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Abstract

We consider a least squares regression problem where the data has been gener-
ated from a linear model, and we are interested to learn the unknown regression
parameters. We consider "sketch-and-solve" methods that randomly project the
data first, and do regression after. Previous works have analyzed the statistical and
computational performance of such methods. However, the existing analysis is not
fine-grained enough to show the fundamental differences between various methods,
such as the Subsampled Randomized Hadamard Transform (SRHT) and Gaussian
projections. In this paper, we make progress on this problem, working in an asymp-
totic framework where the number of datapoints and dimension of features goes
to infinity. We find the limits of the accuracy loss (for estimation and test error)
incurred by popular sketching methods. We show separation between different
methods, so that SRHT is better than Gaussian projections. Our theoretical results
are verified on both real and synthetic data. The analysis of SRHT relies on novel
methods from random matrix theory that may be of independent interest.

1 Introduction

To enable learning from large datasets, randomized algorithms such as sketching or random pro-
jections are an effective approach of wide applicability (Mahoney, 2011; Woodruff, 2014; Drineas
and Mahoney, 2016). In this work, we study the statistical performance of sketching algorithms
in linear regression. Various versions of this fundamental problem have been studied before (see
e.g., Drineas et al., 2006, 2011; Dhillon et al., 2013; Ma et al., 2015; Raskutti and Mahoney, 2016;
Thanei et al., 2017, and the references therein). Specifically, in a generative model where the data are
sampled from a linear regression model, Raskutti and Mahoney (2016) have recently compared the
statistical performance of various sketching algorithms, such as Gaussian projections and subsampled
randomized Hadamard transforms (SRHT) (introduced earlier in Sarlos (2006); Ailon and Chazelle
(2006)).

However, the known results are not precise enough to enable us to distinguish between the various
sketching methods. For instance, the statistical performance of Gaussian projections and SRHT is
predicted to be the same (Raskutti and Mahoney, 2016), whereas the SRHT has been observed to
work better in practice (Mahoney, 2011; Woodruff, 2014; Drineas and Mahoney, 2016). To address
this issue, in this paper we introduce a new approach to studying sketching in least squares linear
regression. As a key difference from prior work we adopt a "large-data" asymptotic limit, where
the relevant dimensions and sample sizes tend to infinity, and can have arbitrary aspect ratios. By
leveraging very recent results from asymptotic random matrix theory and free probability theory, we
get more accurate results for the performance of sketching.

∗The bulk of this work was performed while SL was a student at Tsinghua University.
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Table 1: Summary of main results. We have a linear model Y = Xβ + ε of size n × p and do
regression after sketching on data (SY, SX). We show the increase in three loss functions due
to sketching: V E (variance efficiency–increase in parameter estimation error), PE (prediction
efficiency), and OE (out-of-sample prediction efficiency). The assumptions for X depend on the
sketching method.

Assumption
on X

Arbitrary Arbitrary
Ortho-

invariant
Elliptical: WZΣ1/2

Assumption
on S

iid entries Haar/Hadamard
Uniform
sampling

Leverage sampling

V E
1 +

n− p

r − p

n− p

r − p

n− p

r − p

η−1

sw2
(1−p/n)

η−1

w2
(1−p/n)

PE 1+E[w2(1−s)]
η−1

sw2
(1−p/n)

p/n

OE nr − p2

n(r − p)

r(n− p)

n(r − p)

r(n− p)

n(r − p)

1+Ew2η−1

sw2
(1−γ)

1+Ew2η−1

w2
(1−γ)

We study many of the most popular and important sketching methods in a unified framework, including
random projection methods (Gaussian and iid projections, uniform orthogonal—Haar—projections,
subsampled randomized Hadamard transforms) as well as random sampling methods (including
uniform, randomized leverage-based, and greedy leverage sampling). We find clean formulas for the
accuracy loss of these methods, compared to standard least squares. As an improvement over prior
work, our formulas are accurate down to the constant. We verify these results in extensive simulations
and on two empirical datasets.

1.1 Problem setup

Suppose we observe n datapoints (xi, yi), i = 1, . . . , n, where xi are the p-dimensional features (or
predictors, covariates) of the i-th datapoint, and yi are the continuous outcomes (or responses). We
assume the usual linear model yi = x⊤

i β + εi, where β is an unknown p-dimensional parameter.
Also εi is the zero mean noise, with entries uncorrelated and of equal variance σ2 across samples. In
matrix form, we have Y = Xβ + ε, where X is the n× p data matrix with i-th row x⊤

i , and Y is the
n× 1 outcome vector with i-th entry yi. Then the usual ordinary least squares (OLS) estimator is

β̂ = (X⊤X)−1X⊤Y,

if rank(X) = p. This estimator is a gold standard when n > p, extremely popular in practice,
and with many optimality properties. However, when n, p are large, say on the order of millions
or billions, the natural O(np2) time-complexity algorithms for computing it can be prohibitively
expensive. Sketching reduces the size of the problem by multiplying (X,Y ) by the r × n matrix S

to obtain the sketched data (X̃, Ỹ ) = (SX, SY ). The dimensions are now r × p and r × 1. Then

instead of doing regression of Y on X , we do regression of Ỹ on X̃ . The solution is

β̂s = (X̃⊤X̃)−1X̃⊤Ỹ ,

if rank(SX) = p. In the remainder, we assume that both X and SX have full column rank, which
happens with probability one in the generic case if r > p. The computational cost decreases from
np2 to rp2, which is significant if r ≪ n. In parallel, the statistical error increases. There is a tradeoff
between the computational cost and statistical error. The natural question is then, how much does the
error increase?

Error Criteria To compare the statistical efficiency of the estimators β̂ and β̂s, we evaluate the
relative value of their mean squared error. If we use the full OLS estimator, we incur a mean
squared error of E‖β̂ − β‖2. If we use the sketched OLS estimator, we incur a mean squared error of
E‖β̂s − β‖2 instead. To see how much efficiency we lose, it is natural and customary in classical
statistics to consider the relative efficiency, which is their ratio (e.g. Van der Vaart, 1998). We call this
the variance efficiency (V E), because the MSE for estimation can be viewed as the sum of variances
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of the OLS estimator. Hence, we define

V E(β̂s, β̂) =
E‖β̂s − β‖2
E‖β̂ − β‖2

.

This quantity is greater than or equal to unity, so V E ≥ 1, and smaller is better. An accurate
sketching method would achieve an efficiency close to unity, V E ≈ 1. Our goal will be to find VE.
For completeness, we also consider the relative prediction efficiency (PE), residual efficiency (RE),
and out-of-sample efficiency (OE)

PE =
E‖Xβ̂s −Xβ‖2
E‖Xβ̂ −Xβ‖2

, RE =
E‖Y −Xβ̂s‖2
E‖Y −Xβ̂‖2

, OE =
E(x⊤

t β̂s − yt)
2

E(x⊤
t β̂ − yt)2

,

where (xt, yt) is a test data point generated from the same model yt = x⊤
t β + εt, and xt, εt are

independent of X, ε, and only xt is observable. The PE quantifies the loss of accuracy in predicting
the regression function E[Y |X] = Xβ, the RE quantifies the increase in residuals, while the OE
quantifies the increase in test error.

1.2 Our contributions

We consider a "large data" asymptotic limit, where both the dimension p and the sample size n tend
to infinity, and their aspect ratio converges to a constant. The size r of the sketched data is also
proportional to the sample size. Specifically n, p, and r tend to infinity such that the original aspect
ratio converges, p/n → γ ∈ (0, 1), while the data reduction factor also converges, r/n → ξ ∈ (γ, 1).
Under these asymptotics, we find the limits of the relative efficiencies under various conditions on
X and S. This asymptotic setting is different from the usual one under which sketching is studied,
where n ≫ r (e.g., Mahoney, 2011; Woodruff, 2014; Drineas and Mahoney, 2016). However our
results are accurate even in that regime. It may be possible to get convergence rates for the projections
with iid entries using known results on convergence rates of Stieltjes transforms.

In practice, we do not think that n or p grow. Instead, for any given dataset with given n and p, we
use our results with γ = p/n as an approximation. If n, p are both relatively large (say larger than
20), then our results are already quite accurate.

It turns out that the different methods have different performance, and they are applicable to different
data matrices. Our main results are summarized in Table 1. For instance, when X is arbitrary and
S is a matrix with iid entries, the variance efficiency is 1 + (n − p)/(r − p), so estimation error
increases by that factor due to sketching. The results are stated formally in theorems in the remainder
of the paper.

The formulas are accurate and simple We observe that our results are accurate, both in simu-
lations and in two empirical data analysis examples, see Section 3. In particular, they go beyond
earlier work (Raskutti and Mahoney, 2016) because they are accurate not just up to the rate, but also
down to the precise constants, even in relatively small samples (see Section A.16 in the supplemental
for a comparison). Moreover, they have simple expressions and do not depend on any un-estimable
parameters of the data.

Separation between sketching methods Our results enable us to compare the different sketching
methods to a greater level of detail than previously known. For instance, in estimation error (V E),
we have V Eiid = V EHaar + 1 = V EHadamard + 1. This shows that estimation error for uniform
orthogonal (Haar) random projections and the subsampled randomized Hadamard transform (SRHT)
(Ailon and Chazelle, 2006) is less than for iid random projections. This shows a separation between
orthogonal and iid random projections.

Tradeoff between computation and statistical accuracy Each sketching method becomes more
accurate as the projection dimension increases. However, this comes at an increased computational
cost. We give a summary of the algorithmic complexity and statistical accuracy (variance efficiency)
of each method in Section A.12, as well as a numerical comparison in Section A.17 in the supplement.

As an illustrating example, consider the dataset with n = 107 and p = 105 and we want to use SRHT
before doing least squares. Our results show that if we project down to r < n samples, then our test
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error increases by a factor of r(n− p)/[n(r − p)]. Suppose now that we are willing to tolerate an
increase of 1.1x in our test error. Setting r(n− p)/[n(r− p)] = 1.1 gives r = 106. So we can reduce
the data size 10x, and only incur an increase of 1.1x in test error! This is a striking illustration of the
power of sketching.

Technical contributions As a specific technical contribution, our results rely on asymptotic random
matrix theory (e.g., Bai and Silverstein, 2010; Couillet and Debbah, 2011; Yao et al., 2015). However,
we emphasize that the "standard" results such as the Marchenko-Pastur law are not enough. For
instance, to study the subsampled randomized Hadamard transform (SRHT), we discovered that we
can use the results of (Anderson and Farrell, 2014) on asymptotically liberating sequences, see also
(Tulino et al., 2010) for prior work. To our knowledge, this is the first time that these results are
used in any statistical learning application. Given the importance of the SRHT, and the notoriously
difficult nature of analyzing it, we view this as a technical innovation of broader interest.

Since there are already many different sketching methods proposed before, we do not attempt to
introduce new ones here. Our goal is instead to develop a clear theory. This can lead to an increased
understanding of the performance of the various methods, helping practitioners choose between them.
Our theoretical framework may also help in analyzing and understanding new methods.

1.3 Related work

In this section we review some recent related work. Due to space limitations, we can only mention a
small subset of them. For overviews of sketching and random projection methods from a numerical
linear algebra perspective, see (Halko et al., 2011; Mahoney, 2011; Woodruff, 2014; Drineas and
Mahoney, 2017). For a theoretical computer science perspective, see (Vempala, 2005).

(Drineas et al., 2006) show that leverage score sampling leads to better results than uniform sampling.
(Drineas et al., 2012), show furthermore that leverage scores can be approximated fast using the
Hadamard transform. (Drineas et al., 2011) propose the fast Hadamard transform for sketching in
regression. They prove strong relative error bounds on the realized in-sample prediction error for
arbitrary input data. Our results concern a different setting that assumes a generative statistical model.

One of the most related works is (Raskutti and Mahoney, 2016). They study sketching algorithms
from both statistical and algorithmic perspectives. However, they focus on a different setting, where
n ≫ r, and prove bounds on RE and PE. For instance, they discover that RE can be bounded even
when r is not too large, proving bounds such as RE ≤ 1 + 44p/r for subsampling and subgaussian
projections. In contrast, we show more precise results such as |RE − r/(r − p)| = o(1), (without
the constant 44). This holds without additional assumption for iid projections, and under the slightly
stronger condition of ortho-invariance for subsampling. We show that these conditions are reasonable,
because our results are accurate both in simulations and in empirical data analysis examples.

Other related works include sketching with convex constraints (Pilanci and Wainwright, 2015),
column-wise sketching (Maillard and Munos, 2009; Kabán, 2014; Thanei et al., 2017), tensor
sketching (Pham and Pagh, 2013; Diao et al., 2017; Malik and Becker, 2018), subspace embedding
for nonlinear kernel mapping (Avron et al., 2014), partial sketching (Dhillon et al., 2013; Ahfock
et al., 2017), frequent direction in streaming model (Liberty, 2013; Huang, 2018), count-min sketch
(Cormode and Muthukrishnan, 2005), randomized dimension reduction in stochastic geometry
(Oymak and Tropp, 2017). Sketching also has numerous applications to problems in machine
learning and data science, such as clustering (Cannings and Samworth, 2017), hypothesis testing
(Lopes et al., 2011), bandits (Kuzborskij et al., 2018) etc.

2 Theoretical results

We present our theoretical results in this section. All proofs are in the supplemental material.

2.1 Gaussian projection

For Gaussian random projection, the sketching matrix S is generated from the Gaussian distribution.
An advantage of Gaussian projections is that generating and multiplying Gaussian matrices is embar-
rassingly parallel, making it appropriate for certain distributed and cloud-computing architectures.
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For the performance of Gaussian sketching, we have the following result. The first part gives exact
formulas for the variance, prediction, and out-of-sample efficiencies VE, PE, and OE. The second
part simplifies the OE approximation for a special class of design matrices X .

Theorem 2.1 (Gaussian projection). Suppose S is an r × n Gaussian random matrix with iid
standard normal entries. Let X be an arbitrary n× p matrix with full column rank p, and suppose
that r − p > 1. Then the efficiencies have the following form

V E(β̂s, β̂) = PE(β̂s, β̂) = 1 +
n− p

r − p− 1
,

OE(β̂s, β̂) =
1 +

[

1 + n−p
r−p−1

]

x⊤
t (X

⊤X)−1xt

1 + x⊤
t (X

⊤X)−1xt
.

Second, suppose in addition that X is also random, having the form X = ZΣ1/2, where Z ∈ R
n×p

has iid entries of zero mean, unit variance and finite fourth moment, and Σ ∈ R
p×p is a deterministic

positive definite matrix. If the test datapoint is drawn independently from the same population as
X , i.e. xt = Σ1/2zt, then as n, p, r grow to infinity proportionally, with p/n → γ ∈ (0, 1) and
r/n → ξ ∈ (γ, 1), we have the simple formula for OE

lim
n→∞

OE(β̂s, β̂) =
ξ − γ2

ξ − γ
≈ nr − p2

n(r − p)
.

These results are complementary to Raskutti and Mahoney (2016), who showed that PE ≤ 44(1 +
n/r), RE ≤ 1 + 44p/r with fixed probability under slightly different assumptions. These formulas
have all the properties we claimed before: they are simple, accurate, and easy to interpret. The
relative efficiencies decrease with r/n, the ratio of preserved samples after sketching. This is because
a larger number of samples leads to a higher accuracy. Also, when ξ = lim r/n = 1, V E and PE
reach a minimum of 2. Thus, taking a random Gaussian projection will degrade the performance of
OLS even if we do not reduce the sample size. This is because iid projections distort the geometry of
Euclidean space due to their non-orthogonality. We will see how to overcome this using orthogonal
random projections.

The proofs have three stages. The first stage, common to all sketching methods, expresses the VE and
other desired quantities in terms of traces of appropriate matices. The second stage involves finding
the implicit limit of those traces using random matrix theory, in terms of certain fixed-point equations
from the Marchenko-Pastur law. The final stage involves finding the explicit limit. In the Gaussian
case, the second and third stages simplify into explicit calculations with the Wishart distribution.

2.2 iid projections

For iid projections, the entries of S are generated independently from the same distribution (not
necessarily Gaussian). This will include sparse projections with iid 0,±1 entries, which can speed up
computation (Achlioptas, 2001). We show that in the "large-data" limit the performance of sketching
is the same as for Gaussian projections. This is an instance of universality.

Theorem 2.2 (Universality for iid projection). Suppose that S has iid entries of zero mean and
finite fourth moment. Suppose also that X is a deterministic matrix, whose singular values are
uniformly bounded away from zero and infinity. Then as n goes to infinity, while p/n → γ ∈ (0, 1),
r/n → ξ ∈ (γ, 1), the efficiencies have the limits

lim
n→∞

V E(β̂s, β̂) = lim
n→∞

PE(β̂s, β̂) = 1 +
1− γ

ξ − γ
.

Suppose in addition that X is also random, under the same model as in Theorem 2.1. Then the
formula for OE given there still holds in this more general case.

The proof is based on a Lindeberg exchange argument.

2.3 Orthogonal (Haar) random projection

We saw that a random projection with iid entries will degrade the performance of OLS even if we do
not reduce the sample size. Matrices with iid entries are not ideal for sketching, because they distort
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the geometry of Euclidean space due to their non-orthogonality. Is it possible to overcome this using
orthogonal random projections? Here S is a Haar random matrix uniformly distributed over the space
of all r × n partial orthogonal matrices.

We need the following definition. Recall that for an n × p matrix M with n ≥ p, such that the
eigenvalues of n−1M⊤M are λj , the empirical spectral distribution (esd.) of M is the mixture
1
p

∑p
j=1 δλj

, where δλ denotes a point mass distribution at λ.

Theorem 2.3 (Haar projection). Suppose that S is an r×n Haar-distributed random matrix. Suppose
also that X is a deterministic matrix s.t. the esd. of X⊤X converges weakly to some fixed probability
distribution with compact support bounded away from the origin. Then as n tends to infinity, while
p/n → γ ∈ (0, 1), r/n → ξ ∈ (γ, 1), the efficiencies have the limits

lim
n→∞

V E(β̂s, β̂) = lim
n→∞

PE(β̂s, β̂) =
1− γ

ξ − γ
.

Suppose in addition that the training and test data X and xt are also random, under the same model

as in Theorem 2.1. Then limn→∞ OE(β̂s, β̂) =
1−γ

1−γ/ξ .

The proof uses the limiting esd of a product of Haar and fixed matrices. Orthogonal projections
are uniformly better than iid projections in terms of statistical accuracy. For variance efficiency,
V Eiid = V EHaar +1. However, there is still a tradeoff between statistical accuracy and computational
cost, since the time complexity of generating a Haar matrix using the Gram-Schmidt procedure is
O(nr2).

2.4 Subsampled randomized Hadamard transform

A faster way to do orthogonal projection is the subsampled randomized Hadamard transform (SRHT)
(Ailon and Chazelle, 2006), also known as the Fast Johnson-Lindentsrauss transform (FJLT). This is
faster as it relies on the Fast Fourier Transform, and is often viewed as a standard reference point for
comparing sketching algorithms.

An n× n possibly complex-valued matrix H is called a Hadamard matrix if H/
√
n is orthogonal

and the absolute values of its entries are unity, |Hij | = 1 for i, j = 1, . . . , n. A prominent example,
the Walsh-Hadamard matrix is defined recursively by

Hn =

(

Hn/2 Hn/2

Hn/2 −Hn/2

)

,

with H1 = (1). This requires n to be a power of 2. Another construction is the discrete Fourier

transform (DFT) matrix with the (u, v)-th entry equal to Huv = n−1/2e−2πi(u−1)(v−1)/n. Multiply-
ing this matrix from the right by X is equivalent to applying the discrete Fourier transform to each
column of X , up to scaling. The time complexity for the matrix-matrix multiplication for both the
transforms is O(np log n) due to the Fast Fourier Transform, faster than other random projections.

Now we consider the subsampled randomized Hadamard transform. Define the n× n subsampled
randomized Hadamard matrix as S = BHDP , where B ∈ R

n×n is a diagonal sampling matrix
of iid Bernoulli random variables with success probability r/n, H ∈ R

n×n is a Hadamard matrix,
D ∈ R

n×n is a diagonal matrix of iid random variables equal to ±1 with probability one half, and
P ∈ R

n×n is a uniformly distributed permutation matrix. In the definition of S, the Hadamard matrix
H is deterministic, while the other matrices B,D and P are random. At the last step, we discard the
zero rows of S, so it becomes an r̃ × n orthogonal matrix where r̃ ≈ r. We expect the SRHT to be
similar to uniform orthogonal projections. The following theorem verifies our intuition. The proof
uses free probability theory (Tulino et al., 2010; Anderson and Farrell, 2014).

Theorem 2.4 (Subsampled randomized Hadamard projection). Let S be an n × n subsampled
randomized Hadamard matrix. Suppose also that X is an n × p deterministic matrix whose e.s.d.
converges weakly to some fixed probability distribution with compact support bounded away from the
origin. Then as n tends to infinity, while p/n → γ ∈ (0, 1), r/n → ξ ∈ (γ, 1), the efficiencies have
the same limits as for Haar projection in Theorem 2.3.

2.5 Uniform random sampling

Fast orthogonal transforms such as the Hadamard transforms are considered as a baseline for sketching
methods, because they are efficient and work well quite generally. However, if the data are very
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uniform, for instance if the data matrix can be assumed to be nearly rotationally invariant, then
sampling methods can work just as well, as will be shown below.

The simplest sampling method is uniform subsampling, where we take r of the n rows of X with
equal probability, with or without replacement. Here we analyze a nearly equivalent method, where
we sample each row of X independently with probability r/n, so that the expected number of sampled
rows is r. For large r and n, the number of sampled rows concentrates around r.

Moreover, we also assume that X is random, and the distribution of X is rotationally invariant, i.e.
for any n× n orthogonal matrix U and any p× p orthogonal matrix V , the distribution of UXV ⊤ is
the same as the distribution of X . This holds for instance if X has iid Gaussian entries. Then the
following theorem states the surprising fact that uniform sampling performs just like Haar projection.

Theorem 2.5 (Uniform sampling). Let S be an n × n diagonal uniform sampling matrix with iid
Bernoulli(r/n) entries. Let X be an n × p rotationally invariant random matrix. Suppose that n
tends to infinity, while p/n → γ ∈ (0, 1), and r/n → ξ ∈ (γ, 1), and the e.s.d. of X converges
almost surely in distribution to a compactly supported probability measure bounded away from the
origin. Then the efficiencies have the same limits as for Haar matrices in Theorem 2.3.

2.6 Leverage-based sampling

Uniform sampling can work poorly when the data are highly non-uniform and some datapoints
are more influential than others for the regression fit. In that case, it has been proposed to sample
proportionally to the leverage scores hii = x⊤

i (X
⊤X)−1xi. These can be thought of as the "leverage

of response value Yi on the corresponding value Ŷi". One can also do greedy leverage sampling,
deterministically taking the r rows with largest leverage scores (Papailiopoulos et al., 2014).

In this section, we give a unified framework to study these sampling methods. Since leverage-based
sampling does not introduce enough randomness for the results to be as simple and universal as
before, we need to assume some more randomness via a model for X . Here we consider the elliptical
model

xi = wiΣ
1/2zi, i = 1, . . . , n, (1)

where the scale variables wi are deterministic scalars bounded away from zero, and Σ1/2 is a p× p
positive definite matrix. Also, zi are iid p × 1 random vectors whose entries are all iid random
variables of zero mean and unit variance. This model has a long history in multivariate statistics,
see (Mardia et al., 1979). If a scale variable wi is much larger than the rest, then xi will have a
large leverage score. This model allows us to study the effect of unequal leverage scores. Similarly
to uniform sampling, we analyze the model where each row is sampled independently with some
probability.

Recall that η-transform of a distribution F is defined by ηF (z) =
∫

1
1+zxdF (x), for z ∈ C

+ (e.g.,

Tulino and Verdú, 2004; Couillet and Debbah, 2011). In the next result, we assume that the scalars
w2

i , i = 1, . . . , n, have a limiting distribution Fw2 as the dimension increases. In that case, the
eta-transform is the limit of the leverage scores. First we give a result for arbitrary sampling with
probability πi depending only on wi, and next specialize it to leverage sampling.

Theorem 2.6 (Sampling for elliptical model). Suppose X is sampled from the elliptical model
defined in (1). Suppose the e.s.d. of Σ converges in distribution to some probability measure with
compact support bounded away from the origin. Let n tend to infinity, while p/n → γ ∈ (0, 1) and
r/n → ξ ∈ (γ, 1). Suppose also that the 4 + η-th moment of zi is uniformly bounded, for some
η > 0.

Consider the sketching method where we sample the i-th row of X with probability πi independently,
where πi may only depend on wi, and πi, i = 1, . . . , n have a limiting distribution Fπ. Let s|π be a
Bernoulli random variable with success probability π, then

lim
n→∞

V E(β̂s, β̂) =
η−1
sw2(1− γ)

η−1
w2 (1− γ)

, lim
n→∞

OE(β̂s, β̂) =
1 + Ew2η−1

sw2(1− γ)

1 + Ew2η−1
w2 (1− γ)

lim
n→∞

PE(β̂s, β̂) = 1 +
1

γ
Ew2(1− s)η−1

sw2(1− γ),
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Figure 1: Verification of our theory. Solid lines show the theoretical formulas for variance efficiency,
while dashed lines show the simulation results, for γ = 0.05 (left, log of VE shown), and γ = 0.4
(right). Showing SD over 10 trials of Gaussian, iid, Haar, Hadamard sketching, and sampling.

Figure 2: Empirical data analysis. Left: Million Song dataset. Right: Flight dataset.

where ηw2 and ηsw2 are the η-transforms of w2 (where w is the distribution of scales of xi) and sw2

(where s is defined above), respectively. Moreover, the expectation is taken with respect to the joint
distribution of s, w2 as defined above. In particular for leverage score sampling, s is a Bernoulli
variable with success probability min[r/p(1− 1/(1 + w2η−1

w2 (1− γ)), 1].

If wi-s are all equal to unity, one can check that the results are the same as for orthogonal projection
or uniform sampling on rotationally invariant X . This is because all leverage scores are nearly equal.
We specialize this result to greedy sampling in Section A.11 in the supplement.

3 Simulations and data analysis

We report some simulations to verify our results. In Figure 1, we take n = 2000, and p = 100 or 800,
respectively. Each row of X is generated iid from N (0, Ip). The simulation results of VE and the
error bar are the mean and one standard deviation over 10 repetitions. We also plot our theoretical
results (bold lines) in the figures. The x-axis is on a log scale. We observe that the simulation
results match the theoretical results very well. Also note that in this case, where the data is uniformly
distributed, sampling methods work as well as orthogonal and Hadamard projection, while Gaussian
and iid projections perform worse. Additional simulations with correlated t-distributed data and
leverage sampling are in Section A.14 and A.13 in the supplement.

We test our results on the Million Song Year Prediction Dataset (MSD) (Bertin-Mahieux et al., 2011)
(n = 515344, p = 90) and the New York flights dataset (Wickham, 2018) (n = 60449, p = 21). The
columns are standardized to have zero mean and unit standard deviation. We compare three different
sketching methods: Gaussian projection, randomized Hadamard projection, and uniform sampling.
For each target dimension r, we show the mean, as well as 5% and 95% quantiles over 10 repetitions.
The results for RE are in Figure 2, and the results for OE are in Section A.15 in the supplement. For
Gaussian and Hadamard projections our theory agrees well with the experiments. However, uniform
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sampling has very large variance, especially on the flight dataset. Our theory is less accurate here,
because it requires the data matrix to be rotationally invariant, which may not hold.

Discussion

A direction for future work is to study sketching in (kernel) ridge regression (perhaps possible
using RMT), lasso (perhaps possible using approximate message passing). Another question is to
understand the variability of sketching methods.
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