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Abstract

An asymptotic theory for stochastic processes generated from nonlinear trans-
formations of nonstationary integrated time series is developed. Various nonlinear
functions of integrated series such as ARIMA time series are studied, and the asymp-
totic distributions of sample moments of such functions are obtained and analyzed.
The transformations considered in the paper include a variety of functions that are
used in practical nonlinear statistical analysis. It is shown that their asymptotic
theory is quite different from that of integrated processes and stationary time series.
When the transformation function is exponentially explosive, for instance, the con-
vergence rate of sample functions is path-dependent. In particular, the convergence
rate depends not only the size of the sample, but also on the realized sample path.
Some brief applications of these asymptotics are given to illustrate the effects of non-
linearly transformed integrated processes on regression. The methods developed in
the paper are useful in a project of greater scope concerned with the development of
a general theory of nonlinear regression for nonstationary time series.
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1 Introduction

Nonstationary time series arising from autoregressive models with roots on the unit
circle have been an intensive subject of recent research. The asymptotic behaviour
of regression statistics based on integrated time series (those for which one or more
of the autoregressive roots are unity) has received the most attention and a fairly
complete theory is now available for linear time series regressions. The resulting
limit theory forms the basis of much ongoing empirical econometric work, especially
on the subject of unit root testing and cointegration modeling. The main elements of
this limit theory as it is needed for linear regression was reviewed in Phillips (1988),
and a recent overview of the asymptotic statistical theory on which some of the
literature draws was given in Jeganathan (1995).

As in other regression contexts, linear models can be restrictive and they eliminate
many interesting cases of practical importance where there are nonlinear responses to
covariates. However, extensions of the existing limit theory for integrated processes
to nonlinear models is not straightforward. This is because nonlinear functions of
integrated processes often depend on fine-grain details of the underlying process,
most especially the sojourn time that the process spends in the vicinity of certain
points. These details need to be dealt with in the development of a limit theory for
the sample functions that arise in regression.

The present paper seeks to provide some tools that will be useful in the analysis
of time series regressions that involve nonlinear functions of integrated processes.
Various nonlinear functions that commonly arise in practical nonlinear statistical
analysis are studied. The results show that the limit theory can be very different from
that for simple linear and polynomial functions of integrated processes. The case of
exponential functions is especially interesting, because here the sojourn time that
the process depends in the neighbourhood of its extrema determines the asymptotic
behavior of the sample function. In consequence, the convergence rate of sample
moments of exponential functions of the process is path dependent and relies on
extreme sample path realizations of the time series.

2. Assumptions and Preliminary Results
We consider a time series {x;} generated by
Ty = Ty_1 + Wy, (1)

where the error w; follows the linear process
o0
wy = p(L)er = Z Pr€t—k> (2)
k=0

in which {e;} is a sequence of i.i.d. random variables with mean zero, and for which
©(1) # 0. The system (1) is initialized at ¢ = 0 with 2y = Op(1). One of the following
two assumptions will be made throughout the paper.



2.1 Assumption Y22, k2|, < 0o and Ec? < co.

2.2 Assumption (a) Y 7° o k|¢g| < 0o and E|gP < oo for some p > 2.

(b) The distribution of e, is absolutely continuous with respect to the Lebesque
measure, and has characteristic function ¢(t) for which lim_,o t"¢(t) = 0 for some
r > 0.

For simplicity, assume (1) = 1 and Ee? = 1. Other values simply have a scaling
effect in the subsequent analysis.
Construct the stochastic process

[rr]

WS(T) = ﬁ Zwta
t=1

which takes values in D[0, 1], the set of cadlag functions on the interval [0, 1]. Phillips
and Solo (1992) show that Assumption 2.1 is sufficient to ensure that W converges
weakly to a standard linear Brownian motion W on [0,1]. In our context, it is
more convenient to endow D[0, 1] with the uniform topology rather than the usual
Skorohod topology [see Billingsley (1968), pp. 150-152]. It then follows from the
so-called Skorohod representation theorem [e.g., Pollard(1984), pp. 71-72] that there
exists W,, such that W,, =4 W2 in D[0,1] and W,, —,s W uniformly on [0, 1].
Akonom (1993) gives a specific rate of convergence under Assumption 2.2(a) using
strong approximation methods.

2.3 Lemma Let n — oo.
(a) If Assumption 2.1 holds, then supg<,<1 |[Wy(r) — W (r)| = o(1) a.s.
(b) If Assumption 2.2(a) holds, then supy<,<1 |[Wn(r) — W(r)| = op (n*(pf2)/2p)'

Our development relies on the local time L(¢, s) of the Brownian motion W (t) at
s. L(t, s) is a jointly continuous stochastic process for which the following important
formula applies (e.g., Chung and Williams, 1990).

2.4 Lemma (Occupation Times Formula) Let T' be locally integrable. Then
JoT(W(r))dr = [*, T(s)L(t,s)ds
forallt € R.

The local time L(t,s) has an interpretation as a spatial (s) occupation density for
the Brownian motion W. From the continuity of L(t,-), Lemma 2.4 can be applied
with T'(z) = 1 {|x — s| < e} to give

L(t,s):&l_ii%Q—lefgl{IW(r)—s] < e}dr, (3)

the representation which explains why L(-,s) is called the local time of W at s.



We define
Np(Vn; a,b) = [51{a < v,Wi(r) < bYdr (4)

and similarly
N(rnsa,b) = [ Ha < vuW(r) < bldr, (5)

where a and b are nonrandom constants, and v, > 0 for all n. The following useful
result is due to Akonom (1993).

2.5 Lemma Let Assumption 2.2 hold. Then as n — oo

(2) E(Np(vn;0,8) — Np(vn; k6, (k+1)8)* < c% (1 + %) for some con-
stant ¢, and !

(b) Np(vn;0,75) = N(vp;0,7m0) + op (n_(Qp_l)/3p+5> for mp > vpn 20TV gnd
any € > 0.

It follows from (3) that (v, /mn)N(Vn;0,7m,) —4s L(1,0) as n — oco. And from
Lemma 2.5(b), (Un/7n) Ny (Vn; 0, ) = L(1,0) + 0,(1) for m, > vpn~(P=1/3PF¢ with
some ¢ > 0. In this sense, an appropriately defined N,, approximates L for large n.
Also nN,,(vn; a,b) is the number of visits of the process v, W, (1) to the interval [a, b].

3. Functions of Normalized Integrated Processes

We start by investigating the asymptotic behavior of functions of normalized inte-
grated processes. Such functions sometimes arise in models formulated with nonlinear
functions of standardized partial sums of stationary time series. Let T be a measur-
able transformation in R. We will consider regular transformations 7' defined as
follows.

3.1 Definition A transformation T is said to be regular if and only if, on every
compact set C, there exist T.,T. and 6. > 0 for each € > 0 satisfying

T.(x) <T(y) < Te(x) (6)

for all x,y € C such that |x —y| < é., and

Jo (To=1.) @) dw —0 (7)

ase— 0

The class of regular transformations includes locally bounded monotone functions
and continuous functions. For a locally bounded monotone increasing function, for
instance, set T.(z) = T(x — ¢),Te(x) = T(x + ¢€) and 6. = . Likewise, we set
T.(z) = T(z) — e and T-(x) = T(x) + ¢ for a continuous function with the usual &,
for the e-6 formulation of uniform continuity. It is easy to see that conditions (6)
and (7) are satisfied for such choices. They work for any compact set. It is also clear
that finite sums of locally bounded monotone functions (and hence functions which

are locally of bounded variation) and piecewise continuous functions are regular.



3.2 Theorem Let Assumption 2.1 hold. If T is reqular, then

%iT (25) = [6T(W(r))dr

t=1

as n — oQ.

3.3 Remarks

(a) Any regular transformation 7' is locally integrable. The local integrability
of T guarantees that the limiting distribution is well defined. Indeed, T is locally
integrable if and only if

Pr {fg T(W (r))dr exists for all t} =1

[see, e.g., Karatzas and Shreve (1988), Proposition 6.27, p. 216]. We need a stronger
condition to ensure that the limiting distribution is invariant across different data
generating processes.
(b) Given a transformation 7' on R, we define a functional II; on D[0,1] given
by
Mg : f [ST(f(r))dr

For T defining a continuous Il on D[0, 1], the result in Theorem 3.2 follows directly
from the continuous mapping theorem [e.g., Billingsley (1968), Theorem 5.1, p. 30].
Uniformly continuous T generate such a functional. If T is continuous, but not
uniformly continuous, the corresponding I is assured of being continuous only on
C0,1], a subset of D[0,1]. But the continuous mapping theorem still applies, since
C[0,1] is of Wiener measure one. Indeed, the proof of Theorem 3.2 shows that, for
any regular T, II1 is continuous on a subset of D|0, 1] with Wiener measure one.
(¢) The functions

T(x)=log|x| and T(z)=|z|® for —1<k<O (8)

are locally integrable and therefore fol T(W(r))dr is well defined for such functions.
However, they are not regular and Theorem 3.2 does not apply.

To deal with such functions we may proceed as follows. Let T be locally integrable
with a pole or logarithmic type of discontinuity at a certain point, say, zero. Define

To(x) = T(x){]x] = cn}
+ T(cn)H{0 <z <} +T(—cp)l{—c, <2 <0} (9)

Similar modifications can be made for transformations with discontinuities at points
other than zero.

3.4 Theorem Let T be locally integrable. Suppose for a sequence {cn} such that
cn — 0 and ¢, > n—2@+D/3p,

T(x) = T(y)| < vien)lz —yl



with v(cy) = O(nP=2/2P) for all x,y € {2]|2| > cn}, and T(Fc,) = O(n(2P~1)/3p+e)
for some ¢ > 0. If Assumption 2.2 holds, then

LY (2) S ATV ()dr

t=1
as n — oo.
3.5 Remarks
(a) The conditions in Theorem 3.4 require that the function 7" be Lipschitz con-
tinuous on {x : |z] > ¢,}. Also, the value of the function T(%¢,) around the

discontinuity point and the Lipschitz constant v(c,) may not grow too quickly with
n.

(b) For the logarithmic function T'(x) = log |z|, the conditions in Theorem 3.4
are satisfied with ¢, = n=® for any & such that 0 < § < (p — 2)/2p. For the
reciprocal function T(z) = |z|® with —1 < k < 0, one may choose ¢, = n~? for
0<é<(p—2)/2p(1 — k) to show that the result in Theorem 3.4 is applicable.

(c) For any fixed n, T' and T,, are identical over any finite set of nonzero points,
if we take ¢, to be smaller than the minimum of their moduli. Therefore, if {z;} is
driven by an error process whose underlying distribution is of the continuous type
specified in Assumption 2.2(b), then 7" and 7}, are practically indistinguishable in
finite samples.

4. Additive Functionals of Brownian Motion

The asymptotic behavior of functions of unnormalized integrated processes can be
quite different from the results in the previous section. In particular, the asymptotics
depend in a more critical way on the properties of the functions involved. To illustrate
the dependencies that arise, we first investigate the asymptotic behavior of additive
functionals of Brownian motion given by

o T(W(r))dr

as A — 00. The results from this section will be applicable in the statistical analysis
of the data that are continuously recorded from Brownian motion, or in the devel-
opment of the asymptotics when the sampling frequency, as well as the time span of
the data, increases. Applications of this type occur in econometrics, especially with
financial data (e.g. Shiller and Perron, 1986, and Phillips, 1987). More directly, the
limit behavior of these functionals sheds light on the behavior of nonlinear functions
of integrated processes and is thereby useful in the development of an asymptotic
theory for regression that involves such nonlinear functions.

Three classes of transformation are explored here: integrable (I) functions, as-
ymptotically homogenous (H) functions and explosive (E) functions. These will be
referred to respectively as Classes (I), (H), and (E) in the paper and will be denoted
by 7 (I), 7(H) and 7 (E). More explicitly we define these classes as follows.



4.1 Definition A transformation T is said to be in Class (I), denoted by T € T (1),
iff it is integrable.

4.2 Definition A transformation T is said to be in Class (H), denoted by T €
T(H), iff
T(A\x) =v(AN)H(x) + R(z, \)

where H is locally integrable, and R is such that

(a) |[R(z,\)| < a(X) P(z), where limsupy_,o a(X)/v(X) = 0 and P is locally inte-
grable, or

(b) |R(z,N)| < b(A\) Q(A\x), where limsupy_,o, b(A)/v(X) < oo and Q is locally

integrable and vanishes at infinity, i.e., Q(x) — 0 as |x| — oo.

Transformations T' € 7 (H) with R satisfying conditions (a) and (b) will be said to
belong 7 (H;) and 7 (Hg), respectively.

4.3 Remarks

(a) If T € T(H), T has an asymptotically dominating component which is ho-
mogenous. All homogenous functions are of this type, and therefore belong to 7 (H)
as long as they are locally integrable. If T is homogenous of degree x, then we have
H =T and v(\) = A\*. Examples of such functions include T'(z) = 2" for x > 0 and
T (z) = sgn(x).

(b) The finite order polynomial given by T'(z) = 2* +aja* =1 +-- - 4ay, for k > 1is
in 7 (Hy)with v(\) = \* and H(x) = 2F. For a(\) = \* " Yay +ag/A+- - +ap/ 1|
and P(x) = 1+ |z|*7!, we may easily show that |R(z,)\)| < a(\)P(x). Clearly,
a(\)/v(X) — 0 as A — oo, and P is locally integrable for k& > 1.

(¢) The logarithmic function T'(z) = log |x| belongs to 7 (H;), with the homoge-
nous component given by v(A) = log A and H(x) = 1. The residual function then
becomes R(x,\) = log |z|. To see that it satisfies the above conditions, set a(A) =1
and P(x) = log|z|. Iterated logarithmic functions and polynomials in logarithms are
also in 7 (H), which can be shown similarly.

(d) The distribution function of any random variable belongs to class 7 (Hz), with
the homogenous component specified by v(A) = 1 and H(z) = 1{z > 0}. Clearly,
H is locally integrable. If T is such a function, the residual R(z, ) is bounded in
modulus by Q(A\x), where Q(z) = T'(z)1{z < 0} + (1 — T'(z))1{z > 0}. It is easy
to see that @) is locally integrable and vanishes at infinity. If, in particular, the
underlying random variable has finite expectation, then @ € 7 (I).

4.4 Definition A transformation T is said to be in Class (E), denoted by T € T (E),
iff

T(x) = E(z) + R(x)
with E and R satisfying the following conditions:

(a) E is monotone. If E is increasing (decreasing), then it is positive and dif-

ferentiable on Ry (R_). Furthermore, if we define G(x) = log E(x) on R+ (R-)



with derivative G, then as A — oo, G(Ax) = v(A\)D(x) + o(v(\)) uniformly in a
neighborhood of x, where D is positive (negative) and continuous, and A\v(\) — oo.
(b) R is given such that for any x and y

Av(A) R(\zx)
EQy)

—0

as A\ — oo, where R(z) = SUpy<|z| [R(Y)]-

4.5 Remarks

(a) For T' € T(E), E denotes the exponential component that is asymptotically
dominating. The derivative of the exponent function of E is assumed to be asymp-
totically homogenous with base function D and degree of homogeneity v. If we write
E(x) = exp(G(x)), then the condition Av(A) — oo ensures that G increases on Ry (or
decreases on R _) faster than the logarithmic function. When there is such an expo-
nential component, all other components with polynomial orders become negligible.
They satisfy our conditions for R, as one may easily check.

(b) The conditions for the exponential component E of T' € 7 (E) obviously hold
for functions like E(x) = exp(z®) for k > 0, or E(x) = x"e*{x > 0} for any finite k.
In the former case, we have v(\) = A* ! and D(x) = k2"L. For the latter, v(\) = 1
and D(x) = 1.

4.6 Theorem LetT € T(I). Then
2 d oo
LI T () dr % ([, T(s) ds) L(t,0)
as A — 00.

4.7 Theorem LetT € T (H) with H(-) as in Definition 4.2. Then

S TV [ H6) L) ds

as A — 00.

4.8 Theorem LetT € T(E) with v and D as in Definition 4.4. Then as A — oo

at Y G
N (s, o W) T(W(r)dr = fr— Lt Smax)
. A T R
AT (infOST‘S)\Qt W(T)> ’ g (W( )) ¢ _D(Smin) L(t’ IIllIl)

depending upon whether the exponential component E is increasing or decreasing, and
where Spax = SUPp<,<1 W (r) and smin = info<,<1 W(r).



4.9 Remarks

(a) Theorems 4.6-4.8 reveal that the asymptotic behavior of the three different
types of additive functionals of Brownian motion differ in fundamental ways. For
integrable functions, only the local time spent by W in the vicinity of the origin
matters. This is not so for asymptotically homogenous functions, for which the local
time of W at all points contributes to the limit distribution. Finally, the local time
that W spends in the neighborhood of one of its extrema completely determines the
asymptotic behavior of an explosive function.

(b) The convergence rates for explosive functions are path-dependent, i.e., they
depend not only on the size of the sample but also on the actual path of the sample
by virtue of the fact that sup, W (r) and inf, W(r) influence the convergence rate.

5. Functions of Integrated Processes

Not surprisingly, the moments of functions of integrated processes asymptotically
behave rather like the corresponding additive functionals of Brownian motion. We
just need some extra conditions to make their limiting behavior invariant with respect
to the underlying data generating processes.

5.1 Theorem Suppose T' € T(I) and Assumption 2.2 holds with p > 4. If T is
square integrable and satisfies the Lipschitz condition

IT(x) = T(y)] < clo —yl*

over its support for some constant ¢ and £ > 6/(p — 2), then

L iT(mt) = (S, T(s)ds) L(1,0)

=1
as n — oQ.

5.2 Remarks

(a) For an indicator function on a bounded set, the result in Theorem 5.1 is
applicable as long as p > 4. The Lipschitz function with ¢ = 1 requires, in particular,
that p > 8.

(b) The collection of transformations for which Theorem 5.1 applies is closed
under the operation of finite linear combinations. Thus, the result in Theorem 5.1
holds for any piecewise function for which each piece satisfies the given conditions.

5.3 Theorem Let T € T (H) with H(-) reqular. Also, assume that T is either in
7 (Hy) with P locally bounded, or in T (Hs) with Q bounded and vanishing at infinity.
If Assumption 2.1 holds, then

n

m > T < H(s)L(1,5) ds

as n — oQ.



5.4 Remarks

(a) For Theorem 5.3, we only need Assumption 2.1. This is in contrast to Theo-
rems 5.1 and 5.5 for functions in 7 (I) and 7 (E), where the stronger Assumption 2.2
is invoked.

(b) The result in Theorem 5.3 is applicable to such functions as T'(z) = 2" for
k>0, T(z) =sgn(z), T(x) = 2F +ayaf~1 4 -+ay for k > 1, and to all “distribution
function”-like transformations.

5.5 Theorem LetT € T(E) and v(\) = A™ with m < (p —8)/6p. If Assumption
2.2 holds, then as n — oo

v(v/n) - a1
VT (maxy<i<n Tt) ; () D(5max)

L(l, Smax)

or

DN P S S
NG (minlgtgnxt)tzle(wt) Do L smin)

depending upon whether the exponential component E is increasing or decreasing.

5.6 Remarks

(a) The convergence rates are path-dependent, as in Theorem 4.8, i.e., they de-
pend upon max x; or minxz, t = 1,...,n, respectively for the increasing and decreas-
ing exponential component of the transformation in 7 (E).

(b) The result in Theorem 5.5 is applicable for explosive functions such as
xFexp(z){x > 0}, as long as p > 8. However, we only allow functions to be mildly
explosive. Functions like T'(z) = exp(2?) are excluded. The asymptotic behaviors of
such functions may not be invariant, and can be more dependent upon the underlying
data generating process.

6. Nonlinear Regression Illustrations with
Integrated Processes
In this section, we briefly show how to apply the above theory to develop regression

asymptotics for models with transformed integrated regressors. Let {x;} be generated
by (1) and (2) and consider the regression model

yr = af(ve) +ug, (10)

for t =1,...,n, where « is the regression coefficient, f is a transformation in R, and
{u;} are the errors. The least squares estimator &, of « in regression (10) is given by

o = 2=t flaye o i flaguw
X ) Y= [ ()

When f is the identity transform, regression (10) reduces to what is known as (a
linear) cointegrating regression. Such regressions have become very popular in time

o+



series econometrics following the work of Engle and Granger (1987). However, it is not
always clear that the relationship between y; and x; is linear and such considerations
lead naturally to models of the form (10) (just as in the case where y; and z; are
stationary).

Let {F;} be the natural filtration for {u;}, and assume:

6.1 Assumption (a) {u;} is independent of {w;}, and
(b) (ut, Ft) is a martingale difference sequence with B(u?|Fi_1) = o2 for all t,
and supy E(|u¢|?|Fi—1) < 0o a.s. for some q > 2.

Assumption 6.1 (a) is stronger than is needed, but is made for simplicity to highlight
the effect of the nonlinear transformation on the regression asymptotics. As before,
we let 02 = 1, since it has only a scaling effect.

The lemma that follows gives the Skorohod embedding of a partial sum and a
strong approximation to its quadratic variation as in Phillips and Ploberger (1996).
It is useful in the derivation of the regression asymptotics in Theorem 6.3 below.

6.2 Lemma Let Assumption 6.1(b) hold. Then there exists a probability space sup-
porting a standard linear Brownian motion U and an increasing sequence of stopping

times {T¢ >0 with To = 0 such that ﬁ S ug 4y (%)and

Tt—t 2)0

sup
1<t<n

n
as n — oo for any § > max(1/2,2/q).

In view of Assumption 6.1(a), we may assume that W and U are independent, and
defined on a common probability space.

6.3 Theorem Let T = f? and denote by V a standard linear Brownian motion
independent of W. Suppose Assumption 6.1 holds.
(a) If T satisfies the conditions in Theorem 5.1, then as n — oo

% (dn - a) i) V(l)
(72, 7(s)ds £(1,0))

(b) If T satisfies the conditions in Theorem 5.3, then as n — oo
V(1)

nv(y/n) (Gm — a) > e
(S22 H(s)L(1, 5)ds)

(c) If T satisfies the conditions in Theorem 5.5, then as n — oo

(\/ET (maxi<i<n %))W (G — ) 5 D(smax) 2V (1)
v(vm) " L(1, $mae) /2

10



or

<\/ﬁT (miny<j<p xt))l/ ? (4, — ) 4 ~Dlomin) 2V (1)
v(vn) " L(1, $pin) /2

depending upon whether the exponential component E is increasing or decreasing.

Theorem 6.3 shows that &, is consistent when the conditions in Theorems 5.1
and 5.5 are met for T = f2. Also, it is consistent if T = f? satisfies the conditions
in Theorem 5.3 with A\2v(\) — oo as A — oo. Thus, we may generally expect
consistency, in the same way as in other time series regressions under persistent
excitation. The limiting distributions are mixed normal, in the same was as for
cointegrating regressions (Phillips, 1971). The rate of convergence, however, will vary
depending on f. It can be faster than the convergence rate (n) for linear cointegrating
regressions, but it can also be slower than the y/n rate for stationary regression. When
f is explosive, as in the case of exponential functions, the convergence rate for &, is
dependent upon the entire sample path of x;, as well as the sample size.

Since the sample path of an integrated process typically shows trending behav-
ior, it is interesting to compare (10) with nonlinear regressions on deterministically
trending regressors. To be explicit, consider the following two regressions

(6%
= — 11
Yt ‘xt‘ﬁ +ut ( )

and o
Yt = t_ﬁ =+ Uy (12)

where § > 0 is a known constant, and the other notation is defined as in (10).
The least squares estimators of a in (11) and (12) are denoted, respectively, by a,
and &,. Unlike &, &, is not properly defined without some modification, since
x¢ may take values in the neighborhood of zero (or could even be zero with positive
probability in the case of discrete innovations wy) in which case the regression function
is singular. Therefore, we follow the convention introduced in (9), and assume that
&y, is computed from a regression on x,; = x¢{|x¢| > ¢} + e {|zt] < ¢} (in lieu of
x) with ¢, = n=° for 0 < § < (p — 2)/2p(1 + 23). See Remark 3.5(b) for our choice
of ¢, here. We let Assumption 2.2 hold in the subsequent discussion.

The asymptotic behavior of both &, and &, are critically dependent upon the
value of 3. For 0 < # < 1/2, both &, and & are consistent, and have limiting
distributions given, respectively, by

—1/2
n=92(&, — a) 4 < [ p——— dr) V(1)

and 12

If B > 1/2, however, the asymptotic behavior is very different.

11



When 3 = 1/2, (logn)'/?(&y,—a) —4 V(1) and &, from regression (12) is therefore
consistent. The estimator &j,becomes inconsistent if 3 exceeds the critical value
1/2, since 3%, 1/t% < oo for 8 > 1/2, and the excitation condition fails to hold.
Faulty intuition here might suggest that regression (12) with 3 = 1/2 is analogous to
regression (11) with 3 = 1, because x; = Op(v/t). This might lead to the conjecture
that ¢, from regression (11) becomes inconsistent when 3 > 1. Interestingly, however,
Gy, from regression (11) is consistent for all values of 3, including 3 > 1, as shown in
the following proposition, which establishes the validity of the excitation condition
for the regressor in (11) for all (.

6.4 Proposition Let Assumption 2.2 hold. Then

n
Z || 2 5
t=1

as n — 00, for any k # —oo.

7. Conclusion

The examples given in the previous section involve models that are linear in the
parameters and nonlinear in the regressor. Such models are obviously very sim-
ple examples of regressions that involve nonlinear functions of integrated processes
and our theory therefore provides only a basic extension of cointegrating regression
asymptotics. In spite of their simplicity, however, these models do illustrate some
important features of more general nonlinear cointegrating regression problems.

First, it is apparent that the signal emanating from a nonstationary regressor can
be substantially altered in strength by nonlinear transformations. Moreover, as the
strength of the signal is modified, the corresponding rate of convergence of the regres-
sion coefficient is affected. Our simple examples show that nonlinear transformations
can decrease the rate of convergence over that of a linear cointegrating regression as
well as increase this rate. Second, the rate of convergence may in some cases be path
dependent, in the sense that the rate itself is stochastic and depends on properties
of the process like its maximum or minimum. Finally, the limit theory in all cases
considered turns out to be mixed normal, as in linear cointegrating regressions. In-
deed, if a Gaussian likelihood approach were adopted, the likelihood would turn out
to be in the locally asymptotically mixed normal class, so that an optimal theory of
inference can be developed (c.f Jeganathan, 1995, and Phillips, 1991).

Not addressed in this paper is the general task of developing a theory of regression
for nonlinear functions of nonstationaryregressors in which the parameters also enter
in a nonlinear fashion. This task is more complex and of broader scope than what
has been completed in this paper, but the results rely intimately on the methods we
have introduced here. The results of the broader investigation will be reported by
the authors in a subsequent paper.
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8. Proofs

8.1 Proof of Lemma 2.3 Parts (a) and (b) are respectively Theorem 3.4 of Phillips
and Solo (1992) and Theorem 3 of Akonom (1993).

8.2 Proof of Lemma 2.4 See e.g., Corollary 7.4 of Chung and Williams (1990).

8.3 Proof of Lemma 2.5 In what follows, let N,,(a,b) = N, (vy;a,b) to simplify
notation. For the proof of part (a), we first deduce from Lemma 4 of Akonom (1993)
that

2
E (Na(0,6) — $Na(s, (k + 1)5))2 <e L (1 + M)

ny, v
and similarly

E (Nn(k, (k +1)8) — LN, (8, (k + 1)5))2 <X (1 +

NVy,

k6%nlog n)

2
Vn

where c is some constant depending only upon the distribution of {&;} and {¢,}. The
stated result now follows immediately since

E (N, (0,6) — Ny (6, (k 4+ 1)6))?
2 2
< 9 <E (N0,6) = 1N(6, (k+ 1)8)) + B (Na(k, (k + 1)8) = ENu(5, (k +1)8)) >

Part(b) is due to Akonom (1993), Theorem 4. O

8.4 Proof of Theorem 3.2 Assume temporarily that g = 0, and write

n

LS (ZE) L T W) dr

t=1

Let C' = [Smin — 1, Smax + 1], where spin and smax are defined as in Theorem 4.8. Due
to Lemma 2.3 (a), we may take n sufficiently large so that sup |W,(r) — W(r)| < 6.
for any 6. > 0, and that both W,, and W are in C a.s. (Note that C'is path dependent
on W by construction.) Therefore,

L. (W(r)) T (Wa(r) <Te (W(r)) (13)
for large n because of (6). However,
Jo(Te=L.) W(r)ydr = [ (T = L.) (s)L(1,5) ds
< <5151p L(1, 5)> e (TE —IE) (z)dx
=0 (14)

as € — 0, due to (7). The stated result now easily follows from (13) and (14). For
the case xg # 0, simply replace W, with xy/y/n + W,, in the above proof. O

13



8.5 Proof of Theorem 3.4 Again, temporarily assume xg = 0, and write

Ly, (%) L 3T (Wa(r)) dr,

t=1

as in the proof of Theorem 3.2. We define
A = |[6 T (W) dr = [ T (W(r)) dr|
Bu = |[§Tu (W(r)) dr = [§ T (W(r)) dr|
and show
|6 T (Wa(r)) dr = [§T (W(r)) dr| < A + By = 0,(1)

below.
Given the conditions on the orders of v(c,) and T'(+cy,), we may easily deduce
from Lemma 2.3(b) and 2.5(b), setting 7, /vy, = ¢, in the latter, that

An Sv(en) [o[Walr) = W(r)|dr + |T(£c,)]
x| [oLH{IWa()] < en}dr = [GL{IW(1)] < ea}dr| = 0,(1)  (15)
Therefore, it suffices to show that
Bu <[ [T (W) L{W ()] = ea} = [T (W(r)) dr|
+ |T(%c,)] f(l) H{W(r)| < e, }dr =0(1) as. (16)
It follows from (3) that
T(£ey) [o L{IW ()] < e} dr = exT(£cn) (L(1,0) +o(1)) =5 0,
since T is locally integrable and therefore ¢, T(%c¢y,) — 0 for ¢, — 0. Moreover,
JoTWE)H{IW ()| = eatdr = [2 T(s)1{]s| > eu} L(1, 5)ds
X [ T(s)L(1,s)ds
= [oT (W(r) dr,

by dominated convergence and repeated applications of Lemma 2.4. Notice that
T(){| | > cn} — T(-) pointwise except at zero, which is of Lebesque measure zero.
The stated result now follows from (15) and (16).

When zg # 0, we may define

o

A = i, <% + Wn(r)> dr — [T, (\/ﬁ + W(r)> dr,
B, = [T (S5 + W) ) dr = [T (W(r)

instead of A,, and B,,, and the stated result holds in the same way. O
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8.6 Proof of Theorem 4.6 See Proposition 2.2 in Chapter XIII of Revuz and Yor
(1994). D

8.7 Proof of Theorem 4.7 We have
1 A%t

Ny 0 T(W(r)dr = ﬁféT@I/(AQr)) dr

4 o0y Jo T AW (1)) dr
= [oHW(r)dr+ 555 [oR(W(r),\)dr.
Since H is assumed to be locally integrable,
[ H (W) dr = [, H(s)L(t, $)ds,
by Lemma 2.4. Therefore, it suffices to show that
o5y Jo R(W(r), N dr *3 0

to finish the proof.
If T'e T((Hy), it is immediate that

ﬁfé |R(W(’P),)\)|dr < %féP(W(T))dr as. 0,

since P is locally integrable. For T' € 7 (H;), we have from Lemma 2.4

oy SO IR(W (), N dr < 235 [6,Q AW (r)) dr

= 255 [ QUAs)L(t, 5)ds.

Since ) vanishes at infinity, Q(\s) — 0 for all s except s = 0, which is of Lebesque
measure zero. We may assume w.l.o.g. that @) is monotone decreasing (increasing)
as © — 00 (xr — —00), by considering Q., Q«(x) = SUPy> (| Q(y), in place of @, if
necessary. Now, for all A > 1, Q(\-) is bounded by Q(:) which is locally integrable.
Since L(t,-) has compact support for any fixed ¢, we have

. Q(As)L(t,s)ds =3 0, (17)
by dominated convergence. O
8.8 Proof of Theorem 4.8 We let F be increasing. The proof for the decreasing

FE is quite similar, and omitted. In the proof, we let sp.x = 5 and Sy, = s for
notational simplicity. Notice first that

N prrwena = — 2 (o)) ar
/\T< sup W(r)) T<sup W(A2r)>
0<r<A?t 0<r<t
a AN
= Tog) JoT QW) r,
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for all \. However, we have

;”(g JET AW (r)) dr = 2”(&;)) JET AW (r))dr (1+0(1)) as
_ 2”(% FEEOW ) dr (1+0(1) as
since for s, = max(s, —s)
IROS)| _ R(Asm) as.
BOw) = EOw)
F IROW ] dr < 2R, 250,
by the condition on R.
It follows from Lemma 2.4 that
AV(A) RGP
EO%) Jo E (AW (r))dr = E(5) I E(As)L(t,s)ds
_ 2”((;;) [X B (A - s)) L(t,5 — 5)ds.

Now we choose a function s(A) > 0 of A such that
s(A) =0 and Av(M)s(A) — oo,

as A — oo. Due to (18) and (19), it suffices to show that

2”(—%)) [ E(AG - 5) L(1,5 — ) ds 5 0,
)\l/(/\) s(A) — — a.s. 1 —
meA B(AE =) L{t;5 =) ds *% 5L (1,3,

to finish the proof. Note for 0 < s < s(\) that

G(AE—135))—G(X3) = —\sG (A = s0(N))
= M(V)s (D(F) + 00 (1))

(18)

(21)

(22)

(23)

uniformly in s for large A, where 0 < so(A) < s(A). By (20), s(A),so(A) — 0 as

A — 0.

Subsequently using the fact that E is increasing and [0 L(t,s)ds = t, along

with (23), we have




as A — 00, since A\v(\)s(A) — oo by (20) and D(3S) > 0. This shows (21). Now, by

(23) again,

= 2w\ [i™ exp (=A(V)sD(E)(1+0(1))) L(t,5 — s)ds
= L)) [ exp (—\w(N)sD(3)) ds (1 + o(1))
= L(t,5) [0V WV exp (=sD(3)) ds (1 + o(1))

a.s. ]- —

= %L(tﬂg)a

and this proves (22). O

8.9 Proof of Theorem 5.1 Assume xg = 0 and write

n

3Tl =a Vit [V (VW () dr

If zyp # 0, then we may consider the function T'(- 4+ xg) in place of T'(-). It is easy to

see that all the proofs go through under this replacement.

Now let

a —b

Kp=n% and 6, =n
for a,b > 0 satisfying
a—(14+0)b <0
(6b—1)p+2 <0
20 -1 <0
da—4b—1 <0
(a—=bp—1>0

and define T,,, T, and T, by

T(x) = T(x)1{—Knbn < = < Kpby}
T (z) = T(z)1{x > Kby}
T!(z) = T(x)1{x < —kpn}

so that T =T, + T, + T,/. We will show that

Vi [o T (VaWa(r)) dr = ([, T(s) ds) L(1,0) + 0,(1),

and

Vi [o Ty (VaWa(r)) dr = oy(1),
Vi [o T (VaWa(r)) dr = op(1),

17
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from which the stated result follows directly. For notational brevity, set v, = /n,
and let Ny (a,b) = Ny (vp;a,b) and N(a,b) = N(vp;a,b) in what follows, for IV, and
N defined in (4) and (5).
To show (30), we first define
Kn—1
Ts, (z) = Z T(kbp)1{ké, <x < (k+1)6,}.

k=—FkKn
It follows from the Lipschitz condition for T’ that sup |Ty,(z) — Ts, ()| < 6%, and
therefore,

Vi[5 T (VW (r)) dr = /R [§ T, (VaW(r)) dr |

< Kn(s}—;ré (K@Nn (_ansn; Kvn&z)) = Op (/‘Jn(sylerE) = Op(l)a (33)
given the conditions for k,, and 6, in (24) and (25). Note that
%Nn (—Knbn, kndn) = 2L(1,0) + 0p(1),
under condition (26), due to Lemma 2.5(b).
Now,
Knp—1
\/ﬁf(l) Ty, (vVnWy(r)) dr = v/n Z T'(kén) N (Kén, (k4 1)6n)
k=—FKn
Fn—1
k=—kKnp
where
Kn—1
R, =+/n Z T(kbn) (Nn (kby, (k +1)6n) — Nn(0,65)) -
k=—kKn

It follows from the Cauchy-Schwarz inequality and Lemma 2.5(a) that

B(R2) < n ( H"f T(kén)2> H"f B (N, (0,6,) — No (k6 (5 + 1)6,))2
k=—FKn k=—FKn
00 Kn k262 logn
< (= T3 (s) ds) <c1f+ fg )= (1),

due to the conditions for k,, and 6, in (24), (27) and (28), and where ¢; and ¢y are
some constants.
However, we have

k=—kKn n

Vn ( Hi T(kén)> Ni(0,6,) = ( S0 T, (5) ds) gzvn(o, )
= (/% T(s)ds) L(1,0) +05(1),  (35)
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due to (26) for ky, and 6, in (24). Notice that

n

under condition (26), by Lemma 2.5 (b). Moreover,

[ Ty (s)ds = [*_Tu(s)ds +o (/{néi)
JZ Tu(s)ds = [* T(s)ds + o(1),

We now have (30) from (33),(34) and (35).
Next we show (31) and (32). Let

en = sup |Wy(r)—W(r)|. (36)
0<r<1

By taking n sufficiently large, we may assume that 7, and 7,/ are monotone (decreas-
ing and increasing, respectively) on their supports. This causes no loss in generality,
since we may always bound 7,/ and T}/ by such functions if T is integrable. Therefore,

T, (VnWy(r)) < T (Vn(W(r) —en)) L{v/n(Wy(r) + en) > knby}
T, (VnWa(r)) < T (Va(W(r) +en)) L{VR(Wa(r) — en) < —Fnbn}

It follows that

Vi [o Ty (VaWa (r ))
S\/_fo (\/_( _5n)1{\/_ +5n)>"{n6 }d?"
=n[¥, (Tf(s—gn)l{fs+6n)>nn6n}L 1,s)ds
= [®_T(s 1{s>/-cnn—Q\/ﬁsn}L(l,ﬁ+€n>d5&O,
since kpdy, — 2y/ne, —p 00, due to (24) and (29). Similarly,

VR IATY (AW (r) dr

<V [T (VW (r) +e,)) L{VR(W (r) — en) > kpbp ) dr
=n[®, T(\/_(s+6n)1{\/_s—5n)>nn6n}L 1,s)ds
= [®_T(s)1{s < —knbn +2fsn}L(,f 5n)d5£>o,

since —kpdy + 2y/ne, —p —o0, again due to (24) and (29). The proof is therefore
complete. O

8.10 Proof of Theorem 5.3 Again let zy = 0 for simplicity. The proof for xg # 0
is the same with only W, (r) being replaced by zo//n+W,,(r) in what follows. Write

n

1 i—l ! n r))dr
V\/ﬁ)t:1 ( )_V(\/E)IOT(\/_WTL( ))d

:fO ( ())d?"—l— (\/—)fo ( ()\/ﬁ)dT
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Since H is regular, it follows that

fo (W, ()dr@fo W(r))dr = [>_ H(s)L(1,s)ds.

It therefore suffices to show

I
—— Jo R (Wy(r
Sy 1o FL
to complete the proof.
If T € T(Hy), it follows immediately that

# 1 r n r a(\/ﬁ) 1 r Td_s)

since P is locally bounded. For T € 7 (Hs), we need to show
I b(yn) as.
——— [0 |R (Wy(r),/n)|dr < Q (VnWy(r)) dr = 0, (37)
where @) is bounded and vanishes at infinity. We may assume w.l.o.g. that @ is
monotone decreasing (increasing) for x > 0 (x < 0), as noted in the proof of The-

orem 4.7. We may thus write Q@ = @1 — @2 with both 1 and Q2 bounded and
nondecreasing, and let €, be defined as in (36). It follows that

Ql (\/E(W(T) - 5n)) - QQ (\/E(W(T) + 5n))

< Q1 (Va(W(r) +en)) = Q2 (VR(W(r) —en)) . (38)
However,
* Qi (Vn(s*en)) L(1,s)ds

JoQ:i (Va(W(r) ) dr =
= [T, Qi (vVns) L(1,s F &,)ds
= [T, Qi (vns) L(1,s)ds (1 +o(1)) as. ,
')
)

since the Q;’s are bounded and L(1,

Jo (@1 (VW (r) Fen)) — Q2 (Vn(W(r) +e,))) dr
= [2(Q1 (Vn(s Fen)) — Qo (Vn(s £ e,))) L(1,5) ds
= [*.Q(V/ns)L(1,s)ds(1+0(1)) as. . (39)

Now (37) follows easily from (38) and (39), due to (17). O

is continuous. Therefore,

8.11 Proof of Theorem 5.5 Let E be increasing, and let S, = sup W, (r) and
5 = sup W(r). For simplicity, assume xy = 0. For the case xy # 0, we replace W,,(r)
and 3, respectively by W,,(r)+x¢/y/n and 5, +x0/+/n in what follows. All the proofs
go through with this replacement. Write

\/ﬁT(;(a;iKM ;T : ‘/ZV}‘_W) o T (vVnWy(r)) dr
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and notice that

SR [T (VW) dr = Y B (VAW 0) dr (14 ,(1), (40)
which we can show in the same way as (18) in the proof of Theorem 4.8.

Let v, = /nv(y/n), and let s, be a sequence of numbers such that s, — 0 and
VpSy — 00. Since 5, —;, 5 and s, — 0, we have similar to (23) in the proof of
Theorem 4.8

G (Vi(5n — 5)) — C(/5) = —vs (D) + 0p(1)) (41)

uniformly in s € [0, s,,], for sufficiently large n. Therefore, if we write

B [t E (VaWn(r)) dr = Ay + B, (42)

where

An = \/ﬁWn(T)) {W ( ) Sn} d?"

VW (1) {Wy (1) < 3p — 85} dr,

M— j o
\/’— ) fO (
then it follows from (41) that
An = vy [oexp (~vnD(5) (5n — Wa(r))) dr (1 + 0p(1))
Bn = OP(1)7

in parallel to (21) and (22) in the proof of Theorem 4.8.
Define W), and W’ by

W/ (r) =3, —Wy(r) and W'(r)=35— W(r),

By,

i.e., Brownian motion reflected at the supremum and its sample analogue. Denote
by L' the local time of W’. Furthermore, we define N}, and N’ for W), and W’ in
the same way as N,, and N for W,, and W given in (4) and (5), respectively. Write
N/ (a,b) = N/, (vn;a,b) and N'(a,b) = N'(vp;a,b) for short. Though we do not
provide the details, it is obvious that all the results in Akonom (1993), and therefore
our Lemmas 2.3 and 2.5 hold for W, and W', as well as W,, and W.
Now we write
Ay = antl) (n Wy (r) dr (14 0p(1)),
with
F(z)=e*PG) {z > 0}.

To analyze Ay, we define k,, and 6, as in (24) with a and b satisfying

a—2b <0 (43)
2a+m—-1<0 (44)
da—4b—-—m—-1<0 (45)
(6b+3m—1)p+2 < 0 (46)
(2a—2b—m)p—2 >0 (47)
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and let vy, 8, = Kpby. It is tedious but straightforward to check that a and b satisfying
all (43)—(47) exist, given our conditions on m and p.
We decompose F into F,, and F),, where

Fp(x) = e *PO1{0 < 2 < kpb,},

E!(z) = e *PO1{x > k,6,}.
It will be shown that
Vi [ Fn (vaWi(r)) dr = (%, F(s)ds) L'(0,1) + 0,(1), (48)
Un [§ B (va W2 (r)) dr = 0,(1), (49)

from which we may easily deduce the stated result, upon noticing that

) . 1 / _ —
[ F(s)ds = DG) and L'(1,0) = L(1,3),
together with (40) and (42).
To show (48), we first introduce
Fn—1 _
Fs,(x)= > e PO1{ks, <o < (k+1)8,},
k=0

and notice that

Up

!
Kn(ann (0,/@n6n)>

= Op (kab2) = 0p(1),  (30)

‘yn f(l) F, (vnWy(r)) dr — vy, f(l) Fs, (vn Wy, (1)) dr‘ < /Qnéi (

under conditions (43) and (46). Note that

Un

/Qn(an’rll (07 "Qn(sn) = LI(07 1) + OP(1)7

under condition (46) by Lemma 2.5(b).
Secondly,

kn—1
va [o Fs, (vaWi(r)) dr = vy Y~ e " PN (b, (k+ 1))
k=0

Kn—1
- (Z ekénD(§)> N!(0,6,) + R!, (51)

k=0
where
Kp—1 _
Ry = v 30 e D) (NG (kb (k + 1)) — Ny(0,8,)
k=0
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and therefore,

E(RIQ)

n

IN

Fn—1 Fn—1
V2 ( > e_2k6"D(§)) 3" E (N, (kbn, (k+1)8,) — N4 (0,6,))
k=0

k=0

Unk 82K2 logn
> F} (s)d o ot 0
(/= B2 (s)ds) (Cl o T, >—> :

IN

by conditions (44) and (45), where ¢; and ¢y are some constants.

Thirdly,

. (/:LZ: ekénmz)) NJ(0,6,) = ([0 By, (s)ds) <’g—:N; (0, 5n))
= (%, F(s)ds) L'(1,0) + 0,(1). (52)
Notice that
I B (s)ds = [ Fu(s)ds + O (kab3),
% Fals)ds = [ F(s)ds + O (o).

Also, by Lemma 2.5(b)
v

2N (0,60) = L'(1,0) + 0p(1),

under condition (46). Then (48) follows from (50), (51) and (52).
Finally, for &, defined in (36)

Un [o EL (wnWh(r)) dr < v, [6 F (un(W' (1) — ) L{vn(W'(r) + €5) > kn6, )} dr
=Up [T F (Un(s — &) L{vn(s +&n) > kndpn} L'(1,s)ds
= [ F(s)1 nn_nnLllindp

I F(s)1{s > kpbp — Vnen} (,\/ﬁ+5>s—>0,
since Kpdp — Vpen —p 00 under condition (47), which proves (49). The proof is

therefore complete. O

8.12 Proof of Lemma 6.2 By Theorem Al, page 269 of Hall and Heyde (1980)
there exist a probability space (2, P, F) supporting {U;}, U; = Z};:l uy, a Brownian
motion U with variance 02 and a time change {7;} such that
(a) 7 is Fi-measurable,
(b) E(AT)"|Fie1) < E(Jue|*|Fiz1) as. for r > 1, and
(c) BE(AT|Fia) =1,
where F; is the o-field generated by (Ug)t_; and U(r) for 0 <r < 7.
Let 1 <r <min(2,q/2). Then we have

E(|Ame = 1" |Fimq) < csupE(|u]?| Fim1) < oo as.
t>1
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for some constant c¢. Therefore,
Zt*T‘SEUAn —1"| Fiz1) < 00 aus.
t=1
since 6 > 1, and we have from Theorem 2.18 of Hall and Heyde (1980) that

Tt — 1t as.
ra

as t — oo for 6 > max(1/2,2/q). Therefore, for any ¢ > 0 given, there ex-
ists n’ such that |7, — ¢|/t® < e for all t > n’. Choose n > 7' such that n >

(maxj<g<p |T¢ — t]/s)l/é. It is easy to check

Tt—t
n

sup
1<t<n

‘ <e as.
as was to be shown. O
8.13 Proof of Theorem 6.3 To prove part (a), construct the process
E—1
= VY F(ViW (3) (U () = U (%3))
t=1
+ Yt (Vi (£)) @) - U (252)), (53)

for 71 /n <r <T1p/n, k=1,...,n. Note that M, is a continuous martingale such

that
Tn
Zf ) Ut ( )
The quadratic variation process [Mn} of M, is given by
(M, r—foQ (VoW (7)) (5 = =5)

VP (A (5) -
= VA5 52 (VAWa(s) ds -+ 0y(1),

since

sup | (3 —=2t) — l) =o(1) as.

1<t<n

due to Lemma 6.2. Therefore,

(M), 2 (1%, T(s) ds) L(r,0), (54)

as shown in the proof of Theorem 5.1. Moreover, if we denote by [M,,, W] the covari-
ation process of M,, and W, then

[MmW}r =0 (55)
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for all » € [0, 1], due to the independence of U and W. The asymptotic distribution
of the continuous martingale M,, in (53) is completely determined by (54) and (55),
as shown in Revuz and Yor (1994, Theorem 2.3, p. 496).

Now define the sequence of time changes
pu(r) = inf {5 [Ma], >}
and subsequently set

Va(r) = My (py (1) -
The process V,, is the DDS (or Dambis, Dubins-Schwarz) Brownian motion of the
continuous martingale M, [see, for example, Revuz and Yor (1994), Theorem 1.6,
p. 173]. It follows that (V},, W) converges jointly in distribution to two independent
standard linear Brownian motions (V, W), say. Therefore,
M, (T2)  =M,(1) + op(1)

S V(=L T(s)ds L(1,0)) ,
which gives the result stated in (a). The proofs for (b) and (c) are similar, and are
therefore omitted. O
8.14 Proof of Proposition 6.4 The case k > 0 is straightforward because
1 n

n
n—l—n/Q Z ’xt‘n I Z
- "=

by Theorem 3.2, since T'(x) = |z|" is regular. In the case where —1 < kx < 0 Theorem
3.4 is applicable and (56)again yields the stated result. For the case Kk < —1 we use
a different argument. Bound Y 7" ; |x¢|® below as

Z|x > Z|x 1 {'“f |§ﬁ}

xt” 1
N KA jﬁ W (r)|<dr, (56)

£ (1+Jzo))" f§ 1{|W< )| < Z5}dr.

Then, from Lemma 2.5(b)
Vi [ {IWa(n)] < &b dr = o [ {W)] < b dr+o,(1)
= 2L(1,0) + 0,(1),

and thus for any 6§ > 0

n
n71/2+62 |xt|ﬁ N 00,
t=1
thereby establishing the stated result. O
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