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Tests of hypotheses about finite-dimensional parameters in a semi-
Ž .parametric model are studied from Pitman’s moving alternative or local

approach using Le Cam’s local asymptotic normality concept. For the case
of a real parameter being tested, asymptotically uniformly most powerful
Ž .AUMP tests are characterized for one-sided hypotheses, and AUMP
unbiased tests for two-sided ones. An asymptotic invariance principle is
introduced for multidimensional hypotheses, and AUMP invariant tests

Ž .are characterized. These provide optimality for Wald, Rao score ,
Ž .Neyman]Rao effective score and likelihood ratio tests in parametric

models, and for Neyman]Rao tests in semiparametric models when con-
structions are feasible. Inversions lead to asymptotically uniformly most
accurate confidence sets. Examples include one-, two- and k-sample prob-
lems, a linear regression model with unknown error distribution and a
proportional hazards regression model with arbitrary baseline hazards.
Results are presented in a format that facilitates application in strictly
parametric models.

1. Introduction. The first rigorous work to define and construct tests
Ž .which are asymptotically optimal was by Wald 1943 . He argued that

maximum likelihood estimators may be asymptotically sufficient for detecting
local deviations from the null hypothesis and showed that a test based on
them}now called a Wald test}is asymptotically most stringent: its asymp-
totic power function is closest to the asymptotic envelope power function in
the minimax sense in local neighborhoods of the null hypothesis. He also
considered two other definitions of optimality, each achieved by the same
test: namely, asymptotically best average power, or constant power, over a
family of surfaces. Wald also showed equivalence with the likelihood ratio

wtest; score tests had not yet been introduced. In an earlier paper, Wald
Ž .1941 , he showed that a Wald test has a global optimality, but only in

xmodels with a single real parameter. However, this work of Wald has not
been distilled into textbook form}and his optimality results are not even
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quoted in textbooks!}although the test carrying his name has become a
standard in modern statistical practice. And as the scope of statistical appli-
cations has broadened to problems with infinite-dimensional parameters
Ž .nonparametric and semiparametric models , his parametric formulation is
no longer adequate.

Ž .Almost two decades later, Le Cam 1960 introduced local asymptotic
Ž .normality LAN of the log-likelihood ratio along with its asymptotic distribu-

tion under local alternatives, the latter being essential in evaluating local
power. He also showed that the scores are asymptotically sufficient for local
departures. His work was elaborated, extended and distilled by Hajek and´
ˇ Ž .Sidak 1967 . This paved the way for asymptotic optimality of score-based´
Ž . Ž .Rao tests, which was dealt with by Roussas 1972 for parametric simple

Ž . Ž .hypothesis problems. About this time, Neyman 1959 introduced his C a
wtests, a forerunner of effective score tests or Neyman]Rao tests}see Hall

Ž .xand Mathiason 1990 which are a generalization of the popular score tests.
Ž . Ž . Ž .Recent books by Strasser 1985 , Le Cam 1986 , Le Cam and Yang 1990 ,

Ž . Ž .Fabian and Hannan 1985 and Andersen, Borgan, Gill and Keiding 1993
Ž . Ž .and papers by Hall and Mathiason 1990 and Wefelmeyer 1987 include

some material on large-sample tests, all based on LAN. Strasser imposes
similarity or unbiasedness for tests about real parameters and has only
limited results for nuisance functions. Le Cam as well as Le Cam and Yang
deals with decision problems in a very general and abstract setting, and
devotes little attention to the specifics under study here. Fabian and Hannan
and Hall and Mathiason each confine attention to parametric models and
define optimality of tests in limited ways, the first by reference to matching
the performance of the Wald test and the second within a restricted class of
tests. Andersen, Borgan, Gill and Keiding base their development partly on

Ž .Choi 1989 , a forerunner to much of this paper. Wefelmeyer removes the
similarity constraint when testing against a particular contiguous alterna-
tive, and this implies asymptotic optimality in certain one-sided testing
problems. We expand this latter approach here.

Ž .Begun, Hall, Huang and Wellner 1983 present a theory of asymptotically
efficient estimation in semiparametric models utilizing LAN. We attempt a
parallel theory of testing hypotheses about a finite-dimensional parameter,
rigorous but not too complex mathematically. Unlike Begun, Hall, Huang and
Wellner or Strasser, however, we emphasize a directional approach as in

Ž . Ž .Huang 1982 . The paper by Hall and Mathiason 1990 lays the groundwork
for our approach by introducing effective score tests. And we have formulated
assumptions in parallel with this parametric case; the paper thus provides a
theory of optimal testing in parametric models as well as in semiparametric
models.

Results presented here parallel those for testing hypotheses about part of a
vector m when observing a normally distributed random variable with mean
vector Bm and known variance matrix B. In large samples, the normal
variable is the score vector, B the information and m the shift in the
parameter under local alternatives. When the test is one-sided about a real
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Ž . Ž .component m of m s m , m , a uniformly most powerful UMP test is1 1 2
possible. This can be derived as a test of Neyman structure using theory

Ž .presented in Lehmann 1986 by conditioning on a statistic which is sufficient
and complete for the null hypothesis. However, this theory can be
avoided}thereby avoiding a need for dealing with asymptotic sufficiency and
completeness. An alternative derivation is as follows: fix a null value of the
nuisance parameter m , say m0 , and first restrict attention to level-a tests of2 2

Ž 0 . � 0 y1 4m s 0, m vs. m in the hyperplane m: m g RR, m s m y B B m . The2 1 2 2 22 21 1
w Ž .xNeyman]Pearson lemma Lehmann 1986 asserts that a test based on the

effective observation}the residual from regressing the coordinate of interest
on the other coordinates}is UMP. Since this test and its power are free of
m0 , it remains UMP when the parameter space is no longer restricted to the2
hyperplane.

This argument can be extended to handle two-sided alternatives and find a
UMP unbiased test. For testing hypotheses about m of dimension d G 11
against unrestricted alternatives, a UMP invariant test}invariant under a
group of nonsingular linear transformations for the whole vector}can be
obtained relying on a maximal invariant statistic as well as on a sufficient

w Ž .xand complete statistic Lehmann 1986 . Instead, one may deal with the
nuisance parameter m by confining attention to a restricted alternative of a2
hyperplane}thus considering only effective observations}and requiring in-
variance only for effective observations.

Asymptotic analogs of each are given here resulting in the notion of
Ž . Ž .asymptotically uniformly most powerful AUMP , AUMPU unbiased and

Ž .AUMPI invariant tests. In Section 2, Le Cam’s LAN is presented along with
necessary notation and assumptions. And effective scores, effective informa-
tion and efficient test statistics are defined. We then characterize AUMP

Ž .one-sided tests in Section 3. As in Wefelmeyer 1987 , the common asymptotic
similarity restriction is avoided. Characterization is done by stating the
asymptotic local power function. Sufficient for optimality is that a test be
equivalent to a canonical effective score test}an optimal test requiring

Ž .knowledge of nuisance parameters. Stein’s 1956 notion of adaptation is
discussed briefly at the end: replacing, in tests which are optimal when
certain nuisance parameters are known, these parameters by estimates
without affecting the asymptotic performance of the test. This is like a
large-sample version of Studentization; a variance parameter can be replaced
by an estimate without any large-sample penalty.

Two-sided and multidimensional tests are discussed in the next two sec-
tions. The approach used in Section 3 does not directly generalize. Instead,
we focus on a hyperplane in a certain direction and appeal to the asymptotic
power representation in the Appendix, essentially reducing the problem into
a simple normal shift problem discussed above. For invariance, it is noted
that the testing problem is invariant under locally linear transformation of
the parameter of interest, and this motivates requiring standardized effective

Ž . Ž .score tests to be rotation invariant asymptotically . As in Wald 1943 , but in
contrast to common linear-model parametric hypothesis testing, invariance is
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not imposed to deal with the nuisance parameters. Again, optimal tests are
equivalent to canonical effective score tests. Obtaining asymptotic confidence
sets by inversion is briefly discussed in Section 6.

The construction of asymptotically efficient tests is discussed in Section 7.
wIn the parametric case, likelihood ratio tests assuming LAN holds uniformly

Ž .x Ž .}see Hall and Mathiason 1990 , Wald tests and Rao score tests are all
asymptotically efficient, as are effective score tests}canonical tests with

'nuisance parameters replaced by n -consistent estimates. These are typi-
Ž .cally not feasible in the semiparametric case. We modify Bickel’s 1982 and

Ž .Schick’s 1986, 1987 constructions of adaptive estimates to construct effec-
Ž .tive score Neyman]Rao tests when infinite-dimensional nuisance parame-

ters are involved.
The methodology is demonstrated in several semiparametric examples in

the final section. In particular, we show that the partial score tests of Cox
Ž .1975 , popular in survival analysis, are optimal. Some parametric examples

Ž .of effective score tests appear in Hall and Mathiason 1990 ; the theory here
asserts their optimality, without the restrictive conditions imposed there.

In summary, we characterize, and show how to construct, a large-sample
test with a simply stated optimality: either AUMP, AUMPU or AUMPI.
Popular tests, such as Wald, score and likelihood ratio tests, are asymptoti-
cally equivalent to this test, and hence share this optimality. We thus
simplify, clarify and extend the efficiency concepts of large-sample testing,
introduced in Wald’s fundamental paper of 1943.

2. Local asymptotic normality, effective scores and efficient test
statistics. Suppose we are investigating a specific characteristic of a proba-
bility measure P , u g Q, based on some potential data X . The subscript nn, u n
is an index of the amount of data, for example, sample size. By adopting

Žreparametrization if necessary, we assume that u can be partitioned at least
. Ž .locally into q , h so that the characteristic we are interested in is identifi-

able solely by q and the hypothesis to be tested is given as H: q s q . The0
Ž .parameter q of finite dimension d G 1 is called the parameter of interest

Ž .and the parameter h of arbitrary dimension the nuisance parameter or
function.

w Ž .We confine attention to contiguous alternatives Le Cam 1960 and Hajek´
ˇ 'Ž .xand Sidak 1967 . Define a n -neighborhood of q as a collection of se-´ 0

Ž . y1r2 y1r2 5 5 Ž .quences q h s q q n h q n d for h g HH and d s o 1 ,n q 0 q nq q q nq

where the local parameter space HH is a subset of RRd containing 0. Similarlyq' Ž . Ž .define a n -neighborhood of h with h fixed but unknown as h h s h qn h
y1r2 y1r2 5 5 Ž .n h q n d for h g HH and d s o 1 , where the local nuisanceh nh h h nh

Žparameter space HH is a Hilbert space typically, a subspace of a Cartesianh

product of copies of RR andror of LL , the space of square integrable functions2
. 5 5with respect to some fixed measure . Here, ? denotes the norm of the
² :appropriate Hilbert space. We use ? , ? to represent inner product in a

Ž .similar fashion. Let h s h , h be an element in the product space HH of HHq h q

Ž . Ž . Ž Ž . Ž ..and HH , and let u s q , h and u s u h s q h , h h }we omit hh 0 0 n n n q n h
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when dependence on it is obvious from the context. The performance of a test
is evaluated against these sequences of parameters u , approaching u fromn 0
direction h.

Let dP rdP be the Radon-Nikodym derivative of the absolutelyn, u n, un 0

continuous part of P with respect to P . Denote A as the support ofn, u n, u nn 0
Ž .P . Following Le Cam 1960, 1969 , we assume that likelihood ratios ofn, u 0

local alternatives to the null hypothesis are asymptotically log-normally
distributed. More specifically, for x in A , and for each direction h,n n

dP 1n , u Žh.n 21 L h s log s S h y s h q r h ,Ž . Ž . Ž . Ž .n n ndP 2n , u 0

Ž . Ž .where S s S x s S , S is an h-free random linear functional whichn n n nq nh

is asymptotically Gaussian under u with mean 0 and variance B in the0
˜sense that S h is asymptotically normally distributed with mean 0 andn

2 ˜ ˜ ˜ ˜Ž . ² :variance s h s h, Bh for every h, and B is a positive-definite self-
Ž .adjoint bounded linear operator. Under u , r h converges in probability to 00 n

for every h. When x f A , L is defined arbitrarily.n n n
This is the analog of the parametric LAN assumption in Hall and

Ž .Mathiason 1990 , and we choose notation to emphasize the parametric case.
The full process in h is not needed, although it is implicit due to the linearity

˜w Ž .xof S see Strasser 1985 . The joint convergence in S h and S h is sufficientn n n
for application of Le Cam’s third lemma below. The asymptotic covariance is

˜² :h, Bh . A sufficient condition for LAN in the case of random sampling is
Ž .given in Begun, Hall, Huang and Wellner 1983 , namely, Hellinger differen-

tiability with respect to u of the marginal density. This condition is easily
extended to multisample, regression and censoring models, or these can be

Ž .accommodated in the iid case as in Begun, Hall, Huang and Wellner 1983 .
Ž .See also Bickel, Klaassen, Ritov and Wellner 1993 for this and Fabian and

Ž .Hannan 1987 for generalizations to dependent data settings.
Among the immediate consequences of LAN are:

Ž . w Ž .P1 Contiguity, or Le Cam’s first lemma Le Cam 1960 and Hajek and´
ˇ Ž .x Ž .Sidak 1967 , part of which asserts that P A ª 1 for each h.´ u Žh. nn

� Ž .4 � Ž .4Since dP s exp L h dP on A , it also implies that exp L h isu Žh. n u n nn 0

uniformly integrable under u .0
Ž .P2 The asymptotic distribution of the score under local alternatives is

w Ž .readily available. Le Cam’s third lemma Le Cam 1960 , Hajek and´
ˇ Ž . Ž .xSidak 1967 and Hall and Mathiason 1990 implies that S is asymp-´ n

Ž .totically Gaussian under u h with mean Bh and variance B}that is,n
˜ Ž .the asymptotic distribution of S h under u h is normal with meann n

˜ 2 ˜ ˜² : Ž .h, Bh and variance s h for every h.

We have no need for asymptotic sufficiency of the scores here; but see Wald
Ž . Ž . Ž .1943 , Le Cam 1960 and Strasser 1985 .
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Of course, S and B depend on u ; they are the score and information atn 0
˜ 2 ˜Ž .u . Real quantities S h and s h are the directional score and information0 n

˜ w Ž .xin direction h Huang 1982 . We call S the score for the parameter ofnq

interest and S the score for the nuisance parameter. The information Bnh

Ž .may also be partitioned into B , i, j s 1, 2, where B is the information fori j 11
Ž .q , B the information for h and B and B the co-information.22 12 21

We assume that B has a bounded inverse By1. This allows us to define22 22
the effective information B* as B* s B y B By1B and the effective score11 12 22 21

U U Ž y1 . y1 dS as S a s S a, yB B a s S a y S B B a, a g RR . We also thinkn n n 22 21 nq nh 22 21
U T ² : Uof B as the d = d matrix defined by a B*a s a, B*a and of S as an

T U U Ž .d-dimensional random vector defined by a S s S a. Under u h , the ran-n n n
dom vector SU is asymptotically normal with mean BU h and variance B*n q

and is asymptotically independent of S h for each h g HH . Thus thenh h h h

effective information is the asymptotic variance of the effective score, and the
random variable SUa is the residual from projection of S a onto the spacen nq

Žspanned by S }the part of S a which is orthogonal asymptotically uncor-nh nq

.related to S . Of course, it is the same as S a if B s 0 or if no nuisancenh nq 12
parameter is present. The positive definiteness of B implies that of B*. Thus
we can standardize the effective score. To stress the dependence of the
standardized effective score B*y1r2SU on the nuisance parameter h, we shalln

Ž .denote it by j h .n
Although it has an explicit algebraic form, the effective score for a specific

problem may be difficult to obtain, especially when nuisance functions are
involved. Calculation of adjoints or inverses of linear operators is not always

Ž .straightforward. Frequently, it is easier to minimize in h the asymptotich

variance of the directional score S h q S h whose solution is the leastnq q nh h
˜ y1 U ˜favorable direction h s yB B h . Since S h s S h q S h for everyh 22 21 q n q nq q nh h

h , SU can be recovered from this.q n
We will find that asymptotically efficient tests are characterized in terms

Ž .of the standardized effective score j h . So what is needed is a version of then
standardized effective score that is independent of the nuisance parameter,

Ž .that is, a statistic T for which T y j h converges to 0 in P -probabil-n n n n, Žq , h .0

ity for every h. We call such a statistic T an efficient test statistic. It has then
Ž . Ž .same asymptotic properties as j h , namely being AN 0, I under H andn

Ž 1r2 . Ž . ŽAN B* h , I under local alternatives h , h for every h. Alternatively,q q h

T could be defined as any statistic having these asymptotic normalityn
.properties. We show, in turn, in Sections 3 to 5 that one-sided, two-sided and

multidimensional tests based on T }as if we were testing that a normallyn
distributed, identity variance, T had mean 0}are asymptotically uniformlyn
most powerful in some appropriate sense. Construction of such T ’s is consid-n
ered in Section 7.

Ž .The concept of effective scores was first introduced by Neyman 1959 in a
Ž .slightly different form; also see Basawa and Koul 1988 . Effective scores and

information also play a key role in large-sample estimation; see Begun, Hall,
Ž . Ž .Huang and Wellner 1983 , Hall and Mathiason 1990 and Bickel, Klaassen,

Ž .Ritov and Wellner 1993 .
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3. Asymptotically efficient one-sided tests. We consider testing H:
Žq s q vs. K : q ) q for real q with h unspecified. We first act as if h but0 Ž1. 0

.not h is known and consider a local form of these hypotheses, h s 0 vs.h q

w .h ) 0 with h unspecified. It is assumed that HH contains the half-line 0, ` .q h q

ŽWe could enlarge the null hypothesis and its local form to q F q and0
.h F 0, but we keep the simpler form as stated.q

Ž .Fix a g 0, 1 . A test c is of asymptotic level a at h ifn

lim sup E c F a for every h .u Ž0 , h . n hn h

Ž .Such a test c is asymptotically most powerful of level a against u h ifn n
lim inf E c G lim sup E c X for every other such test c X . If this is trueu Žh. n u Žh. n nn n

for every h with h ) 0, such a test is asymptotically uniformly mostq

Ž . Ž .powerful of level a at h, short AUMP a , h . A test is AUMP a if it is
Ž .AUMP a , h for each nuisance parameter h. The word ‘‘local’’ is implicit

everywhere.
It should be noted that the asymptotic level requirement is imposed for

every h . This requirement is crucial and plays the role of restriction toh

regular estimates in estimation theory; see Begun, Hall, Huang and Wellner
Ž . Ž .1983 and Hall and Mathiason 1990 .

Note that, under LAN, the asymptotic power of a test can be evaluated by
a computation under the null distribution. Since, for any test c , E c sn u Žh. nn

Ž . Ž c . Ž .E c 1 A q E c 1 A , and the second part vanishes by P1 as nu Žh. n n u Žh. n nn n

increases, we have, for every h,

E c s E c exp L h q o 1� 4Ž . Ž .u Žh. n u n nn 0

1 2s E c exp S h y s h q r h q o 1 .Ž . Ž . Ž .� 4u n n n20

2Ž .

Ž .Fix h s h , h , h ) 0, temporarily choose h and test the simple1 q 1 h1 q 1 h 0
Ž .hypotheses h s 0, h versus h . Applying the Neyman]Pearson lemma to0 h 0 1
Ž . w Ž . xthe right side of 2 without the o 1 term , we find an optimal test of

asymptotic level a to be of the form w s 1 ifn

1 2 2L h y L h s S h y h y s h y s hŽ . Ž . Ž . Ž . Ž .� 4n 1 n 0 n 1 0 1 02

q r h y r h ) c ,� 4Ž . Ž .n 1 n 0 n

Ž . Ž . Žand w s 0 if L h y L h - c . The asymptotic distribution of S h yn n 1 n 0 n n 1
. Ž . ² : 2Ž .h under u h is normal with mean h y h , Bh and variance s h y h .0 n 1 0 1 0

Ž . ŽLetting h s h the null hypothesis , we find that lim inf c G c s z s h y0 n a 1
1 2. Ž .h y s h y h , where z is the upper a-quantile of the standard normal0 1 0 a2

Ž .distribution F. Now taking h s h the alternative , it follows that1
� Ž .4lim sup E c F 1 y F z y s h y h .u Žh . n a 1 0n 1 2Ž .Simple algebra shows that the noncentrality s h y h is minimized in1 0

h when h y h s yBy1B h , which we call the least favorable direc-h0 h1 h 0 22 21 q 1
Ž 0 . 0 y1tion. The point 0, h , h s h q B B h , is the projection of h onto theh h h1 22 21 q 1 1

² :local null space under the inner product induced by B, namely, h, k sB
² :h, Bk , h, k g HH. As the point in the local null space closest to h , it is the1



S. CHOI, W. J. HALL AND A. SCHICK848

most difficult one to distinguish from h . By plugging in this least favorable1
direction, we have

3 lim sup E c F 1 y F z y B*1r2h s F B*1r2h y z ,Ž . Ž . Ž .u Žh . n a q 1 q 1 an 1

where B* s B y B By1B is the effective information. Note that this11 12 22 21
bound depends on h only through h , that part of the departure we are1 q 1
interested in. It is achieved by the test

1, if j h G z ,Ž .n a4 f s 1 j h G z sŽ . Ž .Ž .n n a ½ 0, otherwise,
Ž . Ž . y1r2 Uwhere j h is the real-valued standardized effective score B* S . Sincen n

Ž .the test is free of h as well as h , we may claim that f is AUMP a , h . Ofq 1 h1 n
Ž . Žcourse, any equivalent test is also AUMP a , h . Two tests are asymptotically

equivalent, or simply equivalent, if their difference converges to 0 in
.P -probability.n, Žq , h .0

Note that no asymptotic version of unbiasedness or similarity constraint
has been required, though f does have these properties. A similar approachn

Ž .can be found in Wefelmeyer 1987 .
Alternatively, we can first go to the limit and then apply the

Neyman]Pearson lemma. This is done as follows. Fix h as above and a test1
c of asymptotic level a at h. Choose a subsequence n9 of n such thatn
lim E X c s lim sup E c . Lemma 1 in the Appendix yields a subse-u Žh . n9 q Žh . nn 1 n 1

Ž . Ž 1r2 .quence n0 such that lim E c s Hw z dF z y B* h for every h su Žh. n0 qn0

Ž 0 y1 .h , h y B B h with h G 0 and some test w of level a . By theq h 22 21 q q

Ž . Ž 1r2 .Neyman]Pearson lemma such a test w satisfies Hw z dF z y B* h Fq

Ž 1r2 . Ž . Ž .F B* h y z and achieves equality if and only if w z s 1 z G z almostq a a

Ž Ž . . Ž .everywhere z. This shows again that 1 j h G z is AUMP a , h , andn a

Lemma 2 in the Appendix gives us uniqueness up to equivalence. This
approach is extended in Sections 4 and 5.

Let us now summarize our results.

Ž .THEOREM 1. Every test c of asymptotic level a at h satisfies 3 for everyn
Ž . w . Ž Ž .h s h , h g 0, ` = HH . The canonical effective score test f s 1 j h G1 q 1 h1 h n n

. Ž .z , and any equivalent test, is AUMP a , h for testing H: q s q versus K :a 0 Ž1.
w .q ) q and is unique up to equivalence. Moreover, for each h g 0, ` = HH ,0 1 h

Ž .E f converges to the right side of 3 .u Žh . nn 1

Ž .If there is an efficient test statistic defined in Section 2 , we can achieve
efficiency for every h with a global test.

Ž . Ž .COROLLARY 1. If T is an efficient test statistic, then f T s 1 T G zn Ž1. n n a

Ž .is AUMP a for testing H versus K .Ž1.

Ž .It may be noted, as in the small-sample case, that the form 4 of asymptot-
ically optimal tests depends on a only through the critical value z . Hence,a

asymptotic p-values may be defined.
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Ž .Before closing this section, note that the asymptotic power function in 3
is an increasing function of the noncentrality B*1r2h . If the nuisanceq

parameter h had been known, we could have used a test based on S withnq

Ž . 1r2power function of the same form with noncentrality B h . The ratio11 q

Ž .B*rB is Pitman’s asymptotic relative efficiency ARE , relative to what is11
possible if h were known. The loss of efficiency, 1 y ARE, is the price for not
knowing the nuisance parameter. We then ask: when can a nuisance parame-
ter be added without causing loss of efficiency?

Ž .Enlarge the nuisance parameter as h, t . Local parameters and corre-
sponding scores and information are enlarged accordingly. We choose t as

Ž .that part of the nuisance parameter if any , possibly after reparametrization,
Ž . y1for which Stein’s 1956 orthogonality condition holds: B s B B B13 12 22 23

Ž . U y1B s 0 if the role of h is vacuous . That is, S s S y S B B and S13 n nq nh 22 21 nt

are asymptotically independent. A simple sufficient case is when S isnt

asymptotically independent of all other scores. An even more transparent
example is when the likelihood may be factored into two parts containing

Ž .only q , h and t , respectively. A linear regression problem is a typical
Žexample, where the regression coefficients including the parameter of inter-

. Ž .est are separated from the covariate distribution a nuisance parameter .
According to Stein, t is ‘‘a parameter that makes the problem more

difficult’’ but should not affect the large-sample performance of a test. Sup-
pose we act as if t were known, and construct a test which is equivalent to
the optimal canonical test f . If t is also perturbed, the asymptotic distribu-n

U Ž y1 .tion of S in direction h is normal with mean B*h q B y B B B hn q 13 12 22 23 t

and variance B* and hence is free of h if and only if Stein’s condition holds.t

Thus, no additional loss of efficiency is incurred by t ; such a nuisance
Ž .parameter is said to be adaptable. A corresponding optimal test if existent

is called an adaptive test. A good illustrative example with nontrivial co-in-
formations is the parametric regression problem: X s h q q Z q t« , i si i i
1, . . . , n, where iid Z ’s with known distribution have mean m and finitei
positive variance v2, « ’s are iid and independent of the Z ’s and have knowni i
density f with finite Fisher information I . It can be easily shown that itf
satisfies Stein’s condition. To test H: q s q , we may act as if the scale0

U y1 y1r2 wŽ .parameter t is known to get the effective score S s t n Ý Z y m =n i
�Ž . 4xs X y h y q Z rt with s s yf 9rf and the effective information B* si 0 i

ty2 v2I .f

4. Asymptotically unbiased two-sided tests. We continue to assume
the parameter of interest q to be real, but the alternative hypothesis is now
two-sided. The local alternative is h / 0. We assume that HH s RR andq q

confine attention to tests that are asymptotically unbiased at h, namely tests
Ž .c for which lim sup E c F lim inf E c for every h s 0, h andn u Žh . n u Žh . n 0 h 0n 0 n 1

Ž .h s h , h , h / 0. A test c is an asymptotically uniformly most1 q 1 h1 q 1 n
Ž .powerful unbiased level a test at h, short AUMPU a , h , if c is asymptoti-n

cally unbiased at h and of asymptotic level a at h and if for every other such
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X Ž . Xtest c and each u h with h / 0, lim inf E c G lim sup E c . Again,n n q u Žh. n u Žh. nn n
Ž . Ž .if a test is AUMPU a , h for every h, it is called AUMPU a .

Ž . 0Fix an arbitrary h s h , h in RR = HH with h / 0. Set h s h q1 q 1 h1 h q 1 h h1
y1 �Ž 0 y1 . 4B B h and GG s a, h y B B a : a g RR . Then h belongs to GG, and22 21 q 1 h 22 21 1

Ž 0 .every element of GG has the same projection 0, h on the local null space. Leth

c be a test that has asymptotic level a at h and is asymptotically unbiasedn
at h. Choose a subsequence n9 that achieves the most power at h , that is,1
lim E c s lim sup E c . Lemma 1 in the Appendix assures a subse-u Žh . n9 u Žh . nn9 1 n 1

quence n0 of n9 and a test w for which

lim E c s w z dF z y B*1r2hŽ . Ž .Hu Žh. n0 qn0

for every h in GG. By the properties of c , the test w is an unbiased level-an
test for the asymptotic testing problem which tests whether the mean of a
normal distribution with variance 1 equals 0. A best unbiased level-a test f

Ž . Ž < < .for this asymptotic testing problem must satisfy f z s 1 z G z almostar2
Ž < Ž < .everywhere. Its finite-sample analog f s 1 j h G z is asymptoticallyn n a r2

Ž .most powerful against u h among tests which are of asymptotic level a atn 1
h and asymptotically unbiased at h. Since this test is free of h and h is1 1

Ž .arbitrary, we may conclude that it is AUMPU a , h . In the next section, the
same test will be derived based on an invariance principle.

THEOREM 2. Every test c that has asymptotic level a at h and isn
asymptotically unbiased at h for testing H: q s q against K : q / q0 Ž2. 0
satisfies

< 1r2 < < 1r2 <5 lim sup E c F F B* h y z q F y B* h y zŽ . Ž . Ž .u Žh. n q a r2 q a r2n

Ž .for all h s h , h g RR = HH . The two-sided canonical effective score testq h h

1, if j h G z ,Ž .n a r26 f s 1 j h G z sŽ . Ž .Ž .n n a r2 ½ 0, otherwise,

Ž .and any equivalent test, is AUMPU a , h and is unique up to equivalence.
Ž .Moreover, for each h s h , h g RR = HH , E f converges to the right sideq h h u Žh. nn

Ž .of 5 .

Ž . Ž < <COROLLARY 2. If T is an efficient test statistic, then f T s 1 T Gn Ž2. n n
. Ž .z is AUMPU a for testing H versus K .ar2 Ž2.

5. Asymptotically invariant tests of multidimensional hypotheses.
The parameter being tested is now of dimension d G 1, with unrestricted
alternatives as in Section 4. We assume that HH s RRd. Since it is obvious thatq

there is no AUMP test against unrestricted alternatives, we will first intro-
duce an invariance principle and consider those tests that satisfy the invari-
ance criterion. The invariance we consider arises from the observation that
the score varies with the parametrization.
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Ž . Ž .Let z s z q be a smooth reparametrization of q that satisfies
5 Ž Ž .. y1r2 y1 5 Ž . d Ž .z q h y z y n J h s o 1 for every h g RR , z s z q and J isn q 0 q q 0 0

Ž .a nonsingular to retain identifiability d = d Jacobian matrix. Further as-
sume that z s q , subtracting the difference from z if necessary. The family0 0

d � 4of local alternatives, RR y 0 , is the same. That is, the local parameter space
Ž 0 .is invariant under reparametrization. Note also that 0, h is invariant andh

retains its role as the projection on the local null space in the new
parametrization.

On the other hand, the effective score SU under the parametrization znz

must satisfy SU y J TSU ª 0 in P -probability and can thus be chosennz nq n, u 0T U U Ž .equal to J S . The asymptotic distribution of S under u h is normalnq nq n
with mean B*h and variance BU, while that of SU is normal with meanq nz

BU h and variance BU s J TBU J. We notice that the asymptotic null distribu-z z z

tions of the standardized effective scores, B*y1r2SU and BUy1r2SU , arenq z nz

standard normal under both parametrizations. Also, the family of asymptotic
local alternative distributions is normal with identity variance, restricted
only by the mean not being 0. Thus the asymptotic distribution of the
standardized effective score is invariant under nonsingular transformations.
Hence it would seem desirable for a canonical score test to be invariant, at
least asymptotically, to the way the hypothesis and the score are represented.

Further noting that BUy1r2SU s RTBUy1r2SU and the set of all R sz nz nq
1r2 Ž T .y1r2 Ž .B* J J B*J orthonormalization is precisely the set of all orthogonal

� T 4d = d matrices R: R R s I , we define: a test c is asymptotically invariantn
�Ž 0 y1 . d40at h if, for each hyperplane GG s GG s h , h y B B h : h g RR withh q h 22 21 q qh

h0 g HH , every subsequence has a further subsequence, as provided by Lemmah h

1 in the Appendix, of which the limit test w is rotation invariant, that is,
Ž . Ž T . dw u s w R u for every u g RR and every rotation R. It is well known

w Ž .xLehmann 1986 that a best rotation invariant test of level a for testing the
mean shift hU s B*1r2h in the standard multivariate normal distributionq q

Ž . Ž T 2Ž .. 2Ž .equals almost everywhere the test f u s 1 u u G x a , where x a isd d
the upper a-quantile of the chi-square distribution with d degrees of freedom.
Following a similar argument as in the previous section, we then see that
Ž Ž ..f j h is asymptotically uniformly most powerful among all tests that aren

asymptotically invariant at h and of asymptotic level a at h, short
Ž .AUMPI a , h .

THEOREM 3. Each test c which is asymptotically invariant at h and ofn
asymptotic level a at h for testing H: q s q against K : q / q satisfies0 Ž3. 0

7 lim sup E c F 1 y G x 2 a ; hT B*hŽ . Ž .Ž .u Žh. n d d q qn

Ž . d Ž 2 .for every h s h , h g RR = HH , where G ?; s is the noncentral chi-squareq h h d
distribution function with d degrees of freedom and noncentrality s 2. The
canonical effective score test of quadratic form

T 2T 1, if j h j h G x a ,Ž . Ž . Ž .2 n n d8 f s 1 j h j h G x a sŽ . Ž . Ž . Ž .Ž .n n n d ½ 0, otherwise,
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Ž .and any equivalent test, is AUMPI a , h and is unique up to equivalence.
Ž . dMoreover, for each h s h , h g RR = HH , E f converges to the rightq h h u Žh. nn

Ž .side of 7 .

Ž . Ž TCOROLLARY 3. If T is an efficient test statistic, then f T s 1 T T Gn Ž3. n n n
2Ž .. Ž . Ž .x a is AUMPI a for testing H versus K , that is, AUMPI a , h ford Ž3.

every h.

Ž .T Ž . UT y1 UNote that j h j h is the quadratic form S B* S , evaluated atn n n n
Ž . Tu s q , h , and T T serves as an estimate thereof. Note also that no0 n n

asymptotic unbiasedness or similarity constraints, or invariance with respect
Ž .to any transformations of h or S , have been required although the test 8nh

does have these properties. This invariance requirement is not unlike Wald’s
Ž .1943 requirement of constant power, with respect to the parameter of
interest, on certain ellipsoids. The test may be shown to be asymptotically
most stringent and asymptotically maximin. Hence our optimality agrees

ˇŽ . Ž .with that of Wald; see Wald 1943 or Hajek and Sidak 1967 .´ ´
This invariance methodology does not extend to hypotheses about an

infinite-dimensional parameter of interest. By considering every finite-
dimensional projection of local departures, we can see that the only test that

Žsatisfies the invariance requirement is the trivial test c s a or its asymp-n
.totic equivalents . Asymptotic properties of other nonparametric tests, such

as the Kolmogorov]Smirnov test or the Cramer]von Mises test, may be´
investigated under criteria less restrictive than invariance; see Strasser
Ž .1985 .

6. Asymptotic confidence sets. The simplest definition of a confidence
Žset for q , with asymptotic confidence coefficient 1 y a fixed throughout this

.section , is a random set C in the range of q for whichn

9 lim inf P q g C G 1 y aŽ . Ž .n , u nn

Ž . y1r2 y1r2for all u s q , h in the parameter space with h s h q n h q n dn n n h nh

Ž .as before. With this definition, a family of AUMP a tests}one test for each
null value q s q }may be inverted to achieve asymptotically uniformly most0

Ž . Ž .accurate AUMA confidence sets. The same holds for families of AUMPU a
Ž .and AUMPI a tests resulting in confidence intervals or ellipsoids. The

reasoning is the same as in the small-sample case, as presented in Lehmann
Ž . Ž .1986 . However, 9 allows the quality of the approximation to vary with the
parameter values.

wAn alternative definition would insert an ‘‘infimum over q ’’ or even over
Ž .x Ž .q , h after the ‘‘lim inf’’ in 9 . Still, asymptotically optimal confidence sets
result from an inversion of asymptotically optimal effective score tests if
uniformity with respect to the appropriate parameter is inserted into the
basic assumptions. We omit details. Such remarks have been made by others;

Ž .see, for example, Le Cam and Yang 1990 .
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7. Constructing efficient test statistics. In rare cases, some optimal
canonical tests identified in the previous sections may be free of nuisance

w Ž . xparameters e.g., Examples 1 b and 4 . However, as a rule, nuisance parame-
ters do appear, and hence an estimate T of the standardized effective scoren
is needed.

It is well known that classical tests such as likelihood ratio tests, Wald
Ž .tests and score Rao tests are efficient for parametric problems. In fact, Hall
Ž .and Mathiason 1990 showed that all of these tests are pointwise equivalent

w Ž .xup to o 1 to the optimal canonical test under certain regularities. Theyp
also proposed another type of efficient test}the Neyman]Rao test
w Ž .xMathiason 1982 which is constructed by replacing nuisance parameters in

'the effective score by n -consistent estimates and consistently estimating the
Ž . Žeffective information; see also Basawa and Koul 1988 . An estimator h for h˜n' ' 5 5 .is n -consistent if n h y h is bounded in probability. Hence the˜n

Neyman]Rao test can utilize a wide variety of estimates such as moment or
Ž .quantile estimates for nuisance parameters , while the likelihood ratio and

ŽRao tests typically involve maximum likelihood estimates asymptotically
.efficient estimates, to be exact which are sometimes difficult to find.

Wald tests can be used for more general problems if we can find asymptoti-
ˆcally efficient estimates for the parameters of interest}an estimator q withn

y1r2 ˆ y1Ž . Ž . Ž Ž . Ž ..n q y q asymptotically N 0, B* under every q h , h hn n n q n h

w Ž .xBegun, Hall, Huang and Wellner 1983 . Asymptotic efficiency of estimates
is frequently shown by establishing joint asymptotic normality with the
scores under the null hypothesis, and then appealing to Le Cam’s third
lemma to determine asymptotic distributions under local alternatives.

Frequently for infinite-dimensional nuisance parameters, such as densities
'or hazard functions, n -consistent estimators are not available, and hence

neither the likelihood ratio test nor the Rao test can be used. The
Ž .Neyman]Rao test above is also inappropriate. Bickel 1982 proposed an

estimation method for adaptable semiparametric problems, where the esti-
Ž .mators adjust themselves adapt to available information about the nuisance

parameter. Those estimators are shown to be asymptotically efficient and
thus can be used for Wald tests resulting in efficient tests. A remarkable
aspect to Bickel’s method is that estimators which are only consistent are
used for nuisance nonparametric components. His construction was general-

Ž . Ž .ized and improved by Schick 1986 and Klaassen 1987 to cover also
nonadaptable situations. Bickel’s original method requires splitting the sam-
ple into two unbalanced parts and estimating the score function based on the

Ž .first smaller subsample which is then discarded. Schick 1986 proposed a
Ž .modification that splits the sample into about-equal sized halves, and uses

both subsamples alternatively in estimating the score function and in evalu-
Ž .ating the effective score. We may extend the result in a straightforward

manner to splitting the sample into a finite number of subsamples. Klaassen
Ž . Ž .1987 shows that the sufficient conditions in Schick 1986 are also neces-
sary.
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Borrowing this method, we can modify the Neyman]Rao test so that it
Žresults in efficient tests for many iid semiparametric problems. It can be

applied to nonadaptable problems as well as adaptable problems because the
effective scores are orthogonal to the scores for the nuisance parameters by

.definition. In the case of iid observations X , X , . . . , the standardized1 2
Ž . Ž Ž ..y1r2 U Ž . Ueffective score can be expressed as j h s nI* h Ýs X , where s isn h i h

Ž .the effective score function for one observation and I* h is the covariance
U Ž . Ž . Ž .matrix of s X under the parameter q , h . Of course, I* h is the matrixh 1 0

associated with B*.

PROPOSITION. Let F be the distribution function of a single observationh

Ž . U Ž . Ž .under u s q , h . Suppose s ? s S ?; X , . . . , X is an estimate of theˆ0 0 n n 1 n
effective score function sU. If sU satisfiesˆh n

i n1r2 sU x dF x ª 0Ž . Ž . Ž .ˆH n h

and

2U Uii s x y s x dF x ª 0Ž . Ž . Ž . Ž .ˆH n h h

in P -probability for every h, then there exists an efficient test statistic T .n, Žq , h . n0

A possible construction is as follows. Let m denote the integer part of nr2
U Ž . Uand set s s S X ; X , . . . , X for j s 1, . . . , m, and s sˆ ˆn, j nym j mq1 n n, j

Ž . � U Ž U .T 4y1r2 US X ; X , . . . , X for j s m q 1, . . . , n. Then T s Ýs s Ýsˆ ˆ ˆm j 1 m n n, j n, j n, j
Ž .works. See Schick 1986 for the proof. Under the additional assumptions of

Ž .Schick 1987 , the sample splitting scheme can be avoided altogether, and we
U Ž . Ucan use s X instead of s .ˆ ˆn j n, j

Ž . UCondition ii is a consistency requirement. It is easily satisfied if s isn
Žcontinuous in h since there are many consistent estimates e.g., kernel

. Žestimates even for densities or hazard functions. For some problems e.g.,
. Ž .Example 2 , condition i is satisfied naturally for reasonable score function

westimates. For others, special considerations are necessary e.g., use of sym-
Ž .xmetrized kernels in Example 1 a , which vary from problem to problem. See

Ž .Schick 1993, 1994 for explicit constructions in semiparametric regression
models.

8. Examples.

Ž . Ž .EXAMPLE 1 a Testing the point of symmetry . Let X , i s 1, . . . , n, be iidi
Ž .with density f ?y q , where f is symmetric at 0 and has finite Fisher

information I . Testing H: q s 0 is one of the classical problems in statistics,f
Ž . Ž .dating back to Stein 1956 and Hajek 1962 . As in Begun, Hall, Huang and´

Ž . 1r2Wellner 1983 , we treat the root density f as a nuisance parameter since
it is square integrable.
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Let q s ny1r2h and consider a sequence of symmetric root densitiesn q
1r2 1r2 y1r2 y1r2 Žf s f q n h q n d , where h is a symmetric, orthogonal ton f n f f
1r2 . 5 5 Ž .f and square integrable function, and d s o 1 . By simple expansionsn f

y1r2 Ž . y1r2 Ž y1r2 .Ž .we get S s n Ýs x , s s yf 9rf and S h s 2n Ý h f xnq i n f f f i
2Ž . 5 5 2with s h s I q 4 h . Since f 9 is antisymmetric, there is zero covariancef f

between the two scores, implying that S is the effective score and thenq

problem is adaptable. The score function s can be estimated by the sym-
w Ž . Ž .xmetrized kernel method Bickel 1982 and Schick 1986, 1987 .

Ž .We may then treat the resulting s s s x , i s 1, . . . , n, as if it is aˆi n i
1r2normal random sample; T s n s rs , where s and s are the sampleˆ ˆn n n n n

mean and standard deviation of the s ’s, estimates the standardized effectivei
Ž . w Ž .xscore, and the test f s 1 T G z is thus an adaptive efficient AUMP an n a

Ž . Ž . Žtest. The two-sided version is AUMPU a and AUMPI a under sign changes
.of q and S .nq

1r2� < Ž . <Inverting two-sided tests of q s q , we find that the set q : n s q F0 n
Ž .4z s q has asymptotic confidence coefficient 1 y a and is AUMA unbiasedˆar2 n

Ž . Ž .and invariant; here s q and s q are as before after subtracting q from allˆn n
ˆ 1r2of the x ’s. An equivalent Wald interval is q " n z s , based on Bickel’sˆi n a r2 n

Ž .estimate of q and any consistent estimate s e.g., the one above .n̂

Ž . Ž .EXAMPLE 1 b Testing the median without assuming symmetry . Suppose
that, instead of the density being symmetric, it is median-centered at 0. Then

Ž .we get the same scores as in Example 1 a but a different directional
w Ž .x 2Ž . 5 5 2 Ž 1r2 .information in direction h s 1, h , s h s 4 g y h , where g s f 9.f f
Žq.Ž . Ž . Ž . Žy.Ž . Ž . Ž .Note that h x s h x 1 x G 0 and h x s h x 1 x - 0 are necessar-f f f f

1r2Ž . 5 Žq. Žq. 5 2ily orthogonal to f x . Under this constraint, g y h is minimizedf
by a simple projection

² Žq. Žq.1r2:g , f
0Žq . Žq. Žq.1r2 Žq. Žq.1r2h s g y f s g q f 0 f .Ž .f 2Žq.1r25 5f

0Žy . Žy. Ž . Žy.1r2 0Ž . Ž .Similarly, we get h s g y f 0 f , and hence h x s g x qf f
Ž . Ž . 1r2Ž . U Ž . y1r2 Ž .f 0 sign x f x . Thus the effective score is S s 2 f 0 n Ý sign x withn i

2Ž . Ž .effective information 4 f 0 assumed positive , and the standardized effec-
y1r2 Ž .tive score n Ý sign x does not depend on the nuisance parameter.i

Ž y1r2 Ž . .Hence the standard sign test c s 1 n Ý sign x G z is an efficientn i a

one-sided test for H: q s 0. An equivalent Wald test statistic is
1r2 ˆ ˆŽ . Ž . Ž .2n f 0 median x using a consistent estimate f 0 . Loss of informationn i n

5 0 5 2for not knowing f is 4 h , which becomes 0 when f is the density of af
Laplace distribution, as expected. The ARE, relative to an optimal parametric

5 0 5 2 2Ž .test when f is known, is 1 y 4 h rI s 4 f 0 rI .f f f

Ž .EXAMPLE 2 Testing homogeneity of medians . Consider two independent
random samples X , i s 1, . . . , n , and Y , j s 1, . . . , n , from distributionsi X j Y

Ž . Ž .with densities f ?y m and g ?y m y q , where f and g each have median 0
and finite Fisher information. To test H: q s 0, let q s ny1r2h and m sn q n
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m q ny1r2h , n s n q n . Also construct local neighborhoods of f and g asm X Y
y1r2 Ž .Ž . y1r2� Ž .before. Then we get S s n Ý yg9rg y y m , S s n Ý yf 9rfnq j nm

Ž . Ž .Ž .4 y1r2 Ž y1r2 .Ž .= x y m q Ý yg9rg y y m , S h s 2n Ý h f x y m andi j n f f f i
y1r2 Ž y1r2 .Ž .S h s 2n Ý h g y y m . Assuming n rn ª p for some 0 - p - 1n g g g j X

w Ž .xas n gets large, the information in direction 1, h , h , h ism f g

5 y1r2 5 2 5 y1r2 5 2p 2h y h f 9 f q q 2h y 1 q h g 9g , q s 1 y p.Ž .f m g m

Ž . 0Ž .As in Example 1 b , the least favorable directions are 2 h x sf
� y1r2Ž . Ž . Ž . 1r2Ž .4 0 Ž . Ž .� y1r2Ž .h f 9 f x q 2 f 0 sign x f x and 2h y s 1 q h g 9g y qm g m

Ž . Ž . 1r2Ž .4 2Ž . 22 g 0 sign y g y for any h . The resulting quantity 4 pf 0 h qm m
2Ž .Ž .2 0 2Ž .w 2Ž . 2Ž .xy14qg 0 1 q h is again minimized by h s yqg 0 pf 0 q qg 0 ,m m

2Ž . 2Ž . w 2Ž . 2Ž .xand that gives the effective information 4 pqf 0 g 0 r pf 0 q qg 0 .
Ž . � Ž 2 Ž .The standardized effective score is thus j h s npq pf 0 qn

2Ž ..4y1r2� Ž . Ž . Ž . Ž .4qg 0 pf 0 Ý sign y y m y qg 0 Ý sign x y m . We can construct anj i
Ž . Ž .efficient score test by estimating f 0 , g 0 , p and the common median m.

Alternatively, we can use an equivalent Wald test based on the difference
Ž . Ž .between sample medians, and also requiring estimation of f 0 and g 0 , or

otherwise estimating the variances of sample medians.

Ž . Ž .EXAMPLE 3 Linear regression and one-way ANOVA . Let X , Z , i si i
Ž T .1, . . . , n, be iid where X given Z s z has density f ?y q z . The errori i i i

density f is arbitrary except that it has finite Fisher information I . Alsof
assume that the covariate has mean m and finite positive definite covariance
matrix V.

Let q s q q ny1r2h . Let also f 1r2 s f 1r2 q ny1r2h q ny1r2d , wheren q n f n f
5 5 Ž . 1r2d s o 1 . The square integrable function h is orthogonal to f . Then itn f f

y1r2 Ž . y1r2 Ž y1r2 .Ž .is easy to see that S s n Ýz s e and S h s 2n Ý h f e ,nq i i n f f f i
where s s yf 9rf, e s x y q Tz . The directional information is I hT Vh qi i i f q q

1 2 1T 1r2 0 T 1r25 Ž . 5 Ž .4E h q h m sf . Obviously, it is minimized by h s y h m sff q f q2 2
U y1r2 Ž . Ž .for a given h , resulting in the effective score S s n Ý z y m s e withq n i i

the effective information I V.f
Again construction of an efficient test is possible. Obtain a kernel-based

Ž .estimate s of s as in Example 1 a based on residuals e , without symmetriz-n̂ i
Žing. Use the hypothesized value for q . If q is multidimensional and we are

testing the first coordinate, estimate the other coordinates of q using least
.squares or a robust variation under the null hypothesis. Then apply stan-

Ž . Ž .dard least squares methods to s , z , i s 1, . . . , n, where s s s e , to getˆi i i n i
an efficient test. The test is adaptive for f, compared to the regression
problem with known error distribution and arbitrary intercept. Note that
there is no need to assume symmetry of the error distribution. See Schick
Ž .1987 .

The above is also valid for nonrandom covariates as long as z sn
y1 y1 T y1r2Ž .Ž . 5 5n Ýz ª m, n Ý z y z z y z ª V and n max z ª 0.i i n i n 1F iF n i

Ž .Linear regression with censoring is treated in Choi 1989 .
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ŽThe problem of comparing locations of k samples labeled 1, . . . , k, with
.sample sizes n , . . . , n , n s n q ??? qn for homogeneity can be handled by1 k 1 k

considering the distribution of the jth group, j s 1, . . . , k y 1, as that of the
last group shifted by q , and thus testing H: q s ??? s q s 0 withj 1 ky1

Ž 1r2 .h s q , f . Assuming that n rn ª p , 0 - p - 1, for j s 1, . . . , k, ank j j j
efficient test can be obtained by estimating the score function as previously
described and applying the standard one-way analysis of variance method to

Ž .s s s x ’s, where x is the ith observation in the jth group. The limitingˆi j n i j i j
null distribution of the test statistic is the chi-square distribution with k y 1
degrees of freedom, and the test is AUMP invariant}under linear transfor-
mation of the location shifts and the standardized effective scores.

As a parametric homogeneity analog, consider k independent samples
from Weibull distributions with common shape b and scale parameters

Ž .exp q , j s 1, . . . , k. Now the score s need not be estimated, only the shapej
b, which, if estimated efficiently, leads to the same kind of analysis of
variance as just described, with the same kind of asymptotic optimality.

b̂nSpecifically, the F-test of one-way analysis of variance applied to y s x ,i j i j
i s 1, . . . , n , j s 1, . . . , k, is asymptotically efficient.j

ŽEXAMPLE 4 Proportional hazards regression with time-dependent covari-
. Ž � Ž . 4.ates and censoring . We observe triples t , d , z s , 0 F s F t , i si i i i

Ž . Ž .1, . . . , n, where t is survival d s 1 or censoring d s 0 time of the ithi i i
Ž .subject with covariate process z s . The hazard function of the subject ati

time t is assumed to be

< < Tl t z s , 0 F s F t s l t z t s l t exp q z t� 4Ž . Ž . Ž . Ž .� 4Ž .Ž .i i i

for some unknown baseline hazard function l. To avoid an identifiability
Ž .problem, let Ýz 0 s 0, recentering if necessary. The censoring distributioni

is arbitrary other than being noninformative and conditionally independent
of survival times given covariates.

Let q s q q ny1r2h and f 1r2 s f 1r2 q ny1r2h q ny1r2d , where f isn q n f n f
Žthe density associated with l, h is a square integrable and orthogonal tof

1r2 . 5 5 Ž .f function and d s o 1 . The corresponding hazard function is l sn f n
Ž y1r2 . y1r2 Ž .l 1 q n h q n d for some d s o 1 , wherel nl nl

`ty1r2 1r2h t s 2h t f t q 2 h s f s ds f s ds.Ž . Ž . Ž . Ž . Ž . Ž .H Hl f f
0 t

Ž � Ž . 4.Hence the contribution of a single observation t , d , z s , 0 F s - t to thei i i i
Ž . Ž .log-likelihood ratio of q , l to q , l isn n

l tŽ .n iy1r2 Tn d h z t q d logŽ .i q i i i ½ 5l tŽ .i
l sŽ .n y1r2 Ty exp n h z s y 1 Y s dL s ,Ž . Ž . Ž .� 4H q i i il sŽ .
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Ž . Ž . Ž . s Ž . � T Ž .4where Y s s 1 s F t and L s s H l s exp q z s ds. By simple expan-i i i 0 i
sions, we obtain

S s ny1r2 z s dW s , S h s ny1r2 h s dW s ,Ž . Ž . Ž . Ž .Ý ÝH Hnq i i nl l l i

and information

2y1 T10 n E h z s q h s Y s dL s ,Ž . Ž . Ž . Ž . Ž .� 4ÝH q i l i i

Ž . Ž . s Ž . Ž . Ž . Ž .where W s s N s y H Y u dL u and N s s 1 s G t d .i i 0 i i i i i
Ž .Note that the quantity inside the expectation in 10 may be expanded as

hT m s h dL s q 2 hT m s h s dL s q m s h2 s dL sŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H Hq 2 q q 1 l 0 l

s hT m s y m s mT s rm s h dL sŽ . Ž . Ž . Ž . Ž .� 4H q 2 1 1 0 q

2Tq h m s rm s q h s m s dL s ,Ž . Ž . Ž . Ž . Ž .� 4H q 1 0 l 0

Ž . s Ž . Ž . kŽ . Ž . � T Ž .4where L s s H l u du and m s s Ýz s Y s exp q z s for k s 0, 1, 2,0 k i i i
2Ž . Ž . Ž .T Ž .with z s shorthand for z s z s . Hence it is obvious that 10 is minimali i i

when h0 s yhT m rm , resulting in the effective informationl q 1 0

y1 T11 n E m s y m s m s rm s dL sŽ . Ž . Ž . Ž . Ž . Ž .� 4H 2 1 1 0

and the effective score

SUsS y S m rm s ny1r2 z s y m s rm s dW s� 4Ž . Ž . Ž . Ž . Ž .ÝHn nq nl 1 0 i 1 0 i

s ny1r2 z s y m s rm s dN s� 4Ž . Ž . Ž . Ž .ÝH i 1 0 i

s ny1r2 z t y m t rm t ,� 4Ž . Ž . Ž .Ý i i 1 i 0 i

w Ž .xwhich is commonly known as the Cox partial score Cox 1972, 1975 . A
natural estimator for the effective information is obtained by looking at the

Ž . Ž .martingale ÝW s , equating its increments to 0 and thus replacing dL s ini
Ž . y1Ž . � Ž .411 by m s d ÝN s , which results in the Cox partial information0 i

y1 w Ž . Ž . Ž . T Ž . 2Ž .xn Ý d m t rm t y m t m t rm t .i 2 i 0 i 1 i 1 i 0 i
Therefore, tests based on the Cox partial score and information are AUMP;

likewise, confidence intervals and sets are AUMA. Checking the least favor-
able direction, we also notice that tests are adaptive for baseline hazards

Ž . Ž .when and only when m t s 0 for all t; a simple sufficient case is that1
Žq s 0 and the censoring time does not depend on the covariate or no

.censoring at all . In general, the ARE of the Cox test compared to an optimal
parametric test with known baseline is the proportion of the effective infor-

Ž . y1 w Ž . Ž .xmation 11 in the full information n E Hm s dL s . These results formal-2
Ž . Ž .ize those of Efron 1977 and Oakes 1977 .
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APPENDIX

Suppose the assumptions introduced in Section 2 hold. Fix h0 g HH and seth h

�Ž 0 y1 . 4GG s h , h y B B h : h g HH . Note that the power of a test c forq h 22 21 q q q n
w Ž .xh g GG under LAN can be expressed as from 2

U 10 2E c s E c exp S h q S h y s h q r h q o 1 .Ž . Ž . Ž .� 4u Žh. n u n n q nh h n2n 0

We develop a limiting expression for the right side under the fixed null value
u , and recognize it to be the expectation of a limiting test function times a0
limiting likelihood ratio. Consequently, it can be expressed simply as the
expectation of a test function under alternative hypothesis conditions. A final
step integrates out the limiting version of S h0 , which has a parameter-freenh h

distribution when confined to the specific hyperplane. We thereby achieve an
asymptotic power representation on the hyperplane as the power of a test
based on a limiting version Z of the standardized effective score, that is,

Ž 1r2 .Ew Z q B* h for some test w and some standard normal random vec-q

tor Z.

LEMMA 1. For every test c and every subsequence n9, there exists an
d w xsubsequence n0 of n9 and a test function w from RR to 0, 1 such that

12 lim E c s w z dF z y B*1r2hŽ . Ž . Ž .Hu Žh. n0 d qn0

Ž 0 y1 .for every h s h , h y B B h in GG, where F denotes the d-dimensionalq h 22 21 q d
standard normal distribution.

Ž U 0 .PROOF. Since Y s c , S , S h are tight under P , we can choose an n n nh h n, u 0
Ž .subsequence n0 so that Y converges in distribution to some f, S*, Wn0

under P , where S* and W are independent, S* is normal with mean 0n0 , u 0

and variance B* and W is normal with mean 0 and variance s 2 s2
² 0 0:h , B h . Therefore, for each h g GG,h 22 h

E c s E c exp L h q o 1� 4Ž . Ž .u Žh. n0 u n0 n0n0 0

1T 2ª Ef exp S* h q W y s h ,Ž .� 4q 2

13Ž .

� Ž .4 w Ž .xsince c exp L h is uniformly integrable see P1 .n n
Ž . Ž .Replace f in 13 by a function c S*, W by taking conditional expectation

Ž . 2Ž . T 2given S*, W . Also note that s h s h B*h q s . Now the exponentialq q 2
Ž .factor in the limit expression in 13 may be recognized as the likelihood ratio

Ž 2 .of multinormal distributions with means m s B*h , s and 0 and commonq 2
Žvariance V. Hence this limit expression is the same as Ec S* q B*h , W qq

2 . Ž . Žs s Ec S* q B*h , say, after integrating out W which is independent of2 0 q

. Ž .S* and has an h -free distribution . The final expression in 12 results fromq

the standardization Z s B*y1r2S*. I

We expect limiting test functions to be indicators of the limiting version Z
Ž .of the standardized effective score j h being in an appropriate ‘‘rejectionn0

region’’ C. We now show that this occurs if and only if c is asymptoticallyn0

Ž Ž . .equivalent to 1 j h g C .n0
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LEMMA 2. Let w and n0 be as in Lemma 1, and let C be a measurable
d Ž . Ž .subset of RR . Then w z s 1 z g C almost everywhere z if and only if

Ž Ž . .c y 1 j h g C ª 0 in P -probability.n0 n0 n0 , Žq , h .0

PROOF. The limiting variable f in the previous proof can be represented
Ž . Ž .as f s t S*, W, U , where U is uniformly distributed on 0, 1 and is indepen-

Ž . ddent of the pair S*, W and where t is a measurable function from RR = RR
Ž . w x Ž < .= 0, 1 to 0, 1 . Indeed, if F ? S*, W denotes the conditional distribution

Ž .function of the random variable f given S* and W, then f, S*, W has the
Ž y1Ž < . . y1Ž < . �same distribution as F U S*, W , S*, W , where F u S*, W s inf v:

Ž < . 4 Ž .F v S*, W G u for 0 - u - 1; thus we can take f s t S*, W, U s
y1Ž < . Ž .F U S*, W . In this case, the limiting test w becomes w z s
Ž Ž 1r2 2 ..E t B* z, W q s , U .2

w x Ž . Ž .Since t is 0, 1 -valued, w z s 1 s 0, respectively if and only if
Ž 1r2 2 . Ž . Ž .t B* z, W q s , U s 1 s 0, respectively almost surely. Thus w z s2
Ž . Ž 1r2 . Ž .1 z g C almost everywhere z if and only if t B* z, w, u s 1 z g C for

Ž . d Ž . Ž Ž . .almost all z, w, u g RR = RR = 0, 1 . As c y 1 j h g C converges inn0 n0

Ž 1r2 . Ž .distribution to t B* Z, W, U y 1 Z g C , the latter is equivalent to c yn0

Ž Ž . .1 j h g C ª 0 in P -probability. In0 n0 , Žq , h .0
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