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Tests of hypotheses about finite-dimensional parameters in a semi-
parametric model are studied from Pitman’s moving alternative (or local)
approach using Le Cam’s local asymptotic normality concept. For the case
of a real parameter being tested, asymptotically uniformly most powerful
(AUMP) tests are characterized for one-sided hypotheses, and AUMP
unbiased tests for two-sided ones. An asymptotic invariance principle is
introduced for multidimensional hypotheses, and AUMP invariant tests
are characterized. These provide optimality for Wald, Rao (score),
Neyman—Rao (effective score) and likelihood ratio tests in parametric
models, and for Neyman—Rao tests in semiparametric models when con-
structions are feasible. Inversions lead to asymptotically uniformly most
accurate confidence sets. Examples include one-, two- and k-sample prob-
lems, a linear regression model with unknown error distribution and a
proportional hazards regression model with arbitrary baseline hazards.
Results are presented in a format that facilitates application in strictly
parametric models.

1. Introduction. The first rigorous work to define and construct tests
which are asymptotically optimal was by Wald (1943). He argued that
maximum likelihood estimators may be asymptotically sufficient for detecting
local deviations from the null hypothesis and showed that a test based on
them—now called a Wald test—is asymptotically most stringent: its asymp-
totic power function is closest to the asymptotic envelope power function in
the minimax sense in local neighborhoods of the null hypothesis. He also
considered two other definitions of optimality, each achieved by the same
test: namely, asymptotically best average power, or constant power, over a
family of surfaces. Wald also showed equivalence with the likelihood ratio
test; score tests had not yet been introduced. [In an earlier paper, Wald
(1941), he showed that a Wald test has a global optimality, but only in
models with a single real parameter.] However, this work of Wald has not
been distilled into textbook form—and his optimality results are not even
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quoted in textbooks!—although the test carrying his name has become a
standard in modern statistical practice. And as the scope of statistical appli-
cations has broadened to problems with infinite-dimensional parameters
(nonparametric and semiparametric models), his parametric formulation is
no longer adequate.

Almost two decades later, Le Cam (1960) introduced local asymptotic
normality (LAN) of the log-likelihood ratio along with its asymptotic distribu-
tion under local alternatives, the latter being essential in evaluating local
power. He also showed that the scores are asymptotically sufficient for local
departures. His work was elaborated, extended and distilled by Hajek and
Sidék (1967). This paved the way for asymptotic optimality of score-based
(Rao) tests, which was dealt with by Roussas (1972) for parametric simple
hypothesis problems. About this time, Neyman (1959) introduced his C(a)
tests, a forerunner of effective score tests [or Neyman—Rao tests—see Hall
and Mathiason (1990)] which are a generalization of the popular score tests.

Recent books by Strasser (1985), Le Cam (1986), Le Cam and Yang (1990),
Fabian and Hannan (1985) and Andersen, Borgan, Gill and Keiding (1993)
and papers by Hall and Mathiason (1990) and Wefelmeyer (1987) include
some material on large-sample tests, all based on LAN. Strasser imposes
similarity or unbiasedness for tests about real parameters and has only
limited results for nuisance functions. Le Cam as well as Le Cam and Yang
deals with decision problems in a very general and abstract setting, and
devotes little attention to the specifics under study here. Fabian and Hannan
and Hall and Mathiason each confine attention to parametric models and
define optimality of tests in limited ways, the first by reference to matching
the performance of the Wald test and the second within a restricted class of
tests. Andersen, Borgan, Gill and Keiding base their development partly on
Choi (1989), a forerunner to much of this paper. Wefelmeyer removes the
similarity constraint when testing against a particular contiguous alterna-
tive, and this implies asymptotic optimality in certain one-sided testing
problems. We expand this latter approach here.

Begun, Hall, Huang and Wellner (1983) present a theory of asymptotically
efficient estimation in semiparametric models utilizing LAN. We attempt a
parallel theory of testing hypotheses about a finite-dimensional parameter,
rigorous but not too complex mathematically. Unlike Begun, Hall, Huang and
Wellner or Strasser, however, we emphasize a directional approach as in
Huang (1982). The paper by Hall and Mathiason (1990) lays the groundwork
for our approach by introducing effective score tests. And we have formulated
assumptions in parallel with this parametric case; the paper thus provides a
theory of optimal testing in parametric models as well as in semiparametric
models.

Results presented here parallel those for testing hypotheses about part of a
vector u when observing a normally distributed random variable with mean
vector By and known variance matrix B. In large samples, the normal
variable is the score vector, B the information and u the shift in the
parameter under local alternatives. When the test is one-sided about a real
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component p; of w = (uy, py), a uniformly most powerful (UMP) test is
possible. This can be derived as a test of Neyman structure using theory
presented in Lehmann (1986) by conditioning on a statistic which is sufficient
and complete for the null hypothesis. However, this theory can be
avoided—thereby avoiding a need for dealing with asymptotic sufficiency and
completeness. An alternative derivation is as follows: fix a null value of the
nuisance parameter u,, say uy, and first restrict attention to level-a tests of
w=(0,ud) vs. w in the hyperplane {u: u, €%, uy = u3 — Byy'By; uy}. The
Neyman—Pearson lemma [Lehmann (1986)] asserts that a test based on the
effective observation—the residual from regressing the coordinate of interest
on the other coordinates—is UMP. Since this test and its power are free of
w9, it remains UMP when the parameter space is no longer restricted to the
hyperplane.

This argument can be extended to handle two-sided alternatives and find a
UMP unbiased test. For testing hypotheses about w,; of dimension d > 1
against unrestricted alternatives, a UMP invariant test—invariant under a
group of nonsingular linear transformations for the whole vector—can be
obtained relying on a maximal invariant statistic as well as on a sufficient
and complete statistic [Lehmann (1986)]. Instead, one may deal with the
nuisance parameter u, by confining attention to a restricted alternative of a
hyperplane—thus considering only effective observations—and requiring in-
variance only for effective observations.

Asymptotic analogs of each are given here resulting in the notion of
asymptotically uniformly most powerful (AUMP), AUMPU (unbiased) and
AUMPI (invariant) tests. In Section 2, Le Cam’s LAN is presented along with
necessary notation and assumptions. And effective scores, effective informa-
tion and efficient test statistics are defined. We then characterize AUMP
one-sided tests in Section 3. As in Wefelmeyer (1987), the common asymptotic
similarity restriction is avoided. Characterization is done by stating the
asymptotic local power function. Sufficient for optimality is that a test be
equivalent to a canonical effective score test—an optimal test requiring
knowledge of nuisance parameters. Stein’s (1956) notion of adaptation is
discussed briefly at the end: replacing, in tests which are optimal when
certain nuisance parameters are known, these parameters by estimates
without affecting the asymptotic performance of the test. This is like a
large-sample version of Studentization; a variance parameter can be replaced
by an estimate without any large-sample penalty.

Two-sided and multidimensional tests are discussed in the next two sec-
tions. The approach used in Section 3 does not directly generalize. Instead,
we focus on a hyperplane in a certain direction and appeal to the asymptotic
power representation in the Appendix, essentially reducing the problem into
a simple normal shift problem discussed above. For invariance, it is noted
that the testing problem is invariant under locally linear transformation of
the parameter of interest, and this motivates requiring standardized effective
score tests to be rotation invariant (asymptotically). As in Wald (1943), but in
contrast to common linear-model parametric hypothesis testing, invariance is
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not imposed to deal with the nuisance parameters. Again, optimal tests are
equivalent to canonical effective score tests. Obtaining asymptotic confidence
sets by inversion is briefly discussed in Section 6.

The construction of asymptotically efficient tests is discussed in Section 7.
In the parametric case, likelihood ratio tests [assuming LAN holds uniformly
—see Hall and Mathiason (1990)], Wald tests and Rao (score) tests are all
asymptotically efficient, as are effective score tests—canonical tests with
nuisance parameters replaced by Vn -consistent estimates. These are typi-
cally not feasible in the semiparametric case. We modify Bickel’s (1982) and
Schick’s (1986, 1987) constructions of adaptive estimates to construct effec-
tive score (Neyman—Rao) tests when infinite-dimensional nuisance parame-
ters are involved.

The methodology is demonstrated in several semiparametric examples in
the final section. In particular, we show that the partial score tests of Cox
(1975), popular in survival analysis, are optimal. Some parametric examples
of effective score tests appear in Hall and Mathiason (1990); the theory here
asserts their optimality, without the restrictive conditions imposed there.

In summary, we characterize, and show how to construct, a large-sample
test with a simply stated optimality: either AUMP, AUMPU or AUMPI.
Popular tests, such as Wald, score and likelihood ratio tests, are asymptoti-
cally equivalent to this test, and hence share this optimality. We thus
simplify, clarify and extend the efficiency concepts of large-sample testing,
introduced in Wald’s fundamental paper of 1943.

2. Local asymptotic normality, effective scores and efficient test
statistics. Suppose we are investigating a specific characteristic of a proba-
bility measure P, ,, 6 € O, based on some potential data X,,. The subscript n
is an index of the amount of data, for example, sample size. By adopting
reparametrization if necessary, we assume that 6 can be partitioned (at least
locally) into (%, ) so that the characteristic we are interested in is identifi-
able solely by ¥ and the hypothesis to be tested is given as H: ¢ = ¥,. The
parameter ¢ (of finite dimension d > 1) is called the parameter of interest
and the parameter n (of arbitrary dimension) the nuisance parameter or
function.

We confine attention to contiguous alternatives [Le Cam (1960) and Hajek
and Sidak (1967)]. Define a Vn -neighborhood of ¥, as a collection of se-
quences O,(hy) =3, +n ?hy+n"13%,, for hy €% and |5l =o0(1),
where the local parameter space %, is a subset of %% containing 0. Similarly
define a vVn -neighborhood of 7 (with 7 fixed but unknown) as n,(h,) =n+
71_1/2}117 + n_1/28m] for h, €% and |1§,,|l = o(1), where the local nuisance
parameter space %, is a Hilbert space (typically, a subspace of a Cartesian
product of copies of % and/or of %,, the space of square integrable functions
with respect to some fixed measure). Here, ||-|| denotes the norm of the
appropriate Hilbert space. We use ¢ -,-) to represent inner product in a
similar fashion. Let 2 = (A4, h,) be an element in the product space 7 of 7
and %, and let 6, = (&), n) and 6, = 6,(h) = (I,(hy), n,(h,)—we omit A
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when dependence on it is obvious from the context. The performance of a test
is evaluated against these sequences of parameters 6,, approaching 6, from
direction h.

Let dP, , /dP, , be the Radon-Nikodym derivative of the absolutely
continuous part of with respect to P, , . Denote A, as the support of
P, , . Following Le Cam (1960, 1969), we assume that hkehhood ratios of
local alternatives to the null hypothesis are asymptotically log-normally
distributed. More specifically, for x, in A,, and for each direction £,

dPn, 0,(h)

dP

n,6,

(1) L,(h) = log =S,h - %Uz(h) +r.(h),

where S, = S,(x,) =(S,;,S,,) is an h-free random linear functional which
is asymptotlcally Gaussian under 0, with mean 0 and variance B in the
sense that S, h is asymptotlcally normally distributed with mean 0 and
variance 02(h) = (h, Bh) for every h, and B is a positive-definite self-
adjoint bounded linear operator. Under 6, r,(h) converges in probability to 0
for every h. When x, € A,, L, is defined arbitrarily.

This is the analog of the parametric LAN assumption in Hall and
Mathiason (1990), and we choose notation to emphasize the parametric case.
The full process in % is not needed, although it is implicit due to the linearity
of S, [see Strasser (1985)]. The joint convergence in S, & and S, 4 is sufficient
for application of Le Cam’s third lemma below. The asymptotic covariance is
(h, Bh). A sufficient condition for LAN in the case of random sampling is
given in Begun, Hall, Huang and Wellner (1983), namely, Hellinger differen-
tiability with respect to 6 of the marginal density. This condition is easily
extended to multisample, regression and censoring models, or these can be
accommodated in the iid case as in Begun, Hall, Huang and Wellner (1983).
See also Bickel, Klaassen, Ritov and Wellner (1993) for this and Fabian and
Hannan (1987) for generalizations to dependent data settings.

Among the immediate consequences of LAN are:

(P1) Contiguity, or Le Cam’s first lemma [Le Cam (1960) and Hajek and
Sidak (1967)], part of which asserts that P, ;,(A,) - 1 for each h.
Since dP, ;) = exp{L,(h)} dP, on A,, it also implies that exp{L,(h)} is
uniformly integrable under 90

(P2) The asymptotic distribution of the score under local alternatives is
readily available. Le Cam’s third lemma [Le Cam (1960), Hajek and
Sidak (1967) and Hall and Mathiason (1990)] implies that S, is asymp-
totically Gaussian under 6,(2) with mean BA and variance B that is,
the asymptotic dlstrlbutlon of S, A under 6,(h) is normal with mean
(h, Bh) and variance o 2(%) for every h.

We have no need for asymptotic sufficiency of the scores here; but see Wald
(1943), Le Cam (1960) and Strasser (1985).
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Of course, S, and B depend on 6,; they are the score and information at
8, Real quantities S, 2 and o *(h) are the directional score and information
in direction A [Huang (1982)]. We call S, the score for the parameter of
interest and S, the score for the nuisance parameter. The information B
may also be partitioned into (B, j), i,j = 1,2, where By, is the information for
¥, By, the information for n and B;, and (B,;) the co-information.

We assume that B,, has a bounded inverse B,,'. This allows us to define
the effective information B* as B* = B, — By, B,,' By, and the effective score
S} as S}a = S,(a, —Bgy'Bya) = S,ya — S,, By'Bya, a € %% We also think
of B* as the d X d matrix defined by a”’B*a = (a, B*a) and of S* as a
d-dimensional random vector defined by a’S* = S*a. Under 6,(h), the ran-
dom vector S¥ is asymptotically normal with mean B*h, and variance B*
and is asymptotically independent of S, h,6 for each h,6 €%. Thus the
effective information is the asymptotic variance of the effective score, and the
random variable S¥a is the residual from projection of S,,a onto the space
spanned by S,, —the part of S, ,a which is orthogonal (asymptotically uncor-
related) to S,,. Of course, it is the same as S, ;a if B;, = 0 or if no nuisance
parameter is present. The positive definiteness of B implies that of B*. Thus
we can standardize the effective score. To stress the dependence of the
standardized effective score B*~'/2S* on the nuisance parameter 1, we shall
denote it by &,(n).

Although it has an explicit algebraic form, the effective score for a specific
problem may be difficult to obtain, especially when nuisance functions are
involved. Calculation of adjoints or inverses of linear operators is not always
straightforward. Frequently, it is easier to minimize (in %,) the asymptotic
variance of the directional score S,y + S, h, whose solution is the least
favorable direction %, = —By,' By hy. Since S¥hy =8, ,h, + S, h, for every
hg, S¥ can be recovered from this.

We will find that asymptotically efficient tests are characterized in terms
of the standardized effective score ¢,(n). So what is needed is a version of the
standardized effective score that is independent of the nuisance parameter,
that is, a statistic 7, for which T, — £,(n) converges to 0 in P, . -probabil-
ity for every n. We call such a statistic 7, an efficient test statistic. It has the
same asymptotic properties as ¢,(n), namely being AN(0, I) under H and
AN(B*'/?h, I) under local alternatives (%, k,) for every 7. (Alternatively,
T, could be defined as any statistic having these asymptotic normality
properties.) We show, in turn, in Sections 3 to 5 that one-sided, two-sided and
multidimensional tests based on 7,—as if we were testing that a normally
distributed, identity variance, 7, had mean 0—are asymptotically uniformly
most powerful in some appropriate sense. Construction of such 7’s is consid-
ered in Section 7.

The concept of effective scores was first introduced by Neyman (1959) in a
slightly different form; also see Basawa and Koul (1988). Effective scores and
information also play a key role in large-sample estimation; see Begun, Hall,
Huang and Wellner (1983), Hall and Mathiason (1990) and Bickel, Klaassen,
Ritov and Wellner (1993).

nd
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3. Asymptotically efficient one-sided tests. We consider testing H:
G =9, vs. K4 9> ¥, for real ¢ with n unspecified. We first act as if n (but
not A,) is known and consider a local form of these hypotheses, i, = 0 vs.
hy > 0 with h, unspecified. It is assumed that .7, contains the half-line [0, ).
(We could enlarge the null hypothesis and its local form to ¢ < ¢, and
hs < 0, but we keep the simpler form as stated.)

Fix a €(0,1). A test ¢, is of asymptotic level a at n if

lim sup Een(o,hn)(v[ln < a foreveryh,.

Such a test ¢, is asymptotically most powerful of level a against 6,(h) if
liminf E, i, > limsup E, )y, for every other such test ¢,. If this is true
for every h with Ay > 0, such a test is asymptotically uniformly most
powerful of level o at m, short AUMP(a,n). A test is AUMP(«) if it is
AUMP(«, ) for each nuisance parameter 7. The word “local” is implicit
everywhere.

It should be noted that the asymptotic level requirement is imposed for
every h,. This requirement is crucial and plays the role of restriction to
regular estimates in estimation theory; see Begun, Hall, Huang and Wellner
(1983) and Hall and Mathiason (1990).

Note that, under LAN, the asymptotic power of a test can be evaluated by
a computation under the null distribution. Since, for any test ,, E, ¢, =
Ey ¥, 1(A,) + E, ;,,¥,1(A7), and the second part vanishes by (P1) as n
increases, we have, for every A,

E, i, = Ey ¢, exp{L,(h)} + o(1)

(2) =E, y, exp{th —30%(h) + rn(h)} +0(1).

Fix hy = (hyy, h,y), hy; > 0, temporarily choose 4,, and test the simple
hypotheses A, = (0, &,,) versus %,. Applying the Neyman—Pearson lemma to
the right side of (2) [without the o(1) term], we find an optimal test of
asymptotic level a to be of the form ¢, = 1 if

L,(hy) = Ly(ho) = 8,(hy = ho) = 3{0*(hy) = 0*(hy)}
+{rn(h1) - rn(hO)} > Cn>

and ¢, = 0 if L, (h;) — L,(h,) <c,. The asymptotic distribution of S, (k; —
h,) under 6,(h)is normal with mean (h, — h,, Bh) and variance o ?(h, — h,).
Letting & = h, (the null hypothesis), we find that liminfec¢, > ¢ =z, 0(h; —
hy) — 30%(h, — h,), where z, is the upper a-quantile of the standard normal
distribution @®. Now taking h = h,; (the alternative), it follows that
limsup E, , ¢, <1 — ®{z, — o (hy — hy}.

Simple algebra shows that the noncentrality o 2(h, — h,) is minimized in
h,o when h ; —h, = —By,' By, hy,, which we call the least favorable direc-
tion. The point (0, A}), h) = h,; + B3,'By hy,, is the projection of £, onto the
local null space under the inner product induced by B, namely, {A,k)p =
(h,Bk), h, k €% As the point in the local null space closest to A, it is the
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most difficult one to distinguish from h,. By plugging in this least favorable
direction, we have

i = - a V) = ¥ 17 “a)s
(3) limsupE, , #, <1—®(z, — B*"?hy,) = ®(B*"*hy, — z,)

where B* = B,; — B, B;,'B,, is the effective information. Note that this
bound depends on %; only through A4, that part of the departure we are
interested in. It is achieved by the test

(4) b, =1(&(n) 22,) = {

where £, (n) is the (real-valued) standardized effective score B*~!/2S*. Since
the test is free of A, as well as &,,, we may claim that ¢, is AUMP(«, 7). Of
course, any equivalent test is also AUMP(«, 1). (Two tests are asymptotically
equivalent, or simply equivalent, if their difference converges to 0 in
P, (5, n-Probability.)

Note that no asymptotic version of unbiasedness or similarity constraint
has been required, though ¢, does have these properties. A similar approach
can be found in Wefelmeyer (1987).

Alternatively, we can first go to the limit and then apply the
Neyman-—Pearson lemma. This is done as follows. Fix %, as above and a test
¢, of asymptotic level o at n. Choose a subsequence n' of n such that
lim E, ,, i, = limsup E; , ,i,. Lemma 1 in the Appendix yields a subse-
quence n” such that lim E, ¢, = [e(2) d®(z — B*!/?h,) for every h =
(hy, hY — B3y'By hy) with hy >0 and some test ¢ of level a. By the
Neyman—Pearson lemma such a test ¢ satisfies [¢(2) dP(z — B*Y/2h,) <
®(B*Y?h, — z,) and achieves equality if and only if ¢(2) = 1(z > z,) almost
everywhere z. This shows again that 1(¢,(n) > z,) is AUMP(«, ), and
Lemma 2 in the Appendix gives us uniqueness up to equivalence. This
approach is extended in Sections 4 and 5.

Let us now summarize our results.

1, if &,(n) = z,,
0, otherwise,

THEOREM 1. Every test i, of asymptotic level a at m satisfies (3) for every
hy = (hyy, h,y) €10,) X 7. The canonical effective score test ¢, = 1(£,(n) =
2,), and any equivalent test, is AUMP(a, n) for testing H: ¢ = O, versus K ;:
¥ > 9, and is unique up to equivalence. Moreover, for each h, € [0, ) X,
E, 1), converges to the right side of (3).

If there is an efficient test statistic (defined in Section 2), we can achieve
efficiency for every n with a global test.

CoroLLARY 1. If T, is an efficient test statistic, then ¢.,(T,) = UT, = z,)
is AUMP(«a) for testing H versus K ).

It may be noted, as in the small-sample case, that the form (4) of asymptot-
ically optimal tests depends on « only through the critical value z,. Hence,
asymptotic p-values may be defined.
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Before closing this section, note that the asymptotic power function in (3)
is an increasing function of the noncentrality B*'/2h . If the nuisance
parameter n had been known, we could have used a test based on S, , with
power function (of the same form) with noncentrality Bi{%h,. The ratio
B* /By, is Pitman’s asymptotic relative efficiency (ARE), relative to what is
possible if n were known. The loss of efficiency, 1 — ARE, is the price for not
knowing the nuisance parameter. We then ask: when can a nuisance parame-
ter be added without causing loss of efficiency?

Enlarge the nuisance parameter as (7, 7). Local parameters and corre-
sponding scores and information are enlarged accordingly. We choose 7 as
that part of the nuisance parameter (if any), possibly after reparametrization,
for which Stein’s (1956) orthogonality condition holds: B,; = By, By, By
(B,3 = 0 if the role of 7 is vacuous). That is, S} = S,, — S,, B3,'B,; and S,
are asymptotically independent. A simple sufficient case is when S, is
asymptotically independent of all other scores. An even more transparent
example is when the likelihood may be factored into two parts containing
only (%,7) and 7, respectively. A linear regression problem is a typical
example, where the regression coefficients (including the parameter of inter-
est) are separated from the covariate distribution (a nuisance parameter).

According to Stein, 7 is “a parameter that makes the problem more
difficult” but should not affect the large-sample performance of a test. Sup-
pose we act as if 7 were known, and construct a test which is equivalent to
the optimal canonical test ¢,. If 7 is also perturbed, the asymptotic distribu-
tion of S¥ in direction % is normal with mean B*h, + (B,; — By, By Bog)h .
and variance B* and hence is free of & _ if and only if Stein’s condition holds.
Thus, no additional loss of efficiency is incurred by 7; such a nuisance
parameter is said to be adaptable. A corresponding optimal test (if existent)
is called an adaptive test. A good illustrative example with nontrivial co-in-
formations is the parametric regression problem: X, = n+ 4Z, + 7¢;, i =
1,...,n, where iid Z’s with known distribution have mean p and finite
positive variance v?, &s are iid and independent of the Z,’s and have known
density f with finite Fisher information I,. It can be easily shown that it
satisfies Stein’s condition. To test H: ¥ = ¥;, we may act as if the scale
parameter 7 is known to get the effective score S* = 7 'n"V2YX[(Z, — w) X
si(X;, — m— 9,Z,)/7}] with s = —f'/f and the effective information B* =
202 2

4. Asymptotically unbiased two-sided tests. We continue to assume
the parameter of interest ¥ to be real, but the alternative hypothesis is now
two-sided. The local alternative is k4 # 0. We assume that 7 =% and
confine attention to tests that are asymptotically unbiased at n, namely tests
¢, for which limsup E, , ¢, < liminf E, , \4, for every h, = (0,%,,) and
hy = (hyy, hy), hyy # 0. A test ¢, is an asymptotically uniformly most
powerful unbiased level « test at m, short AUMPU(«, n), if ¢, is asymptoti-
cally unbiased at n and of asymptotic level « at n and if for every other such
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test ¢, and each 6,(h) with h, # 0, liminf E, ,,¢;, > limsup E, .,,¢,. Again,
if a test is AUMPU(«, 1) for every n, it is called AUMPU(«).

Fix an arbitrary h, = (hyy, h,)) in Z X7, with hy, # 0. Set h) = h,, +
Byy'By hyy and Z = {(a, h) — By,'By,a): a €%}. Then h, belongs to Z, and
every element of ¥ has the same projection (0, hg) on the local null space. Let
iy, be a test that has asymptotic level « at n and is asymptotically unbiased
at n. Choose a subsequence n' that achieves the most power at %, that is,
LimE, ¢, = limsup E, , ,¢,. Lemma 1 in the Appendix assures a subse-
quence n” of n' and a test ¢ for which

lim Ey, ) = [@(2) d®(z = B*'/2h,)

for every h in Z. By the properties of ¢, the test ¢ is an unbiased level-«
test for the asymptotic testing problem which tests whether the mean of a
normal distribution with variance 1 equals 0. A best unbiased level-a test ¢
for this asymptotic testing problem must satisfy ¢(z) = 1(/z| > 2, ,,) almost
everywhere. Its finite-sample analog ¢, = 1(|£,(n| > 2, ;) is asymptotically
most powerful against 6,(%,) among tests which are of asymptotic level « at
n and asymptotically unbiased at 7. Since this test is free of h; and A, is
arbitrary, we may conclude that it is AUMPU(«, n). In the next section, the
same test will be derived based on an invariance principle.

THEOREM 2. Every test i, that has asymptotic level a at n and is
asymptotically unbiased at m for testing H: O = ¥, against Ky: 9+ 9,
satisfies

(5) limsup E, i, < ®(IB*/*hyl — 2, ,5) + ®(—IB**hy| — 2, 5)
for all h = (hg, hn) €% X #,. The two-sided canonical effective score test

L, if|&(n)] = 2.0,
0, otherwise,

(6) b = 1(|&(n)] = 245) =

and any equivalent test, is AUMPU(«,n) and is unique up to equivalence.
Moreover, for each h = (hy, h,) €% X%, E, ;,¢, converges to the right side
of (5).

CoroLLARY 2. If T, is an efficient test statistic, then ¢o(T,) = 1(T,| =
2,,2) is AUMPU(«) for testing H versus K ).

5. Asymptotically invariant tests of multidimensional hypotheses.
The parameter being tested is now of dimension d > 1, with unrestricted
alternatives as in Section 4. We assume that .%, =.%“. Since it is obvious that
there is no AUMP test against unrestricted alternatives, we will first intro-
duce an invariance principle and consider those tests that satisfy the invari-
ance criterion. The invariance we consider arises from the observation that
the score varies with the parametrization.
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Let (= ¢(3) be a (smooth) reparametrization of ¥ that satisfies
1£(9,(hy)) — &y — n~ V2 thyll = o(1) for every hy, € %, {, = {(¥,) and J is
a nonsingular (to retain identifiability) d X d Jacobian matrix. Further as-
sume that ¢, = 9, subtracting the difference from ¢ if necessary. The family
of local alternatives, #? — {0}, is the same. That is, the local parameter space
is invariant under reparametrization. Note also that (0, hf,),) is invariant and
retains its role as the projection on the local null space in the new
parametrization.

On the other hand, the effective score S;, under the parametrization ¢
must satisfy S, — J"S%; — 0 in P, , -probability and can thus be chosen
equal to J7S*,. The asymptotic distribution of S*;, under 6,(A) is normal
with mean B*h, and variance B*, while that of S}, is normal with mean
B} h, and variance B} = J TB*J. We notice that the asymptotic null distribu-
tions of the standardized effective scores, B* '/2S*, and Bg“fl/ ZSZ}, are
standard normal under both parametrizations. Also, the family of asymptotic
local alternative distributions is normal with identity variance, restricted
only by the mean not being 0. Thus the asymptotic distribution of the
standardized effective score is invariant under nonsingular transformations.
Hence it would seem desirable for a canonical score test to be invariant, at
least asymptotically, to the way the hypothesis and the score are represented.

Further noting that B}~ '/?S}, = RTB*~'/?S#, and the set of all R =
B*1/2J(JTB*J)~1/? (orthonormalization) is precisely the set of all orthogonal
d X d matrices {R: RTR = I}, we define: a test s, is asymptotically invariant
at n if, for each hyperplane & = ;0 = {(hy, h} — By,'By hy): hy € %) with
hg € %,, every subsequence has a further subsequence, as provided by Lemma
1 in the Appendix, of which the limit test ¢ is rotation invariant, that is,
o(u) = ¢(RTu) for every u € #% and every rotation R. It is well known
[Lehmann (1986)] that a best rotation invariant test of level « for testing the
mean shift A% = B*'/2h, in the standard multivariate normal distribution
equals almost everywhere the test ¢(u) = 1(u"u > y2(@)), where y2(a) is
the upper a-quantile of the chi-square distribution with d degrees of freedom.
Following a similar argument as in the previous section, we then see that
d(&,(n) is asymptotically uniformly most powerful among all tests that are
asymptotically invariant at m and of asymptotic level « at m, short
AUMPI(«, n).

THEOREM 3. Each test ), which is asymptotically invariant at n and of
asymptotic level a at m for testing H: 9 = 9, against K 3,: O # 9, satisfies

(7 limsup E, ¢, <1 — Gy( xJ(a);hyB*hy)
for every h = (hy, h,) e X %, where G,;(:; 0 2) is the noncentral chi-square

distribution function with d degrees of freedom and noncentrality o?2. The
canonical effective score test of quadratic form

®) b, =1(&(m E(n) = xi(a)) = | & if &,(n)" &.(n) = X3 (),

0, otherwise,
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and any equivalent test, is AUMPI(«, n) and is unique up to equivalence.
Moreover, for each h = (hy, h,) €% X7, E, )b, converges to the right
side of (7).

CorOLLARY 3. If T, is an efficient test statistic, then ¢(T,) = T[T, >
xi(a)) is AUMPI(«) for testing H versus Kg,, that is, AUMPI(a,n) for
every m.

Note that ¢&,(n)%,(n) is the quadratic form S*”B*~'S* evaluated at
0 = (9,,m), and T'T, serves as an estimate thereof. Note also that no
asymptotic unbiasedness or similarity constraints, or invariance with respect
to any transformations of 1 or S, ,, have been required although the test (8)
does have these properties. This invariance requirement is not unlike Wald’s
(1943) requirement of constant power, with respect to the parameter of
interest, on certain ellipsoids. The test may be shown to be asymptotically
most stringent and asymptotically maximin. Hence our optimality agrees
with that of Wald; see Wald (1943) or H4jek and Sidak (1967).

This invariance methodology does not extend to hypotheses about an
infinite-dimensional parameter of interest. By considering every finite-
dimensional projection of local departures, we can see that the only test that
satisfies the invariance requirement is the trivial test ¢, = « (or its asymp-
totic equivalents). Asymptotic properties of other nonparametric tests, such
as the Kolmogorov—Smirnov test or the Cramér-von Mises test, may be
investigated under criteria less restrictive than invariance; see Strasser
(1985).

6. Asymptotic confidence sets. The simplest definition of a confidence
set for ¥, with asymptotic confidence coefficient 1 — « (fixed throughout this
section), is a random set C, in the range of © for which

(9) liminf P, ,(9€C,) 21—«

for all 6, = (9, n,) in the parameter space with n, = n + n~"/?h,_+n" /%
as before. With this definition, a family of AUMP(«) tests—one test for each
null value 4 = ¥,—may be inverted to achieve asymptotically uniformly most
accurate (AUMA) confidence sets. The same holds for families of AUMPU(«)
and AUMPI(«) tests resulting in confidence intervals or ellipsoids. The
reasoning is the same as in the small-sample case, as presented in Lehmann
(1986). However, (9) allows the quality of the approximation to vary with the
parameter values.

An alternative definition would insert an “infimum over 9” [or even over
(%, m)] after the “liminf” in (9). Still, asymptotically optimal confidence sets
result from an inversion of asymptotically optimal effective score tests if
uniformity with respect to the appropriate parameter is inserted into the
basic assumptions. We omit details. Such remarks have been made by others;
see, for example, Le Cam and Yang (1990).
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7. Constructing efficient test statistics. In rare cases, some optimal
canonical tests identified in the previous sections may be free of nuisance
parameters [e.g., Examples 1(b) and 4]. However, as a rule, nuisance parame-
ters do appear, and hence an estimate T, of the standardized effective score
is needed.

It is well known that classical tests such as likelihood ratio tests, Wald
tests and score (Rao) tests are efficient for parametric problems. In fact, Hall
and Mathiason (1990) showed that all of these tests are pointwise equivalent
[up to 0,(1)] to the optimal canonical test under certain regularities. They
also proposed another type of efficient test—the Neyman-Rao test
[Mathiason (1982)] which is constructed by replacing nuisance parameters in
the effective score by Vn -consistent estimates and consistently estimating the
effective information; see also Basawa and Koul (1988). (An estimator 7, for 5
is Vn -consistent if Vnll%, — nll is bounded in probability.) Hence the
Neyman—Rao test can utilize a wide variety of estimates such as moment or
quantile estimates (for nuisance parameters), while the likelihood ratio and
Rao tests typically involve maximum likelihood estimates (asymptotically
efficient estimates, to be exact) which are sometimes difficult to find.

Wald tests can be used for more general problems if we can find asymptoti-
cally efficient estimates for the parameters of interest—an estimator 9, with
n~'%(9, — 9,) asymptotically N(0O, B*~') under every (3,(h,), n,(h,))
[Begun, Hall, Huang and Wellner (1983)]. Asymptotic efficiency of estimates
is frequently shown by establishing joint asymptotic normality with the
scores under the null hypothesis, and then appealing to Le Cam’s third
lemma to determine asymptotic distributions under local alternatives.

Frequently for infinite-dimensional nuisance parameters, such as densities
or hazard functions, Vn -consistent estimators are not available, and hence
neither the likelihood ratio test nor the Rao test can be used. The
Neyman—-Rao test above is also inappropriate. Bickel (1982) proposed an
estimation method for adaptable semiparametric problems, where the esti-
mators adjust themselves (adapt) to available information about the nuisance
parameter. Those estimators are shown to be asymptotically efficient and
thus can be used for Wald tests resulting in efficient tests. A remarkable
aspect to Bickel’s method is that estimators which are only consistent are
used for nuisance nonparametric components. His construction was general-
ized and improved by Schick (1986) and Klaassen (1987) to cover also
nonadaptable situations. Bickel’s original method requires splitting the sam-
ple into two unbalanced parts and estimating the score function based on the
first smaller subsample which is then discarded. Schick (1986) proposed a
modification that splits the sample into (about-equal sized) halves, and uses
both subsamples alternatively in estimating the score function and in evalu-
ating the (effective) score. We may extend the result in a straightforward
manner to splitting the sample into a finite number of subsamples. Klaassen
(1987) shows that the sufficient conditions in Schick (1986) are also neces-
sary.
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Borrowing this method, we can modify the Neyman—Rao test so that it
results in efficient tests for many iid semiparametric problems. (It can be
applied to nonadaptable problems as well as adaptable problems because the
effective scores are orthogonal to the scores for the nuisance parameters by
definition.) In the case of iid observations X;, X,,..., the standardized
effective score can be expressed as £,(n) = (nI*(n))~'/*Ls*(X,), where s is
the effective score function for one observation and I*(n) is the covariance
matrix of s}(X;) under the parameter (9, n). Of course, I*(n) is the matrix
associated with B*.

PROPOSITION.  Let F, be the distribution function of a single observation
under 6, = (¥, n). Suppose §%(-) = S,(-; X;,...,X,) is an estimate of the
effective score function s}. If 8, satisfies

(i) n/? [§5(x) dF,(x) -0
and
(ii) JI85(x) = sk ()| dF,(x) = 0

in P, ., nyprobability for every m, then there exists an efficient test statistic T,.

A possible construction is as follows. Let m denote the integer part of n /2
and set §; . =S, ,(X;X,,y,...,X,) for j=1,...,m, and §; =
S.(X;X,,...,X,) for j=m+1,...,n. Then T, = (X8 (& )}"1/2L8
works. See Schick (1986) for the proof. Under the additional assumptions of
Schick (1987), the sample splitting scheme can be avoided altogether, and we
can use §;(X;) instead of 5 ..

Condition (ii) is a consistency requirement. It is easily satisfied if s¥ is
continuous in m since there are many consistent estimates (e.g., kernel
estimates) even for densities or hazard functions. For some problems (e.g.,
Example 2), condition (i) is satisfied naturally for reasonable score function
estimates. For others, special considerations are necessary [e.g., use of sym-
metrized kernels in Example 1(a)], which vary from problem to problem. See
Schick (1993, 1994) for explicit constructions in semiparametric regression
models.

8. Examples.

ExaMPLE 1(a) (Testing the point of symmetry). Let X,,i =1,...,n, be iid
with density f(-— ), where f is symmetric at 0 and has finite Fisher
information I,. Testing H: 9 = 0 is one of the classical problems in statistics,
dating back to Stein (1956) and Hajek (1962). As in Begun, Hall, Huang and
Wellner (1983), we treat the root density f1/? as a nuisance parameter since
it is square integrable.
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Let 9, = n"'/2h, and consider a sequence of symmetric root densities
fl/z = f1/2 +n"Y?h,+n"'/?,;, where h, is a symmetric, orthogonal (to
f1/?) and square 1ntegrab1e function, and |15, /Il = o(1). By s1mp1e expansions
we get S, ,=n" 1/ZZs(oc) s=—f"/f and S, h, = VEY(h PN (xy)
with o2(h) = I+ 4||h fII Since ' is antisymmetric, there is zero covariance
between the two scores, implying that S,, is the effective score and the
problem is adaptable. The score function s can be estimated by the sym-
metrized kernel method [Bickel (1982) and Schick (1986, 1987)].

We may then treat the resulting s, =§,(x,), i=1,...,n, as if it is a
normal random sample; T, = n*/?3s,/6,, where 5, and &, are the sample
mean and standard deviation of the s,’s, estimates the standardized effective
score, and the test ¢, = 1(T, > z,) is thus an adaptive efficient [AUMP(«a)]
test. The two-sided version is AUMPU(«) and AUMPI(« ) (under sign changes
of 9 and S,,).

Inverting two-sided tests of 9 = 9, we find that the set {9: n'/?[5 (8)| <

2, /2 6,(9)} has asymptotic confidence coefficient 1 — a and is AUMA unbiased
and invariant; here §,() and G,() are as before after subtractlng & from all
of the x.’s. An equlvalent Wald interval is 9, + n'/2z, /20, based on Bickel’s
estlmate of ¥ and any consistent estimate 4, (e.g., the one above).

ExaMPLE 1(b) (Testing the median without assuming symmetry). Suppose
that, instead of the density being symmetric, it is median-centered at 0. Then
we get the same scores as in Example 1(a) but a different directional
information [in direction A = (1, 2,)], o%(h) = 4llg — h/|I*, where g = (f1/?)".
Note that A} (x) = h(2)1(x > O) and A} (x) = hf(x)l(x < 0) are necessar-
ily orthogonal to fY/ 2(ac) Under this constralnt g — h(,f)ll2 is minimized
by a simple projection

<g(+) f(+)1/2>
0+) — g(+) 22 1 7 p()1/2 . H(+) (+)1/2
hroe jpooaE L T e O

Similarly, we get A7) =g —f(0)f'/?, and hence A(x)=g(x) +
f(0)sign(x) Y/ 2(x). Thus the effective score is S} = 2£(0)n~'/2Y sign(x,) with
effective information 4/2(0) (assumed pos1t1ve) and the standardized effec-
tive score n~'/2Y sign(x;) does not depend on the nuisance parameter.

Hence the standard sign test ¢, = 1(n~'/?L sign(x,) > z,) is an efficient
one-sided test for H: & = 0. An equivalent Wald test statistic is
2n1/2 f (0)median(x;) usmg a consistent estimate f (0). Loss of information
for not knowing f is 4||h || which becomes 0 when [ is the density of a
Laplace distribution, as expected. The ARE, relative to an optimal parametric
test when f is known, is 1 — 4||h?||2/If = 4f2(0)/If.

ExamPLE 2 (Testing homogeneity of medians). Consider two independent
random samples X;, i =1,...,nx, and Y}, j = 1,..., ny, from distributions
with densities f(-— w) and g(-— u — %), where f and g each have median 0
and finite Fisher information. To test H: 9 = 0, let 9, = n"*/?h, and u, =
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pm+n"'?h,, n=ny+ ny. Also construct local neighborhoods of f and g as
before. Then we get S,,=n""?L(-g'/gNy; — w), S,, =n"HZ(~f"/f)
X(x; — p) + X(—g /g)(yé wh, S,hp= 2n’1/22(h f1/2)(x — w) and
Snghg =2n""?Y(h,g""/*Ny; — w). Assuming ny/n — p for some 0 < p < 1
as n gets large, the informatlon [in direction (1, hyshp h g)] is

pl2h, — b, £ 12)7 + g2k, — (1 + h,)g'g 2,  g=1-p.

As in Example 1(b), the least favorable directions are 2h%x) =
RAFF12(x) + 2f(0)sign(x)f/?(x)} and 2h%(y) = A + A, Mg'g _I/Z(y) +
2 g(O)s1gn( y)g'/?(y)} for any h,. The resultlng quantlty 4pf*(0)h2 +
49g*(0)1 + h,)* is again minimized by k) = —qg*(0) pf 0) + qu(O)] L
and that gives S the effective information 4qu 2(00g%(0) /[ pf2(0) + qu(O)]

The standardized effective score is thus &,(n) = {npq(pf2(0) +
qg*(0)}* pf(0)L sign(y; — n) — qg(0)L sign(x; — w)}. We can construct an
efficient score test by estimating f(0), g(0), p and the common median wu.
Alternatively, we can use an equivalent Wald test based on the difference
between sample medians, and also requiring estimation of f(0) and g(0), or
otherwise estimating the variances of sample medians.

ExampLE 3 (Linear regression and one-way ANOVA). Let (X;,Z), i =
1,...,n, be iid where X, given Z, =z, has density f(-— 9%z;). The error
density f is arbitrary except that it has finite Fisher information I,. Also
assume that the covariate has mean u and finite positive definite covariance
matrix V.

Let 9, = 9+ n"'?h,. Let also f,/*> =f"? + n"'"?h,+ n"'/?, ., where
||8n f|| = 0(1) The square 1ntegrable function A ; is orthogonal to f 1/ . Then it
is easy to see that S,;, =n"'/?Lz;s(e;) and S,;h,=2n"""?L(h f‘l/z)(e)
where s = —f'/f, e, =x, — 87z, The directional information is Ifh Vhy +
4E||h, + 3(h} ,u,)sfl/zll2 Obv10usly, it is minimized by A% = — 3(hj ,u,)sfl/2
for a given hﬂ, resulting in the effective score S* = n~1/2 Z(z - ;L)s(e ) with
the effective information I, V.

Again construction of an efficient test is possible. Obtain a kernel-based
estimate §, of s as in Example 1(a) based on residuals e;, without symmetriz-
ing. (Use the hypothesized value for J. If ¢ is multidimensional and we are
testing the first coordinate, estimate the other coordinates of ¥ using least
squares or a robust variation under the null hypothesis.) Then apply stan-
dard least squares methods to (s;, z;), i = 1,..., n, where s; = §,(e;), to get
an efficient test. The test is adaptive for f, compared to the regression
problem with known error distribution and arbitrary intercept. Note that
there is no need to assume symmetry of the error distribution. See Schick
(1987).

The above is also valid for nonrandom covariates as long as z, =
n 'Yz, - p, n ¥z, -z, Xz; —2)" >V and n Y?max,_;_,llzll - 0.
Linear regression with censoring is treated in Choi (1989).
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The problem of comparing locations of 2 samples (labeled 1,..., %k, with

sample sizes ny,...,n,, n =n; + -+ +n,) for homogeneity can be handled by
considering the distribution of the jth group, j = 1,..., %k — 1, as that of the
last group shifted by ©;, and thus testing H: 191 = - =%,_, =0 with

n =0, 2. Assuming that n,/n —»p;,, 0<p; <1, for j=1,...,k, an
efficient test can be obtained by estlmatlng the score functlon as previously
described and applying the standard one-way analysis of variance method to
s;; = §,(x;,)’s, where x; is the ith observation in the jth group. The limiting
null distribution of the test statistic is the chi-square distribution with 2 — 1
degrees of freedom, and the test is AUMP invariant—under linear transfor-
mation of the location shifts and the standardized effective scores.

As a parametric homogeneity analog, consider %2 independent samples
from Weibull distributions with common shape B and scale parameters
exp(d;), j = 1,..., k. Now the score s need not be estimated, only the shape
B, which, if estimated efficiently, leads to the same kind of analysis of
variance as just described, with the same kind of asymptotic optimality
Spec1ﬁcally, the F test of one-way analysis of variance applied to y;; xﬁn,
i=1,...,n;,Jj= , k, is asymptotically efficient.

ExamPLE 4 (Proportional hazards regression with time-dependent covari-
ates and censoring). We observe triples (¢;,d;,{z,(s), 0 <s<t}), i=
1,...,n, where ¢, is survival (d; = 1) or censoring (d; = 0) time of the ith
subject with covariate process z;(s). The hazard function of the subject at
time ¢ is assumed to be

Mtl{z;(s),0 <s <t}) = Mtlz;(2)) = /\(t)exp{i}Tzi(t)}

for some unknown baseline hazard function A. To avoid an identifiability
problem, let Xz,(0) = 0, recentering if necessary. The censoring distribution
is arbitrary other than being noninformative and conditionally independent
of survival times given covariates.

Let 9, =9 +n"'?h, and /> =f"? + n"'?h,+ n"'/?, ,, where [ is
the density associated with A, A, is a square integrable and orthogonal (to
fY?) function and ||6an| = 0(1). The corresponding hazard function is A, =
M1+ n"Y2h,) + n=1/%,, for some §,, = o(1), where

hy(t) = 2h,(£) F1/2(t) + zfothf(s)flﬂ(s) ds/txf(s) ds.

Hence the contribution of a single observation (¢;, d;,{z,(s), 0 < s < t,;}) to the
log-likelihood ratio of (9,, A,) to (3, A) is

At
A(s
-] [ 2 expln 72, (5)) - 1}Yi<s) dA(s),

A(t
n-V2d.hT 2,(t,) + d, log{ o ’)}
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where Y;(s) = 1(s < ¢,) and A,(s) = [§A(s)exp{07z,(s)} ds. By simple expan-
sions, we obtain

Sy =12 L [2,(s) AW, (s), Sk =n2 L [hy(s) dW(s),

and information

(10) w B[ E [{H25) + h() V() dA(s)],

where W,(s) = N.(s) — [§Y.(u) dA (u) and N(s) = 1(s > ¢,)d,.
Note that the quantity inside the expectation in (10) may be expanded as

JREmo(s)hy dA(s) + 2 [REmy(s)hy(s) dA(s) + [mo(s)hi(s) dA(s)
= [R5{ma(s) = my(s)mi (s)/mo(s)}hy dA(s)

+ [{REmy(s) /mo(s) + hy(8)) mo(5) dA(s),

where A(s) = [§Mw) du and m,(s) = Lz!(s)Y,(s)exp{d7z,(s)} for k =0, 1,2,
with z2(s) shorthand for z,(s)z,(s)”. Hence it is obvious that (10) is minimal
when A0 = —hTm,/m,, resulting in the effective information

(11) w B [mas) = ma(s)md(5) /o)) dA(s)

and the effective score
SE=8,y = S,u(my/mg) = n 2 L [(2(s) — my(s) /mo(s)} dWi(s)

=n 2 Y [{z:(s) = mu(s) /mo(s)} dN,(s)

=n" 12 ) {z,(t;) — my(8;)/mo(2)},

which is commonly known as the Cox partial score [Cox (1972, 1975)]. A
natural estimator for the effective information is obtained by looking at the
martingale YW.(s), equating its increments to 0 and thus replacing dA(s) in
(11) by mgy'(s) d{EN(s)}, which results in the Cox partial information
n 1T d[my(t)/my(t;) — m(t)mI () /m2(t)].

Therefore, tests based on the Cox partial score and information are AUMP;
likewise, confidence intervals and sets are AUMA. Checking the least favor-
able direction, we also notice that tests are adaptive for baseline hazards
when (and only when) m,(¢) = 0 for all ¢; a simple sufficient case is that
3 =0 and the censoring time does not depend on the covariate (or no
censoring at all). In general, the ARE of the Cox test compared to an optimal
parametric test with known baseline is the proportion of the effective infor-
mation (11) in the full information n~*E[ [m,(s) dA(s)]. These results formal-
ize those of Efron (1977) and Oakes (1977).
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APPENDIX

Suppose the assumptions introduced in Section 2 hold. Fix hg €%, and set
Z ={(hy, h) — By,'Byyhy): hy €7} Note that the power of a test i, for

h € € under LAN can be expressed as [from (2)]
E, i, = Ey 0, exp{Sihy + 8,,h% — 302(h) + r,(h)} + o(1).

nn'tn

We develop a limiting expression for the right side under the fixed null value
6,, and recognize it to be the expectation of a limiting test function times a
limiting likelihood ratio. Consequently, it can be expressed simply as the
expectation of a test function under alternative hypothesis conditions. A final
step integrates out the limiting version of Sm)hg, which has a parameter-free
distribution when confined to the specific hyperplane. We thereby achieve an
asymptotic power representation on the hyperplane as the power of a test
based on a limiting version Z of the standardized effective score, that is,
Eo(Z + B*'/2h ) for some test ¢ and some standard normal random vec-
tor Z.

LEMMA 1. For every test i, and every subsequence n', there exists a
subsequence n" of n' and a test function ¢ from %° to [0, 1] such that

(12) lim B, gt = [¢(2) d®y(z = B*/?h,)

for every h = (hy, hY — Byy'By, hy) in &, where ®, denotes the d-dimensional
standard normal distribution.

PROOF. Since Y, = (¢,, S}, S, hY) are tight under P, , , we can choose a
subsequence n” so that Y,. converges in distribution to some (¢, S*, W)
under P, , , where S* and W are independent, S* is normal with mean 0
and variance B* and W is normal with mean 0 and variance oy =
(h?, Byyh?). Therefore, for each h € Z,

Een”(h)d’n” = Eeol!fn"eXp{Ln”(h)} +o(1)
- E¢exp(S*Thy, + W — Jo2(h)},
since s, exp{L,(h)} is uniformly integrable [see (P1)].

Replace ¢ in (13) by a function (S*, W) by taking conditional expectation
given (S* W). Also note that o2(h) = h] B*hy + 0. Now the exponential
factor in the limit expression in (13) may be recognized as the likelihood ratio
of multinormal distributions with means w = (B*h,, 0) and 0 and common
variance V. Hence this limit expression is the same as E¢(S* + B*hy, W +
o) = Ey,(S* + B*hy), say, after integrating out W (which is independent of
S* and has an A g-free distribution). The final expression in (12) results from
the standardization Z = B*~1/28* 0O

(13)

We expect limiting test functions to be indicators of the limiting version Z
of the standardized effective score &,.(n) being in an appropriate “rejection
region” C. We now show that this occurs if and only if ,. is asymptotically
equivalent to 1(£,.(n) € C).
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LEMMA 2. Let ¢ and n” be as in Lemma 1, and let C be a measurable
subset of #°¢. Then ¢(z) = 1(z € C) almost everywhere z if and only if
g, — 1) € C) > 0in P,y 5, , -probability.

PrOOF. The limiting variable ¢ in the previous proof can be represented
as ¢ = t(S*, W, U), where U is uniformly distributed on (0, 1) and is indepen-
dent of the pair (S*, W) and where ¢ is a measurable function from %¢ X %
X (0,1) to [0, 1]. Indeed, if F(/|S* W) denotes the conditional distribution
function of the random variable ¢ given S* and W, then (¢, S*, W) has the
same distribution as (F~Y(U|S*, W), S*, W), where F~'(ulS* W) = inf{v:
Fw|S*,W) >u} for 0 <u <1; thus we can take ¢ = t(S*, W,U) =
F-YU|S*, W). In this case, the limiting test ¢ becomes ¢(z) =
E(#(B*/2z,W + o2,U)).

Since ¢ is [0, 1]-valued, ¢(z) =1 (=0, respectively) if and only if
t(B*Y2z2, W+ 02,U) =1 (=0, respectively) almost surely. Thus ¢(z) =
1(z € C) almost everywhere z if and only if ¢(B*Y/?z, w,u) = 1(z € C) for
almost all (z,w,u) €% X% X (0,1). As 4, — 1(£,.(n) € C) converges in
distribution to #(B*Y2Z,W,U) — 1(Z € C), the latter is equivalent to ¢, —
1(¢,(n) € C) > 0in P, ., -probability. O
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