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Mixture hazard rate
Let Y be a positive absolutely continuous r.v. representing lifetime.
Assume that its random hazard rate is of the form

h̃(t) =

∫
X

k(t , x)µ̃(dx)

• k is a kernel

• the mixing measure µ̃ is modeled as a completely random measure.

Remark. Given µ̃, h̃ represents the hazard rate of Y , that is

h̃(t) dt = P(t ≤ Y ≤ t + dt |Y ≥ t , µ̃).

The cumulative hazard is given by H̃(t) =
∫ t

0 h̃(s)ds. Provided H̃(t) →∞ as
t →∞ a.s., one can define a random density function as

f̃ (t) = h̃(t) exp(−H̃(t))

=⇒ Life testing model. See Dykstra and Laud (1981), Lo and Weng (1989),
Ishwaran and James (2004) James (2005) for Bayesian nonparametric
treatments, among others.
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Completely random measures

LetM be the space of boundedly finite measures on some Polish space X.

Definition. (Kingman, 1967) A random element µ̃ taking values inM such
that, for any disjoint sets (Ai)i≥1,

µ̃(A1), µ̃(A2), . . . are mutually independent

is said to be a completely random measure (CRM) on X.

Remark. A CRM can always be represented as a linear functional of a
Poisson random measure. In particular, µ̃ is uniquely characterized by its
Laplace functional, which is given by

E
[
e−

∫
X g(x) µ̃(dx)

]
= e−

∫
R+×X[1−e−v g(x)]ν(dv,dx) (?)

for any R+–valued g ∈ Gν := {g :
∫
R+×X[1− e−v g(x)]ν(dv , dx) < ∞}. In (?) ν

stands for the intensity of the Poisson random measure and it will be used to
characterize the corresponding CRM µ̃.
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• CRMs select almost surely discrete measures: hence, µ̃ can always be
represented as

∑
i≥1 JiδXi .

• If ν(dv , dx) = ρ(dv)λ(dx) the law of the Ji ’s and the Xi ’s are
independent and µ̃ is termed homogeneous CRM.
On the other hand, if ν(dv , dx) = ρ(dv | x)λ(dx), we have a
non-homogeneous CRM. Note that in the posterior we will always have
non–homogeneous CRMs.

• If ν(R+, dx) = ∞ for any x , then the CRM jumps infinitely often on any
bounded set A. However, recall that µ̃(A) < ∞ a.s.

• Specific hazard rates will be obtained by considering CRMs with
Poisson intensity measures of the following form:

ν(dv , dx) =
1

Γ(1− σ)

e−γ(x)v

v1+σ
dv λ(dx),

where σ ∈ [0, 1), γ is a strictly positive function and λ a σ–finite
measure on X. Such measures are termed non–homogeneous
generalized gamma (NHGG) CRMs.
If γ is constant we obtain the generalized gamma CRMs (Brix, 1999),
whereas if σ = 0 we have the extended gamma measure (Dykstra and
Laud, 1981; Lo and Weng, 1989).
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Kernels

A kernel k is a jointly measurable application from R+ × X to R+, such that∫
X k(t , x)λ(dx) < +∞ and

∫
· k(t , x)dt is a σ–finite measure on B(R+) for

any x in X.

We will consider mixture hazard rates arising with the following specific
kernels:

• Dykstra-Laud (DL) kernel (monotone increasing hazard rates)

k(t , x) = I(0≤x≤t)

• rectangular (rect) kernel with bandwidth τ > 0

k(t , x) = I(|t−x|≤τ)

• Ornstein–Uhlenbeck (OU) kernel with κ > 0

k(t , x) =
√

2κ e−κ(t−x)I(0≤x≤t)

• exponential (exp) kernel (monotone decreasing hazard rates)

k(t , x) = x−1e−
t
x .
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de Finetti’s theorem and Bayesian inference
An (ideally) infinite sequence of absolutely continuous R+–valued
observations Y (∞) = (Yi)i≥1 is exchangeable if and only if there exists a
probability measure Q (de Finetti measure) on the space F of all density
functions on R+ such that

P
[
Y (∞) ∈ A

]
=

∫
F

n∏
i=1

f (Ai) Q(df )

for any n ≥ 1 and A = A1 × · · · × An × R+ × . . ., where f (Ai) =
∫

Ai
f (x)dx .

Consider now the random density f̃ = h̃ e−H̃ and denote by Π its law on F
(which depends on the kernel k and the CRM µ̃). Thus, our inferential model
amounts to assuming the lifetimes Yi ’s to be exchangeable with de Finetti
measure Π.
Given a set of observations Y n = (Y1, . . . , Yn), the posterior distribution is

Π(df |Y n) =

∏n
i=1 f (Yi)Π(df )∫

F
∏n

i=1 f (Yi)Π(df )
(•)

Then, the Bayes estimator of the density function of Y is

f̂n(t) = E[̃f (t)|Y n] =

∫
F

f (t)Π(df |Y n)

=⇒ For concrete implementation, an explicit representation of (•) is needed.
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Asymptotic issues

Posterior consistency. First generate independent data from a “ true ” fixed
density f0, then check whether the sequence of posterior distributions of f̃
accumulates in some suitable neighborhood of f0.

=⇒ Which conditions on f̃ are needed in order to achieve consistency for
large classes of f0’s?

CLTs for functionals of the random hazard. For a fixed T > 0, consider the
functionals (i) H̃(T ) and (ii) T−1 ∫ T

0 [h̃(t)− H̃(T )/T ]2dt (path-variance).

We are interested in establishing Central Limit Theorems of the type

η(T )× [H̃(T )− τ(T )]
law−→ N (0, σ2) as T → +∞

for appropriate positive functions τ(T ) and η(T ) and variance σ2.

=⇒ τ(·), η(·) and σ2 provide an overall picture of the model.

Moreover, given the observations Y n = (Y1, ..., Yn), we also want to derive
CLTs for the functionals (i) and (ii) with respect to the posterior distribution.

=⇒ How are τ(·), η(·) and σ2 influenced by the observed data?
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Weak consistency
Denote by P0 the probability distribution associated with f0 and by P∞0 the
infinite product measure. Recall that Π is the (prior) distribution of the random
density function f̃ = h̃e−H̃ .

Definition. Π is said to be weakly consistent at f0, if, for any ε > 0

Π(Wε

∣∣Y n)
n→∞−→ 1 a.s.− P∞0 ,

where Wε is a ε–neighbourhood of P0 in the weak topology.

=⇒ “ What if ” or frequentist approach to Bayesian consistency (Diaconis and
Freedman, 1986): the Bayesian paradigm assumes the data to be
exchangeable and updates the prior distribution accordingly (typically via
Bayes theorem). But “ what happens if ” the data are not exchangeable but
instead i.i.d. from some “ true ” distribution P0? Does the posterior distribution
concentrate in a neighbourhood of P0?

Remark. A sufficient condition for weak consistency (Schwartz, 1965)
requires a prior Π to assign positive probability to Kullback–Leibler (K–L)
neighborhoods of f0 (K–L condition):

Π
(
f ∈ F :

∫
log(f0/f )f0 < ε

)
> 0 for any ε > 0,

where
∫

log(f0/f )f0 is the K–L divergence between f0 and f .
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General consistency result
The first result translates the K–L condition into a condition in terms of
positive prior probability assigned to uniform neighbourhoods of h0 on [0, T ],
where h0 is the hazard rate associated to f0.

THEOREM
Assume (i) h0(t) > 0 for any t ≥ 0,

(ii)
∫
R+ g(t) f0(t)dt < ∞ , where g(t) = max{E[H̃(t)], t}.

Then, a sufficient condition for Π to be weakly consistent at f0 is that

Π
{

h : sup0<t≤T

∣∣h(t)− h0(t)
∣∣ < δ

}
> 0

for any finite T and positive δ.

Remark.
(I) The theorem holds for any random hazard rate, not only for those with
mixture structure we are focusing on here.
(II) For mixture hazards verifying positivity of uniform neighbourhoods of h0 is
much simpler than the K–L condition for f0.
(III) The conditions on f0 are not restrictive except for the requirement that
h0(0) > 0. Indeed, in many situations it is reasonable to have hazards which
start from 0 and, thus, one would also like to check consistency with respect
to “ true ” hazards h0 for which h0(0) = 0.



Mixture hazard rate Posterior consistency CLT for functionals

General consistency result
The first result translates the K–L condition into a condition in terms of
positive prior probability assigned to uniform neighbourhoods of h0 on [0, T ],
where h0 is the hazard rate associated to f0.

THEOREM
Assume (i) h0(t) > 0 for any t ≥ 0,

(ii)
∫
R+ g(t) f0(t)dt < ∞ , where g(t) = max{E[H̃(t)], t}.

Then, a sufficient condition for Π to be weakly consistent at f0 is that

Π
{

h : sup0<t≤T

∣∣h(t)− h0(t)
∣∣ < δ

}
> 0

for any finite T and positive δ.

Remark.
(I) The theorem holds for any random hazard rate, not only for those with
mixture structure we are focusing on here.
(II) For mixture hazards verifying positivity of uniform neighbourhoods of h0 is
much simpler than the K–L condition for f0.
(III) The conditions on f0 are not restrictive except for the requirement that
h0(0) > 0. Indeed, in many situations it is reasonable to have hazards which
start from 0 and, thus, one would also like to check consistency with respect
to “ true ” hazards h0 for which h0(0) = 0.



Mixture hazard rate Posterior consistency CLT for functionals

Relaxing the condition h0(0) > 0

Allowing h0(0) = 0 can create problems with the K–L condition since
log(h0/h̃) (hence log(f0/f̃ )) can become arbitrarily large around 0. However,
by taking a mixture hazard model and studying the short time behaviour of µ̃,
which determines the way h̃ vanishes in 0, we can remove the condition.

PROPOSITION
Weak consistency holds also with h0(0) = 0 provided there exist α, r > 0
such that:

(a) limt→0 h0(t)/tα = 0;

(b) lim inft→0 µ̃((0, t ])/t r = ∞ a.s. (short time behaviour condition)

and a mild condition on the kernel is satisfied.
In particular, (b) holds if µ̃ is a NHGG CRM with σ ∈ (0, 1) and λ(dx) = dx.

Condition (a) requires the “ true ” hazard to leave the origin not faster than an
arbitrary power.
Condition (b) requires µ̃ to leave the origin at least as fast as a power.
Note that the α and r in (a) and (b) do not need to satisfy any relation.
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Condition (b) requires µ̃ to leave the origin at least as fast as a power.
Note that the α and r in (a) and (b) do not need to satisfy any relation.



Mixture hazard rate Posterior consistency CLT for functionals

Dykstra–Laud mixture hazards

Consider DL mixture hazards h̃(t) =
∫

R+ I(0≤x≤t)µ̃(dx) = µ̃((0, t ]), which give
rise to non–decreasing hazard rates.
THEOREM
Let h̃ be a mixture hazard with DL kernel with µ̃ satisfying the short time
behaviour condition.
Then Π is weakly consistent for any f0 ∈ F1, where F1 is defined as the set
of densities which satisfy the following conditions:
(i)
∫
R+ t2 f0(t)dt < ∞;

(ii) h0(0) = 0 and h0(t) > 0 for any t ≥ 0;
(iii) h0 is non–decreasing.

=⇒ Recall that the short time behaviour condition holds for NHGG CRMs.

Remark. Steps for proving this and the following results (techniques different
but the strategy is the same):
(1) prove positivity of uniform neighbourhoods of h0 (and, hence, weak
consistency) for “ true ” h0 of the type h0(t) =

∫
R+ k(t , x)µ0(dx);

(2) show that “ true ” h0 of the type h0(t) =
∫

R+ k(t , x)µ0(dx) are arbitrarily
close in the uniform metric to any h0 belonging to a class of hazards having a
suitable qualitative feature.
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Rectangular mixture hazards

Consider rectangular mixture hazards h̃(t) =
∫

R+ I(|t−x|≤τ̃)µ̃(dx), where the
bandwidth τ is treated as a hyper–parameter and an independent prior π is
assigned to it. So we have two sources of randomness τ̃ , with distribution π,
and µ̃, with distribution L : hence, the prior distribution Π on h̃ is induced by
π ×L via the map (τ, µ) → h( · |τ, µ) :=

∫
I(| · −x|≤τ)µ(dx).

THEOREM
Let h̃ be a mixture hazard with rectangular kernel and random bandwidth.
Then Π is weakly consistent for any f0 ∈ F2, where F2 is defined as the set
of densities which satisfy the following conditions:
(i)
∫
R+ t f0(t)dt < ∞;

(ii) h0(t) > 0 for any t > 0;
(iii) h0 is bounded and Lipschitz.
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Ornstein–Uhlenbeck mixture hazards

Consider OU mixture hazards h̃(t) =
∫

R+

√
2κ e−κ(t−x)I(0≤x≤t)µ̃(dx).

For any differentiable decreasing function g define the local exponential
decay rate as −g′(y)/g(y).

THEOREM
Let h̃ be a mixture hazard with OU kernel with µ̃ satisfying the short time
behaviour condition.
Then Π is weakly consistent for any f0 ∈ F3, where F3 is defined as the set
of densities which satisfy the following conditions:
(i)
∫
R+ t f0(t)dt < ∞;

(ii) h0(0) = 0 and h0(t) > 0 for any t ≥ 0;
(iii) h0 is differentiable and for any t > 0 such that h′0(t) < 0 the
corresponding local exponential decay rate is smaller than κ

√
2κ.

=⇒ Choosing a large κ leads to less smooth trajectories of h̃, but, on the
other hand, ensures also consistency w.r.t. to h0’s which have abrupt decays
in certain regions.
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Exponential mixture hazards

Finally, consider exponential mixture hazards h̃(t) =
∫

R+ x−1e−
t
x µ̃(dx),

which produces decreasing hazards.
Recall that a function g on R+ is completely monotone if it possesses
derivatives g(n) of all orders and (−1)ng(n)(y) ≥ 0, y > 0.

THEOREM
Let h̃ be a mixture hazard with exponential kernel such that h̃(0) < ∞ a.s.
Then Π is weakly consistent for any f0 ∈ F4, where F4 is defined as the set
of densities which satisfy the following conditions:
(i)
∫
R+ t f0(t)dt < ∞;

(ii) h0(0) < ∞;
(iii) h0 is completely monotone.

Remark. By taking a homogeneous CRM with base–measure
λ(dx) = x−1/2e−1/x(2

√
π)−1dx , we have h̃(0) < ∞ a.s. and, interestingly, the

prior mean of h̃ is centered on a quasi–Weibull hazard i.e.
E[h̃(t)] = c(t + 1)−1/2 (nonparametric envelope of a parametric model).

Remark. All the previous results hold also for data subject to right–censoring.
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CLTs for linear and quadratic functionals

CLTs provide a synthetic picture of the random hazard, which is very useful
for understanding the behaviour of the model and the influence of the various
parameters =⇒ prior specification

We are going to establish CLTs, as T →∞, of the type

η1 (T )×
[
H̃(T )− τ1 (T )

]
law−→ X1 ∼ N (0, σ1) (Linear functional)

=⇒ How fast does the cumulative hazard diverge from its long–term trend?

η2 (T )×

 1
T

∫ T

0

[
h̃(t)− H̃(T )

T

]2

dt − τ2 (T )

 law−→ X2 ∼ N (0, σ2) (Path–variance)

=⇒ How big are the oscillations of h̃(t) around its average value?

The results are obtained by suitably adapting and extending the techniques
introduced in Peccati and Taqqu (2007) for deriving CLTs for double Poisson
integrals.
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CLTs for the cumulative hazard
Define k (0)

T (s, x) = s
∫ T

0 k (t , x) dt . In the following, we suppose a few
technical integrability conditions involving the kernel and Poisson intensity
measure to be satisfied.

THEOREM
If there exists a strictly positive function T 7→ C0 (k , T ), such that, as
T → +∞,

C2
0 (k , T )×

∫
R+×X

[
k (0)

T (s, x)
]2

ν (ds, dx) → σ2
0 (k) > 0,

C3
0 (k , T )×

∫
R+×X

[
k (0)

T (s, x)
]3

ν (ds, dx) → 0.

Then,
C0 (k , T )×

[
H̃(T )−E[H̃(T )]

]
law−→ X ∼ N

(
0, σ2

0 (k)
)
,

Remark.
(I) The asymptotic variance depends on the specific structure of the CRM µ̃
and of the kernel k .
(II) The two conditions only involve the analytic form of the kernel k and do
not make use of the asymptotic properties of the law of the process h̃(t).
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Applications

We first consider general homogeneous CRM i.e. with intensity
ν(dv , dx) = ρ(dv)λ(dx) and set, unless otherwise specified, λ(dx) = dx .
Define K (i)

ρ =
∫∞

0 siρ(ds) for i = 1, 2.

(i) Rectangular mixture hazards

1√
T

[
H̃(T )− 2τK (1)

ρ T
]

law−→ X ∼ N
(

0, 4K (2)
ρ τ 2

)
=⇒ Except for constants, exactly the same result holds for
Ornstein–Uhlenbeck mixture hazards.

(ii) Exponential mixture hazards with base–measure
λ(dx) = x−1/2e−1/x(2

√
π)−1

1

T
1
4

[
H̃(T )− K (1)

ρ

√
T
]

law−→ X ,∼ N
(

0, (2−
√

2)K (2)
ρ

)
=⇒ Long–term trend is Weibull

√
T
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(iii) Dykstra–Laud mixture hazards

1

T
3
2

[
H̃(T )− K (1)

ρ

2
T 2

]
law−→ X ,∼ N

(
0,

K (2)
ρ

3

)

Remark. If µ̃ is the generalized gamma CRM i.e.

ν(dv , dx) =
1

Γ(1− σ)

e−γv

v1+σ
dv dx σ ∈ [0, 1), γ > 0,

then K (2)
ρ which enters the asymptotic variance is 1−σ

γ2−σ . This confirms the
empirical finding that a small γ induces a large variance i.e. a
non–informative prior.
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Consider now a non–homogeneous CRM: specifically we take the extended
gamma CRM i.e. ν(dv , dx) = e−γ(x)v

v dv dx with γ a strictly positive function.

Case I. If γ is bounded, then CLTs with the same trends and rates C0(k , T )
are obtained.

Case II. If γ diverges, interesting phenomena appear.
(i) Rectangular mixture hazard with γ(x) = 1 +

√
x

1√
log(T )

[
H̃(T )− 4T 1/2 − 2 log(T )

]
law−→ X ∼ N (0, 4)

Compared to the homogeneous case:
(a) the trend is reduced from T to

√
T

(b) the rate of divergence from the trend is reduced from
√

T to
√

log(T ).

By suitably choosing γ the trend and the rate of divergence from the trend
can be tuned at any order less than T and

√
T , respectively.
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(ii) DL mixture hazard with γ(x) = 1 +
√

x

1√
log(T ) T

[
H̃(T )− 4/3 T 3/2 − log(T )T ]

]
law−→ X ∼ N (0, 1)

Compared to the homogeneous case:
(a) the trend is reduced from T 2 to T 3/2

(b) the rate of divergence from the trend is reduced from T 3/2 to
√

log(T )T .

By suitably selecting γ the trend and the rate of divergence from the trend
can be tuned at any order in the range (T , T 2] and (T , T 3/2], respectively.
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CLTs for the path–variance
We now provide a CLT for the path–variance

∫ T
0

[
h̃(t)− H̃(T )

T

]2
dt of a mixture

hazard rate.

THEOREM
Under a series of technical assumptions, we have

C1 (k , T )×

1
T

∫ T

0

[
h̃(t)− H̃(T )

T

]2

dt− 1
T

∫ T

0
E

[
h̃(t)− E(H̃(T ))

T

]2

dt


law−→ X ,∼ N

(
0, σ2

1

)

=⇒ Some of the conditions are quite delicate: for instance, they do not hold
for DL and exponential mixture hazards. This leads to conjecture that our
conditions do not hold for hazards with un–regular oscillations over time. A
DL mixture hazard accumulates all the randomness of µ̃ as T increases and,
hence, the path–variance increases over time. An exponential mixture hazard
dampens the influence of µ̃ as T increases and, hence, the path–variance
decreases over time.
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Applications
(i) Ornstein–Uhlenbeck mixture hazard

√
T ×

{
1
T

∫ T

0
[h̃(t)− 1

T
H̃(T )]2dt − K (2)

ρ

}
law−→ X ∼ N

(
0,

2 (K (2)
ρ )2

κ
+ K (4)

ρ

)
If µ̃ is the generalized gamma CRM, the variance of the limiting normal r.v. is

σ2
1 =

(1− σ) (2(1− σ)γσ + κ(2− σ)2)

κγ4−σ

=⇒ Hints for prior specification:
(a) σ2

1 ↓ decreases as κ ↑ and γ ↑
(b) σ2

1 is maximized by σ = 0 for low values of κ and γ, whereas, for
moderately large values of κ and γ, the maximizing σ increases as κ and γ
increase. E.g., σ2

1 is maximized by σ = 0 if κ = 0.5 and γ = 2, whereas it is
maximized by σ ≈ 0.1, if κ = 1 and γ = 5.

(ii) Rectangular mixture hazard

√
T×
{

1
T

∫ T

0
[h̃(t)− 1

T
H̃(T )]2dt − 2τK (2)

ρ

}
law−→ X ∼ N

(
0, 4τ 2

[
8τ(K (2)

ρ )2

3
+ K (4)

ρ

])
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8τ(K (2)

ρ )2

3
+ K (4)

ρ

])
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The posterior mixture hazard (James, 2005)
As previously, denote by Y n = (Y1, . . . , Yn) a set of n observations.

The key to the derivation of the posterior hazard is the introduction of a
suitable set of latent variables X n = (X1, . . . , Xn). Since the Xi ’s may feature
ties, we denote by X∗ = (X∗

1 , . . . , X∗
k ) the k ≤ n distinct latent variables.

Then, one can describe the conditional distribution of the CRM given Y n,
µ̃ |Y n, in terms of µ̃ |Y n, X n mixed over X n |Y n.

The law of a mixture hazard rate, conditionally on Y n and X n, coincides with
the distribution of the random object

h̃n(t) =

∫
X

k(t , x)µ̃n(dx) +
k∑

i=1

Jik(t , X∗
i ),

where µn is a CRM with updated intensity measure

νn(dv , dx) := e−v
∑n

i=1
∫ yi

0 k(t,x)dt ρ(dv |x) λ(dx) (•)

and the latent variables X∗
i ’s are the location of the random jumps Ji ’s (for

i = 1, . . . , k ), which are, conditionally on X n and Y n, independent of µ̃n.

Remark. The intensity in (•) is always non–homogeneous and the jump sizes
of the CRM become smaller as n increases.

Finally, denote the distribution of X n|Y n by P̃Xn|Y n .
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CLTs for posterior functionals
Relying upon the previous posterior characterization, we derive CLTs for
functionals given a fixed number of observations: the idea consists in first
conditioning on X n and Y n and then in obtaining CLTs conditionally on X n

and Y n. Finally, the desired CLTs are obtained by averaging over P̃Xn|Y n .

For given X n and Y n, define H̃n(T ) to be the cumulative hazard associated to
the posterior hazard without fixed points of discontinuity. Assume there exists
a (deterministic) function T 7→ Cn(k , T ) and σ2

n(k) > 0 such that

lim
T→+∞

C2
n(k , T )×

∫
R+×X

[
k (0)

T (s, x)
]2

νn(ds, dx) = σ2
n(Y n)

lim
T→+∞

Cn(k , T )×
∑k

j=1 Jj
∫ T

0 k(t , X∗
j )dt = mn(X n) ≥ 0 a.s.

Note that σ2
n(Y n) may depend on Y n and mn(X n) may depend on X n.

Then, under suitable conditions we can state that

Cn(k , T )×
[
H̃(T )−E[H̃n(T )]

]∣∣∣Y
converges, as T →∞ to a location mixture of Gaussian random variables

with mean mn(X n) and variance σ2
n(Y n) and mixing distribution P̃X |Y .

=⇒ The same strategy allows to obtain a CLT for the path–variance.
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Applications

How do the CLTs look like for the specific cases?

(I) For all specific kernels mn(X n) = 0 a.s. This implies that the limiting
distribution is a simple Gaussian random variable with mean 0 and variance
σ2

n(Y n).

This behaviour is somehow expected since it seems reasonable that the part
of the posterior with fixed points of discontinuity affects the asymptotic
behaviour just once an infinite number of observations is collected.

(II) The surprising fact is that the asymptotic variance σ2
n(Y n) does not

depend on the data Y n. This implies that the CLTs associated with the
posterior hazard rate are exactly the same as for the prior hazard for any
fixed number of observations.

Indeed, one would expect σ2
n(Y n) to depend negatively on the number of

observations increases: recall that the intensity measure of the posterior is
e−v

∑n
i=1

∫ yi
0 k(t,x)dt ρ(dv |x) λ(dx). Hence, the CRM is really just “ killed ” in the

limit and the choice of the model matters.
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Concluding remarks

• We provided a comprehensive investigation of weak consistency of the
mixture hazard model. L1–consistency and rates of convergence of the
posterior distribution are the natural following targets.

• CLTs provide a rigorous guide for prior specification: they show e.g. how
the choice of the kernel and of the CRM determine the trend of random
cumulative hazard and, moreover, dictate the divergence this trend. The
parameters of the kernel and of the CRM enter the asymptotic variance
and so can be used to fine–tune the model.

• The coincidence of the asymptotic behaviour of the posterior and the
prior hazard means that the data do not influence the behaviour of the
model for times larger than the largest observed lifetime Y(n). The fact
that the overall variance is not influenced by the data is somehow
counterintuitive: since the contribution of the CRM vanishes in the limit,
one would expect the variance to become smaller and smaller as more
data come in.
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