 � T3. (41)

where the three terms T1, T2, and T3 are given by equations

(42), (43) and (44), respectively.

Using the HJB equation,

∇V ✍♣xqT f♣xq ✏ ✁∇V ✍♣xqT g♣xqK̄✍♣xq✁Rs♣K̄✍♣xqq✁Q♣xq,❅x
in (44) yields,

T3 ✏ ✁Rs♣K̄✍♣xqq✁Q♣xq✁∇V ✍♣xqT g♣xqW̃T
u φu✁∇V ✍T g♣xqǫu

✁∇V ✍
T ♣xqg♣xqB ⑥x⑥2 1m�

A� xTx
✟ ↕ ✁Rs♣K̄✍♣xqq✁Q♣xq

✁ ♣Wmφdm � ǫdmq
✂
1

2
φum⑥W̃u⑥

� ♣ǫum � 1

2
B ⑥x⑥2 1m

A� xTx
q
✡

(45)

since A � xTx → 0. The term T3 can be further upper

bounded as,

T3 ↕ ✁Rs♣K̄✍♣xqq ✁Q♣xq � φum

4

�♣Wmφdm � ǫdmq
✟2

� φum

4
⑥W̃u⑥2 � 1

2
♣Wmφdm�

ǫdmq2 � 1

2
ǫ2um ✁ ♣Wmφdm � ǫdmq1

2
B ⑥x⑥2 1m

A� xTx
.

(46)

Finally after taking into account the bound of B ⑥x⑥2 from

(36) we can upper bound (41) as,

✾V ↕ ✁♣2αλmin

� k➳
i✏1

ω♣tiqω♣tiqT
♣ω♣tiqTω♣tiq � 1q2

✟✁ 1

4α
q⑥W̃ ⑥2

✁ ♣φ2um ✁ φum

4
✁ 1q⑥W̃u⑥2

✁Rs♣K̄✍♣xqq ✁Q♣xq, t ➙ 0. (47)

Then, by taking into account the inequalities (38) and (39)

one has, ✾V ↕ 0, t ➙ 0. From Barbalat’s lemma [50] it

follows that as tÑ✽, then ⑥Z̃⑥ Ñ 0.

The result holds as long as we can show that the state

x♣tq remains in the set Ω ❸ R
n for all times. To this effect,

define the following compact set

M ✕
✥
x P R

n⑤V♣tq ↕ mq✭ ⑨ R
n

where m is chosen as the largest constant so that M ❸ Ω.

Since by assumption x0 P Ωx, and Ωx ⑨ Ω then we can

conclude that x0 P Ω. While x♣tq remains inside Ω, we

have seen that ✾V ↕ 0 and therefore x♣tq must remain inside

M ⑨ Ω. The fact that x♣tq remains inside a compact set also

excludes the possibility of finite escape time and therefore

one has global existence of solution.



T1 ✕ ✁❇Vc
❇W̃

T✂ ω♣tqω♣tqT
♣ω♣tqTω♣tq � 1q2�

k➳
i✏1

ω♣tiqω♣tiqT
♣ω♣tiqTω♣tiq � 1q2

✡
W̃�❇Vc

❇W̃
T✂ ω♣tq

♣ω♣tqTω♣tq � 1q2 ǫH♣tq�
k➳

i✏1

ω♣tiq
♣ω♣tiqTω♣tiq � 1q2 ǫH♣tiq

✡

↕ ✁2αλmin

� k➳
i✏1

ω♣tiqω♣tiqT
♣ω♣tiqTω♣tiq � 1q2

✟⑥W̃ ⑥2 � 1

2α
⑥W̃ ⑥

✂
♣k � 1

2
qǫHm

✡

↕ ✁2αλmin

� k➳
i✏1

ω♣tiqω♣tiqT
♣ω♣tiqTω♣tiq � 1q2

✟⑥W̃ ⑥2 � 1

4α
⑥W̃ ⑥2 � 1

4α

✂
♣k � 1

2
qǫHm

✡2

(42)

T2 ✕ tracetW̃T
u

�✁ φuφ
T
u W̃u ✁ φuθ

✂
1

2
R✁1gT ♣xq∇φTW ✍

✡T

� φuθ

✂
1

2
R✁1gT ♣xq∇φT Ŵ

✡T

✁ φuθ

✂
1

2
R✁1gT ♣xq∇ǫ

✡T

✁ φuǫu
✟✉

↕ ✁φ2um⑥W̃u⑥2 � 2φumū⑥W̃u⑥ �
�
φumū� φumǫum

✟⑥W̃u⑥

↕ ✁φ2um⑥W̃u⑥2 � ♣2φumūq2 �
�
φumū� φumǫum

✟2
2

� ⑥W̃u⑥2. (43)

T3 ✕ ∇V ✍♣xqT �f♣xq ✁ g♣xqW̃T
u φu � g♣xq♣u✍♣xq ✁ ǫuq ✁ g♣xqB ⑥x⑥2 1m�

A� xTx
✟✟ (44)

V. SIMULATIONS

This section presents two simulation examples to illustrate

the effectiveness of the proposed optimal adaptive control

algorithm. In the simulations below, since the history stack

is empty in the beginning we need to add a dithering noise

to the control input in the form of ρ♣tq ✏ 1

2

�
sin♣0.3πtq �

cos♣0.3πtq✟ for the first second.

A. Van-der Pol Oscillator

Consider a controlled Van-der Pol oscillator of the form

(1), with

f♣xq ✏
✑

x2

✁x1✁
1

2
x2♣1✁x2

1
q✁x2

1
x2

✙
, g♣xq ✏ ✏

0
x1

✘
, (48)

which has an uncontrolled unstable limit cycle and a stable

uncontrollable equilibrium point at the origin. It is shown

in [51] that the non-saturated optimal control input, with a

criterion V ♣x♣0qq ✏ ➩✽
0
♣⑥x⑥2�⑥u⑥2qdτ , is given by K̄✍♣xq ✏

✁x1x2 and that the corresponding optimal value function is

given by V ✍♣xq ✏ x21 � x22.

We now consider the optimal control of (48) with the input

saturated so that ⑤u⑤ ↕ ū ✏ 0.1 and the cost defined by

(2), (3), and (4) with Q♣xq ✕ ⑥x⑥2 and R ✏ 1; for which

the optimal feedback law is not known in closed form. The

NN weights are initialized randomly in the interval r0, 1s,
the activation functions were chosen to be quadratics of the

form φ♣xq ✏ rx21 x1x2 x22sT and φu♣xq ✕ ∇φ♣xq, and the

tuning gains were set to α ✏ 10, αu ✏ 2. Thus, the critic

parameters converged to Ŵ ✏ ✏
2.4953 0.9991 2.2225

✘
.

Figure 1 presents the phase plane trajectory of the system and

the optimal control input, which is saturated when it reaches

the maximum and minimum saturation limits. Figure 2 shows

the convergence of the critic parameters which takes almost

5 seconds to converge.

It is well known that parameter convergence cannot be

achieved for nonlinear systems without PE. Since PE is

unverifiable for general nonlinear systems, trying to achieve

parameter convergence for such systems is very difficult. In

order to show the efficacy of our proposed approach with

relaxed PE compared to the tuning law (20) without the

second term (i.e. past data), we will compare the result from

figure 2 to two different cases. The first case considers a

“strong PE” (i.e. a large number of sinusoids of different

frequencies and high amplitude) that is applied for 0 ↕ t ↕
40, and is shown in figure 3. The second case of a “weak PE”

(i.e. a modest number of sinusoids of different frequencies

and low amplitude) that is applied for 0 ↕ t ↕ 20 seconds,

is shown in figure 4. From figures 3-4, one shall see how

difficult is to guarantee PE throughout learning for every

t ➙ 0. Specifically, in the first case the weight estimates reach

the optimal solution after 20 seconds (compared to just 5

seconds with the proposed algorithm) and in the second case

the weights converge fast but get stuck in a local minimum.

This happens since the PE condition given in definition 2 is

violated due to the reason that the states x reach zero either

too late (i.e. ω♣tq becomes zero after oscillating) or too early

(i.e. ω♣tq becomes zero before the weights reach the optimal

solution). Our proposed learning framework with previous

data solves these issues.



Fig. 1. The top plot shows the phase plane trajectory of the closed-loop
system shows convergence to the origin. The bottomplots shows the control
input, which is saturated when it reaches the saturation limits.

Fig. 2. Convergence of the critic parameters to the optimal cost.

B. Power Plant System

Consider the power system shown in Figure 5, consisting

of a turbine-generator, a system load, and an automatic

generation control. A simplified state-space model for this

system is of the form

✒
✾∆ᾱ
✾∆Pm

✾∆fG

✚
✏
✔
✕✁

1

Tg
0

1

RgTg

Kt
Tt

✁ 1

Tt
0

0
Kp
Tp

✁ 1

Tp

✜
✢✑ ∆ᾱ

∆Pm

∆fG

✙
�
✒

1

Tg

0
0

✚
∆Pc, (49)

where ∆fG is the incremental frequency deviation, ∆Pm

is the incremental change in the generator output, ∆ᾱ is

the incremental change in governor value position, and the

control input ∆Pc of the system is the incremental speed

change in position deviation [52]. The system parameters

include the governor time constant Tg ✏ 0.08rss, the

turbine time constant Tt ✏ 0.1rss, the generator model

time constant Tp ✏ 20rss, the feedback regulation constant

Rg ✏ 2.5rHz④MW s, the generator model gain constant

Kp ✏ 120rHz④MW s, and the turbine model gain constant

Kt ✏ 1rss.
The control objective is to keep the frequency of

generator fG, the governor valve position ᾱ, and the

Fig. 3. Evolution of the critic parameters with a “strong” persistence of
excitation applied for 0 ↕ t ↕ 40 seconds. With the dashed lines one can
observe the optimal critic parameters as plotted in Figure 2.

Fig. 4. Evolution of the critic parameters with a “weak” persistence of
excitation applied for 0 ↕ t ↕ 20 seconds. With the dashed lines one can
observe the optimal critic parameters as plotted in Figure 2.

Fig. 5. Power system block diagram.

generator output Pm in their nominal values, despite

perturbations in the load. To this effect, we considered

the optimal control of (49) with the input saturated so

that ⑤∆Pc⑤ ↕ ū ✏ 0.02 and the cost defined by (2), (3),

and (4) with Q♣xq ✕ ∆ᾱ2 � ∆P 2
m � ∆f2G and R ✏ 0.5.

The initial NN weights were randomly initialized in r0, 1s,



tuning gains set to α ✏ 10, αu ✏ 2, and the activation

functions were chosen to be quadratics of the form

φ♣xq ✏ rx21 x1x2 x1x3 x22 x2x3 x23sT , φu♣xq ✕ ∇φ♣xq.
The critic neural network weights converged to Ŵ ✏✏
0.0583 0.0476 0.0549 0.1123 0.1447 0.3489

✘
.

Figure 6 shows the state evolution, Figure 7 the incremental

speed change in position deviation (control input), and

Figure 8 the evolution of the critic NN weights. A

perturbation of 5% is applied to the generator frequency

in the interval 7-11 seconds and we can see the system’s

adaptation to the new load.

Fig. 6. Time evolution of the power system states with a perturbation of
5% applied in the generator frequency during 7s✁ 11s.

Fig. 7. Incremental speed change in position deviation (control input of
the system).

VI. CONCLUSION

This paper proposed a new approximate dynamic pro-

gramming algorithm for systems with bounded inputs, which

relaxes the persistence of excitation condition by using

previously stored data concurrently with current data. To

suppress the effects of the critic and actor NN approximation

errors, a new robustifying term was added to the controller.

By considering an appropriate Lyapunov function, we prove

asymptotic stability of the overall closed-loop system. Sim-

ulation results of a controlled Van-der Pol oscillator and a

Fig. 8. Convergence of the critic parameters to the optimal cost.

power system illustrate the effectiveness and efficiency of

the proposed approach. Future work will be concentrated on

extending the results for completely unknown systems and

multiple decision makers.
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