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Abstract

This paper generalizes recent proposals of density forecasting models and it

develops theory for this class of models. In density forecasting the density of obser-

vations is estimated in regions where the density is not observed. Identification of

the density in such regions is guaranteed by structural assumptions on the density

that allows exact extrapolation. In this paper the structural assumption is made

that the density is a product of one-dimensional functions. The theory is quite

general in assuming the shape of the region where the density is observed. Such

models naturally arise when the time point of an observation can be written as the

sum of two terms (e.g. onset and incubation period of a disease). The developed

theory also allows for a multiplicative factor of seasonal effects. Seasonal effects

are present in many actuarial, biostatistical, econometric and statistical studies.

Smoothing estimators are proposed that are based on backfitting. Full asymptotic

theory is derived for them. A practical example from the insurance business is given

producing a within year budget of reported insurance claims. A small sample study

supports the theoretical results.
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1 Introduction

In-sample density forecasting is in this paper defined as forecasting a structured density in

regions where the density is not observed. This is possible when the density is structured

in such a way that all entering components are estimable in-sample. Let us for example

assume that we have one covariate X representing the start of something; it could be onset

of some infection, underwriting of an insurance contract or the reporting of an insurance

claim, birth of a new member of a cohort or an employee losing his job in the labour

market. Let then Y represent the development or delay to some event from this starting

point. It could be incubation period of some disease, development of an insurance claim,

age of a cohort member or time spend looking for a new job. Then, X+Y is the calendar

time of the relevant event. This event is observed if and only if it has already happened

until a calendar time, say t0. The forecasting exercise is about predicting the density of

future events in calendar times after t0.

The most typical example of a structured density is a simple multiplicative form stud-

ied by Mammen, Mart́ınez-Miranda and Nielsen (2013). The multiplicative density model

assumes that X and Y are independent with smooth densities f and g. When f and g

are estimated by histograms, our in-sample forecasting approach could be formulated via

a parametric model. This version of in-sample density forecasting is omnipresent in aca-

demic studies as well as in business forecasting, see Mart́ınez-Miranda, Nielsen, Sperlich,

Verrall (2013) for more details and references in insurance and in statistics of cohort mod-

els. Extensions of such parametric histogram type of models can often be understood as

structured density models modelled via histograms. A structured density is defined as

a known function of lower-dimensional unknown underlying functions, see Mammen and

Nielsen (2003) for a formal definition of generalised structured models. Under the as-

sumption that the model is true, our forecasts do not extrapolate any parameters or time

series into the future. We therefore call our methodology “in-sample density forecast-

ing”: a structured density estimator forecasting the future without further assumptions

or approximate extrapolations.

Our model is related to deconvolution, but there are two major differences. First, in our
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model one observes not only X+Y but also the summands X and Y . Secondly, X and Y

are only observed if their sum lies in a certain set, e.g., in an interval (0, t0]. This destroys

independence of X and Y and makes the estimation problem be an inverse problem.

We will see below that the first difference leads to rates of convergence that coincide

with rates for the estimation of one-dimensional functions in the classical nonparametric

regression and density settings. The reason is that our model consists in a well-posed

inverse problem. In contrast, deconvolution is an ill-posed inverse problem and allows

only poorer rates of convergence.

This paper adds three new contributions to the literature on in-sample density fore-

casting. First of all, we define smoothing estimators based on backfitting and we develop

a complete asymptotic distribution theory for these estimators. Secondly, we allow for

a general class of regions for which the density is observed. The leading example is a

triangle. A triangle arises in the above examples where the sum of two covariates is

bounded by calendar time. The theoretical discussion in Mammen, Mart́ınez-Miranda

and Nielsen (2013) were restricted to this case. But there exist many other important

support sets, see e.g. Kuang, Nielsen and Nielsen (2008) for a detailed discussion. Thirdly,

we generalize the forecasting model by modelling a seasonal component. This is done by

introducing an additional multiplicative seasonal factor into the model. Then we have

three one-dimensional density functions that enter the model and that can be estimated

in sample. Seasonal effects are omnipresent: onset of some disease could be more likely in

the winter than in the summer; new jobs might be less likely during the summer or they

may depend on the business cycle; more auto insurance claims are reported during the

winter, but they might be bigger on average in the summer; cold winters or hot summers

affect mortality. When a study is running over a few years only and one or two of those

years are not fully observed, data might be too sparse to leave these two years out of

the study. Leaving them in might however generate bias. The inclusion of seasonality in

this paper solves this type of problems and allow us in general to do well when years are

not fully observed. An illustration producing a within-year budget of insurance claims is

given in the application section.

Classical actuarial methodology does not include seasonal effects. Budgets are nor-
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mally carried out manually by highly paid actuaries. The automatic adjustment of sea-

sonal effects offered by this paper is therefore potentially cost saving. Insurance companies

currently use the classical chain ladder technique when forecasting future claims. Classi-

cal chain ladder has recently been identified as being the above mentioned multiplicative

histogram in-sample forecasting approach, see Mart́ınez-Miranda, Nielsen, Sperlich, Ver-

rall (2013). The seasonal adjustment suggested in this paper is therefore directly imple-

mentable to working routines and processes used by today’s non-life insurance companies.

Recent updates of classical chain ladder include Kuang, Nielsen and Nielsen (2009),

Verrall, Nielsen and Jessen (2010), Mart́ınez-Miranda, Nielsen, Nielsen and Verrall (2011)

and Mart́ınez-Miranda, Nielsen and Verrall (2012). These papers re-interpreted classi-

cal chain ladder in modern mathematical statistical terms. The generalised structured

nonparametric model of this paper is a multiplicative density with three effects. The

third seasonal effect is a function of the covariates of the first two effects. Estimation is

carried out by projecting an unstructured local linear density estimator (Nielsen, 1999)

down on the structure of interest. The seasonal addition to the multiplicative density

model of Mammen, Mart́ınez-Miranda and Nielsen (2013) is still a generalised additive

structure, a simple special case of generalised structured models. Generalised structured

models have historically been more studied in regression than in density estimation. Fu-

ture developments of our in-sample density approach will therefore naturally be related

to fundamental regression models, see Linton and Nielsen (1995), Nielsen and Linton

(1998), Opsomer and Ruppert (1997), Mammen, Linton and Nielsen (1999), Jiang, Fan

and Fan (2010), Mammen and Park (2005, 2006), Nielsen and Sperlich (2005), Mammen

and Nielsen (2003), Yu, Park and Mammen (2008), Lee, Mammen and Park (2010, 2012,

2013), Zhang, Park and Wang (2013), among others.

The paper is structured as follows. Section 2 describes our structured in-sample den-

sity forecasting model, and show that the model is identifiable (estimable) under weak

conditions. Section 3 explains a new approach to the estimation of the model. Here, it

is assumed that the data are observed in continuous time and non-parametric smoothing

methods are applied. Section 4 contains the theoretical properties of our method and Sec-

tion 5 considers numerical examples and discusses the performance of the new approach.
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The Appendix contains technical details.

2 The Model

We observe a random sample {(Xi, Yi) : 1 ≤ i ≤ n} from a density f supported on a

subset I of a rectangle [0, 1]2. The density f(x, y) of (Xi, Yi) is a multiplicative function

of three univariate components, where the first two are a function of the coordinate x and

y, respectively, and the third is a function of the sum of the two coordinates, x + y, and

is periodic. Specifically, we consider the following multiplicative model:

f(x, y) = f1(x)f2(y)f3(mJ(x+ y)), (x, y) ∈ I, (2.1)

where mJ(t) = JmodJ(t), modJ(t) = t modulo 1/J for some J > 0, i.e., mJ(t) = J(t −
l/J) for l/J ≤ t < (l + 1)/J , j = 0, 1, 2 . . .. Here, fj are unknown nonnegative functions

supported and bounded away from zero on their supports. We note that mJ(t) always

takes values in [0, 1) as t varies on R
+, and that the third component f3(mJ(·)) is a

periodic function with period J−1.

We will prove the identifiability of the functions f1, f2 and f3 under the constraints

that
∫ 1

0
f1(x) dx =

∫ 1

0
f2(y) dy = 1. We will do this for two scenarios. In the first case

we assume that f1, f2 and f3 are smooth functions. Then identification follows by a

simple argument. Our second result does not make use of smoothness conditions of the

component functions. It only requires conditions on the shape of the set I. The second

result is important for an understanding of our estimation procedure that is based on a

projection onto the model (2.1) without using a smoothing procedure for the component

functions.

Our first identifiability result makes use of the following conditions:

(A1) The projections of the set I onto the x- and y-axis equal [0, 1].

(A2) For every z ∈ [0, 1) there exists (x, y) in the interior of I with mJ(x + y) = z.

Furthermore, for every x, y ∈ (0, 1) there exist x′ and y′ with (x, y′) and (x′, y) in

the interior of I.
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(A3) The functions f1, f2, f3 are bounded away from zero and infinity on their supports.

(A4) The functions f1 and f2 are differentiable on [0, 1]. The function f3 is twice differ-

entiable on [0, 1).

(A5) There exist sequences x0 = 0 < x1 < ... < xk = 1 and y0 = 1 > y1 > ... > yk = 0

with (x, yj) ∈ I for xj ≤ x ≤ xj+1.

Theorem 1 Assume that model (2.1) holds with (A1)–(A5). Then the functions f1, f2, f3

are identifiable.

Remark 1 Let T = max{x + y : (x, y) ∈ I}. We note that the functions fj are not

identifiable in case J < 1/T . To see this, we take f1(u) = f2(u) = c1e
u, f3(u) = eu with

the constant c1 > 0 chosen for f1 = f2 to satisfy the constraint
∫ 1

0
fj(u) du = 1. Consider

also g1(u) = g2(u) = c2e
(J+1)u, g3(u) = c21/c

2
2 with the constants c2 > 0 chosen for g1 = g2

to satisfy the constraint
∫ 1

0
gj(u) du = 1. In case J < 1/T , we have mJ(x+ y) = J(x+ y)

for all (x, y) ∈ I. This implies that (f1, f2, f3) and (g1, g2, g3) give the same multiplicative

density. In fact, if J < 1/T , then the assumption (A2) is not fulfilled.

We now come to our second identifiability result that does not require smoothness

conditions for the functions f1, f2 and f3. This makes use of the following conditions on

the shape of the support set I. To introduce conditions on the support set I, we let I1(y) =
{x : (x, y) ∈ I}, I2(x) = {y : (x, y) ∈ I} and I3l(z) = {x ∈ [0, 1] : (x, (z + l)/J − x) ∈ I}.
Below, we assume that these sets change smoothly as y, x and z, respectively, move.

Here, A△B denotes the symmetric difference of two sets A and B in R, and mes(A) the

Lebesgue measure of a set A ⊂ R. Recall the definition T = max{x+ y : (x, y) ∈ I}, and
with this define L(J) be the largest integer that is less than or equal to TJ .

(A6) For j ∈ {1, 2, 3} there exist partitions 0 = aj0 < ... < ajLj
= 1 of [0, 1] and a

function κ : [0, 1] → R
+ with κ(x) → 0 for x → 0 such that (i) for all u1, u2 ∈

(ajl−1, a
j
l ), mes[Ij(u1)△ Ij(u2)] ≤ κ(|u1 − u2|), l = 1, ..., Lj; j = 1, 2; (ii) for all

u1, u2 ∈ (a3l−1, a
3
l ),

∑L(J)
k=0 mes[I3k(u1)△ I3k(u2)] ≤ κ(|u1 − u2|), l = 1, ..., L3. Fur-

thermore, it holds that mes(I2(x)) > 0, mes(I1(y)) > 0 and
∑L(J)

l=0 mes[I3l(z)] > 0

for x, y ∈ (0, 1) and for z ∈ [0, 1).
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Assumption (A6) will be used to prove the continuity of some relevant functions that

appear in the technical arguments. The continuity of a function γ implies that γ(x) = 0

for all x if it is zero almost all x. The assumption allows a finite number of jumps in

Ij(u) for j = 1, 2 and I3k(u) as u moves. For example, suppose that I = {(x, y) :

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 5/4} and J = 2. In this case, L(J) = 2, and for

k = 0, 1 we have I3k(z) = [0, (z + k)/2] for all z ∈ [0, 1), so that I3k changes smoothly

as z varies on [0, 1). However, for k = 2 we get that I3k(z) = [z/2, 1] for z ∈ [0, 1/2]

and I3k(z) is empty for z ∈ (1/2, 1), thus it changes drastically at z = 1/2. In fact,

limh→0

∑L(J)
k=0 mes[I3k(z + h)△, I3k(z − h)] 6= 0 for z = 1/2. We note that in this case

Assumption (A6) holds if we split [0, 1) into two partitions, [0, 1/2) and (1/2, 1).

The assumptions (A1), (A2), (A5) and (A6) accommodate a variety of sets I that

arise in real applications. Figure 1 depicts some realistic examples of the set I that

satisfy the assumptions. In particular, those sets of the type in the panels (c) and (e)

satisfy (A2) and (A6) if the maximal vertical or horizontal thickness of the stripe is larger

than the period 1/J of the third component function f3(mJ(·)). In the interpretation

of the examples in Figure 1, we follow the equivalent discussion from Keiding(1990) and

Kuang et al.(2008). The triangle in Figure 1a is typical for insurance or mortality when

none of the underwriting years or cohorts are fully run-off. The standard actuarial term

“fully run-off” means that all events from that underwriting year or cohort have been

observed. In almost all practical cases of estimating outstanding liabilities, actuaries stick

to the triangle format leaving out fully run-off underwriting years. While the triangle also

appears in mortality studies, it is common here to leave the fully run-off cohorts in the

study resulting in the support shape given in Figure 1b. The support in Figure 1c arises

when the data analyst only considers observations from the most recent calendar years.

While this approach is omnipresent in practical actuarial science, there is no formal theory

or mathematical models behind these procedures in the actuarial literature. This paper is

therefore an important step towards formalising mathematically actuarial practise while

at the same time improving it. The support given in Figure 1d and Figure 1e arises

when there is a known time transformation such that time is running at another pace for

different underwriting years or cohort years. While this type of time transformations are
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well known in mortality studies often coined as versions of accelerated failure time models.

Time transformations are also well known in actuarial science coined as operational time.

However, the academic literature of actuarial science is still struggling to find a formal

definition of what operational time is. This paper offers one potential solution to this

outstanding and important issue. The last Figure 1f is included to give an impression of

the generality of support structures one could deal with inside our model approach. Data

is missing in the beginning and end of the delay period, but the model is still valid and

in-sample forecasts can be constructed.
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Figure 1: Shapes of possible support sets. The horizontal axis indicates the onset (X)

and the vertical the development (Y).

The model (2.1) has taken structured density forecasting into a new territory by leaving
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the simple multiplicative model. If f3 above was constant (and therefore not in the model)

then our model reduces to the simple multiplicative model analysed in Mart́ınez-Miranda,

Nielsen, Sperlich and Verrall (2013) and Mammen, Mart́ınez-Miranda and Nielsen (2013).

These two papers point out that the simple multiplicative density forecasting model is a

continuous version of a widely used parametric approach corresponding to a structured his-

togram version of in-sample density forecasting based on the simple multiplicative model.

The in-sample density forecasting model under investigation in this paper generalizes the

simple multiplicative approach in an intuitive and simple way including seasonal effects.

In the following theorem, we show that, if there are two multiplicative representations

of the joint density f that agree on almost all points in I, then the component functions

also agree on almost all points in [0, 1]. We will use this result later in the asymptotic

analysis of our estimation procedure.

Theorem 2 Assume that model (2.1) holds with (A1)–(A3), (A5), (A6). Suppose that

(g1, g2, g3) is a tuple of functions that are bounded away from zero and infinity with
∫ 1

0
g1(x) dx =

∫ 1

0
g2(y) dy = 1. Let µj = log fj − log gj. Assume that µ1(x) + µ2(y) +

µ3(mJ(x+ y)) = 0 a.e. on I. Then µj ≡ 0 a.e. on [0, 1].

3 Methodology

We describe the estimation method for the model (2.1). We first note that the marginal

densities of X, Y and mJ(X + Y ) may be zero even if we assume that the joint density

is bounded away from zero. For example, the marginal densities of X and Y at the point

u = 1 are zero for the support set I given in Figure 1a. We estimate the multiplicative

density model on a region where we observe sufficient data. This means that we exclude

the points (1, 0) and (0, 1) in the estimation in the case of Figure 1a, and the point (1, 0)

in the case of Figure 1b. Formally, for a set S ⊂ I, let J1 and J2 denote versions of I1

and I2, respectively, defined by J1(y) = {x : (x, y) ∈ S} and J2(x) = {y : (x, y) ∈ S}, and
define J3l(z) = {x : (x, (z + l)/J − x) ∈ S}. We take an arbitrarily small number δ > 0,
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and find the largest set S such that

mes(J2(x)) ≥ δ, mes(J1(y)) ≥ δ,

L(J)
∑

l=0

mes(J3l(mJ(x+ y))) ≥ δ for all (x, y) ∈ S,

where mes(A) for a set A denotes its length. Such a set is given by S = {(x, y) : 0 ≤ x ≤
1−δ, 0 ≤ y ≤ 1−δ, x+y ≤ 1} in the case of Figure 1a, and S = {(x, y) ∈ I : 0 ≤ x ≤ 1−δ}
in the case of Figure 1b, for example.

We estimate fj on S. Let S1 and S2 be the projections of S onto x- and y-axis,

i.e., S1 = {x ∈ [0, 1] : (x, y) ∈ S for some y ∈ [0, 1]}, S2 = {y ∈ [0, 1] : (x, y) ∈
S for some x ∈ [0, 1]}, and S3 = {mJ(x + y) : (x, y) ∈ S}. In the case of Figure 1a,

S1 = S2 = [0, 1− δ], S3 = [0, 1), but in the case of Figure 1b, S1 = [0, 1− δ], S2 = [0, 1],

S3 = [0, 1). We put the following constraints on fj:

∫

S1

f1(x) dx =

∫

S2

f2(y) = 1.

This is only for convenience. Now, we define fw,1(x) =
∫

J2(x)
f(x, y) dy, fw,2(y) =

∫

J1(y)
f(x, y) dx

and fw,3(z) =
∑L(J)

l=0

∫

J3l(z)
f(x, (z+l)/J−x) dx. Then, the model (2.1) gives the following

integral equations:

fw,1(x) = f1(x)

∫

J2(x)

f2(y)f3(mJ(x+ y)) dy, x ∈ S1

fw,2(y) = f2(y)

∫

J1(y)

f1(x)f3(mJ(x+ y)) dx, y ∈ S2

fw,3(z) = f3(z)

L(J)
∑

l=0

∫

J3l(z)

f1(x)f2((z + l)/J − x) dx, z ∈ S3.

(3.1)

We note that the marginal functions on the left hand sides of the above equations are

bounded away from zero on Sj. Specifically, infu∈Sj
fw,j(u) ≥ δ inf(x,y)∈I f(x, y) > 0 so

that fj in the equations are well-defined.

Suppose that we are given a preliminary estimator of the joint density f . Call it f̂ .

We estimate fw,j by f̂w,j that are defined as fw,j, respectively, with f being replaced by

the preliminary estimator f̂ . Our proposed estimators of fj, for j = 1, 2, 3, are obtained

by replacing fw,j in the integral equations (3.1) by f̂w,j, respectively, and solving the

resulting equations for the multiplicative components. Let ϑ =
∫

S
f(x, y) dx dy and ϑ̂ be
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its estimator defined by ϑ̂ = n−1
∑n

i=1 I[(Xi, Yi) ∈ S]. Putting the constraints
∫

S1

f̂1(x) dx =

∫

S2

f̂2(y) dy = 1,

∫

S

f̂1(x)f̂2(y)f̂3(mJ(x+ y)) dx dy = ϑ̂, (3.2)

they are given as the solution of the following backfitting equations:

f̂1(x) = θ̂1 ·
f̂w,1(x)

∫

J2(x)
f̂2(y)f̂3(mJ(x+ y)) dy

,

f̂2(y) = θ̂2 ·
f̂w,2(y)

∫

J1(y)
f̂1(x)f̂3(mJ(x+ y)) dx

,

f̂3(z) = θ̂3 ·
f̂w,3(z)

∑L(J)
l=0

∫

J3l(z)
f̂1(x)f̂2((z + l)/J − x) dx

,

(3.3)

where θ̂j are chosen so that f̂j satisfy (3.2).

The solution of (3.3) is not given explicitly. The estimates are calculated by an iterative

algorithm with a starting set of function estimates f̂
[0]
1 and f̂

[0]
2 that satisfy the constraints

(3.2). With the initial estimates, we compute f̂
[0]
3 from the third equation at (3.3). Then,

we update f̂
[k−1]
j consecutively for j = 1, 2, 3 and for k ≥ 1 by the equations at (3.3) until

convergence. Specifically, we compute at the kth cycle (k ≥ 1) of the iteration

f̂
[k]
1 (x) = θ̂

[k]
1 · f̂w,1(x)

∫

J2(x)
f̂
[k−1]
2 (y)f̂

[k−1]
3 (mJ(x+ y)) dy

,

f̂
[k]
2 (y) = θ̂

[k]
2 · f̂w,2(y)

∫

J1(y)
f̂
[k]
1 (x)f̂

[k−1]
3 (mJ(x+ y)) dx

,

f̂
[k]
3 (z) = θ̂

[k]
3 · f̂w,3(z)

∑L(J)
l=0

∫

J3l(z)
f̂
[k]
1 (x)f̂

[k]
2 ((z + l)/J − x) dx

,

(3.4)

where θ̂
[k]
j are chosen so that the resulting f̂

[k]
j satisfy (3.2).

We note that the naive two-dimensional kernel density estimator is not consistent near

the boundary region, which jeopardizes the properties of the solution of the backfitting

equation (3.3) at boundaries. For a preliminary estimator f̂ of the joint density f , we take

local linear estimation technique. The local linear estimator f̂ we consider here is similar

in spirit to the proposal of Cheng (1997). Let a(u, v; x, y) = (1, (u− x)/h1, (v − y)/h2)
⊤

and define

A(x, y) =

∫

S

a(u, v; x, y)a(u, v; x, y)⊤h−1
1 h−1

2 K

(

u− x

h1

)

K

(

v − y

h2

)

du dv,
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where (h1, h2) is the bandwidth vector andK is a symmetric univariate probability density

function. Also, define

b̂(x, y) = n−1

n
∑

i=1

a(Xi, Yi; x, y)h
−1
1 h−1

2 K

(

Xi − x

h1

)

K

(

Yi − y

h2

)

Wi,

where Wi = 1 if (Xi, Yi) ∈ S and 0 otherwise. The local linear density estimator f̂ we

consider in this paper is defined by η̂0, where η̂ = (η̂0, η̂1, η̂2) is given by

η̂(x, y) = A(x, y)−1b̂(x, y). (3.5)

It is alternatively defined as

η̂(x, y) = argminη lim
b1,b2→0

∫

S

[

f̂b1,b2(u, v)− a(u, v; x, y)⊤η(x, y)
]2

×K

(

u− x

h1

)

K

(

v − y

h2

)

du dv,

where f̂b1,b2 be the standard two-dimensional kernel density estimator defined by

f̂b1,b2(x, y) = n−1

n
∑

i=1

b−1
1 b−1

2 K

(

x−Xi

b1

)

K

(

y − Yi

b2

)

Wi

for a bandwidth vector (b1, b2).

Before we close this section, we give two remarks. One is that, instead of integrat-

ing the two-dimensional estimator f̂ , one may estimate fw,j directly from the data. In

particular, one may estimate fw,j by the one-dimensional kernel density estimators

f̃w,1(x) = n−1h−1
1

n
∑

i=1

K

(

Xi − x

h1

)

Wi,

f̃w,2(y) = n−1h−1
2

n
∑

i=1

K

(

Yi − y

h2

)

Wi,

f̃w,3(z) = n−1h−1
3

n
∑

i=1

K

(

mJ(Xi + Yi)− z

h3

)

Wi.

Our theory that we present in the next section is valid for this alternative estimation

procedure. The other thing we would like to remark is that one may be also interested in an

extension of the model (2.1) that arises when one observes a covariate Ui ∈ R
d along with

(Xi, Yi). A natural extension of the model (2.1) in this case is that the conditional density

12



of (X, Y ) given U = u has the form f(x, y|u) = f1(x,u)f2(y,u)f3(mJ(x+ y),u), (x, y) ∈
I, where the constraints (B1) now applies to f1(·, z) and f2(·, z) for each z. The method

and theory for this extended model are easy to derive from those we present here.

4 Theoretical Properties

Let S denote the space of function tuples g = (g1, g2, g3) with square integrable univariate

functions gj in the space L2[0, 1]. Define nonlinear functionals Fj for 1 ≤ j ≤ 3 on S by

F1(g) = 1−
∫

S1

g1(x) dx,

F2(g) = 1−
∫

S2

g2(y) dy,

F3(g) = ϑ−
∫

S

g1(x)g2(y)g3(mJ(x+ y)) dx dy.

Also, define nonlinear functionals Fj for 4 ≤ j ≤ 6, now on R
3 × S, by

F4(θ,g)(x) =

∫

J2(x)

[θ1f(x, y)− g1(x)g2(y)g3(mJ(x+ y))] dy,

F5(θ,g)(y) =

∫

J1(y)

[θ2f(x, y)− g1(x)g2(y)g3(mJ(x+ y))] dx,

F6(θ,g)(z) =

L(J)
∑

l=0

∫

J3l(z)

[θ3f(x, (z + l)/J − x)− g1(x)g2((z + l)/J − x)g3(z)] dx,

where θ = (θ1, θ2, θ3)
⊤. Then, we define a nonlinear operator F : R3 × S 7→ R

3 × S by

F(θ,g)(x, y, z) = (F1(g),F2(g),F3(g),F4(θ,g)(x),F5(θ,g)(y),F6(θ,g)(z))
⊤.

Now, we define nonlinear functionals F̂j for 1 ≤ j ≤ 3 on S and F̂j for 4 ≤ j ≤ 6

on R
3 × S as Fj in the above, with the joint density f being replaced by its estima-

tor f̂ and ϑ by ϑ̂. Let F̂ : R
3 × S 7→ R

3 × S be the nonlinear operator defined by

F̂(θ,g)(x, y, z) = (F̂1(g), F̂2(g), F̂3(g), F̂4(θ,g)(x), F̂5(θ,g)(y), F̂6(θ,g)(z))
⊤. Our esti-

mators f̂ = (f̂1, f̂2, f̂3) along with θ̂ = (θ̂1, θ̂2, θ̂3) are given as the solution of the equation

F̂(θ̂, f̂) = 0. (4.1)

From the definition of the nonlinear operator F , we also get F(1, f) = 0, where 1 =

(1, 1, 1)⊤ and f = (f1, f2, f3)
⊤ for the true component functions fj.
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We consider a theoretical approximation of f̂ . Define a nonlinear operator by G(θ,g) =
F(1+θ, f ◦(1+g)), where g1◦g2 denotes the entry-wise multiplication of the two function

vectors g1 and g2. Then, G(0,0) = 0. Let G ′(d, δ) denote the derivative of G(θ,g) at

(θ,g) = (0,0) to the direction (d, δ). We write fw(x, y, z) = (fw,1(x), fw,2(y), fw,3(z))
⊤

and µ̂(x, y, z) = (µ̂1(x), µ̂2(y), µ̂3(z))
⊤, where

µ̂1(x) = fw,1(x)
−1

∫

J2(x)

[

f̂(x, y)− f(x, y)
]

dy,

µ̂2(y) = fw,2(y)
−1

∫

J1(y)

[

f̂(x, y)− f(x, y)
]

dx,

µ̂3(z) = fw,3(z)
−1

L(J)
∑

l=0

∫

J3l(z)

[

f̂(x, (z + l)/J − x)− f(x, (z + l)/J − x)
]

dx.

(4.2)

Let G ′−1 : R3 ×S 7→ R
3 ×S denote the inverse of G ′, whose existence we will prove in the

Appendix. We define f̄ = (f̄1, f̄2, f̄3) along with θ̄ = (θ̄1, θ̄2, θ̄3) by











θ̄ − 1

(f̄ − f)/f











= G ′−1











0

−fw ◦ µ̂











, (4.3)

where g1/g2 denotes the entrywise division of the function g1 by g2.

It can be seen that δ = (δ1, δ2, δ3)
⊤ = ((f̄1 − f1)/f1, (f̄2 − f2)/f2, (f̄3 − f3)/f3)

⊤ along

with d = (d1, d2, d3)
⊤ = (θ̄1 − 1, θ̄2 − 1, θ̄3 − 1)⊤ are given as the solution of the following

system of integral equations.

δ1(x) = d1 + µ̂1(x)−
∫

J2(x)

δ2(y)
f(x, y)

fw,1(x)
dy −

∫

J2(x)

δ3(mJ(x+ y))
f(x, y)

fw,1(x)
dy, x ∈ S1

δ2(y) = d2 + µ̂2(y)−
∫

J1(y)

δ1(x)
f(x, y)

fw,2(y)
dx−

∫

J1(y)

δ3(mJ(x+ y))
f(x, y)

fw,2(y)
dx, y ∈ S2

δ3(z) = d3 + µ̂3(z)−
L(J)
∑

l=0

∫

J3l(z)

δ1(x)
f(x, (z + l)/J − x)

fw,3(z)
dx

−
L(J)
∑

l=0

∫

J3l(z)

δ2((z + l)/J − x)
f(x, (z + l)/J − x)

fw,3(z)
dx, z ∈ S3,

(4.4)
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subject to the constraints

0 =

∫

S1

f1(x)δ1(x) dx

0 =

∫

S2

f2(y)δ2(y) dy

0 =

∫

S

f(x, y) [δ1(x) + δ2(y) + δ3(mJ(x+ y))] dx dy.

(4.5)

In the following theorem, we show that the approximation of f̂ by f̄ is good enough.

In the theorem, we assume that f̂(x, y) − f(x, y) = Op(εn) uniformly on S for some

nonnegative sequence {εn} that converges to zero as n tends to infinity. For the local

linear estimator f̂ defined by (3.5) with h1 ∼ h2 ∼ n−1/5, we have εn = n−3/10
√
log n.

The theorem tells that the approximation errors of f̄j for f̂j are of order Op(n
−3/5 log n).

In Theorem 4 below, we will show that f̄j − fj have magnitude of order Op(n
−2/5

√
log n)

uniformly on Sj. This means that the first-order properties of f̂j are the same as those of

f̄j.

Theorem 3 Assume that the conditions of Theorem 2 hold, and that the joint density f

is bounded away from zero and infinity on its support S with continuous partial derivatives

on the interior of S. If f̂(x, y)− f(x, y) = Op(εn) uniformly for (x, y) ∈ S, then it holds

that |θ̂j − θ̄j| = Op(ε
2
n) and supu∈Sj

|f̂j(u)− f̄j(u)| = Op(ε
2
n).

Next, we present the limit distribution of (f̄ − f)/f . In the next theorem, we assume

that h1 ∼ c1n
−1/5 and h2 ∼ c2n

−1/5 for some constants c1, c2 > 0. For such constants,

define

f̃B(x, y) =
1

2

∫

u2K(u) du

[

c21
∂2

∂x2
f(x, y) + c22

∂2

∂y2
f(x, y)

]

. (4.6)

Also, define µ̃B
j for j = 1, 2, 3 as µ̂j at (4.2) with the local linear estimator f̂ being replaced

by f̃B. In the Appendix, we will show that the asymptotic mean of (f̄j − fj)/fj equals

n−2/5βj, where β = (β1, β2, β3) is the solution of the backfitting equation (4.4) with µ̂

being replaced by µ̃B. Let f̃A denote the centered version of the naive two-dimensional

kernel density estimator. Specifically,

f̃A(x, y) = n−1

n
∑

i=1

[Kh1
(Xi − x)Kh2

(Yi − y)− E (Kh1
(Xi − x)Kh2

(Yi − y))] . (4.7)
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Here and below, we write Kh(u) = K(u/h)/h. Define µ̃A
j for j = 1, 2, 3 as µ̃B

j with f̃A

taking the role of f̃B. We will also show that the asymptotic variances of (f̄j − fj)/fj

equal those of µ̃A
j , respectively, and that they are given by n−4/5σ2

j , where

σ2
1(x) = c−1

1 fw,1(x)
−1

∫

K2(u) du,

σ2
2(y) = c−1

2 fw,2(y)
−1

∫

K2(u) du,

σ2
3(z) = c−1

2 fw,3(z)
−1

∫

[K ∗K(u)][K ∗K(c1u/c2)] du

= c−1
1 fw,3(z)

−1

∫

[K ∗K(u)][K ∗K(c2u/c1)] du,

where K ∗K denotes the two-fold convolution of the kernel K.

In the discussion of Assumption (A6) in Section 2, we note that (A6) allows a finite

number of jumps in Ij(u) for j = 1, 2 and I3l(u) as u changes. These jump points are

actually those where the marginal densities fw,j are discontinuous. At these discontinuity

points the expression of the asymptotic distributions of the estimators is complicate. For

this reason, we consider only those points in the partitions (ajk−1, a
j
k), 1 ≤ k ≤ Lj, for the

asymptotic distribution of f̂j, where ajk are the points that appear in Assumption (A6).

We denote by Sj,c the resulting subset of Sj after deleting all ajk, 1 ≤ k ≤ Lj − 1. Note

that fw,j is continuous on Sj,c due to (A6). In the theorem below we also denote by So
j

the interiors of Sj, j = 1, 2, 3.

For the limit distribution of f̂j, we put an additional condition on the support set. To

state the condition, let Jo
2 (u1;h2) be a subset of J2(u1) such that v ∈ Jo

2 (u1;h2) if and

only if v − h2t ∈ J2(u1) for all t ∈ [−1, 1]. The set Jo
2 (u1;h2) is inside J2(u1) at a depth

h2. In the following assumption, ajk and κ are the points and the function that appear in

Assumption (A6).

(A7) There exist constants C > 0 and α > 1/2 such that the following statements

hold: (i) for any sequence of positive numbers ǫn, Jo
2 (u1;Cǫαn) ⊂ J2(u2) for all

u1, u2 ∈ (a1k−1, a
1
k)∩ S1 with |u1 − u2| ≤ ǫn, 1 ≤ k ≤ L1; J

o
1 (u1;Cǫαn) ⊂ J1(u2) for all

u1, u2 ∈ (a2k−1, a
2
k) ∩ S2 with |u1 − u2| ≤ ǫn, 1 ≤ k ≤ L2; (ii) κ(t) ≤ C|t|α.

Theorem 4 Assume that (A7) and the conditions of Theorem 3 hold, and that the joint

density f is twice partially continuously differentiable. Let the kernel K be supported on
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[−1, 1], symmetric and Lipschitz continuous. Let the bandwidths hj satisfy n1/5hj → cj

for some constants cj > 0. Then, for fixed points uj ∈ So
j ∩Sj,c, it holds that n

2/5(f̄j(uj)−
fj(uj))/fj(uj) are jointly asymptotically normal with mean (βj(uj) : 1 ≤ j ≤ 3) and vari-

ance diag(σj(uj) : 1 ≤ j ≤ 3). Furthermore, (f̄j(uj) − fj(uj))/fj(uj) = Op(n
−2/5

√
log n)

uniformly for uj ∈ Sj.

Remark 2 In the case where the third component function f3 is constant, i.e., there is

no periodic component, the above theorem continue to hold for the component f1 and f2

without those conditions that pertain to the set S3 and the function f3.

5 Numerical Properties

5.1 Simulation studies

We considered two densities on I = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1}. Model 1 has

the components f1 ≡ f2 ≡ 1 on [0, 1], and f3(u) = c1(sin(2πu) + 3/2), u ∈ [0, 1], where

c1 > 0 is chosen to make f(x, y) = f1(x)f2(y)f3(mJ(x + y)) be a density on I. Model

2 has f1(u) = 3/2 − u, f2(u) = 5/4 − 3u2/4 and f3(u) = c2(u
3 − 3u2/2 + u/2 + 1/2)

for some constant c2 > 0. We took J = 2. We computed our estimates on a grid of

bandwidth choice h1 = h2. For Model 1, we took {0.070 + 0.001 × j : 0 ≤ j ≤ 30} in

the range [0.070, 0.100], and for Model 2 we chose {0.40 + 0.02 × j : 0 ≤ j ≤ 20} in

the range [0.40, 0.80]. In both cases, the ranges covered the optimal bandwidths. We

obtained MISEj = E
∫ 1

0
[f̂j(u) − fj(u)]

2du, ISBj =
∫ 1

0
[Ef̂j(u) − fj(u)]

2du and IVj =

E
∫ 1

0
[f̂j(u) − Ef̂j(u)]

2du, for 1 ≤ j ≤ 3, based on 100 pseudo samples. The sample sizes

were n = 400 and 1, 000, but only the results for n = 400 are reported since the lessons

are the same.

Figure 2 is for Model 1. It shows the boxplots of the values of MISEj, ISBj and

IVj computed using the bandwidths on the grid specified above, and thus gives some

indication of how sensitive our estimators are to the choice of bandwidth. The bandwidth

that gave the minimal value of MISE1+MISE2+MISE3 was h1 = h2 = 0.089 in Model 1,

and h1 = h2 = 0.64 in Model 2, for the sample size n = 400. The values of MISEj along
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with ISBj and IVj for these optimal bandwidths are reported in Table 1. Although our

primary concern is the estimation of the component functions, it is also of interest to

see how good the produced two-dimensional density estimator f̂1(x)f̂2(y)f̂3(mJ(x + y))

behaves. For this we include in the table the values of MISE, ISB and IV of the two-

dimensional estimates computed using the optimal bandwidth h1 = h2 = 0.089 in Model 1,

and h1 = h2 = 0.64 in Model 2. For comparison, we also report the results for the two-

dimensional local linear estimates defined at (3.5). For the local linear estimator, we used

its optimal choices h1 = h2 = 0.085 in Model 1, and h1 = h2 = 0.48 in Model 2. We

found that the initial local linear estimates had a large portion of mass outside I and thus

behaved very poorly if they were not re-scaled to be integrated to one on I. The reported
values in Table 1 are for the adjusted local linear estimates. Overall, our two-dimensional

estimator has better performance than the local linear estimator, especially in Model 2.

Figure 3 depicts the true density of Model 1 and our two-dimensional estimate that has

the median performance in terms of ISE.

●

●

●

f1 f2 f3

0.
00

0.
05

0.
10

0.
15

0.
20

MISE

●●

f1 f2 f3

0.
00

0.
05

0.
10

0.
15

0.
20

ISB

f1 f2 f3

0.
00

0.
05

0.
10

0.
15

0.
20

IV

Figure 2: Boxplots for the values of MISE, ISB and IV of our estimates fj computed

using various bandwidth choices (Model 1, n = 400).
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Table 1: Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated vari-

ance (IV) of the estimators.

Component functions Joint density

Our Local

f1 f2 f3 est. linear

Model 1 MISE 0.0756 0.0937 0.1283 0.2493 0.2537

ISB 0.0528 0.0752 0.0963 0.1844 0.2199

IV 0.0228 0.0184 0.0320 0.0649 0.0338

Model 2 MISE 0.0124 0.0057 0.0130 0.0475 0.0624

ISB 0.0120 0.0054 0.0127 0.0469 0.0607

IV 0.0004 0.0003 0.0003 0.0006 0.0017
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Figure 3: The true density (left) and our estimated two-dimensional density function

(right) computed from the pseudo sample that gives the median performance in terms of

ISE, for Model 1 and n = 400.

5.2 Data examples

The original data set we analyze in this section was collected between the year 1990

to 2011 by the major global UK based non-life insurance company RSA. The data set
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– and more details about it – is publicly available via the Cass Business School web

site together with the paper “Double Chain Ladder” at the Cass knowledge site. The

observations were the incurred counts of large claims aggregated by months. During

the 264 months 1516 large claims were made. The dataset is provided in the form of a

classical run-off triangle {Nkl : 1 ≤ k, l ≤ 264, k+ l ≤ 265}, where Nkl denotes the number

of large claims incurred in the kth month and reported in the (k + l − 1)th month i.e.

with (l − 1) months delay. Since the data are grouped monthly, we need pre-smoothing

of the data to apply the model (2.1) that is based on data recorded over a continuous

time scale. A natural way of pre-smoothing is to perturb the data by uniform random

variables. Thus, we converted each claim (k, l) on the two-dimensional discrete time scale

{(k, l) : 1 ≤ k, l ≤ 264, k + l ≤ 265}, into (X, Y ) on the two-dimensional continuous time

scale I = {(x, y) : 0 ≤ x, y ≤ 1, x+ y ≤ 1}, by

X =
k − 1 + U1

264
, Y =

l − 1 + U2

264
,

where (U1, U2) is a two-dimensional uniform random variate on the unit square [0, 1]2.

This gives a converted dataset {(Xi, Yi) : 1 ≤ i ≤ 1516}. We applied to this dataset our

method of estimating the structured density f of (X, Y ).

Since one month corresponds to an interval with length 1/264 on the [0, 1] scale, one

year is equivalent to an interval with length 12/264 = 1/22 on the latter scale. We let

the periodic component f3(mJ(·)) in the model (2.1) reflect a possible seasonal effect,

so that we take one year in the real time to be the period of the function. This means

that we let the periodic component f3(mJ(·)) have 1/22 as its period, and thus take

J = 22. For the bandwidth we took h1 = h2 = 0.01. The chosen bandwidth may be

considered to be too small for the estimation of f1 and f2. However, we took such a small

bandwidth to detect possible seasonality. Note that the bandwidth size 0.01 corresponds

to 0.01 × 12 × 22 = 2.64 months. We found that even with this small bandwidth the

estimated curve f̂3 was nearly a constant function, which suggests that the large claim

data do not have a seasonal effect.

To see how well our method detects a possible seasonal effect in the data, we augmented
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the dataset by adding a certain level of seasonal effect as follows. We computed

N ′
kl = 2Nkl if k + l = 12m for some m = 1, 2, . . . ,

N ′
kl = 3Nkl if k + l = 12m+ 1 for some m = 1, 2, . . . ,

N ′
kl = 5Nkl if k + l = 12m+ 2 for some m = 0, 1, . . . ,

N ′
kl = 3Nkl if k + l = 12m+ 3 for some m = 0, 1, . . . ,

N ′
kl = Nkl otherwise.

Since (k + l − 1 modulo 12) is the actual month of the claims reported, the augmented

dataset has added claims in November, December, January and February. The augmen-

tation resulted in increasing the total number of claims to 2606 from 1516. The increased

counts of reported claims were 252 from 126 for November, 600 from 200 for December,

455 from 91 for January, and 300 from 100 for February.

In our estimation procedure, the bandwidths h1 and h2 control the smoothness of the

local linear estimate f̂ along the x- and y-axis, respectively. Consequently, choosing small

values for h1 and h2 would result in non-smooth estimates of the functions f1 and f2, which

we observed in the pilot study with h1 = h2 = 0.01. Nevertheless, in some cases setting

these bandwidths to be small, relative to the scales of X and Y , might be preferred when

one needs to detect possible seasonality, as is the case with the current dataset. In our

dataset the bandwidth size 1/264 = 0.0038 on the scale of [0, 1] corresponds to one month

in real time. Thus, taking the bandwidths to be 0.015, for example, that corresponds to

a period of four months, forces the seasonal effect to almost vanish in the estimate of f3.

To achieve both aims of producing smooth estimates of f1 and f2, and of detecting

possible seasonal effect, we applied to the augmented dataset a two-stage procedure that

is based on our estimation method described in Section 3. In the first stage, we got a local

linear estimate f̂ with h1 = h2 = 0.01, and found an estimate of f3 using the iteration

scheme at (3.4). In the second stage, we recomputed a local linear estimate f̂ with larger

bandwidths h1 = h2 = 0.05, and found estimates of f1 and f2 using only the first two

updating equations at (3.4) with f̂
[k−1]
3 being replaced by the estimate of f3 obtained in

the first stage.

The results of applying this two-stage procedure to the augmented dataset are pre-
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sented in Figure 4. Clearly, the seasonal effect of the augmented dataset was well recovered

in the estimate of f3, and at the same time smooth estimates of f1 and f2 were produced.

The augmented data set indicate an increased number of claims in the winter time. This

is clearly reflected in the estimated results, where the first part and the last part of the

estimated effect is higher than the rest of the curve. Imagine the realistic situation that

a non-life insurer on the first day of November has to produce budget expenses for the

rest of the year. The classical multiplicative methodology is not able to reflect the two

month perspective of such a budget. Therefore considerable work is being done manually

in Finance and Actuarial departments of non-life insurance companies to correct for such

effects. With our new seasonal correction costly manual procedures can be replaced by

cost saving automatic ones eventually benefitting the prices all of us as end customers

have to pay for insurance products.

Figure 5 depicts the resulting two-dimensional joint density. Notice that this two-

dimensional density is clearly non-multiplicative. The seasonal correction provides a vi-

sually deviation from the multiplicative shape. Also, note that while this two-dimensional

density is non-multiplicative, the nature of this deviation is not immediately clear to the

eye. Whether the deviation is pure noise, a seasonal effect or some other effect is not easy

to get from the full two-dimensional graph of the local linear density estimate which is

also presented in Figure 5. For the local linear estimate we used h1 = h2 = 0.03. We tried

other bandwidth choices such as 0.01 and 0.05, but found that the smaller one gave too

rough estimate and the larger one produced too smooth a surface. Our two-dimensional

density estimate therefore illustrates why research into structured densities on non-trivial

supports is crucial to extract information beyond the classical and simple multiplicative

one.
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Figure 4: Estimated curves f̂j for the model (2.1) obtained by applying the two-stage

procedure to the augmented large claim data.
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Figure 5: Local linear joint density estimate (left) and our estimate (right) for the model

(2.1) obtained by applying the two-stage procedure to the augmented large claim data

Appendix

A.1 Proof of Theorem 1

Suppose that (g1, g2, g3) is a tuple of functions that are bounded away from zero and

infinity with
∫ 1

0
g1(x) dx =

∫ 1

0
g2(y) dy = 1 and

f(x, y) = g1(x)g2(y)g3(mJ(x+ y)).
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Furthermore, we assume that g1 and g2 are differentiable on [0, 1] and that g3 is twice

differentiable on [0, 1). For j ∈ {1, 2, 3} define µj = log fj − log gj. By assumption we

have

µ1(x) + µ2(y) + µ3(mJ(x+ y)) = 0.

For z ∈ [0, 1) we choose (x, y) in the interior of I with mJ(x+ y) = z. Then we have

that

0 =
∂2

∂x∂y
[µ1(x) + µ2(y) + µ3(mJ(x+ y))] = µ′′

3(z).

Thus µ3 is a linear function. Furthermore, we have that µ3(0) = µ3(1−). This follows

by noting that µ3(0) = −µ1(x) − µ2(y) for (x, y) ∈ I with mJ(x + y) = 0. Note that

mJ(x + y) = 0 if and only if x + y = l/J for some l ≥ 1, if (x, y) is in the interior of I.
After slightly decreasing x and y to x+ δx and y + δy with small δx < 0, δy < 0 we have

that µ3(1+J(δx+δy)) = −µ1(x+δx)−µ2(y+δy) since mJ(x+y+δx+δy) = 1+J(δx+δy).

Thus µ3(0) = µ3(1−) follows from continuity of µ1 and µ2. We conclude that µ3 must be

a constant function. Thus µ1(x) + µ2(y) is a constant function.

From Assumption (A5) we get that µ1(x) is constant on the intervals [xj, xj+1]. Be-

cause the union of these intervals is equal to [0, 1] we conclude that µ1(x) is constant on

[0, 1]. Using again (A5) we get that µ2(y) is constant on [0, 1]. Because of the assumption

that
∫ 1

0
g1(x) dx =

∫ 1

0
g2(y) dy = 1 and

∫ 1

0
f1(x) dx =

∫ 1

0
f2(y) dy = 1 we get that f1 = g1,

f2 = g2 and f3 = g3. This concludes the proof.

A.2 Proof of Theorem 2

We first argue that µ1, µ2 and µ3 are a.e. equal to piecewise continuous functions on (0, 1),

with a finite number of pieces. To see that µ1 is a.e. equal to a piecewise continuous

function, we note that

µ1(x) = −
∫

I2(x)

[µ2(y) + µ3(mJ(x+ y))] dy/mes(I2(x)), a.e. x ∈ (0, 1).

Here, because of (A3) and (A6), the right hand side is a piecewise continuous function.

Thus, µ1 is a.e. equal to a piecewise continuous function. In abuse of notation, we now

denote the piecewise continuous function by µ1. By similar arguments one sees that
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µ2, and µ3 are piecewise continuous functions (or more precisely a.e. equal to piecewise

continuous functions). This implies that

µ1(x) + µ2(y) + µ3(mJ(x+ y)) = 0 (A.1)

for (x, y,mJ(x+y)) 6∈ {x1, ..., xr1}×(0, 1)2∪(0, 1)×{y1, ..., yr2}×(0, 1)∪(0, 1)2×{z1, ..., zr3}
for some values x1, ..., xr1 , y1, ..., yr2 , z1, ..., zr3 ∈ (0, 1).

We now argue that µ3 is continuous on [0, 1). To see that µ3 is continuous at z0 ∈ [0, 1),

we choose (x0, y0) in the interior of I such that mJ(x0+y0) = z0. This is possible because

of Assumption (A2). We can choose x0 and y0 such that µ1 is continuous at x0 and µ2

is continuous at y0. Thus we get from (A.1) that µ3 is continuous at z0. Similarly one

shows that µ1 and µ2 are continuous functions on [0, 1]. This gives that

µ1(x) + µ2(y) + µ3(mJ(x+ y)) = 0 (A.2)

for all x, y ∈ (0, 1).

For z0 ∈ [0, 1) we choose (x0, y0) in the interior of I with mJ(x0 + y0) = z0. Note

that for δx and δy sufficiently small we get for z0 ∈ (0, 1) that mJ(x0 + δx + y0 + δy) =

z0 + J(δx + δy). This gives for δx and δy sufficiently small that

µ1(x0 + δx) + µ2(y0 + δy) + µ3(z0 + J(δx + δy)) = 0.

With δx, δ
′
y and δy sufficiently small we get that

µ2(y0 + δy) + µ3(z0 + J(δx + δy)) = µ2(y0 + δ′y) + µ3(z0 + J(δx + δ′y)).

With the special choice δx = −δy this gives

µ2(y0 + δy) + µ3(z0) = µ2(y0 + δ′y) + µ3(z0 + J(δ′y − δy)).

Let γ be a function defined by γ(u) = µ3(z0 + Ju)− µ3(z0). From the last two equations

taking u = δx + δy and v = δ′y − δy, we get

γ(u+ v) = γ(u) + γ(v)

for u, v sufficiently small. This implies that, with a constant cz0 depending on z0 we have

γ(u) = cz0u for u sufficiently small, see Theorem 3 of Guillot et al. (2013). Thus, we obtain
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µ3(z) = az0 + bz0z with constants az0 and bz0 depending on z0 for z in a neighborhood Uz0

of z0. Because every interval [z′, z′′] with 0 < z′ < z′′ < 1 can be covered by the union of

finitely many Uz’s we get that for each such interval it holds that µ3(z) = az′,z′′ + bz′,z′′z

for z ∈ [z′, z′′] with constants az′,z′′ and bz′,z′′ depending on the chosen interval [z′, z′′].

One can repeat the above arguments for z0 = 0. Then we have that mJ(x0+ δx+ y0+

δy) = 1+J(δx+ δy) for δx+ δy < 0 and mJ(x0+ δx+ y0+ δy) = J(δx+ δy) for δx+ δy > 0.

Arguing as above with δx + δy > 0 and δ′y − δy > 0 we get that µ3(z) = a+ + b+z for

z ∈ (0, z+] for z+ > 0 small enough with some constants a+ and b+. Similarly we get by

choosing δx+ δy < 0 and δ′y− δy < 0 that µ3(z) = a−+ b−z for z ∈ (z−, 1) for z− < 1 large

enough with some constants a− and b−. Thus we get that µ3(z) = a + bz for z ∈ (0, 1)

with some constants a and b.

Furthermore, using continuity of µ1, µ2 and the relation µ3(mJ(x + y)) = −µ1(x) −
µ2(y) for z = mJ(x + y) with z in (1 − δ, 1) and (0, δ) with δ > 0 small enough we get

that µ3(0) = µ3(1−). Thus we have b = 0 and we conclude that µ3 is a constant function.

This gives

µ1(x) + µ2(y) = −a

for all (x, y) ∈ I. Now arguing as in the proof of Theorem 1 we get that f1 = g1, f2 = g2

and f3 = g3. This concludes the proof.

A.3 Proof of Theorem 3

Let G ′(θ,g)(d, δ) denote the derivative G, defined in Section 4, at (θ,g) to the direction

(d, δ). We note that we write G ′(0,0)(d, δ) simply as G ′(d, δ) in Section 4. We use the

sup-norm ‖(d, δ)‖∞ as a metric in the space R
3 × S, defined by

‖(d, δ)‖∞ = max
{

|d1|, |d2|, |d3|, sup
u∈S1

|δ1(u)|, sup
u∈S2

|δ2(u)|, sup
u∈S3

|δ3(u)|
}

.

Define Ĝ(θ,g) = F̂(1 + θ, f ◦ (1 + g)), where F̂ is defined in Section 4, and let Ĝ ′(θ,g)

denote the derivative of Ĝ at (θ,g). In the setting where f̂(x, y) − f(x, y) = Op(εn)

uniformly for (x, y) ∈ I, we claim

(i) sup‖(d,δ)‖∞=1 ‖Ĝ ′(0,0)(d, δ)− G ′(0,0)(d, δ)‖∞ = Op(εn);
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(ii) The operator G ′(0,0) is invertible and has bounded inverse;

(iii) The operator Ĝ ′ is Lipschitz continuous with probability tending to one, i.e., there

exists constants r, C > 0 such that, with probability tending to one,

sup
‖(d,δ)‖∞=1

‖Ĝ ′(θ1,g1)(d, δ)− Ĝ ′(θ2,g2)(d, δ)‖∞ ≤ C‖(θ1,g1)− (θ2,g2)‖∞

for all (θ1,g1), (θ2,g2) ∈ Br(0,0), where Br(θ,g) is a ball with radius r > 0 in

R
3 × S centered at (θ,g).

Theorem 3 basically follows from the above (i)–(iii). To prove the theorem using (i)–

(iii), we note that Claim (ii) with the definitions of θ̄ and f̄ at (4.3) gives θ̄− 1 = Op(εn)

and (f̄ − f)/f = Op(εn). With (i) and (iii), this implies that

sup
‖(d,δ)‖∞=1

‖Ĝ ′(θ̄ − 1, (f̄ − f)/f)(d, δ)− G ′(0,0)(d, δ)‖ = Op(εn). (A.3)

Now, from (ii) it follows that there exists a constant C > 0 such that the map Ĝ ′(θ̄ −
1, (f̄−f)/f) is invertible and ‖Ĝ ′(θ̄−1, (f̄−f)/f)−1(d, δ)‖∞ ≤ C‖(d, δ)‖∞ with probability

tending to one. Also, (iii) is valid for all (θ1,g1), (θ2,g2) ∈ B2r(θ̄ − 1, (f̄ − f)/f). Then,

we can argue that the solution of the equation Ĝ(θ,g) = 0, which is (θ̂ − 1, (f̂ − f)/f),

is within Cαn distance from (θ̄ − 1, (f̄ − f)/f), with probability tending to one, where

C > 0 is a constant and αn = ‖Ĝ(θ̄−1, (f̄ − f)/f)‖∞. This follows from an application of

Newton-Kantorovich theorem, see Deimling (1985) or Yu, Park and Mammen (2008) for

a statement of the theorem and related applications. To compute αn we note that

Ĝ(θ̄ − 1, (f̄ − f)/f) = Ĝ(0,0) + Ĝ ′(0,0)(θ̄ − 1, (f̄ − f)/f) +Op(ε
2
n)

= Ĝ(0,0) + G ′(0,0)(θ̄ − 1, (f̄ − f)/f) +Op(ε
2
n).

(A.4)

For the first equation of (A.4) we have used (iii) and the facts that θ̄ − 1 = Op(εn) and

(f̄ − f)/f = Op(εn). The second equation of (A.4) follows from the inequality

‖Ĝ ′(0,0)(d, δ)− G ′(0,0)(d, δ)‖∞ ≤ C sup
x,y∈S

|f̂(x, y)− f(x, y)| · ‖(d, δ)‖∞

for some constant C > 0. Now, Ĝ(0,0) = F̂(1, f) = (0⊤, (fw ◦ µ̂)⊤)⊤. From the definition

(4.3), we also get G ′(0,0)(θ̄−1, (f̄ − f)/f) = (0⊤,−(fw ◦ µ̂)⊤)⊤. This proves αn = Op(ε
2
n),

so that ‖(θ̂ − θ̄, (f̂ − f̄)/f)‖∞ = Op(ε
2
n).
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Claim (i) follows from the uniform convergence of f̂ to f that is assumed in the

theorem: sup(x,y)∈S |f̂(x, y) − f(x, y)| = Op(εn). Below, we give the proofs of Claims (ii)

and (iii).

Proof of Claim (ii). For this claim we first prove that the map G ′(0,0) is one-to-one.

Suppose that G ′(0,0)(d, δ) = 0 for some d = (d1, d2, d3)
⊤ and δ = (δ1, δ2, δ3)

⊤. Then, by

integrating the fourth component of G ′(0,0)(d, δ), we find that

0 =

∫

S

f(x, y)[δ1(x) + δ2(y) + δ3(mJ(x+ y))] dx dy = d1

∫

S

f(x, y) dx dy,

where the first equation holds since the right hand side equals, up to sign change, the third

component of G ′(0,0)(d, δ). Similarly, we get d2 = d3 = 0. Now, from G ′(0,0)(0, δ) = 0

we have

0 =

∫

S1×S2×S3

(0⊤, δ(x, y, z)⊤)G ′(0, δ)(x, y, z) dx dy dz

= −
∫

S

f(x, y)[δ1(x) + δ2(y) + δ3(mJ(x+ y))]2dx dy.

This implies

δ1(x) + δ2(y) + δ3(mJ(x+ y)) = 0 a.e. on S. (A.5)

Arguing as in the proof of Theorem 2 using the last three equations of G ′(0,0)(0, δ) = 0,

we obtain δj ≡ 0 on Sj, 1 ≤ j ≤ 3.

Next, we prove that the map G ′(0,0) is onto. For a tuple (c,η) with c = (c1, c2, c3)
⊤

and η(x, y, z) = (η1(x), η2(y), η(z))
⊤, suppose that 〈(c,η),G ′(0,0)(d, δ)〉 = 0 for all

(d, δ) ∈ R
3 × S. This implies

0 =

∫

S

f(x, y)η1(x) dx dy,

0 =

∫

S

f(x, y)η2(y) dx dy,

0 =

∫

S

f(x, y)η3(mJ(x+ y)) dx dy,

0 =

∫

J2(x)

f(x, y)[η1(x) + η2(y) + η3(mJ(x+ y))] dy + c1f1(x) + c3fw,1(x),

0 =

∫

J1(y)

f(x, y)[η1(x) + η2(y) + η3(mJ(x+ y))] dx+ c2f2(y) + c3fw,2(y),

0 =

L(J)
∑

l=0

∫

J3l(z)

f(x, (z + l)/J − x)[η1(x) + η2((z + l)/J − x) + η3(z)] dx+ c3fw,3(z).

(A.6)
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From the first three equations of (A.6), we get c1 + ϑc3 = 0 by integrating the fourth

equation. Similarly, we obtain c2 + ϑc3 = 0 and c3 = 0 by integrating the fifth and the

sixth equations. This establishes c1 = c2 = c3 = 0. Putting back these constant values to

(A.6), multiplying η1(x), η2(y) and η3(z) to the right hand sides of the fourth, fifth and

sixth equations, respectively, and then integrating them give
∫

S

f(x, y)[η1(x) + η2(y) + η3(mJ(x+ y))]2 dx dy = 0.

Going through the arguments in the proof of G ′(0,0) being one-to-one and now using the

first two equations of (A.6) give η1 = η2 = η3 ≡ 0. Note that the first two equations can

be written as
∫

S1

fw,1(x)η1(x) dx = 0 and
∫

S2

fw,2(y)η2(y) dy = 0, and thus in the latter

proof fw,j for j = 1, 2 take the roles of fj in the former proof. The foregoing arguments

show that (0,0) is the only tuple that is perpendicular to the range space of G ′(0,0),

which implies that G ′(0,0) is onto.

To verify that the inverse map G ′(0,0)−1 is bounded, it suffices to prove that the bijec-

tive linear operator G ′(0,0) is bounded, owing to the bounded inverse theorem. Indeed,

it holds that there exists a constant C > 0 such that ‖G ′(0,0)(d, δ)‖∞ ≤ C‖(d, δ)‖∞.

This completes the proof of Claim (ii). �

Proof of Claim (iii). We first note that Ĝ ′(θ1,g1)(d, δ)−Ĝ ′(θ2,g2)(d, δ) = G ′(θ1,g1)(d, δ)−
G ′(θ2,g2)(d, δ). From this, we get that, for each given r > 0

‖Ĝ ′(θ1,g1)(d, δ)− Ĝ ′(θ2,g2)(d, δ)‖∞ ≤ 6 (1 + r) max
1≤j≤3

sup
u∈Sj

fw,j(u)‖g2 − g1‖∞

for all (θ1,g1), (θ2,g2) ∈ Br(0,0) and for all (d, δ) with ‖(d, δ)‖∞ = 1. For this, we used

the inequality

sup
(x,y,z)∈S1×S2×S3

|κ(x, y, z;g2, δ)−κ(x, y, z;g1, δ)| ≤ 3 ‖δ‖∞(2+‖g1‖∞+‖g2‖∞)‖g2−g1‖∞.

This completes the proof of (iii).

A.4 Proof of Theorem 4

Let f̂A(x, y) be the first entry of η̂A(x, y), where η̂A is defined as η̂ at (3.5) with b̂ being

replaced by b̂−Eb̂. Likewise, define f̂B(x, y) with b̂(x, y) being replaced by Eb̂(x, y)−

29



(f(x, y), h1∂f(x, y)/∂x, h2∂f(x, y)/∂y)
⊤. Then, f̂(x, y) = f(x, y) + f̂A(x, y) + f̂B(x, y).

Define µ̂A and µ̂B as µ̂ at (4.2) with f̂ − f being replaced by f̂A and f̂B, respectively,

and f̄ s/f = (f̄ s
1/f1, f̄

s
2/f2, f̄

s
3/f3) along with θ̄s − 1 = (θ̄s1 − 1, θ̄s2 − 1, θ̄s3 − 1) for s = A and

B as the solution of the backfitting equation (4.4) with µ̂ being replaced by µ̂s, subject

to the constraints (4.5). Since the backfitting equation (4.4) is linear in µ̂, we get that

f̄ = f + f̄A + f̄B and θ̄ = θ̄A − 1+ θ̄B.

For simplicity, write the backfitting equation (4.4) as δ = d + µ̂ − Tδ with an ap-

propriate definition of the linear operator T. From the definitions of f̄A and θ̄A we have

f̄A/f = θ̄A − 1+ µ̂A −T(f̄A/f). From Lemma 2 below, we obtain

f̄A/f − µ̂A = θ̄A − 1−T(f̄A/f − µ̂A) + op(n
−2/5)

uniformly on S1×S2×S3. This implies f̄A/f − µ̂A = op(n
−2/5) uniformly on S1×S2×S3

and θ̄A − 1 = op(n
−2/5).

Now, for the deterministic part f̄B, recall the definitions of f̃B and µ̃B at (4.6) and

thereafter, respectively. Let rn = µ̂B−n−2/5µ̃B. According to Lemma 2, rn = o(n−2/5) on

S ′
1 × S ′

2 × S ′
3, where S

′
j is a subset of Sj with the property that mes(Sj − S ′

j) = O(n−1/5).

We also get rn = O(n−2/5) on S1 × S2 × S3. This implies T(rn) = o(n−2/5), so that

f̄B/f − rn = θ̄B − 1+ n−2/5µ̃B −T(f̄B/f − rn) + op(n
−2/5)

uniformly on S1 × S2 × S3. Thus, (f̄B/f , θ̄B − 1) equals the solution of the backfitting

equation δ = d + n−2/5µ̃B − Tδ, up to an additive term whose jth component has a

magnitude of an order o(n−2/5) on S ′
j and O(n−2/5) on the whole set Sj.

The asymptotic distribution of
(

(f̄j(uj)− fj(uj))/fj(uj) : 1 ≤ j ≤ 3
)

for fixed uj ∈
Sj,c∩So

j is then readily obtained from the above results. The asymptotic mean is given as

the solution (δj(uj) : 1 ≤ j ≤ 3) of the backfitting equation (4.4) with µ̂j being replaced

by n−2/5µ̃B
j , subject to the constraint (4.5). The asymptotic variances are derived from
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those of µ̃A
j , where

µ̃A
1 (x) = fw,1(x)

−1

∫

J2(x)

f̃A(x, y) dy,

µ̃A
2 (y) = fw,2(y)

−1

∫

J1(y)

f̃A(x, y) dx,

µ̃A
3 (z) = fw,3(z)

−1

L(J)
∑

l=0

∫

J3l(z)

f̃A(x, (z + l)/J − x) dx

and f̃A(x, y) = n−1
∑n

i=1 [Kh1
(Xi − x)Kh2

(Yi − y)Wi − E (Kh1
(Xi − x)Kh2

(Yi − y)Wi)].

This is due to (A.9), (A.10) and the corresponding property for µ̂A
3 in the proof of Lemma 2

below.

To compute var(µ̃A
1 (u1)), we note that, due to the assumption (A7) and thus from

Lemma 1, we may find constants C > 0 and α > 1/2 such that Jo
2 (u;Chα

1 + h2) ⊂
Jo
2 (u1;h2) for all u with |u−u1| ≤ h1, if n is sufficiently large. Note that Jo

2 (u;Chα
1 +h2) is

inside Jo
2 (u;h2) at a depth Chα

1 . Then, it can be shown that, for all (u, v) with |u−u1| ≤ h1

and v ∈ Jo
2 (u;Chα

1 + h2), the set {(v − y)/h2 : y ∈ J2(u1)} covers the interval [−1, 1], the

support of the kernel K. This implies that Kh1
(u−u1)ν(u1, v) = Kh1

(u−u1) for all (u, v)

with |u− u1| ≤ h1 and v ∈ Jo
2 (u;Chα

1 + h2), where ν(u1, v) =
∫

J2(u1)
Kh2

(v− y) dy. Using

this and the fact that the Lebesgue measure of the set difference J2(u)− Jo
2 (u;Chα

1 + h2)

has a magnitude of order n−min{1,α}/5, we get

var(µ̃A
1 (u1)) = fw,1(u1)

−2n−1h−1
1

∫

S

1

h1

K

(

u− u1

h1

)2

ν(u1, v)
2f(u, v) du dv +O(n−1)

= fw,1(u1)
−2n−1h−1

1

∫

|u−u1|≤h1

∫

Jo

2
(u;Chα

1
+h2)

1

h1

K

(

u− u1

h1

)2

ν(u1, v)
2

× f(u, v) dv du+ o(n−1h−1)

= fw,1(u1)
−2n−1h−1

1

∫

S

1

h1

K

(

u− u1

h1

)2

f(u, v) du dv + o(n−1h−1)

= n−1h−1
1 fw,1(u1)

−1

∫

K2(u) du+ o(n−1h−1).

The last equation holds since u1 ∈ S1,c, so that fw,1 is continuous at u1, and it is a fixed

point in the interior of S1. Similarly, we obtain

var(µ̃A
2 (u2)) = n−1h−1

2 fw,2(u2)
−1

∫

K2(u) du+ o(n−1h−1).
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The calculation of the asymptotic variance of µ̃A
3 (u3) is more involved than those of

var(µ̃A
j (uj)) for j = 1, 2. For this, we observe that, if l 6= l′, then for any given z ∈ [0, 1]

and (u, v) ∈ I we have

πl,l′(z, u, v, x, x
′)

≡ Kh1
(u− x)Kh2

(

v − z + l

J
+ x

)

Kh1
(u− x′)Kh2

(

v − z + l′

J
+ x′

)

= 0

for all x, x′ except the case (z + l)/J − x = (z + l′)/J − x′, if n is sufficiently large. This

implies that

var(µ̃A
3 (u3)) = fw,3(u3)

−2n−1

L(J)
∑

l=0

∫

J3l(u3)

∫

J3l(u3)

∫

S

πl(u3, u, v, x, x
′)f(u, v) du dv dx dx′

+O(n−1),

where πl = πl,l. From Lemma 1 again, we may find constants C > 0 and α > 1/2 such

that Jo
2 (x;Chα

1+h2) ⊂ Jo
2 (u;h2) for all x, u ∈ (a1k−1, a

1
k)∩S1 with |u−x| ≤ h1, 1 ≤ k ≤ L1.

Define a subset J ′
3l(u3) of [0, 1] such that x ∈ J ′

3l(u3) if and only if x ∈ J3l(u3+J(h2+Chα
1 )t)

for all t ∈ [−1, 1]. Then, for a given u ∈ S1,c, it follows that

[−1, 1] ⊂
{

v − (u3 + l)/J + x

h2

: v ∈ J2(u)

}

for all x ∈ J ′
3l(u3) such that |x − u| ≤ h1 and x lies in the same partition (a1k−1, a

1
k)

as u. This holds since x ∈ J3l(z) implies (z + l)/J − x ∈ J2(x). This entails that, for

x ∈ J ′
3l(u3) ∩ So

1,c(h1),

∫

S

πl(u3, u, v, x, x
′) du dv

=

∫

[−1,1]2
K(t)K(s)h−1

1 K

(

t+
x− x′

h1

)

h−1
2 K

(

s+
x′ − x

h2

)

dt ds

= (K ∗K)h1
(x− x′)(K ∗K)h2

(x− x′),

where K ∗ K denotes the convolution of K defined by K ∗ K(u) =
∫

K(t)K(t + u) dt.

Here and below, So
j,c(h) for a small number h > 0 denotes the set of x ∈ Sj,c such that

x+ ht belongs to Sj,c for all t ∈ [−1, 1].
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Because of the assumption (A7) and the fact that u3 is a fixed point in S3,c, we get

that
∑L(J)

l=0 mes[J3l(u3)△ J ′
3l(u3)] is of order o(1). This and the foregoing arguments give

var(µ̃A
3 (u3)) = fw,3(u3)

−2n−1

L(J)
∑

l=0

∫

J3l(u3)

∫

J ′

3l
(u3)∩So

1,c(h1)

∫

S

πl(u3, u, v, x, x
′) du dv

× f

(

x,
u3 + l

J
− x

)

dx dx′ + o(n−4/5)

= fw,3(u3)
−2n−1

L(J)
∑

l=0

∫

J3l(u3)

∫

J3l(u3)

(K ∗K)h1
(x− x′)(K ∗K)h2

(x− x′)

× f

(

x,
u3 + l

J
− x

)

dx dx′ + o(n−4/5).

Let Jo
3l(u3; 2h1) denote a subset of J3l(u3) such that x ∈ Jo

3l(u3; 2h1) if and only if x−2h1t ∈
J3l(u3) for all t ∈ [−1, 1]. Then,

L(J)
∑

l=0

∫

J3l(u3)

∫

J3l(u3)

(K ∗K)h1
(x− x′)(K ∗K)h2

(x− x′)f

(

x,
u3 + l

J
− x

)

dx′ dx

= h−1
2

L(J)
∑

l=0

∫

Jo

3l
(u3;2h1)

f

(

x,
u3 + l

J
− x

)

dx

∫ 2

−2

[K ∗K(t)][K ∗K(h1t/h2)] dt+O(1)

= h−1
2

L(J)
∑

l=0

∫

J3l(u3)

f

(

x,
u3 + l

J
− x

)

dx

∫ 2

−2

[K ∗K(t)][K ∗K(h1t/h2)] dt+O(1)

= h−1
2 fw,3(u3)

∫ 2

−2

[K ∗K(t)][K ∗K(h1t/h2)] dt+O(1)

This with Lemma 3 below completes the proof of Theorem 4.

Lemma 1 Under the condition (A7) with the constants C > 0 and α > 1/2, it follows

that (i) Jo
2 (u1 : Chα

1 +h2) ⊂ Jo
2 (u2;h2) for any u1, u2 ∈ (a1k−1, a

1
k)∩S1 with |u1−u2| ≤ h1,

1 ≤ k ≤ L1; (ii) Jo
1 (u1 : Chα

2 + h1) ⊂ Jo
1 (u2;h1) for any u1, u2 ∈ (a2k−1, a

2
k) ∩ S2 with

|u1 − u2| ≤ h2, 1 ≤ k ≤ L2.

Proof of Lemma 1. We apply (A7) to the choice ǫn = h1. Suppose a point y ∈ Jo
2 (u1;Chα

1+

h2). This implies y + h2t + Chα
1 s ∈ J2(u1) for all s, t ∈ [−1, 1]. This holds since |(h2t +

Chα
1 s)/(h2 + Chα

1 )| ≤ 1 for all s, t ∈ [−1, 1]. By (A7), y + h2t ∈ Jo
2 (u1;Chα

1 ) ⊂ J2(u2) for

all t ∈ [−1, 1], so that we get y ∈ Jo
2 (u2;h2). The proof of (ii) is the same. �
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Lemma 2 Under the conditions of Theorem 4, It follows that Tµ̂A = op(n
−2/5) uniformly

on S1×S2×S3. Furthermore, µ̂B = n−2/5µ̃B+o(n−2/5) uniformly on So
1,c(h1)×So

2,c(h2)×
So
3,c(C

′n−min{1,α}/5) for a sufficiently large C ′ > 0, and µ̂B(u) = n−2/5µ̃B(u) + O(n−2/5)

uniformly uniformly on S1 × S2 × S3.

Proof of Lemma 2. From the standard theory of kernel smoothing it follows that

sup
(x,y)∈S

|f̂A(x, y)| = Op(n
−3/10

√

log n). (A.7)

Also, we have A(x, y) = diag(1, ν2, ν2) for all (x, y) with x ∈ So
1,c(h1) and y ∈ Jo

2 (x;Chα
1 +

h2), where C > 0 and α > 1/2 are the constants in Assumption (A7) and ν2 =
∫

u2K(u) du. Define J = {(x, y) ∈ S : x ∈ So
1,c(h1), y ∈ Jo

2 (x;Ch1 + h2)}. From

the simplification of A(x, y) on J , we get

f̂A(x, y) = f̃A(x, y), (x, y) ∈ J . (A.8)

From (A.7) and (A.8) we have

µ̂A
1 (x) = µ̃A

1 (x) +Op(n
−(3+2r)/10

√

log n) uniformly for x ∈ So
1,c(h1), (A.9)

where r = min{1, α}. Note that r > 1/2. Similarly, we get

µ̂A
2 (y) = µ̃A

2 (y) +Op(n
−(3+2r)/10

√

log n) uniformly for y ∈ So
2,c(h2). (A.10)

For the treatment of µ̂A
3 , we first note that A(x, (z + l)/J − x) = diag(1, ν2, ν2) for all

x ∈ J ′
3l(z) ∩ So

1,c(h1), where the set J ′
3l(z) is defined in the proof of Theorem 4. In fact,

(x, (z + l)/J − x) ∈ J if and only if x ∈ J ′
3l(z) ∩ So

1,c(h1). (A.11)

This implies that, for all 0 ≤ l ≤ L(J),

f̂A

(

x,
z + l

J
− x

)

= f̃A

(

x,
z + l

J
− x

)

, x ∈ J ′
3l(z) ∩ So

1,c(h1). (A.12)

Due to the condition (A7) we can take a constant C ′ > 0 such that, uniformly for z ∈
So
3,c(C

′n−r/5), we have
∑L(J)

l=0 mes[J3l(z)△J ′
3l(z)] = O(n−r/5). Then, from (A.7) and (A.12)
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we have

L(J)
∑

l=0

∫

J3l(z)

f̂A(x, (z + l)/J − x) dx

=

L(J)
∑

l=0

∫

J ′

3l
(z)∩So

1,c(h1)

f̃A(x, (z + l)/J − x) dx

+ Op(n
−3/10

√

log n)

L(J)
∑

l=0

mes[J3l(z)△ (J ′
3l(z) ∩ So

1,c(h1))]

=

L(J)
∑

l=0

∫

J3l(z)

f̃A(x, (z + l)/J − x) dx+ op(n
−2/5)

uniformly for z ∈ So
3,c(C

′n−r/5). This implies µ̂A
3 (z) = µ̃A

3 (z) + op(n
−2/5) uniformly for

z ∈ So
3,c(C

′n−r/5). This together with (A.9), (A.10) and Lemma 3 gives Tµ̂A = op(n
−2/5)

uniformly on S1 ×S2 ×S3, since Tµ̃A = op(n
−2/5) uniformly on the set and the Lebesgue

measures of the set differences S1 − So
1,c(h1) and S2 − So

2,c(h2) are of order n
−1/5 and that

of S3 − So
3,c(C

′n−r/5) is of order n−r/5.

To prove the second part of the lemma, recall that A(x, y) = diag(1, ν2, ν2) on J . In

fact, for (x, y) ∈ J
∫

S

(

u− x

h1

)j (
v − y

h2

)k

Kh1
(u− x)Kh2

(v − y) du dv = 0

whenever j or k is an odd integer. This implies f̂B(x, y) = n−2/5f̃B(x, y) + o(n−2/5)

uniformly for (x, y) ∈ J . We also get f̂B(x, y) = O(n−2/5) uniformly for (x, y) ∈ S. We

apply the same arguments as in the proof of the first part, to obtain

µ̂B
1 (x) = n−2/5µ̃B

1 (x) + o(n−2/5) uniformly for x ∈ So
1,c(h1),

µ̂B
2 (y) = n−2/5µ̃B

2 (y) + o(n−2/5) uniformly for y ∈ So
2,c(h2).

From (A.11) it follows that

f̂B

(

x,
z + l

J
− x

)

= n−2/5 f̃B

(

x,
z + l

J
− x

)

+ o(n−2/5).

for all (x, z) such that x ∈ J ′
3l(z) ∩ So

1,c(h1) and z ∈ S3. From this and the fact that
∑L(J)

l=0 mes[J3l(z)△J ′
3l(z)] = o(1) uniformly for z ∈ So

3,c(C
′n−r/5), we obtain

µ̂B
3 (z) = n−2/5µ̃B

3 (z) + o(n−2/5) uniformly for z ∈ So
3,c(C

′n−r/5),
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where C ′ is the constant C ′ in the proof of the first part. This completes the proof of the

lemma. �

Lemma 3 Under the conditions of Theorem 4, it follows that

sup
u∈Sj

|µ̂A
j (u)| = Op(n

−2/5
√

log n), 1 ≤ j ≤ 3.

Proof of Lemma 3. We give the proof for µ̂A
1 only. The others are similar. For (x, y) with

x ∈ S1 and y ∈ Jo
2 (x;Chα

1 + h2), we have

f̂A(x, y) = ϕ1(x)â1(x, y) + ϕ2(x)â2(x, y) + ϕ3(x)â3(x, y),

where ϕj for j = 1, 2, 3 are some bounded functions, â1 = b̂00, â2 = b̂10 and â3 = b̂01 with

b̂jk(x, y) =n−1

n
∑

i=1

[

(

Xi − x

h1

)j (
Yi − y

h2

)k

Kh1
(Xi − x)Kh2

(Yi − y)Wi

− E

(

Xi − x

h1

)j (
Yi − y

h2

)k

Kh1
(Xi − x)Kh2

(Yi − y)Wi

]

The lemma follows from (A.5) and using

sup
x∈S1

mes[J2(x)− Jo
2 (x;Chα

1 + h2)] = Op(n
−r/5),

sup
x∈S1

∣

∣

∣

∫

J2(x)

âj(x, y) dy
∣

∣

∣
= Op(n

−2/5
√

log n), 1 ≤ j ≤ 3. �
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