Asymptotics for the Low-Lying Eigenstates of the Schrödinger Operator with Magnetic Field near Corners

Virginie Bonnaillie-Noël and Monique Dauge

Abstract

The Neumann realization for the Schrödinger operator with magnetic field is considered in a bounded two-dimensional domain with corners. This operator is associated with a small semi-classical parameter h or, equivalently, with a large magnetic field. We investigate the behavior of its eigenpairs as h tends to zero, like in a semi-classical limit. We prove, in the situation where the domain is a polygon and the magnetic field is constant, that the lowest eigenvalues are exponentially close to those of model problems associated with the corners. We approximate the corresponding eigenvectors by linear combinations of functions concentrated in corners at the scale \sqrt{h}. If the domain has curved sides and the magnetic field is smoothly varying, we exhibit a full asymptotics for eigenpairs in powers of \sqrt{h}.

1. Introduction

The topic of our paper takes its origin from the Ginzburg-Landau theory modeling superconducting properties in presence of an external magnetic field [10, 28]: The study of the Hessian of the Ginzburg-Landau functional leads to analyze the ground state of the Schrödinger operator with magnetic field [11, 17]. A small semi-classical parameter $h=(\kappa \mathcal{B})^{-1}$ appears as the magnetic field \mathcal{B} is large or the physical characteristic κ of the superconducting material is large. When compared with most of the literature about Schrödinger operators, the unusual feature of the resulting problem is that it is posed on subdomains of \mathbb{R}^{2} or \mathbb{R}^{3}, and subject to Neumann or impedance boundary conditions.

Motivated by this, and also by other works about the spectrum of Schrödinger operator in the semi-classical limit, see $[18,19]$ for instance, we deal with the asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field in a bounded two-dimensional domain, with focus on the influence of convex corners.

Let Ω denote a bounded domain in \mathbb{R}^{2} and $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ a smooth magnetic potential associated with its magnetic field $\mathcal{B}=\operatorname{curl} \mathcal{A}$. It is assumed that $\mathcal{B}>0$ on $\bar{\Omega}$. We investigate the behavior of the eigenpairs of the Neumann realization P_{h} on Ω for the Schrödinger operator $-(h \nabla-i \mathcal{A})^{2}$ as $h \rightarrow 0$.

Many papers are devoted to the analysis of the first eigenpair when Ω is a smooth domain. We can quote works of Bernoff-Sternberg [3], Lu-Pan [21, 22], Helffer-Morame [15, 16]: It is proved that the fundamental state is localized near points of the boundary where the curvature is maximal, and a two-term asymptotics of the fundamental state energy of P_{h} is given. More recently, FournaisHelffer [13] prove a complete asymptotic expansion for low-lying eigenvalues of P_{h} on domains such that the boundary curvature reaches its maximum in only one point.

Although the interest for non smooth domain is often mentioned in physical literature $[7,12,26]$, quite few mathematical papers are devoted to that problem: Let us mention contributions of Jadallah [20], Pan [24] which deal with particular domains like a square or a quarter plane, for a constant magnetic field. More recently, [4] gives a systematic analysis for infinite sectors of \mathbb{R}^{2}, proving, in the case of a constant magnetic field, an asymptotics of the smallest eigenvalue of $-(\nabla-i \mathcal{A})^{2}$ when the opening α of the sector tends to 0 , and exponential decay estimates for the corresponding eigenfunctions. The limit as $h \rightarrow 0$ of the first eigenvalue of P_{h} for domains with corners is deduced.

In this paper, we prove sharper results, exhibiting the complete asymptotic expansion of low-lying eigenstates for curvilinear polygonal domains. We also prove refined results in the case when the domain has straight sides and the magnetic field is constant: In particular, the convergence of the eigenvalues to their limits is then exponential, behaving as $\exp (-\beta / \sqrt{h})$ for a positive β.

2. Outline

Let us sketch our results. The behavior of the first eigenstates of P_{h} depends on the spectrum of model operators associated with each point of the boundary, in particular, those associated with the corners s of Ω. These model operators are associated with the canonical magnetic potential $\mathcal{A}_{0}(\mathrm{X}):=\frac{1}{2}\left(-\mathrm{X}_{2}, \mathrm{X}_{1}\right)$ corresponding to the magnetic field $\mathcal{B}=1$. They are defined for each $\alpha \in(0,2 \pi)$ by the Neumann realization Q^{α} of $-\left(\nabla-i \mathcal{A}_{0}\right)^{2}$ on an infinite sector of opening α and vertex at the origin.

For any opening α, the essential spectrum of the operator Q^{α} is equal to $\left[\Theta_{0},+\infty\right)$, with the universal constant $\Theta_{0} \simeq 0.590125$. Depending on the value of α, the discrete spectrum of Q^{α} is empty or consists of K_{α} eigenvalues.

In the situation of a constant magnetic field, our result concerning eigenvalue asymptotics can be stated as follows.

Theorem 2.1. Let Ω be a bounded curvilinear polygon, Σ be the set of the vertices s of Ω and α_{s} be the opening of Ω at $\mathrm{s} \in \Sigma$. Let $\mu_{h, n}$ be the n-th eigenvalue of the Neumann realization of $-\left(h \nabla-i \mathcal{A}_{0}\right)^{2}$ on Ω.

Let $\left\{\lambda_{n}\right\}$ be the (finite) collection of the eigenvalues of the model operators $Q^{\alpha_{\mathrm{s}}}, \mathrm{s} \in \Sigma$, in increasing order and repeated according to their multiplicity.
(i) Let $L \in \mathbb{N}^{*}$ and $n \leq \sum_{\mathbf{s} \in \Sigma} K_{\alpha_{s}}$. Then there exists a real sequence $\left\{\mu_{n}^{\ell}\right\}_{1 \leq \ell \leq L}$ such that

$$
\mu_{h, n}-h \lambda_{n}=h \sum_{\ell=1}^{L} h^{\ell / 2} \mu_{n}^{\ell}+\mathcal{O}\left(h^{\frac{L+1}{2}}\right), \quad \text { as } h \rightarrow 0 .
$$

(ii) When Ω has straight edges, we have the refined result: There exists $\beta>0$ such that for any $n \leq \sum_{\mathbf{s} \in \Sigma} K_{\alpha_{\mathrm{s}}}$,

$$
\mu_{h, n}-h \lambda_{n}=\mathcal{O}\left(\exp \left(-\frac{\beta}{\sqrt{h}}\right)\right), \quad \text { as } h \rightarrow 0 .
$$

Our results extend to the case of a non-constant smoothly varying magnetic field, and also describe an asymptotic behavior of eigenvectors as $h \rightarrow 0$: The eigenvectors concentrate in corners, see Theorems 5.6 and 7.4.

Here follows the plan of the paper: Section 3 is devoted to spectral and solvability properties of the model operator $Q^{\alpha}=-\left(\nabla-i \mathcal{A}_{0}\right)^{2}$ in adapted weighted spaces of exponentially decreasing functions.

Sections 4-5 are devoted to the Schrödinger operator P_{h} when the domain Ω is a polygon, i.e., its sides are segments on lines, and the magnetic field \mathcal{B} is equal to 1 . To fix ideas, the magnetic potential is taken as $\frac{1}{2}\left(-x_{2}, x_{1}\right)$. The eigenvectors of the model operators $Q^{\alpha_{\mathrm{s}}}$ corresponding to the aperture α_{s} at each corner s of Ω allow the construction of quasi-modes in Section 4. These quasi-modes generate a space of dimension $K_{\Omega}:=\sum_{\mathrm{s}} K_{\alpha_{\mathrm{s}}}$, the sum of the contributions of each corner. In Section 5 , we prove that the first K_{Ω} eigenvalues of P_{h}, when divided by h, converge exponentially fast towards the eigenvalues of the model operators $\oplus_{\mathrm{s}} Q^{\alpha_{\mathrm{s}}}$. We also prove the localization of their eigenfunctions in corresponding corners. Let us emphasize that, when several corners have the same aperture, clustering of eigenvalues appear, and that each of the corresponding eigenvectors may concentrate in the vicinity of several corners.

In Sections 6-7, we analyze more general domains (curvilinear polygons) with smoothly varying magnetic fields \mathcal{B}. Again, we use the model operators $Q^{\alpha_{s}}$ to construct quasi-modes for P_{h}, but now in combination with a formal series calculus. We obtain asymptotics series in powers of \sqrt{h} for a finite number of low-lying eigenstates of P_{h}. In Section 8, we conclude our paper by commenting on numerical approximation issues: The eigenmodes have a two-scale structure, in the form of the product of a corner layer at scale \sqrt{h} with an oscillatory term at scale h. The latter makes the numerical approximation delicate, see [1, 2, 6]. A finite element method using high degree polynomials is being investigated by the authors, together with the tunneling effect in presence of symmetries.

3. Model operators in infinite sectors

The model problem associated with a corner of opening α in the domain Ω is a Schrödinger operator Q^{α} in an infinite sector G^{α} of same opening, with a model magnetic potential \mathcal{A}_{0} corresponding to a constant field equal to 1 . After recalling results from [4] on the spectrum of this operator, we study its solvability in spaces of exponentially decreasing functions. We end this section by stating the relation between this model problem and a more general Schrödinger operator $Q^{\alpha, \mathcal{A}}$ associated with any affine magnetic potential \mathcal{A}.

3.1. Spectrum

We denote by $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ the Cartesian coordinates in \mathbb{R}^{2}, and by $R=|\mathrm{X}|$ and θ the polar coordinates. Let G^{α} be the sector in \mathbb{R}^{2} with opening α :

$$
G^{\alpha}=\left\{\mathrm{X} \in \mathbb{R}^{2}, \quad \theta \in(0, \alpha)\right\}
$$

We consider the model magnetic potential \mathcal{A}_{0} defined on \mathbb{R}^{2} by

$$
\begin{equation*}
\mathcal{A}_{0}(\mathrm{X})=\frac{1}{2}\left(-\mathrm{X}_{2}, \mathrm{X}_{1}\right) . \tag{1}
\end{equation*}
$$

Then the magnetic field \mathcal{B} given by curl \mathcal{A}_{0} is equal to 1 . Let Q^{α} be the Neumann realization of the Schrödinger operator $-\left(\nabla-i \mathcal{A}_{0}\right)^{2}$ on the sector G^{α}. The operator Q^{α} is associated with the sesquilinear form q^{α} defined on the variational space $\mathcal{V}\left(q^{\alpha}\right)$ as follows:

$$
\begin{align*}
\mathcal{V}\left(q^{\alpha}\right) & =\left\{\Psi \in L^{2}\left(G^{\alpha}\right), \quad\left(\nabla-i \mathcal{A}_{0}\right) \Psi \in L^{2}\left(G^{\alpha}\right)\right\}, \tag{2}\\
q^{\alpha}(\Psi, \Phi) & =\int_{G^{\alpha}}\left(\nabla-i \mathcal{A}_{0}\right) \Psi(\mathrm{X}) \cdot \overline{\left(\nabla-i \mathcal{A}_{0}\right) \Phi(\mathrm{X})} d \mathrm{X}, \quad \Psi, \Phi \in \mathcal{V}\left(q^{\alpha}\right) . \tag{3}
\end{align*}
$$

The norm attached with the space $\mathcal{V}\left(q^{\alpha}\right)$ is

$$
\|\Psi\|_{\mathcal{V}\left(q^{\alpha}\right)}^{2}=\|\Psi\|_{L^{2}\left(G^{\alpha}\right)}^{2}+\left\|\left(\nabla-i \mathcal{A}_{0}\right) \Psi\right\|_{L^{2}\left(G^{\alpha}\right)}^{2} .
$$

Note that if $\Psi \in \mathcal{V}\left(q^{\alpha}\right)$, then for any ball $B, \Psi \in H^{1}\left(G^{\alpha} \cap B\right)$. Conversely, any Ψ in $L^{2}\left(G^{\alpha}\right)$ such that $\nabla \Psi$ and $|X| \Psi$ are in $L^{2}\left(G^{\alpha}\right)$, belongs to $\mathcal{V}\left(q^{\alpha}\right)$.

Then the operator Q^{α} associated with the form q^{α} writes

$$
\begin{equation*}
Q^{\alpha}=-\left(\nabla-i \mathcal{A}_{0}\right)^{2}=-\Delta+i\left(\mathrm{X}_{1} \partial \mathrm{x}_{2}-\mathrm{X}_{2} \partial \mathrm{x}_{1}\right)+\frac{1}{4}|\mathrm{X}|^{2} \tag{4}
\end{equation*}
$$

It is defined on its domain $\mathcal{D}\left(Q^{\alpha}\right)$:

$$
\mathcal{D}\left(Q^{\alpha}\right)=\left\{\Psi \in \mathcal{V}\left(q^{\alpha}\right), \quad\left(\nabla-i \mathcal{A}_{0}\right)^{2} \Psi \in L^{2}\left(G^{\alpha}\right),\left.\quad \nu \cdot\left(\nabla-i \mathcal{A}_{0}\right) \Psi\right|_{\partial G^{\alpha}}=0\right\} .
$$

Here ν is the outward unit normal on the boundary of G^{α}.
The operator Q^{α} is hermitian and positive. The lowest part of its spectrum can be defined by Rayleigh quotients.

Definition 3.1. Let $\mu_{k}(\alpha)$ be the k-th smallest element of the spectrum of Q^{α}, given by the max-min principle:

$$
\begin{equation*}
\mu_{k}(\alpha)=\max _{\Psi_{1}, \ldots, \Psi_{k-1}} \min \left\{\frac{q^{\alpha}(\Psi, \Psi)}{\langle\Psi, \Psi\rangle}, \quad \Psi \in \mathcal{V}\left(q^{\alpha}\right), \quad \Psi \in\left[\Psi_{1}, \ldots, \Psi_{k-1}\right]^{\perp}\right\} . \tag{5}
\end{equation*}
$$

Here $\langle\cdot, \cdot\rangle$ denotes the hermitian scalar product of $L^{2}\left(G^{\alpha}\right)$.
Let us quote some results of [4] about the spectrum of Q^{α}.

Theorem 3.2.

(i) The infimum of the essential spectrum of Q^{α} is equal to $\Theta_{0}:=\mu_{1}(\pi)$.
(ii) For all $\alpha \in\left(0, \frac{\pi}{2}\right], \mu_{1}(\alpha)<\Theta_{0}$ and, therefore, $\mu_{1}(\alpha)$ is an eigenvalue.
(iii) Let k be a positive integer and $\alpha>0$ such that $\mu_{k}(\alpha)<\Theta_{0}$. We denote by Ψ_{k}^{α} a normalized eigenfunction associated with $\mu_{k}(\alpha)$. Then Ψ_{k}^{α} satisfies the following exponential decay estimate:

$$
\begin{equation*}
\forall \varepsilon>0, \exists C_{\varepsilon, \alpha}, \quad\left\|\mathrm{e}^{\left(\sqrt{\Theta_{0}-\mu_{k}(\alpha)}-\varepsilon\right)|\mathrm{X}|} \Psi_{k}^{\alpha}\right\|_{\mathcal{V}\left(q^{\alpha}\right)} \leq C_{\varepsilon, \alpha} \tag{6}
\end{equation*}
$$

Remark 3.3. Based on the asymptotics of $\mu_{1}(\alpha)$ as $\alpha \rightarrow 0$ and numerical computations $[1,2,6]$, we conjecture that μ_{1} is increasing from $(0, \pi]$ onto $\left(0, \Theta_{0}\right]$ and equal to Θ_{0} on $[\pi, 2 \pi)$: See on Figure 1 the result of a series of computations of $\mu_{1}(\alpha)$ for $\alpha=k \pi / 200, k=1, \ldots, 200$, performed by a high order finite element method based on the library MÉLina [23, 6]. In Figure 1, the theoretical lower and upper bounds $\alpha / \sqrt{3} \leq \mu_{1}(\alpha) \leq \Theta_{0} \alpha / \pi$ are also plotted.

Figure 1. $\mu_{1}(\alpha)$ vs. α / π for $\alpha \in(0, \pi)$

3.2. Solvability and exponential decay

We firstly prove the Fredholm alternative for the operator $Q^{\alpha}-\mu \mathrm{Id}$, if μ is an eigenvalue. Then, we prove the exponential decay of solutions if the right-hand side is itself exponentially decaying. We recall notation partially introduced in Theorem 3.2.

Notation 3.4.
Let $\alpha \in(0,2 \pi)$ and K_{α} be the largest integer such that $\mu_{K_{\alpha}}(\alpha)<\Theta_{0}$.

- We denote by $\left(\Psi_{j}^{\alpha}\right)_{1 \leq j \leq K_{\alpha}}$ an orthonormalized system of eigenfunctions respectively associated with $\mu_{j}(\alpha)$ for the operator Q^{α}.
- Let $k \in \mathbb{N}$ with $k=1$, or $2 \leq k \leq K_{\alpha}$ and such that $\mu_{k-1}(\alpha)<\mu_{k}(\alpha)$. Let l be the multiplicity of $\mu_{k}(\alpha)$. Thus, we have

$$
\mu_{k-1}(\alpha)<\mu_{k}(\alpha)=\cdots=\mu_{k+l-1}(\alpha)<\mu_{k+l}(\alpha) \leq \Theta_{0}
$$

Lemma 3.5. With Notation 3.4, let \mathcal{L} be a linear functional defined and continuous on $\mathcal{V}\left(q^{\alpha}\right)$, and such that

$$
\begin{equation*}
\mathcal{L}\left(\Psi_{j}^{\alpha}\right)=0, \quad \forall j=k, \ldots, k+l-1 \tag{7}
\end{equation*}
$$

Then, there exists a unique $\Psi \in \mathcal{V}\left(q^{\alpha}\right)$ such that

$$
\left\{\begin{array}{l}
\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle=0, \quad \forall j=k, \ldots, k+l-1 \tag{8}\\
q^{\alpha}(\Psi, \Phi)-\mu_{k}(\alpha)\langle\Psi, \Phi\rangle=\mathcal{L}(\Phi), \quad \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right)
\end{array}\right.
$$

with q^{α} defined by (3) and $\langle\cdot, \cdot\rangle$ the L^{2}-scalar product on G^{α}. If we assume that, moreover, $\mathcal{L}\left(\Psi_{j}^{\alpha}\right)=0$ for all $j=1, \ldots, k-1$, the solution of (8) is orthogonal to $\Psi_{1}^{\alpha}, \ldots, \Psi_{k-1}^{\alpha}$.
Proof. Let $N \geq k+l-1$ such that $\mu_{N}(\alpha)<\Theta_{0}$. With Notation 3.4, it is enough to choose $k+l-1 \leq N \leq K_{\alpha}$. We split the linear functional \mathcal{L} as

$$
\mathcal{L}=\mathcal{L}_{0}+\sum_{j=1}^{k-1} c_{j} \Psi_{j}^{\alpha}+\sum_{j=k+l}^{N} c_{j} \Psi_{j}^{\alpha} \quad \text { with } \mathcal{L}_{0}\left(\Psi_{j}^{\alpha}\right)=0, \forall j=1, \ldots, N .
$$

We define the space

$$
\mathcal{V}^{N}=\left\{\Psi \in \mathcal{V}\left(q^{\alpha}\right), \quad\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle=0, \forall j=1, \ldots, N\right\}
$$

Let us prove that the sesquilinear form $q^{\alpha}-\mu_{k}(\alpha)\langle\cdot, \cdot\rangle$ is coercive on \mathcal{V}^{N} : Let $\kappa \in(0,1)$ and $\Psi \in \mathcal{V}^{N}$, then

$$
\begin{aligned}
q^{\alpha}(\Psi, \Psi)-\mu_{k}(\alpha)\langle\Psi, \Psi\rangle & \geq(1-\kappa) q^{\alpha}(\Psi, \Psi)+\left(\kappa \mu_{N+1}(\alpha)-\mu_{k}(\alpha)\right)\langle\Psi, \Psi\rangle \\
& \geq \min \left(1-\kappa, \kappa \mu_{N+1}(\alpha)-\mu_{k}(\alpha)\right)\|\Psi\|_{\mathcal{V}\left(q^{\alpha}\right)}^{2}
\end{aligned}
$$

It suffices to choose $\kappa \in(0,1)$ such that $\kappa \mu_{N+1}(\alpha)-\mu_{k}(\alpha)>0$ to deduce the coercivity.

Therefore, by the Lax-Milgram theorem, there exists a unique $\Psi_{0} \in \mathcal{V}^{N}$ such that

$$
q^{\alpha}\left(\Psi_{0}, \Phi\right)-\mu_{k}(\alpha)\left\langle\Psi_{0}, \Phi\right\rangle=\mathcal{L}_{0}(\Phi), \quad \forall \Phi \in \mathcal{V}^{N}
$$

By orthogonality, Ψ_{0} is the unique solution in $\mathcal{V}\left(q^{\alpha}\right)$ for the problem

$$
\left\{\begin{array}{l}
\left\langle\Psi_{0}, \Psi_{j}^{\alpha}\right\rangle=0, \quad \forall j=1, \ldots, N \tag{9}\\
q^{\alpha}\left(\Psi_{0}, \Phi\right)-\mu_{k}(\alpha)\left\langle\Psi_{0}, \Phi\right\rangle=\mathcal{L}_{0}(\Phi), \quad \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right) .
\end{array}\right.
$$

Furthermore, for $j \in\{1, \ldots, k-1, k+l, \ldots, N\}$, the unique function $u_{j} \in \mathcal{V}\left(q^{\alpha}\right)$ orthogonal to $\Psi_{k}^{\alpha}, \ldots, \Psi_{k+l-1}^{\alpha}$ such that $\left(Q^{\alpha}-\mu_{k}(\alpha)\right) u_{j}=\Psi_{j}^{\alpha}$ is given by

$$
u_{j}=\frac{1}{\mu_{j}(\alpha)-\mu_{k}(\alpha)} \Psi_{j}^{\alpha}
$$

Consequently,

$$
\begin{equation*}
\Psi:=\Psi_{0}+\sum_{j=1}^{k-1} \frac{c_{j}}{\mu_{j}(\alpha)-\mu_{k}(\alpha)} \Psi_{j}^{\alpha}+\sum_{j=k+l}^{N} \frac{c_{j}}{\mu_{j}(\alpha)-\mu_{k}(\alpha)} \Psi_{j}^{\alpha} \tag{10}
\end{equation*}
$$

is the unique solution of (8).
Let us now analyze the decay of the solution Ψ as split in (10). Theorem 3.2 gives the decay of Ψ_{j}^{α}. Therefore, it is enough to study the decay of Ψ_{0}.

Lemma 3.6. With Notation 3.4, let N be an integer, $k+l-1 \leq N \leq K_{\alpha}$. Let \mathcal{L}_{0} be a linear functional continuous on $\mathcal{V}\left(q^{\alpha}\right)$. We assume

$$
\begin{equation*}
\mathcal{L}_{0}\left(\Psi_{j}^{\alpha}\right)=0, \quad \forall j=1, \ldots, N \tag{11}
\end{equation*}
$$

and that, moreover, there exists $\delta_{0}>0$ such that \mathcal{L}_{0} is defined on $\left\{\mathrm{e}^{\delta_{0}|\mathrm{X}|} \Psi, \Psi \in\right.$ $\left.\mathcal{V}\left(q^{\alpha}\right)\right\}$ with the estimate

$$
\begin{equation*}
\exists C>0, \quad \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right), \quad\left|\mathcal{L}_{0}\left(\mathrm{e}^{\delta_{0}|\mathrm{X}|} \Phi\right)\right| \leq C\|\Phi\|_{\mathcal{V}\left(q^{\alpha}\right)} \tag{12}
\end{equation*}
$$

Then, the solution $\Psi_{0} \in \mathcal{V}\left(q^{\alpha}\right)$ of (9) satisfies $\mathrm{e}^{\delta_{N}|\mathrm{X}|} \Psi_{0} \in \mathcal{V}\left(q^{\alpha}\right)$ for some positive number $\delta_{N} \leq \delta_{0}$, independent of \mathcal{L}_{0}.

Proof. Let $\delta \leq \delta_{0}$. We define $\Psi_{\delta}=\mathrm{e}^{\delta|\mathrm{X}|} \Psi_{0}$, and we check that for any $\Phi \in \mathcal{V}\left(q^{\alpha}\right)$,

$$
\begin{aligned}
q^{\alpha}\left(\Psi_{0}, \Phi\right) & =q^{\alpha}\left(\mathrm{e}^{-\delta|\mathrm{X}|} \Psi_{\delta}, \Phi\right) \\
& =\int_{G^{\alpha}}\left(\nabla-i \mathcal{A}_{0}-\delta \mathcal{I}\right) \Psi_{\delta} \cdot \overline{\left(\nabla-i \mathcal{A}_{0}+\delta \mathcal{I}\right)\left(\mathrm{e}^{-\delta|\mathrm{X}|} \Phi\right)} d \mathrm{X}
\end{aligned}
$$

where \mathcal{I} denotes $\frac{\mathrm{X}}{|\mathrm{X}|}$.
Let us define the space \mathcal{V}_{δ}^{N} and the form a_{δ} on $\mathcal{V}_{\delta}^{N} \times \mathcal{V}_{\delta}^{N}$ by

$$
\begin{aligned}
\mathcal{V}_{\delta}^{N} & =\left\{\Psi \in \mathcal{V}\left(q^{\alpha}\right), \quad\left\langle\Psi, \mathrm{e}^{-\delta|\mathrm{X}|} \Psi_{j}^{\alpha}\right\rangle=0, \forall j=1, \ldots, N\right\} \\
a_{\delta}(\Psi, \Phi) & =\int_{G^{\alpha}}\left(\left(\nabla-i \mathcal{A}_{0}-\delta \mathcal{I}\right) \Psi \cdot \overline{\left(\nabla-i \mathcal{A}_{0}+\delta \mathcal{I}\right) \Phi}-\mu_{k}(\alpha) \Psi \bar{\Phi}\right) d \mathrm{X}
\end{aligned}
$$

Then, for any $\Phi \in \mathcal{V}\left(q^{\alpha}\right)$, we have

$$
\begin{equation*}
\mathcal{L}_{0}(\Phi)=q^{\alpha}\left(\Psi_{0}, \Phi\right)-\mu_{k}(\alpha)\left\langle\Psi_{0}, \Phi\right\rangle=a_{\delta}\left(\Psi_{\delta}, \mathrm{e}^{-\delta|\mathrm{X}|} \Phi\right)=\mathcal{L}_{\delta}\left(\mathrm{e}^{-\delta|\mathrm{X}|} \Phi\right) \tag{13}
\end{equation*}
$$

where, thanks to (12), the linear functional \mathcal{L}_{δ} can be defined on $\mathcal{V}\left(q^{\alpha}\right)$ by

$$
\begin{equation*}
\mathcal{L}_{\delta}(\Phi)=\mathcal{L}_{0}\left(\mathrm{e}^{\delta|\mathrm{X}|} \Phi\right) \tag{14}
\end{equation*}
$$

Due to the compatibility condition (11), we have

$$
\mathcal{L}_{\delta}\left(\mathrm{e}^{-\delta|\mathrm{X}|} \Psi_{j}^{\alpha}\right)=0, \quad \forall j=1, \ldots, N .
$$

Solving the problem of finding $\Phi_{\delta} \in \mathcal{V}_{\delta}^{N}$ such that

$$
\begin{equation*}
a_{\delta}\left(\Phi_{\delta}, \Phi\right)=\mathcal{L}_{\delta}(\Phi), \quad \forall \Phi \in \mathcal{V}_{\delta}^{N} \tag{15}
\end{equation*}
$$

will provide exponential decay of the solution Ψ_{0} for problem (9).
We verify easily that the form a_{δ} is sesquilinear and continuous on $\mathcal{V}_{\delta}^{N} \times \mathcal{V}_{\delta}^{N}$. Let us prove its coercivity. Let $\Psi \in \mathcal{V}_{\delta}^{N}$, then

$$
\begin{equation*}
\left|a_{\delta}(\Psi, \Psi)\right| \geq \operatorname{Re} a_{\delta}(\Psi, \Psi)=q^{\alpha}(\Psi, \Psi)-\mu_{k}(\alpha)\|\Psi\|^{2}-\delta^{2}\|\Psi\|^{2} . \tag{16}
\end{equation*}
$$

We decompose Ψ such that

$$
\Psi=\sum_{j=1}^{N}\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle \Psi_{j}^{\alpha}+\Psi^{\perp},
$$

then, the definition of \mathcal{V}_{δ}^{N} and the decay of Ψ_{j}^{α} give for any $j=1, \ldots, N$,

$$
\begin{align*}
\left|\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle\right| & =\left|\left\langle\Psi,\left(1-\mathrm{e}^{-\delta|\mathrm{X}|}\right) \Psi_{j}^{\alpha}\right\rangle\right| \\
& \leq\|\Psi\|_{L^{2}\left(G^{\alpha}\right)}\left(\int_{G^{\alpha}} \delta^{2}|\mathrm{X}|^{2}\left|\Psi_{j}^{\alpha}(\mathrm{X})\right|^{2} d \mathrm{X}\right)^{1 / 2} \\
& \leq C_{j} \delta\|\Psi\|_{L^{2}\left(G^{\alpha}\right)} . \tag{17}
\end{align*}
$$

Furthermore, due to the decomposition of Ψ and (17), it follows

$$
\begin{align*}
q^{\alpha}(\Psi, \Psi) & =q^{\alpha}\left(\Psi^{\perp}, \Psi^{\perp}\right)+\sum_{j=1}^{N}\left|\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle\right|^{2} q^{\alpha}\left(\Psi_{j}^{\alpha}, \Psi_{j}^{\alpha}\right) \\
& \geq \mu_{N+1}(\alpha)\left\|\Psi^{\perp}\right\|^{2}+\sum_{j=1}^{N} \mu_{j}(\alpha)\left|\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle\right|^{2} \\
& \geq \mu_{N+1}(\alpha)\|\Psi\|^{2}-\sum_{j=1}^{N}\left(\mu_{N+1}(\alpha)-\mu_{j}(\alpha)\right)\left|\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle\right|^{2} \\
& \geq\left(\mu_{N+1}(\alpha)-\delta^{2} \sum_{j=1}^{N} C_{j}^{2}\left(\mu_{N+1}(\alpha)-\mu_{j}(\alpha)\right)\right)\|\Psi\|^{2} . \tag{18}
\end{align*}
$$

Defining $M_{N}=\sum_{j=1}^{N} C_{j}^{2}\left(\mu_{N+1}(\alpha)-\mu_{j}(\alpha)\right)$, we deduce from (16)-(18), for $\kappa \in$ $(0,1)$,
$\left|a_{\delta}(\Psi, \Psi)\right| \geq(1-\kappa)\left\|\left(\nabla-i \mathcal{A}_{0}\right) \Psi\right\|^{2}+\left(\kappa\left(\mu_{N+1}(\alpha)-\delta^{2} M_{N}\right)-\mu_{k}(\alpha)-\delta^{2}\right)\|\Psi\|^{2}$.

We define

$$
\bar{\delta}_{N}=\min \left(\delta_{0}, \sqrt{\frac{\mu_{N+1}(\alpha)-\mu_{k}(\alpha)}{1+M_{N}}}\right)
$$

For $\delta \in\left(0, \bar{\delta}_{N}\right)$, we choose $\kappa \in(0,1)$ such that $\kappa\left(\mu_{N+1}(\alpha)-\delta^{2} M_{N}\right)-\mu_{k}(\alpha)-\delta^{2}>0$. This choice proves the coercivity of a_{δ} on \mathcal{V}_{δ}^{N} for any $\delta \in\left[0, \bar{\delta}_{N}\right)$.

Applying the Lax-Milgram theorem, we find that there exists a unique $\Phi_{\delta} \in$ \mathcal{V}_{δ}^{N} solution of the variational problem (15). Thanks to the orthogonality conditions, Φ_{δ} satisfies, moreover, $a_{\delta}\left(\Phi_{\delta}, \Phi\right)=\mathcal{L}_{\delta}(\Phi), \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right)$. Since δ is positive, Φ_{δ} satisfies, a fortiori,

$$
a_{\delta}\left(\Phi_{\delta}, \mathrm{e}^{-\delta|\mathrm{X}|} \Phi\right)=\mathcal{L}_{\delta}\left(\mathrm{e}^{-\delta|\mathrm{X}|} \Phi\right), \quad \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right)
$$

Therefore Φ_{δ} coincides with $\Psi_{\delta}=\mathrm{e}^{\delta|\mathrm{X}|} \Psi_{0}$, compare with (13). We deduce that $\mathrm{e}^{\delta|\mathrm{X}|} \Psi_{0}$ belongs to $\mathcal{V}\left(q^{\alpha}\right)$ for all $\delta \in\left[0, \bar{\delta}_{N}\right)$, which ends the proof.

Using Lemmas 3.5 and 3.6, we deduce:
Lemma 3.7. With Notation 3.4, let \mathcal{L} be a linear functional continuous on $\mathcal{V}\left(q^{\alpha}\right)$. We assume

$$
\begin{equation*}
\mathcal{L}\left(\Psi_{j}^{\alpha}\right)=0, \quad \forall j=k, \ldots, k+l-1, \tag{19}
\end{equation*}
$$

and that, moreover, there exists $\delta_{0}>0$ such that \mathcal{L} is defined on $\mathrm{e}^{\delta_{0}|\mathrm{X}|} \mathcal{V}\left(q^{\alpha}\right)$ with the estimate:

$$
\begin{equation*}
\exists C>0, \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right), \quad\left|\mathcal{L}\left(\mathrm{e}^{\delta_{0}|\mathrm{X}|} \Phi\right)\right| \leq C\|\Phi\|_{\mathcal{V}\left(q^{\alpha}\right)} \tag{20}
\end{equation*}
$$

Then, there exists a unique $\Psi \in \mathcal{V}\left(q^{\alpha}\right)$ such that

$$
\left\{\begin{array}{l}
\left\langle\Psi, \Psi_{j}^{\alpha}\right\rangle=0, \quad \forall j=k, \ldots, k+l-1 \tag{21}\\
q^{\alpha}(\Psi, \Phi)-\mu_{k}(\alpha)\langle\Psi, \Phi\rangle=\mathcal{L}(\Phi), \quad \forall \Phi \in \mathcal{V}\left(q^{\alpha}\right)
\end{array}\right.
$$

Furthermore, $\mathrm{e}^{\delta|\mathrm{X}|} \Psi \in \mathcal{V}\left(q^{\alpha}\right)$ for some $\delta \leq \delta_{0}$ independent of \mathcal{L}.
Proof. The existence and uniqueness is clear according to Lemma 3.5. Combining Lemma 3.6 and Theorem 3.2 with the decomposition of Ψ into

$$
\Psi_{0}+\sum_{j=1}^{k-1} \frac{c_{j}}{\mu_{j}(\alpha)-\mu_{k}(\alpha)} \Psi_{j}^{\alpha}+\sum_{j=k+l}^{N} \frac{c_{j}}{\mu_{j}(\alpha)-\mu_{k}(\alpha)} \Psi_{j}^{\alpha}
$$

we obtain the decay of Ψ for any $\delta<\min \left(\bar{\delta}_{N}, \sqrt{\Theta_{0}-\mu_{N}(\alpha)}\right)$, with any integer N such that $k+l-1 \leq N \leq K_{\alpha}$.

3.3. Generalization to any affine magnetic potential

To conclude this section about model problems, we deal with an arbitrary realvalued affine magnetic potential, thus of the form

$$
\begin{equation*}
\mathcal{A}(\mathrm{X})=\left(a_{11} \mathrm{X}_{1}+a_{12} \mathrm{X}_{2}+a_{10}, a_{21} \mathrm{X}_{1}+a_{22} \mathrm{X}_{2}+a_{20}\right) \tag{22}
\end{equation*}
$$

The associated magnetic field is

$$
\begin{equation*}
\mathcal{B}=\operatorname{curl} \mathcal{A}=a_{21}-a_{12} . \tag{23}
\end{equation*}
$$

The quadratic function (the gauge function) defined by

$$
\begin{equation*}
\mathcal{G}(\mathrm{X})=\frac{1}{2}\left(a_{11} \mathrm{X}_{1}^{2}+a_{22} \mathrm{X}_{2}^{2}+\left(a_{12}+a_{21}\right) \mathrm{X}_{1} \mathrm{X}_{2}\right)+a_{10} \mathrm{X}_{1}+a_{20} \mathrm{X}_{2}, \tag{24}
\end{equation*}
$$

is such that

$$
\begin{equation*}
\mathcal{A}=\mathcal{B} \mathcal{A}_{0}+\nabla \mathcal{G} \tag{25}
\end{equation*}
$$

with the model magnetic potential \mathcal{A}_{0} defined in (1).
Proposition 3.8. Let $\alpha \in(0,2 \pi)$, and let \mathcal{A} be an affine magnetic potential as in (22)-(25). We assume that the associated magnetic field \mathcal{B} is positive. Then the Neumann realization, $Q^{\alpha, \mathcal{A}}$, of the Schrödinger operator $-(\nabla-i \mathcal{A})^{2}$ on G^{α} has K_{α} eigenvalues strictly less than $\mathcal{B} \Theta_{0}$. For $k \leq K_{\alpha}$, the k-th eigenvalue of $-(\nabla-i \mathcal{A})^{2}$ is equal to $\mathcal{B} \mu_{k}(\alpha)$ and its corresponding normalized eigenvector, $\Psi^{\alpha, \mathcal{A}}$, is given on G^{α} by

$$
\Psi_{k}^{\alpha, \mathcal{A}}(\mathrm{X})=\sqrt{\mathcal{B}} \exp (i \mathcal{G}(\mathrm{X})) \Psi_{k}^{\alpha}(\sqrt{\mathcal{B}} \mathrm{X})
$$

Proof. We verify easily that $\Psi_{k}^{\alpha, \mathcal{A}}$ is L^{2}-normalized. The operator $Q^{\alpha, \mathcal{A}}$ is defined on $\mathcal{D}\left(Q^{\alpha, \mathcal{A}}\right)$ with

$$
\begin{align*}
\mathcal{D}\left(Q^{\alpha, \mathcal{A}}\right)=\left\{\Psi \in L^{2}\left(G^{\alpha}\right),\right. & (\nabla-i \mathcal{A}) \Psi \in L^{2}\left(G^{\alpha}\right) \\
& \left.(\nabla-i \mathcal{A})^{2} \Psi \in L^{2}\left(G^{\alpha}\right), \nu \cdot(\nabla-i \mathcal{A}) \Psi_{l_{\partial G^{\alpha}}}=0\right\} \tag{26}
\end{align*}
$$

Using the transformation

$$
\begin{aligned}
\mathcal{D}\left(Q^{\alpha}\right) & \rightarrow \mathcal{D}\left(Q^{\alpha, \mathcal{A}}\right) \\
\Psi & \mapsto \Psi^{\mathcal{A}} \text { with } \Psi^{\mathcal{A}}(\mathrm{X})=\sqrt{\mathcal{B}} \exp (i \mathcal{G}(\mathrm{X})) \Psi(\sqrt{\mathcal{B}} \mathrm{X}),
\end{aligned}
$$

we see that the change of variables $Y=\sqrt{\mathcal{B}} \times$ leads to

$$
\begin{aligned}
\left(\nabla_{\mathrm{X}}-i \mathcal{A}(\mathrm{X})\right) \Psi^{\mathcal{A}}(\mathrm{X}) & =\sqrt{\mathcal{B}} \exp (i \mathcal{G}(\mathrm{X}))\left(\sqrt{\mathcal{B}} \nabla_{\mathrm{Y}}-i(\mathcal{A}(\mathrm{X})-\nabla \mathcal{G}(\mathrm{X}))\right) \Psi(\mathrm{Y}) \\
& =\sqrt{\mathcal{B}} \exp (i \mathcal{G}(\mathrm{X}))\left(\sqrt{\mathcal{B}} \nabla_{\mathrm{Y}}-i \mathcal{B} \mathcal{A}_{0}\left(\frac{\mathrm{Y}}{\sqrt{\mathcal{B}}}\right)\right) \Psi(\mathrm{Y}) \\
& =\mathcal{B} \exp (i \mathcal{G}(\mathrm{X}))\left(\nabla_{\mathrm{Y}}-i \mathcal{A}_{0}(\mathrm{Y})\right) \Psi(\mathrm{Y})
\end{aligned}
$$

It follows

$$
Q^{\alpha, \mathcal{A}} \Psi^{\mathcal{A}}(\mathrm{X})=\mathcal{B} \sqrt{\mathcal{B}} \exp (i \mathcal{G}(\mathrm{X})) Q^{\alpha} \Psi(\mathrm{Y})
$$

Remark 3.9. Note that $\overline{(\nabla-i \mathcal{A})^{2} \Psi}=(\nabla+i \mathcal{A})^{2} \bar{\Psi}$ for any real-valued smooth magnetic potential \mathcal{A} and any $\Psi \in \mathcal{D}\left(Q^{\alpha, \mathcal{A}}\right)$. Thus, Proposition 3.8 is still valid when the magnetic field \mathcal{B} is negative and $\Psi_{k}^{\alpha, \mathcal{A}}$ is given on G^{α} by

$$
\Psi_{k}^{\alpha, \mathcal{A}}(\mathbf{X})=\sqrt{|\mathcal{B}|} \exp (i \mathcal{G}(\mathbf{X})) \overline{\Psi_{k}^{\alpha}}(\sqrt{|\mathcal{B}|} \mathbf{X})
$$

4. Quasi-modes for the Schrödinger operator with constant magnetic field in a polygonal domain

Before considering in a further step a more general situation (Sections 6-7), we suppose that our domain Ω is a convex bounded polygon with straight edges, and that the magnetic potential is equal to $\mathcal{A}_{0}(x)=\frac{1}{2}\left(-x_{2}, x_{1}\right)$. We are interested in the behavior of the lowest eigenvalues of the Neumann realization P_{h} on Ω, for the Schrödinger operator with magnetic potential \mathcal{A}_{0} and semi-classical parameter $h>0$.

The associated sesquilinear form p_{h} is defined on $H^{1}(\Omega)$ by

$$
\begin{equation*}
p_{h}(u, v)=\int_{\Omega}\left(h \nabla-i \mathcal{A}_{0}\right) u(x) \cdot \overline{\left(h \nabla-i \mathcal{A}_{0}\right) v(x)} d x . \tag{27}
\end{equation*}
$$

The operator $P_{h}=-\left(h \nabla-i \mathcal{A}_{0}\right)^{2}$ is well defined on its domain $\mathcal{D}\left(P_{h}\right)$, with

$$
\begin{equation*}
\mathcal{D}\left(P_{h}\right)=\left\{u \in H^{2}(\Omega),\left.\quad \nu \cdot\left(h \nabla-i \mathcal{A}_{0}\right) u\right|_{\partial \Omega}=0\right\} \tag{28}
\end{equation*}
$$

In this section, we introduce suitable corner quasi-modes which will allow to construct limit spectral problems for P_{h}.

4.1. Definition of corner quasi-modes

Let Σ be the set of the vertices s of Ω, and α_{s} be the opening of Ω at $\mathrm{s} \in \Sigma$. The spectrum of P_{h} is in close relation with the spectra of the model operators $Q^{\alpha_{s}}$, as defined in (4), for s describing the set of corners Σ.

As a first step in the explanation of this relation, we introduce, for each vertex s, the infinite plane sector \breve{G}_{s} which coincides with Ω near the vertex s: For $d>0$ small enough, we have

$$
\Omega \cap B(\mathrm{~s}, d)=\breve{G}_{\mathrm{s}} \cap B(\mathrm{~s}, d)
$$

There exists a rotation \mathcal{R}_{s} such that

$$
\left\{\mathrm{X}=\mathcal{R}_{\mathbf{s}}(x-\mathrm{s}), \quad x \in \breve{G}_{\mathrm{s}}\right\}=G^{\alpha_{\mathrm{s}}} .
$$

As a consequence of Proposition 3.8, we obtain:
Lemma 4.1. For all integer $k, 1 \leq k \leq K_{\alpha_{s}}$, the function $\breve{\psi}_{h, \mathbf{s}, k}$ defined by

$$
\begin{equation*}
\breve{\psi}_{h, \mathbf{s}, k}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{i}{2 h} x \wedge \mathrm{~s}\right) \Psi_{k}^{\alpha_{\mathrm{s}}}\left(\frac{\mathcal{R}_{\mathbf{s}}(x-\mathrm{s})}{\sqrt{h}}\right) \quad \text { on } \breve{G}_{\mathrm{s}} \tag{29}
\end{equation*}
$$

is a normalized eigenvector for the operator $-\left(h \nabla-i \mathcal{A}_{0}\right)^{2}$ with Neumann boundary conditions on $\breve{G}_{\mathbf{s}}$, associated with the eigenvalue $h \mu_{k}\left(\alpha_{\mathbf{s}}\right)$.

Thus we construct quasi-modes for P_{h} from the eigenpairs $\left(\mu_{k}\left(\alpha_{\mathbf{s}}\right), \Psi_{k}^{\alpha_{\mathbf{s}}}\right)$ of $Q^{\alpha_{\mathrm{s}}}$ for each corner s of Ω and each $k \leq K_{\alpha_{\mathrm{s}}}$ via translation, rotation and cut-off according to:

Notation 4.2.

- Let $\mathrm{s} \in \Sigma$ and ρ_{s} be the distance to other vertices:

$$
\rho_{\mathrm{s}}=\operatorname{dist}(\mathbf{s}, \Sigma \backslash\{\mathbf{s}\})
$$

Let $\rho^{\prime} \in\left(0, \rho_{\mathrm{s}}\right)$ and χ_{s} be a radial smooth cut-off function with support in $B\left(\mathrm{~s}, \rho_{\mathrm{s}}\right)$, equal to 1 in $B\left(\mathrm{~s}, \rho^{\prime}\right)$ and such that $0 \leq \chi_{\mathrm{s}} \leq 1$.

- Let $k \leq K_{\alpha_{\mathrm{s}}}$. Applying the cut-off χ_{s} to the function $\breve{\psi}_{h, \mathrm{~s}, k}$ in (29) we define

$$
\begin{equation*}
\psi_{h, \mathbf{s}, k}(x)=\chi_{\mathbf{s}}(x) \breve{\psi}_{h, \mathbf{s}, k}(x) \quad \text { on } \Omega . \tag{30}
\end{equation*}
$$

4.2. Properties of quasi-modes

We gather in the following lemma the main properties of the functions $\psi_{h, \mathbf{s}, k}$.
Lemma 4.3. For any $\varepsilon>0$, there exists C_{ε} such that (31)-(33) hold.
(i) The L^{2}-norm of $\psi_{h, \mathbf{s}, k}$ is nearly 1 :

$$
\begin{equation*}
1-C_{\varepsilon} \exp \left(-\frac{2}{\sqrt{h}}\left(\rho^{\prime} \sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathbf{s}}\right)}-\varepsilon\right)\right) \leq\left\|\psi_{h, \mathbf{s}, k}\right\|_{L^{2}(\Omega)}^{2} \leq 1 \tag{31}
\end{equation*}
$$

(ii) The Rayleigh quotient of $\psi_{h, \mathbf{s}, k}$ is nearly $h \mu_{k}\left(\alpha_{\mathbf{s}}\right)$:

$$
\begin{equation*}
\left|\frac{p_{h}\left(\psi_{h, \mathbf{s}, k}, \psi_{h, \mathbf{s}, k}\right)}{\left\|\psi_{h, \mathbf{s}, k}\right\|_{L^{2}(\Omega)}^{2}}-h \mu_{k}\left(\alpha_{\mathbf{s}}\right)\right| \leq C_{\varepsilon} \exp \left(-\frac{2}{\sqrt{h}}\left(\rho^{\prime} \sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathbf{s}}\right)}-\varepsilon\right)\right) . \tag{32}
\end{equation*}
$$

(iii) The pair $\left(h \mu_{k}\left(\alpha_{\mathbf{s}}\right), \psi_{h, \mathbf{s}, k}\right)$ is an approximate eigenpair of P_{h} :

$$
\begin{equation*}
\frac{\left\|P_{h} \psi_{h, \mathbf{s}, k}-h \mu_{k}\left(\alpha_{\mathbf{s}}\right) \psi_{h, \mathbf{s}, k}\right\|_{L^{2}(\Omega)}}{\left\|\psi_{h, \mathbf{s}, k}\right\|_{L^{2}(\Omega)}} \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(\rho^{\prime} \sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathbf{s}}\right)}-\varepsilon\right)\right) . \tag{33}
\end{equation*}
$$

Proof.
(i) Since, by construction, $\left\|\breve{\psi}_{h, \mathbf{s}, k}\right\|_{L^{2}\left(\breve{G}_{\mathrm{s}}\right)}=1$ and thanks to the decay properties (6) of $\Psi_{k}^{\alpha_{s}}$, we have

$$
\begin{aligned}
1 \geq\left\|\chi_{\mathbf{s}} \breve{\psi}_{h, \mathbf{s}, k}\right\|_{L^{2}(\Omega)}^{2} & \geq \int_{\Omega \cap B\left(\mathbf{s}, \rho^{\prime}\right)}\left|\breve{\psi}_{h, \mathbf{s}, k}\right|^{2} d x \\
& =\int_{G^{\alpha_{\mathbf{s}} \cap B}\left(0, \frac{\rho^{\prime}}{\sqrt{h}}\right)}\left|\Psi_{k}^{\alpha_{\mathbf{s}}}(\mathrm{X})\right|^{2} d \mathrm{X} \\
& =1-\int_{G^{\alpha_{\mathbf{s}}} \backslash B\left(0, \frac{\rho^{\prime}}{\sqrt{h}}\right)}\left|\Psi_{k}^{\alpha_{\mathbf{s}}}(\mathrm{X})\right|^{2} d \mathrm{X} \\
& \geq 1-C_{\varepsilon} \exp \left(-\frac{2 \rho^{\prime}}{\sqrt{h}}\left(\sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathbf{s}}\right)}-\varepsilon\right)\right) .
\end{aligned}
$$

(ii) Let us prove the estimate about the quadratic form. We have $\psi_{h, \mathbf{s}, k} \in H^{1}(\Omega)$ and

$$
\begin{align*}
p_{h}\left(\psi_{h, \mathbf{s}, k}, \psi_{h, \mathbf{s}, k}\right)= & \int_{\Omega}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \psi_{h, \mathbf{s}, k}\right|^{2} d x \\
= & \int_{\Omega}\left|\chi_{\mathrm{s}}\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k}\right|^{2} d x+h^{2} \int_{\Omega}\left|\breve{\psi}_{h, \mathrm{~s}, k}\right|^{2}\left|\nabla \chi_{\mathrm{s}}\right|^{2} d x \\
& \quad+2 h \operatorname{Re} \int_{\Omega} \chi_{\mathrm{s}}\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k} \cdot \nabla \chi_{\mathrm{s}} \bar{\psi}_{h, \mathrm{~s}, k} d x . \tag{34}
\end{align*}
$$

Due to the properties of χ_{s} and to the decay estimate (6) again, we have

$$
\begin{align*}
\int_{\Omega}\left|\chi_{\mathrm{s}}\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k}\right|^{2} d x & \leq \int_{\Omega}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k}\right|^{2} d x \\
& \leq h \mu_{k}\left(\alpha_{\mathrm{s}}\right)\left\|\breve{\psi}_{h, \mathrm{~s}, \boldsymbol{k}}\right\|_{L^{2}\left(\breve{G}_{\mathrm{s}}\right)}^{2} \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\Omega}\left|\chi_{\mathbf{s}}\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathbf{s}, k}\right|^{2} d x \geq \int_{\Omega \cap B\left(\mathbf{s}, \rho^{\prime}\right)}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathbf{s}, k}\right|^{2} d x \\
& \quad \geq \int_{\breve{G}_{\mathbf{s}}}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathbf{s}, k}\right|^{2} d x-\int_{\breve{G}_{\mathrm{s}} \backslash B\left(\mathbf{s}, \rho^{\prime}\right)}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathbf{s}, k}\right|^{2} d x \\
& \quad \geq h \mu_{k}\left(\alpha_{\mathrm{s}}\right)\left\|\breve{\psi}_{h, \mathbf{s}, k}\right\|_{L^{2}\left(\breve{G}_{\mathrm{s}}\right)}^{2}-C_{\varepsilon} \exp \left(-\frac{2 \rho^{\prime}}{\sqrt{h}}\left(\sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathrm{s}}\right)}-\varepsilon\right)\right) . \tag{36}
\end{align*}
$$

Still using Theorem 3.2, we deduce also the estimate

$$
\begin{align*}
& \left.\left|2 h \operatorname{Re} \int_{\Omega} \chi_{\mathrm{s}}\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k} \cdot \nabla \chi_{\mathrm{s}} \bar{\psi}_{h, \mathrm{~s}, k} d x+h^{2} \int_{\Omega}\right| \breve{\psi}_{h, \mathbf{s}, k}\right|^{2}\left|\nabla \chi_{\mathrm{s}}\right|^{2} d x \mid \\
& \quad \leq C h \int_{\breve{G}_{\mathrm{s}} \backslash B\left(\mathrm{~s}, \rho^{\prime}\right)}\left(\left|\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathbf{s}, k}\right|^{2}+\left|\breve{\psi}_{h, \mathbf{s}, k}\right|^{2}\right) d x \\
& \quad \leq C_{\varepsilon} \exp \left(-\frac{2 \rho^{\prime}}{\sqrt{h}}\left(\sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathrm{s}}\right)}-\varepsilon\right)\right) . \tag{37}
\end{align*}
$$

Putting together relation (34) with estimates (35), (36), (37) and using the estimate (31) for $\left\|\psi_{h, s, k}\right\|_{L^{2}(\Omega)}$, we deduce (32).
(iii) Let us now prove the last estimate. Since χ_{s} is radial, we can check that $\psi_{h, \mathrm{~s}, k}$ satisfies the Neumann boundary condition and, thus, belongs to $\mathcal{D}\left(P_{h}\right)$. We have

$$
P_{h}\left(\psi_{h, s, k}\right)=\chi_{\mathrm{s}} P_{h}\left(\breve{\psi}_{h, \mathrm{~s}, k}\right)-2 h \nabla \chi_{\mathrm{s}} \cdot\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k}-h^{2} \breve{\psi}_{h, \mathrm{~s}, k} \Delta \chi_{\mathrm{s}} .
$$

On the support of χ_{s}, we have, thanks to Lemma 4.1,

$$
P_{h} \breve{\psi}_{h, \mathbf{s}, k}(x)=h \mu_{k}\left(\alpha_{\mathbf{s}}\right) \breve{\psi}_{h, \mathbf{s}, k}(x) .
$$

Therefore $\chi_{\mathbf{s}} P_{h}\left(\breve{\psi}_{h, \mathbf{s}, k}\right)=h \mu_{k}\left(\alpha_{\mathbf{s}}\right) \psi_{h, \mathbf{s}, k}$. The same arguments as above for the proof of (37) lead to the estimate

$$
\begin{align*}
& \left\|2 h \nabla \chi_{\mathrm{s}} \cdot\left(h \nabla-i \mathcal{A}_{0}\right) \breve{\psi}_{h, \mathrm{~s}, k}+h^{2} \breve{\psi}_{h, \mathrm{~s}, k} \Delta \chi_{\mathrm{s}}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq C_{\varepsilon} \exp \left(-\frac{2 \rho^{\prime}}{\sqrt{h}}\left(\sqrt{\Theta_{0}-\mu_{k}\left(\alpha_{\mathrm{s}}\right)}-\varepsilon\right)\right) \tag{38}
\end{align*}
$$

This ends the proof of Lemma 4.3.

4.3. Partition of unity

We end this section by a useful lemma which will allow to achieve the proof of the spectral asymptotics which can be obtained from the quasi-modes.

Lemma 4.4 (IMS formula, see [8]). For any $\mathrm{s} \in \Sigma$, let χ_{s} be a real-valued cut-off function supported in $B\left(\mathrm{~s}, \rho_{\mathrm{s}}\right)$. We assume moreover that for any $\mathrm{s} \neq \mathrm{s}^{\prime}$, $\operatorname{supp} \chi_{\mathrm{s}} \cap$ $\operatorname{supp} \chi_{\mathbf{s}^{\prime}}=\emptyset$. We define χ_{0} on Ω by $\chi_{0}^{2}=1-\sum_{\mathbf{s} \in \Sigma} \chi_{\mathrm{s}}^{2}$. By convention χ_{s} with $\mathrm{s}=0$ refers to χ_{0}. Then, for any $\psi \in H^{1}(\Omega)$,

$$
p_{h}(\psi, \psi)=\sum_{\mathrm{s} \in \Sigma \cup\{0\}} p_{h}\left(\chi_{\mathrm{s}} \psi, \chi_{\mathrm{s}} \psi\right)-h^{2} \sum_{\mathrm{s} \in \Sigma \cup\{0\}}\left\|\psi \nabla \chi_{\mathrm{s}}\right\|_{L^{2}(\Omega)}^{2}
$$

Proof. Let $\mathrm{s} \in \Sigma \cup\{0\}$, then

$$
\begin{aligned}
\left|\left(h \nabla-i \mathcal{A}_{0}\right)\left(\chi_{\mathbf{s}} \psi\right)\right|^{2}= & \left|\chi_{\mathbf{s}}\right|^{2}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \psi\right|^{2}+h^{2}|\psi|^{2}\left|\nabla \chi_{\mathbf{s}}\right|^{2} \\
& +2 h \operatorname{Re} \chi_{\mathbf{s}} \bar{\psi}\left(h \nabla-i \mathcal{A}_{0}\right) \psi \cdot \nabla \chi_{\mathbf{s}} \\
= & \left|\chi_{\mathbf{s}}\right|^{2}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \psi\right|^{2}+h^{2}|\psi|^{2}\left|\nabla \chi_{\mathbf{s}}\right|^{2}+h^{2} \operatorname{Re} \bar{\psi} \nabla \psi \cdot \nabla\left|\chi_{\mathbf{s}}\right|^{2} .
\end{aligned}
$$

Let us sum up this relation for $s \in \Sigma \cup\{0\}$, it follows

$$
\begin{aligned}
\sum_{\mathbf{s} \in \Sigma \cup\{0\}}\left|\left(h \nabla-i \mathcal{A}_{0}\right)\left(\chi_{\mathbf{s}} \psi\right)\right|^{2}= & \sum_{\mathbf{s} \in \Sigma \cup\{0\}}\left|\chi_{\mathbf{s}}\right|^{2}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \psi\right|^{2}+h^{2} \sum_{\mathbf{s} \in \Sigma \cup\{0\}}|\psi|^{2}\left|\nabla \chi_{\mathbf{s}}\right|^{2} \\
& +h^{2} \sum_{\mathbf{s} \in \Sigma \cup\{0\}} \operatorname{Re} \bar{\psi} \nabla \psi \cdot \nabla\left|\chi_{\mathbf{s}}\right|^{2} .
\end{aligned}
$$

Since $\sum_{s \in \Sigma \cup\{0\}}\left|\chi_{s}\right|^{2}=1$ on Ω, we notice that on Ω

$$
\begin{aligned}
& \sum_{\mathbf{s} \in \Sigma \cup\{0\}}\left|\chi_{\mathrm{s}}\right|^{2}\left|\left(h \nabla-i \mathcal{A}_{0}\right) \psi\right|^{2}=\left|\left(h \nabla-i \mathcal{A}_{0}\right) \psi\right|^{2}, \\
& \sum_{\mathrm{s} \in \Sigma \cup\{0\}} \operatorname{Re} \bar{\psi} \nabla \psi \cdot \nabla\left|\chi_{\mathrm{s}}\right|^{2}=\operatorname{Re} \bar{\psi} \nabla \psi \cdot \nabla \sum_{\mathbf{s} \in \Sigma \cup\{0\}}\left|\chi_{\mathrm{s}}\right|^{2}=0 .
\end{aligned}
$$

Integrating on Ω ends the proof.

5. Spectral asymptotics in a polygon (constant magnetic field)

In this section, we prove that, provided that some of the model operators $Q^{\alpha_{s}}$ have eigenvalues λ below their essential spectrum, a corresponding number of eigenvalues μ_{h} of P_{h} are exponentially close to $h \lambda$ as h tends to 0 . We also prove the related results for eigenspaces.
5.1. Approximation of eigenvalues of P_{h} by corner model operators

We first make precise the notations about eigenvalues.

Notation 5.1.

- We denote by $\mu_{h, n}$ the n-th eigenvalue of P_{h} counted with multiplicity.
- We denote by λ_{n} the n-th eigenvalue of $\oplus_{\mathbf{s} \in \Sigma} Q^{\alpha_{\mathbf{s}}}$ counted with multiplicity as defined by the min-max principle, and let K_{Ω} be the largest integer such that $\lambda_{K_{\Omega}}<\Theta_{0}$. With Notation 3.4, we have $K_{\Omega}=\sum_{\mathrm{s} \in \Sigma} K_{\alpha_{\mathrm{s}}}$. We assume that $K_{\Omega} \geq 1$. For any $n \leq K_{\Omega}$, we denote by Σ_{n} the subset of vertices:

$$
\Sigma_{n}=\left\{\mathrm{s} \in \Sigma, \quad \lambda_{n} \text { is an eigenvalue for } Q^{\alpha_{\mathrm{s}}}\right\}
$$

and by r_{n} the distance

$$
r_{n}=r\left(\lambda_{n}\right)=\min _{\mathbf{s} \in \Sigma_{n}} d(\mathbf{s}, \Sigma \backslash\{\mathbf{s}\}) .
$$

Theorem 5.2. With Notation 5.1, for any $\varepsilon>0$, there exists C_{ε} such that

$$
\begin{aligned}
\mu_{h, 1} & \leq h \lambda_{1}+C_{\varepsilon} \exp \left(-\frac{2}{\sqrt{h}}\left(r_{1} \sqrt{\Theta_{0}-\lambda_{1}}-\varepsilon\right)\right) \\
\left|\mu_{h, n}-h \lambda_{n}\right| & \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(r_{n} \sqrt{\Theta_{0}-\lambda_{n}}-\varepsilon\right)\right), \quad \forall n \leq K_{\Omega}
\end{aligned}
$$

Proof.
(i) Estimate (32) of Lemma 4.3 applied with $\mu_{k}\left(\alpha_{\mathrm{s}}\right)=\lambda_{1}$ and $\rho^{\prime}=r_{1}-\varepsilon^{\prime}$ and the min-max principle (recalled in Definition 3.1) lead to

$$
\mu_{h, 1} \leq h \lambda_{1}+C_{\varepsilon} \exp \left(-\frac{2}{\sqrt{h}}\left(r_{1}-\varepsilon^{\prime}\right)\left(\sqrt{\Theta_{0}-\lambda_{1}}-\varepsilon\right)\right)
$$

(ii) Let $n \leq K_{\Omega}$ and $\mathrm{s} \in \Sigma_{n}$. Let $\Psi^{\alpha_{s}}$ be a normalized eigenvector for $Q^{\alpha_{s}}$ associated with λ_{n} and let $\breve{\psi}_{h, \mathrm{~s}}$ be the function deduced from $\Psi^{\alpha_{s}}$ by (29). Then $\breve{\psi}_{h, \mathrm{~s}}$ is a normalized eigenfunction of $-\left(h \nabla-i \mathcal{A}_{0}\right)^{2}$ on \breve{G}_{s} associated with the eigenvalue $h \lambda_{n}$. Let $\varepsilon>0$. Let $\chi_{s} \in \mathcal{C}_{0}^{\infty}(\Omega,[0,1])$ be a smooth cut-off function as in (30), with $\rho^{\prime}<r_{n}-\frac{\varepsilon}{2}$, and define $\psi_{h, \mathrm{~s}}=\chi_{\mathrm{s}} \breve{\psi}_{h, \mathrm{~s}}$ as in (30).

We deduce from estimate (33) that there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\frac{\left\|P_{h}\left(\psi_{h, \mathbf{s}}\right)-h \lambda_{n} \psi_{h, \mathbf{s}}\right\|_{L^{2}(\Omega)}}{\left\|\psi_{h, \mathbf{s}}\right\|_{L^{2}(\Omega)}} \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(r_{n} \sqrt{\Theta_{0}-\lambda_{n}}-\varepsilon\right)\right) \tag{39}
\end{equation*}
$$

Due to the spectral theorem (cf. [25, Chap. VII]), it follows

$$
\begin{equation*}
d\left(\sigma\left(P_{h}\right), h \lambda_{n}\right) \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(r_{n} \sqrt{\Theta_{0}-\lambda_{n}}-\varepsilon\right)\right) \tag{40}
\end{equation*}
$$

(iii) Let us prove a lower bound for the eigenvalues of P_{h} using ideas of [8, 27]. Let $n \leq K_{\Omega}+1$ be such that $\lambda_{n-1} \neq \lambda_{n}$. With the cut-off functions χ_{s} already introduced for $\mathrm{s} \in \Sigma$, let us define χ_{0} on Ω by $\chi_{0}^{2}=1-\sum_{\mathrm{s} \in \Sigma} \chi_{\mathrm{s}}^{2}$. Due to Lemma 4.4, we know that for any $u \in H^{1}(\Omega)$,

$$
\begin{equation*}
p_{h}(u, u)=\sum_{\mathrm{s} \in \Sigma \cup\{0\}} p_{h}\left(\chi_{\mathrm{s}} u, \chi_{\mathrm{s}} u\right)-h^{2} \sum_{\mathrm{s} \in \Sigma \cup\{0\}}\left\|u \nabla \chi_{\mathrm{s}}\right\|_{L^{2}(\Omega)}^{2} \tag{41}
\end{equation*}
$$

Since supp $\chi_{0} \cap \Sigma=\emptyset$, we can apply the result of [11] for smooth domains: there exists $c>0$ so that

$$
\begin{equation*}
p_{h}\left(\chi_{0} u, \chi_{0} u\right) \geq\left(h \Theta_{0}-c h^{2}\right)\left\|\chi_{0} u\right\|_{L^{2}(\Omega)}^{2} \tag{42}
\end{equation*}
$$

For any $\mathrm{s} \in \Sigma$, let T^{s} be the restriction of $Q^{\alpha_{\mathrm{s}}}$ to the space spanned by the eigenfunctions $\Psi_{k}^{\alpha_{\mathrm{s}}}$ corresponding to eigenvalues $\mu_{k}\left(\alpha_{\mathrm{s}}\right) \leq \lambda_{n-1}$. We denote by $\mathcal{R}_{h, \mathrm{~s}}^{*}$ the application

$$
\begin{aligned}
\mathcal{R}_{h, \mathrm{~s}}^{*}: \mathcal{D}\left(P_{h}\right) & \rightarrow \mathcal{D}\left(Q^{\alpha_{\mathrm{s}}}\right) \\
\breve{u}_{h, \mathrm{~s}} & \mapsto u \text { such that } \breve{u}_{h, \mathbf{s}}(x)=\frac{1}{\sqrt{h}} \exp \left(-\frac{i}{2 h} x \wedge \mathrm{~s}\right) u\left(\frac{\mathcal{R}_{\mathbf{s}}(x-\mathrm{s})}{\sqrt{h}}\right) .
\end{aligned}
$$

Then we have

$$
\begin{align*}
p_{h}\left(\chi_{\mathrm{s}} u, \chi_{\mathrm{s}} u\right) & =h q^{\alpha_{\mathrm{s}}}\left(\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathrm{s}} u\right), \mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathrm{s}} u\right)\right) \\
& \geq h \lambda_{n}\left\|\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathrm{s}} u\right)\right\|_{L^{2}\left(G^{\alpha_{\mathbf{s}}}\right)}^{2}-h\left\langle\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathrm{s}} u\right), T^{\mathbf{s}} \mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathrm{s}} u\right)\right\rangle . \tag{43}
\end{align*}
$$

Let $T_{h, \mathbf{s}}$ be the restriction of $-\left(h \nabla-i \mathcal{A}_{0}\right)^{2}$ on $\breve{G}_{\mathbf{s}}$ to the space spanned by the eigenfunctions $\breve{\psi}_{h, \mathbf{s}, k}$, see (29), corresponding to eigenvalues $\mu_{k}\left(\alpha_{\mathbf{s}}\right) \leq \lambda_{n-1}$. We set

$$
T=\sum_{\mathrm{s} \in \Sigma} \chi_{\mathrm{s}} T_{h, \mathrm{~s}} \chi_{\mathrm{s}} .
$$

Combining (41)-(43) we obtain, since $\lambda_{n} \leq \Theta_{0}$,

$$
p_{h}(u, u) \geq h \lambda_{n}\|u\|_{L^{2}(\Omega)}^{2}-\langle u, T u\rangle-c h^{2}\|u\|_{L^{2}(\Omega)}^{2} .
$$

Since for any $s \in \Sigma$,

$$
\operatorname{rank}\left(\chi_{\mathrm{s}} T_{h, \mathrm{~s}} \chi_{\mathrm{s}}\right) \leq \operatorname{rank}\left(T^{\mathrm{s}}\right)=\operatorname{card}\left\{\text { eigenvalues of } Q^{\alpha_{\mathrm{s}}} \text { less than } \lambda_{n-1}\right\},
$$

we deduce, thanks to the assumption $\lambda_{n-1}<\lambda_{n}$, that the rank of T is not greater than $n-1$.

To obtain a lower bound for $\mu_{h, n}$, we use the max-min principle. Let u_{1}, \ldots, u_{n-1} belong to the orthogonal space of $\operatorname{ker}(T)$. Then for all ψ in $\left\{u_{1}, \ldots, u_{n-1}\right\}^{\perp}$, ψ belongs to $\operatorname{ker}(T)$ and we have

$$
\begin{equation*}
\mu_{h, n} \geq \frac{\left\langle\psi, P_{h} \psi\right\rangle}{\|\psi\|^{2}} \geq h \lambda_{n}-c h^{2} \tag{44}
\end{equation*}
$$

(iv) Now we reach the conclusion: According to (40), we know that there exists $\mu_{h} \in \sigma\left(P_{h}\right)$ such that

$$
\left|\mu_{h}-h \lambda_{n}\right| \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(r_{n} \sqrt{\Theta_{0}-\lambda_{n}}-\varepsilon\right)\right)
$$

Using (44), we obtain that μ_{h} belongs to the set $\left\{\mu_{h, k}, \lambda_{k}=\lambda_{n}\right\}$, which ends the proof of the theorem.

Remark 5.3. In particular the lower bound (44) is valid for $n=K_{\Omega}+1$: In this case, $\lambda_{K_{\Omega}+1}=\Theta_{0}$. Thus (44) yields

$$
\mu_{K_{\Omega}+1, h} \geq h \Theta_{0}-c h^{2}
$$

5.2. Eigenspaces

It results from the previous theorem that, according to repetitions of the same values in $\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{K_{\Omega}}\right\}$, the corresponding eigenvalues $\mu_{h, n}$ are gathered into clusters, because they are exponentially close to the same value $h \lambda$. We are going to prove that the corresponding eigenvectors are exponentially close to linear combinations of quasi-modes. Let us first introduce the definition of distance between subspaces E and F of a Hilbert space. The (a priori) non-symmetric distance $d(E, F)$ is defined as

$$
d(E, F)=\left\|\Pi_{E}-\Pi_{F} \Pi_{E}\right\|_{\mathcal{H}},
$$

where Π_{E} and Π_{F} denote the orthogonal projections on E and F respectively. If both E and F are finite dimensional, and if they have the same dimension, then $d(E, F)=d(F, E)$.

To prove that eigenvectors of P_{h} are close to linear combinations of quasimodes, we use the following refinement of [29] more adapted to clustered eigenvalues:

Theorem 5.4 ([14, Prop. 4.1.1] [18]). Let A be an unbounded self-adjoint operator in a Hilbert space \mathcal{H}. Let $\psi_{1}, \ldots, \psi_{N}$ be N linearly independent vectors in $\mathcal{D}(A)$ and μ_{1}, \ldots, μ_{N} be N real numbers such that

$$
\begin{equation*}
A \psi_{j}=\mu_{j} \psi_{j}+r_{j} \quad \text { with }\left\|r_{j}\right\|_{\mathcal{H}} \leq \eta \tag{45}
\end{equation*}
$$

Let $I \subset \mathbb{R}$ be a compact interval containing μ_{1}, \ldots, μ_{N}. We assume that there exists $a>0$ such that $\sigma(A) \cap(I+B(0,2 a) \backslash I)=\emptyset$. Then, if E is the space spanned by $\psi_{1}, \ldots, \psi_{N}$ and if F is the spectral space associated with $\sigma(A) \cap I$, we have

$$
\begin{equation*}
d(E, F) \leq \frac{\eta \sqrt{N}}{a \sqrt{\kappa_{S}^{\min }}} \tag{46}
\end{equation*}
$$

where $\kappa_{S}^{\min }$ is the smallest eigenvalue of the Gram matrix $S=\left(\left\langle\psi_{j}, \psi_{k}\right\rangle_{\mathcal{H}}\right)$.
Let us now introduce some notation for the cluster of eigenspaces and quasimodes.

Notation 5.5.

- Using Notation 5.1, we denote by $\left\{\Lambda_{1}<\cdots<\Lambda_{M}\right\}$ the set of distinct values in $\left\{\lambda_{1}, \ldots, \lambda_{K_{\Omega}}\right\}$. For any $m \leq M$, we define the distance

$$
R_{m}=r\left(\Lambda_{m}\right)
$$

- For any $n \leq K_{\Omega}$, we denote by $\left(\mu_{h, n}, u_{h, n}\right)$ the n-th eigenpair of P_{h}.
- For any $m \leq M$, we define the m-th cluster of eigenspaces of P_{h} by

$$
F_{h, m}=\operatorname{span}\left\{u_{h, n} \text { for any } n \text { such that } \lambda_{n}=\Lambda_{m}\right\}
$$

and the corresponding cluster of quasi-modes, cf. (29)-(30),

$$
E_{h, m}=\operatorname{span}\left\{\psi_{h, \mathbf{s}, k}=\chi_{\mathbf{s}} \breve{\psi}_{h, \mathbf{s}, k} \text { for any } \mathrm{s} \in \Sigma, k \geq 1 \text { such that } \mu_{k}\left(\alpha_{\mathrm{s}}\right)=\Lambda_{m}\right\} .
$$

A positive real number δ is attached to these spaces of quasi-modes: δ is such that for all $\mathrm{s} \in \Sigma$, the cut-off function χ_{s} is equal to 1 on $B\left(\mathrm{~s}, R_{m}-\delta\right)$.

Theorem 5.6. With Notation 5.1 and 5.5, for any $\varepsilon>0$, there exists C_{ε} such that for any $m \leq M$,

$$
d\left(E_{h, m}, F_{h, m}\right) \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(\left(R_{m}-\delta\right) \sqrt{\Theta_{0}-\Lambda_{m}}-\varepsilon\right)\right)
$$

Proof. For any $m \leq M$, we define

$$
\Sigma_{m}^{*}=\left\{(\mathrm{s}, k) \in \Sigma \times\left\{1, \ldots, K_{\Omega}\right\}, \quad \mu_{k}\left(\alpha_{\mathrm{s}}\right)=\Lambda_{m}\right\} .
$$

(i) If the set Σ_{m}^{*} is reduced to one element, then Theorem 5.6 comes from Lemma 4.3 .
(ii) We assume that Σ_{m}^{*} is not reduced to one element. We denote by $\kappa_{m}^{\min }$ the smallest eigenvalue of the matrix

$$
\left(\left\langle\psi_{h, \mathbf{s}, k}, \psi_{h, \mathbf{s}^{\prime}, k^{\prime}}\right\rangle\right)_{\left((\mathrm{s}, k),\left(\mathbf{s}^{\prime}, k^{\prime}\right)\right) \in \Sigma_{m}^{*} \times \Sigma_{m}^{*}} .
$$

Let $(\mathbf{s}, k) \neq\left(\mathbf{s}^{\prime}, k^{\prime}\right) \in \Sigma_{m}^{*}$. If $\mathbf{s}=\mathbf{s}^{\prime}, \breve{\psi}_{h, \mathbf{s}, k}$ and $\breve{\psi}_{h, \mathbf{s}, k^{\prime}}$ are orthogonal, and thus

$$
\int_{\Omega} \psi_{h, \mathbf{s}, k} \bar{\psi}_{h, \mathbf{s}, k^{\prime}} d x=\int_{\Omega}\left(\left|\chi_{\mathbf{s}}\right|^{2}-1\right) \breve{\psi}_{h, \mathbf{s}, k} \bar{\psi}_{h, \mathbf{s}, k^{\prime}} d x
$$

Then, by Cauchy-Schwarz inequality and decay of eigenfunctions,

$$
\begin{aligned}
\left|\int_{\Omega} \psi_{h, \mathbf{s}, k} \bar{\psi}_{h, \mathbf{s}, k^{\prime}} d x\right| & \leq \int_{\breve{G}_{\mathbf{s}} \backslash B\left(\mathbf{s}, R_{m}-\delta\right)}\left|\breve{\psi}_{h, \mathbf{s}, k}\right|\left|\breve{\psi}_{h, \mathbf{s}, k^{\prime}}\right| d x \\
& \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(2\left(R_{m}-\delta\right) \sqrt{\Theta_{0}-\Lambda_{m}}-\varepsilon\right)\right) .
\end{aligned}
$$

If $\mathbf{s} \neq \mathbf{s}^{\prime}$, since eigenfunction $\breve{\psi}_{h, \mathbf{s}, k}$ and $\breve{\psi}_{h, \mathbf{s}^{\prime}, k^{\prime}}$ are localized near distinct corners, we have

$$
\begin{aligned}
\left|\int_{\Omega} \psi_{h, \mathbf{s}, k} \bar{\psi}_{h, \mathbf{s}^{\prime}, k^{\prime}} d x\right| & \leq \int_{\Omega}\left|\chi_{\mathbf{s}} \breve{\psi}_{h, \mathbf{s}, k}\right|\left|\chi_{\mathbf{s}^{\prime}} \breve{\psi}_{h, \mathbf{s}^{\prime}, k^{\prime}}\right| d x \\
& \leq \int_{\breve{G}_{\mathbf{s}} \backslash\left(B\left(\mathbf{s}, R_{m}-\delta\right) \cup B\left(\mathbf{s}^{\prime}, R_{m}-\delta\right)\right)}\left|\breve{\psi}_{h, \mathbf{s}, k}\right|\left|\breve{\psi}_{h, \mathbf{s}, k^{\prime}}\right| d x \\
& \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(2\left(R_{m}-\delta\right) \sqrt{\Theta_{0}-\Lambda_{m}}-\varepsilon\right)\right)
\end{aligned}
$$

Using also (31), we deduce that

$$
\left|\kappa_{m}^{\min }-1\right| \leq C_{\varepsilon} \exp \left(-\frac{1}{\sqrt{h}}\left(2\left(R_{m}-\delta\right) \sqrt{\Theta_{0}-\Lambda_{m}}-\varepsilon\right)\right)
$$

Let us now apply Theorem 5.4 with $A=P_{h}$. Relation (33) in Lemma 4.3 gives (45) with $\eta=C_{\varepsilon} \exp \left(-\left(\left(R_{m}-\delta\right) \sqrt{\Theta_{0}-\Lambda_{m}}-\varepsilon\right) / \sqrt{h}\right)$. Let us define $I=\left[h \Lambda_{m}-\eta\right.$, $h \Lambda_{m}+\eta$]. According to Theorem 5.2, there exists $C>0$ such that for h small enough,

$$
\sigma\left(P_{h}\right) \cap(I+B(0,2 C h) \backslash I)=\emptyset .
$$

For example, we choose $C=\min \left\{\frac{\Lambda_{m}-\Lambda_{m-1}}{4}, \frac{\Lambda_{m+1}-\Lambda_{m}}{4}\right\}$ with the convention Λ_{0} $=0$. Assumptions of Theorem 5.4 are filled and this ends the proof of Theorem 5.6.

Remark 5.7.

1. Theorem 5.6 shows that any eigenfunction of P_{h} associated with $\mu_{h, n}$ is exponentially close to a linear combination of the quasi-modes corresponding to $\Lambda_{m}=\lambda_{n}$ for the model operators. This result is particularly interesting when the polygon Ω has several angles with the same opening. When the polygon presents symmetries, these linear combinations are non trivial, as exhibited by numerical experiments on a square, see [5].
2. Using Proposition 3.8, Theorems 5.2 and 5.6 can easily be generalized to the Schrödinger operator with constant magnetic field equal to \mathcal{B}. The eigenvalues are multiplied by \mathcal{B} and we use Proposition 3.8 to construct adapted quasimodes.
3. Theorems 5.2 and 5.6 are still valid for a non convex polygon, even if the domain of the operator P_{h} is not contained in $H^{2}(\Omega)$ any more (a finite number of singular functions have to be added to $H^{2}(\Omega)$ if non convex angles are present). Moreover, we do not expect the first eigenfunctions of P_{h} to be localized in a non convex corner, since it is reasonable to conjecture that the bottom of the spectrum of Q^{α} is equal to Θ_{0} for openings α between π and 2π (cf. Remark 3.3).

6. Quasi-modes for the Schrödinger operator in a curvilinear polygon

Let Ω be a bounded curvilinear polygon with a piecewise smooth boundary. As previously, we denote by Σ the set of the vertices s of Ω, and by α_{s} the opening of Ω at s . For the sake of simplicity (cf. Remark 5.7), we assume that $\alpha_{\mathrm{s}} \in(0, \pi)$ for any $s \in \Sigma$.

Let \mathcal{B} be a smooth positive magnetic field and let \mathcal{A} be a potential associated with \mathcal{B}, i.e., $\mathcal{B}=\operatorname{curl} \mathcal{A}$ on $\bar{\Omega}$. As in Sections $4-5$, we are interested in the behavior of the eigenpairs of the Neumann realization P_{h} on Ω, for the Schrödinger operator $-(h \nabla-i \mathcal{A})^{2}$ as $h \rightarrow 0$.

The associated sesquilinear form p_{h} is defined on $H^{1}(\Omega)$ by

$$
\begin{equation*}
p_{h}(u, v)=\int_{\Omega}(h \nabla-i \mathcal{A}) u(x) \cdot \overline{(h \nabla-i \mathcal{A}) v(x)} d x . \tag{47}
\end{equation*}
$$

The operator $P_{h}=-(h \nabla-i \mathcal{A})^{2}$ is defined on its domain $\mathcal{D}\left(P_{h}\right)$, with

$$
\begin{equation*}
\mathcal{D}\left(P_{h}\right)=\left\{u \in H^{2}(\Omega),\left.\quad \nu \cdot(h \nabla-i \mathcal{A}) u\right|_{\partial \Omega}=0\right\} . \tag{48}
\end{equation*}
$$

Now, the values of the magnetic field $\mathcal{B}(s)$ at corners s play a key role in the eigenvalue asymptotics. We introduce:

Notation 6.1.

- We denote by $\mu_{h, n}$ the n-th eigenvalue of P_{h} counted with multiplicity.
- We define infimum numbers for the magnetic field by

$$
b=\inf _{x \in \bar{\Omega}} \mathcal{B}(x) \quad \text { and } \quad b^{\prime}=\inf _{x \in \partial \Omega} \mathcal{B}(x) .
$$

- We denote by λ_{n} the n-th eigenvalue of the model operator

$$
\bigoplus_{\mathrm{s} \in \Sigma} \mathcal{B}(\mathrm{~s}) Q^{\alpha_{\mathrm{s}}}
$$

counted with multiplicity as defined by the min-max principle, and let $K_{\Omega, \mathcal{B}}$ be the largest integer K such that

$$
\lambda_{K}<\min \left(\Theta_{0} b^{\prime}, b\right)
$$

We assume that $K_{\Omega, \mathcal{B}} \geq 1$.
For simplicity of the quasi-modes construction, we make the following assumption.

Assumption 6.2. For any $\mathbf{s} \in \Sigma$ and $k \leq K_{\alpha_{\mathrm{s}}}$ such that $\mathcal{B}(\mathbf{s}) \mu_{k}\left(\alpha_{\mathbf{s}}\right)<\min \left(\Theta_{0} b^{\prime}, b\right)$, we assume that $\mu_{k}\left(\alpha_{\mathrm{s}}\right)$ is a simple eigenvalue of $Q^{\alpha_{s}}$.

The case of the curvilinear polygon is quite different from the polygonal case since a serie in powers of \sqrt{h} appears now. At each corner $s \in \Sigma$, we perform the construction of asymptotic quasi-modes in several steps: Section 6.1 is devoted to a change of variables which maps a corner neighborhood to a plane sector. We use a gauge transform in Section 6.2 to reduce to a magnetic field equal to 1 at
the vertex. In Section 6.3, we perform a scaling together with a Taylor expansion, and introduce a formal series expression of the eigenmode problem. We solve the formal series equations in Section 6.4 and define subsequently our quasi-modes in Section 6.5.

6.1. Change of variables

Let $\mathrm{s} \in \Sigma$. Now, \mathcal{R}_{s} denotes a transformation such that the change of variables $x \mapsto \hat{x}=\mathcal{R}_{\mathbf{s}}(x-\mathrm{s})$ sends s into 0 and $\Omega \cap B\left(\mathrm{~s}, \rho_{\mathrm{s}}\right)$ onto $G^{\alpha_{\mathrm{s}}} \cap U_{\mathrm{s}}$. Here U_{s} is a neighborhood of 0 . This change of variables gives a new magnetic potential $\widehat{\mathcal{A}}$ satisfying

$$
\mathcal{A}_{1} d x_{1}+\mathcal{A}_{2} d x_{2}=\widehat{\mathcal{A}}_{1} d \hat{x}_{1}+\widehat{\mathcal{A}}_{2} d \hat{x}_{2}
$$

where $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ and $\widehat{\mathcal{A}}=\left(\widehat{\mathcal{A}}_{1}, \widehat{\mathcal{A}}_{2}\right)$. This leads to define on $G^{\alpha_{\mathrm{s}}} \cap U_{\mathrm{s}}$ the new operator

$$
\widehat{P}_{h, \mathbf{s}}=-\sum_{j, k=1}^{2}\left(h \partial_{\hat{x}_{j}}-i \widehat{\mathcal{A}}_{j}\right) \sqrt{\operatorname{det} \mathcal{T}_{\mathbf{s}}} \mathcal{T}_{\mathbf{s}, j k}\left(h \partial_{\hat{x}_{k}}-i \widehat{\mathcal{A}}_{k}\right)
$$

where $\mathcal{T}_{\mathrm{s}}=d \mathcal{R}_{\mathrm{s}}^{-1}\left(d \mathcal{R}_{\mathrm{s}}^{-1}\right)^{t}$ and $\mathcal{T}_{\mathrm{s}, j k}$ are the coefficients of the matrix \mathcal{T}_{s}. The boundary operator $T_{h}=\nu \cdot(h \nabla-i \mathcal{A})$ is sent onto

$$
\widehat{T}_{h, \mathrm{~s}}=\sum_{j, k=1}^{2} \nu_{j} \mathcal{s}_{\mathrm{s}, j k}\left(h \partial_{\hat{x}_{k}}-i \widehat{\mathcal{A}}_{k}\right)
$$

where $\left(\nu_{1}, \nu_{2}\right)$ is the unit outer normal to the boundary of $G^{\alpha_{s}}$.
We observe that

$$
\sqrt{\operatorname{det} \mathcal{T}_{\mathbf{s}}(0)} \mathcal{T}_{\mathrm{s}, j k}(0)=\delta_{j, k}, \quad \widehat{\mathcal{A}}(0)=\mathcal{A}(\mathrm{s}) \quad \text { and } \quad \mathcal{B}(\mathrm{s})=\frac{\partial \widehat{\mathcal{A}}_{2}}{\partial \hat{x}_{1}}(0)-\frac{\partial \widehat{\mathcal{A}}_{1}}{\partial \hat{x}_{2}}(0)
$$

For $u \in H^{2}\left(\Omega \cap B\left(\mathbf{s}, \rho_{\mathrm{s}}\right)\right)$, let \widehat{u} be defined on $G^{\alpha_{\mathrm{s}}} \cap U_{\mathrm{s}}$ by

$$
\widehat{u}(\hat{x})=u(x)=u\left(\mathcal{R}_{\mathrm{s}}^{-1}(\hat{x})+\mathbf{s}\right) .
$$

There holds

$$
\left\{\begin{array} { l }
{ P _ { h } u = \mu u \quad \text { in } \Omega \cap B (\mathbf { s } , \rho _ { \mathbf { s } }) } \\
{ T _ { h } u = 0 \quad \text { on } \partial \Omega \cap B (\mathbf { s } , \rho _ { \mathrm { s } }) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{P}_{h, \mathbf{s}} \widehat{u}=\mu \widehat{u} \quad \text { in } G^{\alpha_{\mathbf{s}}} \cap U_{\mathbf{s}} \\
\widehat{T}_{h, \mathbf{s}} \widehat{u}=0 \quad \text { on } \partial G^{\alpha_{\mathrm{s}}} \cap U_{\mathbf{s}}
\end{array}\right.\right.
$$

6.2. Gauge transform

To apply Proposition 3.8, we define

$$
\begin{aligned}
& a_{10}=\mathcal{A}_{1}(\mathrm{~s})=\widehat{\mathcal{A}}_{1}(0), \quad a_{11}=\frac{\partial \mathcal{A}_{1}}{\partial x_{1}}(\mathrm{~s})=\frac{\partial \widehat{\mathcal{A}}_{1}}{\partial \hat{x}_{1}}(0), \quad a_{12}=\frac{\partial \mathcal{A}_{1}}{\partial x_{2}}(\mathrm{~s})=\frac{\partial \widehat{\mathcal{A}}_{1}}{\partial \hat{x}_{2}}(0) \\
& a_{20}=\mathcal{A}_{2}(\mathrm{~s})=\widehat{\mathcal{A}}_{2}(0), \quad a_{21}=\frac{\partial \mathcal{A}_{2}}{\partial x_{1}}(\mathrm{~s})=\frac{\partial \widehat{\mathcal{A}}_{2}}{\partial \hat{x}_{1}}(0), \quad a_{22}=\frac{\partial \mathcal{A}_{2}}{\partial x_{2}}(\mathrm{~s})=\frac{\partial \widehat{\mathcal{A}}_{2}}{\partial \hat{x}_{2}}(0)
\end{aligned}
$$

We also define the gauge function

$$
\mathcal{G}_{\mathbf{s}}(\hat{x})=\frac{1}{2}\left(a_{11} \hat{x}_{1}^{2}+a_{22} \hat{x}_{2}^{2}+\left(a_{12}+a_{21}\right) \hat{x}_{1} \hat{x}_{2}\right)+a_{10} \hat{x}_{1}+a_{20} \hat{x}_{2} .
$$

In accordance with Proposition 3.8, we consider the gauge transform which associates with any function \widehat{u} defined on $G^{\alpha_{\mathrm{s}}} \cap U_{\mathrm{s}}$, the function $\widetilde{\psi}$ such that

$$
\begin{equation*}
\widehat{u}(\hat{x})=\sqrt{\mathcal{B}(\mathrm{s})} \exp \left(\frac{i}{h} \mathcal{G}_{\mathrm{s}}(\hat{x})\right) \widetilde{\psi}(\sqrt{\mathcal{B}(\mathrm{s})} \hat{x}) . \tag{49}
\end{equation*}
$$

The function $\widetilde{\psi}$ is defined on $G^{\alpha_{\mathrm{s}}} \cap \widetilde{U}_{\mathrm{s}}$ now, where $\widetilde{U}_{\mathrm{s}}=\sqrt{\mathcal{B}(\mathrm{s})} U_{\mathrm{s}}$. This leads to consider the new coordinates $y=\sqrt{\mathcal{B}(s)} \hat{x}$, together with the new magnetic potential

$$
\begin{equation*}
\widetilde{\mathcal{A}}(y)=\frac{1}{\sqrt{\mathcal{B}(\mathrm{~s})}}\left(\widehat{\mathcal{A}}-\nabla \mathcal{G}_{\mathrm{s}}\right)\left(\frac{y}{\sqrt{\mathcal{B}(\mathrm{~s})}}\right) . \tag{50}
\end{equation*}
$$

Thus

$$
\widetilde{\mathcal{A}}(0)=0, \quad \operatorname{curl} \widetilde{\mathcal{A}}(0)=1 \quad \text { and } \quad \widetilde{\mathcal{A}}(y)=\mathcal{A}_{0}(y)+\mathcal{O}\left(y^{2}\right) \text { as } y \rightarrow 0
$$

Introducing the operator $\widetilde{Q}_{h, \mathrm{~s}}$ defined on $G^{\alpha_{\mathrm{s}}} \cap \widetilde{U}_{\mathrm{s}}$ by

$$
\begin{equation*}
\widetilde{Q}_{h, \mathrm{~s}}=-\mathcal{B}(\mathbf{s}) \sum_{j, k=1}^{2}\left(h \partial_{y_{j}}-i \widetilde{\mathcal{A}}_{j}(y)\right) g_{\mathrm{s}, j k}(y)\left(h \partial_{y_{k}}-i \widetilde{\mathcal{A}}_{k}(y)\right) \tag{51}
\end{equation*}
$$

with $g_{\mathrm{s}, j k}(y)=\left(\sqrt{\operatorname{det} \mathcal{T}_{\mathrm{s}}} \mathcal{T}_{\mathrm{s}, j k}\right)\left(y \mathcal{B}(\mathrm{~s})^{-1 / 2}\right)$, and the corresponding boundary operator $\widetilde{T}_{h, \mathbf{s}}$, we check that

$$
\left\{\begin{array} { l }
{ \widehat { P } _ { h , \mathbf { s } } \widehat { u } = \mu \widehat { u } \text { in } G ^ { \alpha _ { \mathbf { s } } } \cap U _ { \mathbf { s } } } \\
{ \widehat { T } _ { h , \mathbf { s } } \widehat { u } = 0 \quad \text { on } \partial G ^ { \alpha _ { \mathbf { s } } } \cap U _ { \mathbf { s } } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widetilde{Q}_{h, \mathbf{s}} \widetilde{\psi}=\mu \widetilde{\psi} \text { in } G^{\alpha_{\mathrm{s}}} \cap \widetilde{U}_{\mathbf{s}} \\
\widetilde{T}_{h, \mathbf{s}} \widetilde{\psi}=0 \quad \text { on } \partial G^{\alpha_{\mathrm{s}}} \cap \widetilde{U}_{\mathrm{s}}
\end{array}\right.\right.
$$

6.3. Scaling and formal series expression

In order to homogenize the powers of h in the leading part of $\widetilde{Q}_{h, \mathrm{~s}}$ at 0 , we have to perform the scaling

$$
\mathrm{Y}=\frac{y}{\sqrt{h}}=\sqrt{\frac{\mathcal{B}(\mathrm{s})}{h}} \hat{x} .
$$

Now appear the terms $\widetilde{\mathcal{A}}(\sqrt{h} \mathrm{Y})$ and $g_{\mathrm{s}, j k}(\sqrt{h} \mathrm{Y})$, which are not homogeneous functions any more, in general. We represent them as asymptotic series of homogeneous functions thanks to a Taylor expansion at 0 . We denote

$$
y^{\ell}=y_{1}^{\ell_{1}} y_{2}^{\ell_{2}} \quad \text { for } \quad y=\left(y_{1}, y_{2}\right) \text { and } \ell=\left(\ell_{1}, \ell_{2}\right) \in \mathbb{N}^{2}
$$

We write the Taylor expansion of the potential $\widetilde{\mathcal{A}}$ and of the change of variables $g_{\mathrm{s}, j k}$: For any $j, k \in\{1,2\}$, there exist sequences $\left(a_{j}^{\ell}\right)_{\ell \geq 1}$ and $\left(g_{j, k}^{\ell}\right)_{\ell \geq 0}$ satisfying, in the sense of asymptotic series

$$
\left\{\begin{align*}
\widetilde{\mathcal{A}}_{j}(y) & \simeq \sum_{|\ell| \geq 1} a_{j}^{\ell} y^{\ell} \tag{52}\\
g_{\mathrm{s}, j k}(y) & \simeq \sum_{|\ell| \geq 0} g_{j, k}^{\ell} y^{\ell} \quad \text { with } g_{j, k}^{0}=\delta_{j, k}
\end{align*}\right.
$$

With the scaling $y=\sqrt{h} \mathrm{Y}$, we have

$$
\tilde{\mathcal{A}}_{j}(\sqrt{h} Y) \simeq \sum_{|\ell| \geq 1} h^{\ell / 2} a_{j}^{\ell} Y^{\ell}
$$

and a similar formula for $g_{\mathrm{s}, j k}(\sqrt{h} \mathrm{Y})$. Then the operator $\widehat{Q}_{h, \mathrm{~s}}$ defined in (51) can be written in the form of a formal series of \sqrt{h} as

$$
\widetilde{Q}_{h, \mathrm{~s}} \simeq h \mathcal{B}(\mathrm{~s}) Q_{\mathrm{s}}[h] \quad \text { where } \quad Q_{\mathrm{s}}[h]=\sum_{\ell \geq 0} h^{\ell / 2} Q_{\mathrm{s}}^{\ell} \quad \text { with } \quad Q_{\mathrm{s}}^{0}=Q^{\alpha_{\mathrm{s}}} .
$$

We note that, for any $\ell \geq 1, Q_{\mathrm{s}}^{\ell}$ is a second order operator whose coefficients are polynomial functions. We do the same with the boundary operator:

$$
\widetilde{T}_{h, \mathrm{~s}} \simeq \sqrt{h \mathcal{B}(\mathrm{~s})} T_{\mathrm{s}}[h] \quad \text { where } \quad T_{\mathrm{s}}[h]=\sum_{\ell \geq 0} h^{\ell / 2} T_{\mathrm{s}}^{\ell} \quad \text { with } \quad T_{\mathrm{s}}^{0}=\nu \cdot\left(\nabla-i \mathcal{A}_{0}\right)
$$

Putting all together we obtain:
Lemma 6.3. Let us suppose that there exists a family of solutions $\left(\mu_{h}, \widetilde{\psi}_{h}\right)_{0<h<h_{0}}$ to

$$
\left\{\begin{aligned}
\widetilde{Q}_{h, \mathrm{~s}} \widetilde{\psi}_{h} & =h \mathcal{B}(\mathrm{~s}) \mu_{h} \widetilde{\psi}_{h} & & \text { in } G^{\alpha_{\mathrm{s}}} \cap \widetilde{U}_{\mathrm{s}} \\
\widetilde{T}_{h, \mathrm{~s}} \widetilde{\psi} & =0 & & \text { on } \partial G^{\alpha_{\mathrm{s}}} \cap \widetilde{U}_{\mathrm{s}},
\end{aligned}\right.
$$

such that μ_{h} and $\widetilde{\psi}_{h}$ have power series expansions $\mu[h]$ and $\widetilde{\psi}[h]$ in powers of \sqrt{h}. Then there holds the formal series equation:

$$
\left\{\begin{align*}
Q_{\mathrm{s}}[h] \widetilde{\psi}[h]=\mu[h] \widetilde{\psi}[h] & & \text { in } G^{\alpha_{s}}, \tag{53}\\
T_{\mathrm{s}}[h] \widetilde{\psi}[h]=0 & & \text { on } \partial G^{\alpha_{s}},
\end{align*}\right.
$$

which means that for all integer $L \geq 0$ there holds

$$
\begin{cases}\sum_{\ell=0}^{L} Q_{\mathrm{s}}^{L-\ell} \widetilde{\psi}^{\ell}=\sum_{\ell=0}^{L} \mu^{L-\ell} \widetilde{\psi}^{\ell} & \text { in } G^{\alpha_{\mathrm{s}}} \tag{54}\\ \sum_{\ell=0}^{L} T_{\mathrm{s}}^{L-\ell} \widetilde{\psi}^{\ell}=0 & \text { on } \partial G^{\alpha_{\mathrm{s}}} .\end{cases}
$$

Conversely, our quasi-modes are obtained from particular solutions of (53).
6.4. Solutions of the formal series equation (53)

The first problem in (54) (for $L=0$) is

$$
\begin{cases}Q_{\mathrm{s}}^{0} \widetilde{\psi}^{0}=\mu^{0} \widetilde{\psi}^{0} & \text { in } G^{\alpha_{s}}, \tag{55}\\ T_{\mathrm{s}}^{0} \widetilde{\psi}^{0}=0 & \text { on } \partial G^{\alpha_{\mathrm{s}}} .\end{cases}
$$

The solutions of this problem are the eigenpairs $\left(\mu_{k}\left(\alpha_{\mathbf{s}}\right), \Psi_{k}^{\alpha_{s}}\right)$ of the operator $Q^{\alpha_{s}}$, which we take as starting values for our construction of solutions of the whole system (54). We fix $k \leq K_{\alpha_{\mathrm{s}}}$ and set

$$
\mu_{\mathrm{s}, k}^{0}=\mu_{k}\left(\alpha_{\mathrm{s}}\right) \quad \text { and } \quad \Psi_{\mathrm{s}, k}^{0}=\Psi_{k}^{\alpha_{\mathrm{s}}} .
$$

Then $\left(\mu_{\mathrm{s}, k}^{0}, \Psi_{\mathrm{s}, k}^{0}\right)$ is a particular solution of (55). For simplicity, we assume that $\mu_{k}\left(\alpha_{\mathbf{s}}\right)$ is a simple eigenvalue of $Q^{\alpha_{\mathrm{s}}}$ (see Assumption 6.2 and Remark 7.2). We determine successively the terms $\Psi_{\mathrm{s}, k}^{\ell}$ and $\mu_{\mathrm{s}, k}^{\ell}$ of the formal series

$$
\Psi_{\mathrm{s}, k}[h]=\sum_{\ell \geq 0} h^{\ell / 2} \Psi_{\mathrm{s}, k}^{\ell} \quad \text { and } \quad \mu_{\mathrm{s}, k}[h]=\sum_{\ell \geq 0} h^{\ell / 2} \mu_{\mathrm{s}, k}^{\ell}
$$

by solving successively each problem in the sequence of problems (54), $L=1,2, \ldots$
For $L=1$, the problem is

$$
\left\{\begin{array}{l}
Q_{\mathrm{s}}^{1} \Psi_{\mathrm{s}, k}^{0}+Q_{\mathrm{s}}^{0} \Psi_{\mathrm{s}, k}^{1}=\mu_{\mathrm{s}, k}^{1} \Psi_{\mathrm{s}, k}^{0}+\mu_{\mathrm{s}, k}^{0} \Psi_{\mathrm{s}, k}^{1}, \\
T_{\mathrm{s}}^{1} \Psi_{\mathrm{s}, k}^{0}+T_{\mathrm{s}}^{0} \Psi_{\mathrm{s}, k}^{1}=0 .
\end{array}\right.
$$

We can rewrite it as

$$
\left\{\begin{align*}
\left(Q_{\mathrm{s}}^{0}-\mu_{k}\left(\alpha_{\mathrm{s}}\right)\right) \Psi_{\mathrm{s}, k}^{1} & =\left(\mu_{\mathrm{s}, k}^{1}-Q_{\mathrm{s}}^{1}\right) \Psi_{k}^{\alpha_{\mathrm{s}}} \tag{56}\\
T_{\mathrm{s}}^{0} \Psi_{\mathrm{s}, k}^{1} & =-T_{\mathrm{s}}^{1} \Psi_{k}^{\alpha_{\mathrm{s}}}
\end{align*}\right.
$$

This problem has the form of problem (21) considered in Lemma 3.7, with the right-hand side

$$
\mathcal{L}(v)=\left\langle\left(\mu_{\mathrm{s}, k}^{1}-Q_{\mathrm{s}}^{1}\right) \Psi_{k}^{\alpha_{\mathrm{s}}}, v\right\rangle_{G^{\alpha_{\mathrm{s}}}}+\left\langle T_{\mathrm{s}}^{1} \Psi_{k}^{\alpha_{\mathrm{s}}}, v\right\rangle_{\partial G^{\alpha_{\mathrm{s}}}} .
$$

We choose $\mu_{\mathrm{s}, k}^{1}$ so that the compatibility condition (19) is satisfied, i.e.,

$$
\mu_{\mathrm{s}}^{1}=\left\langle Q_{\mathrm{s}}^{1} \Psi_{k}^{\alpha_{\mathrm{s}}}, \Psi_{k}^{\alpha_{\mathrm{s}}}\right\rangle_{G^{\alpha_{\mathrm{s}}}}-\left\langle T_{\mathrm{s}}^{1} \Psi_{k}^{\alpha_{\mathrm{s}}}, \Psi_{k}^{\alpha_{\mathrm{s}}}\right\rangle_{\partial G^{\alpha_{\mathrm{s}}}} .
$$

By decay of $\Psi_{k}^{\alpha_{\mathrm{s}}}$ and since Q_{s}^{1} is an operator of order 2 , the right-hand side \mathcal{L} satisfies the decay condition (20). Thus Lemma 3.7 provides the existence of a solution $\Psi_{\mathrm{s}, k}^{1}$ satisfying (56) and, furthermore, there exists $\delta_{1}>0$ such that $\mathrm{e}^{\delta_{1}|\mathrm{X}|} \Psi_{\mathrm{s}, k}^{1} \in \mathcal{V}\left(q^{\alpha_{\mathbf{s}}}\right)$.

Next, the problem for $L=2$ can be written as

$$
\left\{\begin{aligned}
\left(Q_{\mathrm{s}}^{0}-\mu_{k}\left(\alpha_{\mathrm{s}}\right)\right) \Psi_{\mathrm{s}, k}^{2} & =\left(\mu_{\mathrm{s}, k}^{2}-Q_{\mathrm{s}}^{2}\right) \Psi_{k}^{\alpha_{\mathrm{s}}}+\left(\mu_{\mathrm{s}, k}^{1}-Q_{\mathrm{s}}^{1}\right) \Psi_{\mathrm{s}, k}^{1}, \\
T_{\mathrm{s}}^{0} \Psi_{\mathrm{s}, k}^{2} & =-T_{\mathrm{s}}^{1} \Psi_{\mathrm{s}, k}^{1}-T_{\mathrm{s}}^{2} \Psi_{k}^{\alpha_{\mathrm{s}}}
\end{aligned}\right.
$$

We choose $\mu_{\mathrm{s}, k}^{2}$ to satisfy (19). Due to the decay of $\Psi_{\mathrm{s}, k}^{1}$ and $\Psi_{k}^{\alpha_{\mathrm{s}}},(20)$ is satisfied and we apply Lemma 3.7 to determine $\Psi_{\mathrm{s}, k}^{2}$. We do the same successively and so determine coefficients $\Psi_{\mathrm{s}, k}^{\ell}$ and $\mu_{\mathrm{s}, k}^{\ell}$. Construction is summed up in the following lemma.

Lemma 6.4. Let $\mathrm{s} \in \Sigma$. We fix $k \leq K_{\alpha_{\mathrm{s}}}$ and set

$$
\mu_{\mathrm{s}, k}^{0}=\mu_{k}\left(\alpha_{\mathrm{s}}\right) \quad \text { and } \quad \Psi_{\mathrm{s}, k}^{0}=\Psi_{k}^{\alpha_{\mathrm{s}}} .
$$

We assume that $\mu_{k}\left(\alpha_{\mathrm{s}}\right)$ is simple for $Q^{\alpha_{\mathrm{s}}}$ (see Assumption 6.2).

For any $\ell \geq 1$, there exist $\mu_{\mathrm{s}, k}^{\ell} \in \mathbb{R}, \Psi_{\mathrm{s}, k}^{\ell} \in \mathcal{V}\left(q^{\alpha_{\mathrm{s}}}\right)$ such that for any $L \geq 0$,

$$
\begin{cases}\sum_{\ell=0}^{L} Q_{\mathrm{s}}^{L-\ell} \Psi_{\mathrm{s}, k}^{\ell}=\sum_{\ell=0}^{L} \mu_{\mathrm{s}, k}^{L-\ell} \Psi_{\mathrm{s}, k}^{\ell} & \text { in } G^{\alpha_{\mathrm{s}}} \tag{57}\\ \sum_{\ell=0}^{L} T_{\mathrm{s}}^{L-\ell} \Psi_{\mathrm{s}, k}^{\ell}=0 & \text { on } \partial G^{\alpha_{\mathrm{s}}}\end{cases}
$$

Furthermore, there exists $\delta>0$ such that $\mathrm{e}^{\delta|\mathrm{X}|} \Psi_{\mathrm{s}, k}^{\ell} \in \mathcal{V}\left(q^{\alpha_{\mathrm{s}}}\right)$ for any $\ell \geq 0$.

6.5. Sequences of quasi-modes for P_{h} near the corner s

We are now ready to introduce sequences of quasi-modes:

Notation 6.5.

- Let $\mathbf{s} \in \Sigma$ and let χ_{s} be a smooth cut-off function with support in $B\left(\mathbf{s}, \rho_{\mathrm{s}}\right)$, equal to 1 in $B\left(\mathrm{~s}, \rho_{\mathrm{s}} / 2\right)$.
- Let $k \leq K_{\alpha_{\mathrm{s}}}$. For any integer $L \geq 0$, using the numbers $\mu_{\mathrm{s}, k}^{\ell}$ and functions $\Psi_{\mathrm{s}, k}^{\ell}$ exhibited in Lemma 6.4, we define

$$
\begin{gather*}
\mu_{h, \mathbf{s}, k}^{[L]}=h \mathcal{B}(\mathbf{s}) \sum_{\ell=0}^{L} h^{\ell / 2} \mu_{\mathbf{s}, k}^{\ell}, \tag{58}\\
\breve{\psi}_{h, \mathbf{s}, k}^{[L]}(x)=\sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}} \exp \left(\frac{i}{h} \mathcal{G}_{\mathbf{s}}\left(\mathcal{R}_{\mathbf{s}}(x-\mathbf{s})\right)\right) \sum_{\ell=0}^{L} h^{\ell / 2} \Psi_{\mathbf{s}, k}^{\ell}\left(\sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}} \mathcal{R}_{\mathbf{s}}(x-\mathbf{s})\right) \tag{59}
\end{gather*}
$$

and, applying the cut-off χ_{s}

$$
\begin{equation*}
\psi_{h, \mathbf{s}, k}^{[L]}(x)=\chi_{\mathbf{s}}(x) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}(x) \quad \text { on } \Omega . \tag{60}
\end{equation*}
$$

For each fixed corner s and $k \leq K_{\alpha_{s}}$, all the functions $\psi_{h, \mathrm{~s}, k}^{[L]}$ for $L=1,2, \ldots$ are quasi-modes, more and more accurate as $L \rightarrow \infty$, as proved in the following lemma:

Lemma 6.6. Let $\mathrm{s} \in \Sigma$ and $k \leq K_{\alpha_{\mathrm{s}}}$. For any $L \geq 1$, there exists $C_{L}>0$ such that (61)-(62) hold.
(i) The L^{2}-norm of $\psi_{h, \mathbf{s}, k}^{[L]}$ is nearly 1:

$$
\begin{equation*}
\forall h \in\left(0, h_{0}\right), 1-C_{L} \sqrt{h} \leq\left\|\psi_{h, \mathbf{s}, k}^{[L]}\right\|_{L^{2}(\Omega)} \leq 1+C_{L} \sqrt{h} \tag{61}
\end{equation*}
$$

(ii) The Rayleigh quotient of $\psi_{h, \mathbf{s}, k}^{[L]}$ is nearly $\mu_{h, \mathbf{s}, k}^{[L]}$:

$$
\begin{equation*}
\forall h \in\left(0, h_{0}\right),\left|p_{h}\left(\psi_{h, \mathbf{s}, k}^{[L]}, \psi_{h, \mathbf{s}, k}^{[L]}\right)-\mu_{h, \mathbf{s}, k}^{[L]}\right| \leq C_{L} h^{\frac{L+3}{2}} \tag{62}
\end{equation*}
$$

Proof. (i) Thanks to Lemma 6.4, we have

$$
1 \geq\left\|\psi_{h, \mathbf{s}, k}^{[0]}\right\|_{L^{2}(\Omega)}^{2} \geq\left\|\breve{\psi}_{h, \mathbf{s}, k}^{[0]}\right\|_{L^{2}\left(\Omega \cap B\left(\mathrm{~s}, \rho_{\mathrm{s}} / 2\right)\right)}^{2} \geq 1-C \mathrm{e}^{-\delta_{0} \rho_{\mathrm{s}}} \sqrt{\frac{\mathcal{B (s)}}{h}}
$$

To end the proof of (61), we notice that $\psi_{h, \mathbf{s}, k}^{[L]}=\psi_{h, \mathbf{s}, k}^{[0]}+\sqrt{h} v$, with
$v(x)=\chi_{\mathbf{s}}(x) \sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}} \exp \left(\frac{i}{h} \mathcal{G}_{\mathbf{s}}\left(\mathcal{R}_{\mathbf{s}}(x-\mathbf{s})\right)\right) \sum_{\ell=1}^{L} h^{(\ell-1) / 2} \Psi_{\mathrm{s}, k}^{\ell}\left(\sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}} \mathcal{R}_{\mathbf{s}}(x-\mathbf{s})\right)$.
Consequently, there exists C_{L} such that $\|v\|_{L^{2}(\Omega)} \leq C_{L}$.
(ii) Let us prove the quadratic form estimate. We have $\psi_{h, \mathbf{s}, k}^{[L]} \in H^{1}(\Omega)$ and we observe, as in (34), that

$$
\begin{align*}
p_{h}\left(\psi_{h, \mathbf{s}, k}^{[L]}, \psi_{h, \mathbf{s}, k}^{[L]}\right)= & \int_{\Omega}\left|\chi_{\mathbf{s}}(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2} d x+h^{2} \int_{\Omega}\left|\breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2}\left|\nabla \chi_{\mathbf{s}}\right|^{2} d x \\
& +2 h \operatorname{Re} \int_{\Omega} \chi_{\mathbf{s}}(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]} \cdot \nabla \chi_{\mathbf{s}} \breve{\psi}_{h, \mathbf{s}, k}^{[L]} d x . \tag{63}
\end{align*}
$$

Due to the properties of χ_{s} and Lemma 6.4, we have

$$
\begin{align*}
\int_{\Omega}\left|\chi_{\mathbf{s}}(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2} d x & \leq \int_{\Omega}\left|(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2} d x \\
& \leq\left(\mu_{h, \mathbf{s}, k}^{[L]}+C_{L} h^{\frac{L+3}{2}}\right)\left\|\breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right\|_{L^{2}(\Omega)}^{2} \tag{64}
\end{align*}
$$

and there exists $\delta>0$ such that

$$
\begin{align*}
\int_{\Omega} \mid \chi_{\mathbf{s}}(h & \nabla-i \mathcal{A})\left.\breve{\psi}_{h, \mathbf{s}, k}\right|^{2} d x \geq \int_{\Omega \cap B\left(\mathbf{s}, \frac{\left.\rho_{\mathbf{s}}^{2}\right)}{}\right.}\left|(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2} d x \\
& \geq\left(\mu_{h, \mathbf{s}, k}^{[L]}-C_{L} h^{\frac{L+3}{2}}\right)\left\|\breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right\|_{L^{2}(\Omega)}^{2}-C_{L} \exp \left(-\delta \rho_{\mathbf{s}} \sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}}\right) \tag{65}
\end{align*}
$$

Still using the decay of $\Psi_{\mathrm{s}, k}^{\ell}$, we deduce also the estimate

$$
\begin{align*}
&\left.\left|2 h \operatorname{Re} \int_{\Omega} \chi_{\mathbf{s}}(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]} \cdot \nabla \chi_{\mathbf{s}} \breve{\breve{\psi}}_{h, \mathbf{s}, k}^{L]} d x+h^{2} \int_{\Omega}\right| \breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2}\left|\nabla \chi_{\mathbf{s}}\right|^{2} d x \mid \\
& \leq C h \int_{\Omega \backslash B\left(\mathbf{s}, \frac{\left.\rho_{\mathbf{s}}^{2}\right)}{}\right.}\left(\left|(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2}+\left|\breve{\psi}_{h, \mathbf{s}, k}^{[L]}\right|^{2}\right) d x \\
& \leq C \exp \left(-\delta \rho_{\mathbf{s}} \sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}}\right) \tag{66}
\end{align*}
$$

Putting together relation (63) with estimates (64), (65), (66) and using the estimate (61) for $\left\|\psi_{h, \mathbf{s}, k}^{[L]}\right\|_{L^{2}(\Omega)}$, we deduce (62).

As in Lemma 4.3, we would like to propose an approximate eigenpair of P_{h} from $\left(\mu_{\mathrm{s}, k}^{[L]}, \Psi_{\mathrm{s}, k}^{[L]}\right)$. But $\Psi_{\mathrm{s}, k}^{[L]}$ does not fulfill boundary condition and so we introduce a small corrector by the following way:

Notation 6.7. Let $\mathrm{s} \in \Sigma$ and $k \leq K_{\alpha_{\mathrm{s}}}$. With Notation 6.5, for any integer $L \geq 0$, we consider $w_{h, \mathbf{s}, k}^{L}$ the solution of the Neumann problem:

$$
(h \nabla-i \mathcal{A})^{2} w_{h, \mathbf{s}, k}^{L}=0 \text { on } \Omega \quad \text { and } \quad \nu \cdot(h \nabla-i \mathcal{A})\left(\psi_{h, \mathbf{s}, k}^{[L]}+w_{h, \mathbf{s}, k}^{L}\right)=0 \text { on } \partial \Omega .
$$

Then, we define

$$
\begin{equation*}
\phi_{h, \mathbf{s}, k}^{[L]}=\psi_{h, \mathbf{s}, k}^{[L]}+w_{h, \mathbf{s}, k}^{L} . \tag{67}
\end{equation*}
$$

In the following lemma, we prove that $w_{h, \mathbf{s}, k}^{L}$ is small.
Lemma 6.8. With Notation 6.7, there exists C such that

$$
\left\|w_{h, \mathbf{s}, k}^{L}\right\|_{L^{2}(\Omega)} \leq C h^{\frac{L-1}{2}}
$$

Proof. For any $v \in H^{1}(\Omega)$, we have

$$
\begin{aligned}
\int_{\Omega}\left(-(h \nabla-i \mathcal{A})^{2} w_{h, \mathbf{s}, k}^{L}\right) \bar{v} d x & =0 \\
& =p_{h}\left(w_{h, \mathbf{s}, k}^{L}, v\right)+\int_{\partial \Omega} \nu \cdot(h \nabla-i \mathcal{A}) \psi_{h, \mathbf{s}, k}^{[L]} \bar{v} d \Gamma .
\end{aligned}
$$

This leads to

$$
p_{h}\left(w_{h, \mathbf{s}, k}^{L}, w_{h, \mathbf{s}, k}^{L}\right) \leq\left\|\nu \cdot(h \nabla-i \mathcal{A}) \psi_{h, \mathbf{s}, k}^{[L]}\right\|_{H^{-1 / 2}(\partial \Omega)}\left\|w_{h, \mathbf{s}, k}^{L}\right\|_{H^{1 / 2}(\partial \Omega)} .
$$

Using the lower bound of $\mu_{h, 1}$ given in [4], there exists $C>0$ such that

$$
p_{h}\left(w_{h, \mathbf{s}, k}^{L}, w_{h, \mathbf{s}, k}^{L}\right) \geq C h\left\|w_{h, \mathbf{s}, k}^{L}\right\|^{2} .
$$

Furthermore, since Ω is bounded, we have

$$
p_{h}\left(w_{h, \mathbf{s}, k}^{L}, w_{h, \mathbf{s}, k}^{L}\right) \geq \tilde{C} h^{2}\left\|w_{h, \mathbf{s}, k}^{L}\right\|_{H^{1}(\Omega)}^{2} .
$$

By construction of $\breve{\psi}_{h, \mathbf{s}, k}^{[L]}$, localization of χ_{s} and Lemma 6.4, there exists $C^{\prime}>0$ such that

$$
\left\|\nu \cdot(h \nabla-i \mathcal{A}) \psi_{h, \mathbf{s}, k}^{[L]}\right\|_{H^{-1 / 2}(\partial \Omega)} \leq C^{\prime} h^{\frac{L+2}{2}} .
$$

Consequently,

$$
\left\|w_{h, \mathbf{s}, k}^{L}\right\| \leq c h^{\frac{L-1}{2}}
$$

Using the corrector $w_{h, \mathbf{s}, k}^{L}$, we will now establish that quasi-modes $\phi_{h, \mathbf{s}, k}^{[L]}$ approximate more and more accurately an eigenfunction of P_{h} as $L \rightarrow \infty$.

Lemma 6.9. Let $\mathrm{s}, \mathrm{s}^{\prime} \in \Sigma$ and $k \leq K_{\alpha_{\mathrm{s}}}, k^{\prime} \leq K_{\alpha_{\mathrm{s}}}$. For any $L \geq 2$, there exists $C_{L}>0$ such that $\phi_{h, \mathbf{s}, k}^{[L]} \in \mathcal{D}\left(P_{h}\right)$ and (68)-(69) hold.
(i) Quasi-orthogonality:

$$
\begin{equation*}
\left|\left\langle\phi_{h, \mathbf{s}, k}^{[L]}, \phi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right\rangle-\delta_{\mathbf{s}, \mathrm{s}^{\prime}} \delta_{k, k^{\prime}}\right| \leq C_{L} h^{1 / 2} \tag{68}
\end{equation*}
$$

with the convention $\delta_{\mathrm{s}, \mathrm{s}^{\prime}}=1$ if $\mathrm{s}=\mathrm{s}^{\prime}$ and 0 else.
(ii) The pair $\left(\mu_{h, \mathbf{s}, k}^{[L]}, \phi_{h, \mathbf{s}, k}^{[L]}\right)$ is an approximate eigenpair of P_{h} :

$$
\begin{equation*}
\left\|P_{h} \phi_{h, \mathbf{s}, k}^{[L]}-\mu_{h, \mathbf{s}, k}^{[L]} \phi_{h, \mathbf{s}, k}^{[L]}\right\|_{L^{2}(\Omega)} \leq C_{L} h^{\frac{L+1}{2}} . \tag{69}
\end{equation*}
$$

Proof. By construction of $\Psi_{\mathrm{s}, k}^{\ell}$ (cf. Lemma 6.4), the definition of $\psi_{h, \mathbf{s}, k}^{[L]}$ and $w_{h, \mathbf{s}, k}^{L}$ in Notation 6.5, we have $\phi_{h, \mathbf{s}, k}^{[L]} \in \mathcal{D}\left(P_{h}\right)$.
(i) Let us prove quasi-orthogonality:

$$
\begin{align*}
& \left\langle\phi_{h, \mathbf{s}, k}^{[L]}, \phi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right\rangle \\
& =\left\langle\psi_{h, \mathbf{s}, k}^{[L]}, \psi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right\rangle+\left\langle\psi_{h, \mathbf{s}, k}^{[L]}, w_{h, \mathbf{s}^{\prime}, k^{\prime}}^{L}\right\rangle+\left\langle w_{h, \mathbf{s}, k}^{L}, \psi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right\rangle+\left\langle w_{h, \mathbf{s}, k}^{L}, w_{h, \mathbf{s}^{\prime}, k^{\prime}}^{L}\right\rangle . \tag{70}
\end{align*}
$$

With Notation 6.5 and Lemma 6.4, we have

$$
\left|\left\langle\psi_{h, \mathbf{s}, k}^{[L]}, \psi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right\rangle-\delta_{\mathbf{s}, \mathbf{s}^{\prime}} \delta_{k, k^{\prime}}\right| \leq C_{L} h^{1 / 2}
$$

By construction of $w_{h, \mathbf{s}, k}^{L}$ and Lemma 6.8, we have also

$$
\left|\left\langle\psi_{h, \mathbf{s}, k}^{[L]}, w_{h, \mathbf{s}^{\prime}, k^{\prime}}^{L}\right\rangle+\left\langle w_{h, \mathbf{s}, k}^{L}, \psi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right\rangle+\left\langle w_{h, \mathbf{s}, k}^{L}, w_{h, \mathbf{s}^{\prime}, k^{\prime}}^{L}\right\rangle\right| \leq C_{L} h^{\frac{L-1}{2}} .
$$

(ii) Let us prove the second estimate. We have

$$
\begin{aligned}
P_{h} \phi_{h, \mathbf{s}, k}^{[L]}-\mu_{h, \mathbf{s}, k}^{[L]} \phi_{h, \mathbf{s}, k}^{[L]}= & \left(P_{h}-\mu_{h, \mathbf{s}, k}^{[L]}\right) \psi_{h, \mathbf{s}, k}^{[L]}+P_{h} w_{h, \mathbf{s}, k}^{L}-\mu_{h, \mathbf{s}, k}^{[L]} w_{h, \mathbf{s}, k}^{L} \\
= & \chi_{\mathbf{s}}\left(P_{h}-\mu_{h, \mathbf{s}, k}^{[L]}\right) \breve{\psi}_{h, \mathbf{s}, k}^{[L]} \\
& -2 h \nabla \chi_{\mathbf{s}} \cdot(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}^{[L]}-h^{2} \breve{\psi}_{h, \mathbf{s}, k}^{[L]} \Delta \chi_{\mathbf{s}}-\mu_{h, \mathbf{s}, k}^{[L]} w_{h, \mathbf{s}, k}^{L},
\end{aligned}
$$

since $P_{h} w_{h, \mathbf{s}, k}^{L}=0$. By localization of the support of χ_{s}, we have

$$
\left\|\chi_{\mathbf{s}} P_{h} \breve{\psi}_{h, \mathbf{s}, k}^{[L]}-\mu_{h, \mathbf{s}, k}^{[L]} \psi_{h, \mathbf{s}, k}^{[L]}\right\|_{L^{2}(\Omega)} \leq C_{L} h^{\frac{L+3}{2}}
$$

By decay of $\Psi_{\mathrm{s}, k}^{\ell}$ given in Lemma 6.4 and localization of the support of $\nabla \chi_{\mathrm{s}}$ and $\Delta \chi_{\mathrm{s}}$, there exists $C_{L}>0$ such that

$$
\left\|2 h \nabla \chi_{\mathrm{s}} \cdot(h \nabla-i \mathcal{A}) \breve{\psi}_{h, \mathbf{s}, k}+h^{2} \breve{\psi}_{h, \mathbf{s}, k} \Delta \chi_{\mathrm{s}}\right\|_{L^{2}(\Omega)}^{2} \leq C_{L} \exp \left(-\delta \rho_{\mathrm{s}} \sqrt{\frac{\mathcal{B}(\mathrm{~s})}{h}}\right)
$$

By Lemma 6.8, we have

$$
\mu_{h, \mathbf{s}, k}^{[L]}\left\|w_{h, \mathbf{s}, k}^{L}\right\|_{L^{2}(\Omega)} \leq C h^{\frac{L+1}{2}}
$$

7. Spectral asymptotics in a curvilinear polygon

In this section, we give the asymptotics of the low-lying eigenvalues of P_{h} using the model operators $Q^{\alpha_{\mathrm{s}}}$. We also prove the related results for eigenspaces.

7.1. Eigenvalue asymptotics

Theorem 7.1. Let $L \geq 2$. With Notation 6.1 and Assumption 6.2, let $\mathcal{E}^{L}(h)$ be the set of the $K_{\Omega, \mathcal{B}}$ smallest eigenvalue asymptotics $\mu_{h, \mathbf{s}, k}^{[L]}$ as defined in Notation 6.5:

$$
\mathcal{E}^{L}(h)=\left\{\mu_{h, \mathbf{s}, k}^{[L]}, \mathbf{s} \in \Sigma, k \leq K_{\alpha_{\mathbf{s}}} \quad \text { such that } \quad \mathcal{B}(\mathbf{s}) \mu_{k}\left(\alpha_{\mathbf{s}}\right)<\min \left(b^{\prime} \Theta_{0}, b\right)\right\} .
$$

Let $n \leq K_{\Omega, \mathcal{B}}$. There exists $h_{0}, \mathrm{~s} \in \Sigma$ and $k \leq K_{\alpha_{\mathrm{s}}}$ such that $\mu_{h, \mathbf{s}, k}^{[L]}$ is the n-th smallest element of $\mathcal{E}^{L}(h)$ for any $h \in\left(0, h_{0}\right)$. We have, by construction

$$
\mu_{h, \mathbf{s}, k}^{[L]}=h \mathcal{B}(\mathbf{s}) \sum_{\ell=0}^{L} h^{\ell / 2} \mu_{\mathrm{s}, k}^{\ell} \quad \text { with } \quad \mu_{\mathrm{s}, k}^{0}=\mu_{k}\left(\alpha_{\mathbf{s}}\right)
$$

and there holds

$$
\left|\mu_{h, n}-\mu_{h, \mathbf{s}, k}^{[L]}\right| \leq C h^{\frac{L+1}{2}}, \quad \forall h \in\left(0, h_{0}\right)
$$

Proof.
(i) Using Lemma 6.9 and due to the spectral theorem (cf. [25, Chap. VII]), it follows

$$
\begin{equation*}
d\left(\sigma\left(P_{h}\right), \mu_{h, \mathbf{s}, k}^{[L]}\right) \leq C h^{\frac{L+1}{2}} \tag{71}
\end{equation*}
$$

(ii) As in the polygonal case, we now prove a lower bound for the eigenvalues of P_{h} using ideas of $[8,27]$. We give the sketch of the proof for the lower bound. This part is more detailed in Section 5 for polygonal case. For $s \in \Sigma$, let χ_{s} be cut-off functions with disjoint support. We define χ_{0} on Ω by $\chi_{0}^{2}=1-\sum_{\mathbf{s} \in \Sigma} \chi_{\mathbf{s}}^{2}$. Due to Lemma 4.4, we know that for any $u \in H^{1}(\Omega)$,

$$
\begin{equation*}
p_{h}(u, u)=\sum_{\mathbf{s} \in \Sigma \cup\{0\}} p_{h}\left(\chi_{\mathrm{s}} u, \chi_{\mathrm{s}} u\right)-h^{2} \sum_{\mathbf{s} \in \Sigma \cup\{0\}}\left\|u \nabla \chi_{\mathrm{s}}\right\|_{L^{2}(\Omega)}^{2} . \tag{72}
\end{equation*}
$$

Since supp $\chi_{0} \cap \Sigma=\emptyset$, we can apply the result of [16] for smooth domains which gives that there exists $c>0$ so that

$$
\begin{equation*}
p_{h}\left(\chi_{0} u, \chi_{0} u\right) \geq\left(h b^{\prime} \Theta_{0}-c h^{5 / 4}\right)\left\|\chi_{0} u\right\|_{L^{2}(\Omega)}^{2} . \tag{73}
\end{equation*}
$$

For any $\mathrm{s} \in \Sigma$, let T^{s} be the restriction of $Q^{\alpha_{\mathrm{s}}}$ to the space spanned by the eigenfunctions $\Psi_{k}^{\alpha_{\mathrm{s}}}$ corresponding to eigenvalues $\mu_{k}\left(\alpha_{\mathrm{s}}\right) \leq \lambda_{n-1}$. We denote by $\mathcal{R}_{h, \mathrm{~s}}^{*}$ the application

$$
\begin{aligned}
\mathcal{R}_{h, \mathbf{s}}^{*}: H^{1}(\Omega) & \rightarrow H^{1}\left(G^{\alpha_{\mathbf{s}}}\right) \\
\breve{u}_{h, \mathbf{s}} & \mapsto \chi_{\mathbf{s}} u \quad \text { such that } \\
& \breve{u}_{h, \mathbf{s}}(x)=\sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}} \exp \left(\frac{i}{h} \mathcal{G}_{\mathbf{s}}\left(\mathcal{R}_{\mathbf{s}}(x-\mathrm{s})\right)\right) u\left(\sqrt{\frac{\mathcal{B}(\mathbf{s})}{h}} \mathcal{R}_{\mathbf{s}}(x-\mathbf{s})\right) .
\end{aligned}
$$

Then, using Lemma 6.3 and keeping the first order term in the expansion, we have

$$
\begin{align*}
p_{h}\left(\chi_{\mathbf{s}} u, \chi_{\mathbf{s}} u\right) \geq & h \mathcal{B}(\mathbf{s}) q^{\alpha_{\mathbf{s}}}\left(\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right), \mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right)\right)-C h^{3 / 2}\left\|\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right)\right\|_{\mathcal{V}\left(q^{\alpha_{\mathbf{s}}}\right)}^{2} \\
\geq & h \lambda_{n}\left\|\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right)\right\|_{L^{2}\left(G^{\alpha_{\mathbf{s}}}\right)}^{2}-h\left\langle\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right), T^{\mathbf{s}} \mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right)\right\rangle \tag{74}\\
& -C h^{3 / 2}\left\|\mathcal{R}_{h, \mathbf{s}}^{*}\left(\chi_{\mathbf{s}} u\right)\right\|_{\mathcal{V}\left(q^{\alpha_{\mathbf{s}}}\right)}^{2}
\end{align*}
$$

Putting together (72)-(74) and considering the contribution of operator $T^{\text {s }}$ on each corner s, there exists an operator T whose rank is not greater then $n-1$ such that

$$
p_{h}(u, u) \geq h \lambda_{n}\|u\|_{L^{2}(\Omega)}^{2}-\langle u, T u\rangle-c h^{5 / 4}\|u\|_{L^{2}(\Omega)}^{2} .
$$

To obtain a lower bound for $\mu_{h, n}$, we use the max-min principle. Let u_{1}, \ldots, u_{n-1} belong to the orthogonal space of $\operatorname{ker}(T)$. Then for all ψ in $\left\{u_{1}, \ldots, u_{n-1}\right\}^{\perp}, \psi$ belongs to $\operatorname{ker}(T)$ and we have

$$
\begin{equation*}
\mu_{h, n} \geq \frac{\left\langle\psi, P_{h} \psi\right\rangle}{\|\psi\|^{2}} \geq h \lambda_{n}-c h^{5 / 4} \tag{75}
\end{equation*}
$$

(iii) According to (71), we know that there exists $\mu_{h} \in \sigma\left(P_{h}\right)$ such that

$$
\left|\mu_{h}-h \mu_{h, \mathbf{s}, k}^{[L]}\right| \leq C h^{\frac{L+1}{2}}
$$

Using (75), we obtain that μ_{h} belongs to the set $\left\{\mu_{h, k}, \lambda_{k}=\lambda_{n}\right\}$.
Remark 7.2. Without the Assumption 6.2 of simplicity, the result of Theorem 7.1 is still valid but requires a more technical proof, see [9] for a construction of quasimodes in the case when the limiting problem may have multiple eigenvalues.

7.2. Eigenspaces

Notation 7.3.

- Using Notation 6.1, we denote by $\left\{\Lambda_{1}<\cdots<\Lambda_{M}\right\}$ the set of distinct values in $\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$.
- For any $n \leq N$, we denote by $\left(\mu_{h, n}, u_{h, n}\right)$ the n-th eigenpair of P_{h}.
- For any $m \leq M$, we define the m-th cluster of eigenspaces of P_{h} by

$$
F_{h, m}=\operatorname{span}\left\{u_{h, n} \text { for any } n \text { such that } \lambda_{n}=\Lambda_{m}\right\}
$$

and the corresponding cluster of quasi-modes for any $L \in \mathbb{N}$,

$$
E_{h, m}^{[L]}=\operatorname{span}\left\{\phi_{h, \mathbf{s}, k}^{[L]} \text { for any } \mathrm{s} \in \Sigma, k \geq 1 \text { such that } \mathcal{B}(\mathrm{s}) \mu_{k}\left(\alpha_{\mathrm{s}}\right)=\Lambda_{m}\right\}
$$

By using Theorem 5.4, we obtain:
Theorem 7.4. For any $m \leq M$ and $L \geq 2$, there exists $C>0$ such that

$$
d\left(F_{h, m}, E_{h, m}^{[L]}\right) \leq C h^{\frac{L-1}{2}} .
$$

Proof. For any $m \leq M$, we define

$$
\Sigma_{m}^{*}=\left\{(\mathbf{s}, k) \in \Sigma \times\{1, \ldots, N\}, \quad \mathcal{B}(\mathbf{s}) \mu_{k}\left(\alpha_{\mathbf{s}}\right)=\Lambda_{m}\right\} .
$$

(i) If the set Σ_{m}^{*} is reduced to one element, then Theorem 5.6 is obvious.
(ii) We assume that Σ_{m}^{*} is not reduced to one element. We denote by $\kappa_{m}^{\min }$ the smallest eigenvalue of the matrix

$$
\left(\left\langle\phi_{h, \mathbf{s}, k}^{[L]}, \phi_{h, \mathbf{s}^{\prime}, k^{\prime}}^{[L]}\right)_{\left((\mathbf{s}, k),\left(\mathbf{s}^{\prime}, k^{\prime}\right)\right) \in \Sigma_{m}^{*} \times \Sigma_{m}^{*}} .\right.
$$

According to Lemma 6.9, there exists C_{L} such that

$$
\left|\kappa_{m}^{\min }-1\right| \leq C_{L} h^{1 / 2} .
$$

Let us now apply Theorem 5.4 with $A=P_{h}$. Relation (69) of Lemma 6.9 gives (45) with $\eta=C h^{\frac{L+1}{2}}$. According to Theorem 7.1, there exists $C_{1}>0$ and $C_{2}>0$
such that, if we define $I=\left[h \mathcal{B}(\mathbf{s}) \mu_{k}\left(\alpha_{\mathbf{s}}\right)-C_{1} h^{3 / 2}, h \mathcal{B}(\mathbf{s}) \mu_{k}\left(\alpha_{\mathbf{s}}\right)+C_{1} h^{3 / 2}\right]$, for any $(\mathrm{s}, k) \in \Sigma_{m}^{*}$, we have for h small enough,

$$
\sigma\left(P_{h}\right) \cap\left(I+B\left(0,2 C_{2} h\right) \backslash I\right)=\emptyset .
$$

For example, we choose $C_{2}=\min \left\{\frac{\Lambda_{m}-\Lambda_{m-1}}{4}, \frac{\Lambda_{m+1}-\Lambda_{m}}{4}\right\}$ with the convention $\Lambda_{0}=0$. Assumptions of Theorem 5.4 are filled and this ends the proof of Theorem 7.4.

Remark 7.5. With Notation 7.3, let $m \leq M$ and $L \geq 2$. If there exist distinct values $\mu_{h, \mathbf{s}, k}^{[L]}$ such that $\mathcal{B}(\mathbf{s}) \mu_{k}\left(\alpha_{\mathbf{s}}\right)=\Lambda_{m}$, we may split $E_{h, m}^{[L]}$ into several subclusters determined by the different values $\mu_{h, \mathbf{s}, k}^{[L]}$, and, accordingly, $F_{h, m}$ splits into several sub-clusters.

8. Conclusion

As a consequence of Theorem 7.1 the smallest eigenvalue of the Schrödinger operator P_{h} tends to $h \lambda_{1}$, with λ_{1} the minimum over the corners s of Ω of the characteristic quantity $\mathcal{B}(\mathbf{s}) \mu_{1}\left(\alpha_{\mathbf{s}}\right)$. Do we have a convergence of the corresponding ground state? If λ_{1} is attained for one corner sonly, then the ground state converges to the corresponding quasi-mode, which is exponentially localized near this corner. If λ_{1} is attained for several corners, we deduce from Theorem 7.4 that the ground state is a linear combination of quasi-modes attached to these different corners. A priori, there is no reason that the coefficients in this combination converge as $h \rightarrow 0$. Moreover, a tunneling effect may happen, that is a stronger interaction between some members of the cluster.

Refined information on the behavior of eigenpairs can be extracted from numerical approximation of the Schrödinger problem by finite element method, insofar such an approximation is accurate enough. We can see from our formulas, see (29) and (59), that eigenmodes have a two-scale structure: they concentrate near corners with the scale \sqrt{h} but they have a strongly oscillating term of the form $\exp (i \Phi(x) / h)$ and their approximation is very delicate. We investigate a finite element method using high degree polynomials in [6]. Numerical computations do exhibit tunneling effect with multiple crossings between eigenvalues when the domain presents some symmetry (for example, in a square). We hope to propose a theoretical interpretation by analyzing an interaction matrix in a future paper.

References

[1] F. Alouges and V. Bonnaillie, Analyse numérique de la supraconductivité C. R. Math. Acad. Sci. Paris 337, 8 (2003), 543-548.
[2] F. Alouges and V. Bonnaillie-Noël, Numerical computations of fundamental eigenstates for the Schrödinger operator under constant magnetic field, To appear in Numerical Methods for PDE (2006).
[3] A. Bernoff and P. Sternberg, Onset of superconductivity in decreasing fields for general domains, J. Math. Phys. 39, 3 (1998), 1272-1284.
[4] V. Bonnaillie, On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners, Asymptot. Anal. 41, 3-4 (2005), 215-258.
[5] V. Bonnaillie-Noël, Schrödinger operator with magnetic field in domain with corners, Journées EDP, Forges-Les-Eaux (2005).
[6] V. Bonnaillie-Noël, M. Dauge, D. Martin and G. Vial, Computations of the first eigenpairs for the Schrödinger operator with magnetic field, Preprint IRMAR 05-37 (2005).
[7] F. Brosens, J.T. Devreese, V.M. Fomin and V.V. Moshchalkov, Superconductivity in a wedge: analytical variational results, Solid State Comm. 111, 2 (1999), 565-569.
[8] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, study ed. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1987.
[9] M. Dauge, I. Djurdjevic, E. Faou and A. Rössle, Eigenmode asymptotics in thin elastic plates, J. Math. Pures Appl. 78, 9 (1999), 925-964.
[10] P.G. De Gennes, Superconductivity in metals and Alloys, Addison Wesley, 1989.
[11] M. del Pino, P.L. Felmer and P. Sternberg, Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys. 210, 2 (2000), 413-446.
[12] V.M. Fomin, J.T. Devreese and V.V. Moshchalkov, Surface superconductivity in a wedge, Europhys. Lett. 42, 5 (1998), 553-558.
[13] S. Fournais and B. Helffer, Accurate eigenvalue estimates for the magnetic Neumann Laplacian, Ann. Inst. Fourier 56, 1 (2006), 1-67.
[14] B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, vol. 1336 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.
[15] B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138, 1 (1996), 40-81.
[16] B. Helffer and A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185, 2 (2001), 604-680.
[17] B. Helffer and X.-B. Pan, Upper critical field and location of surface nucleation of superconductivity Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 1 (2003), 145-181.
[18] B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations 9, 4 (1984), 337-408.
[19] B. Helffer and J. Sjöstrand, Puits multiples. II, intéraction moléculaire, symétries, perturbation, Ann. Inst. H. Poincaré Phys. Théor. 42, 2 (1985), 127-212.
[20] H.T. Jadallah, The onset of superconductivity in a domain with a corner, J. Math. Phys. 42, 9 (2001), 4101-4121.
[21] K. Lu and X.-B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D 127, 1-2 (1999), 73-104.
[22] K. Lu and X.-B. Pan, Gauge invariant eigenvalue problems in \mathbf{R}^{2} and in \mathbf{R}_{+}^{2}, Trans. Amer. Math. Soc. 352, 3 (2000), 1247-1276.
[23] D. Martin, The finite element library Mélina. http://perso.univ-rennes1.fr/daniel.martin/melina (2005).
[24] X.-B. Pan, Upper critical field for superconductors with edges and corners, Calc. Var. Partial Differential Equations 14, 4 (2002), 447-482.
[25] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.
[26] V.A. Schweigert and F.M. Peeters, Influence of the confinement geometry on surface superconductivity, Phys. Rev. B 60, 5 (1999), 3084-3087.
[27] B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 3 (1983), 295-308.
[28] M. Tinkham, Introduction to superconductivity, McGraw Hill, 1996.
[29] M.I. Vishik and L.A. Lyusternik, Regular degeneration and boundary layers for linear differential equations with small parameter, Amer. Math. Soc. Transl. 2, 20 (1962), 239-364.

Virginie Bonnaillie-Noël
Université Rennes 1
IRMAR (UMR CNRS 6625)
Campus de Beaulieu
F-35042 Rennes cedex
France
\&
ENS Cachan, antenne de Bretagne
F-35170 Bruz cedex
France
e-mail: virginie.noel-bonnaillie@univ-rennes1.fr
Monique Dauge
Université Rennes 1
IRMAR (UMR CNRS 6625)
Campus de Beaulieu
F-35042 Rennes cedex
France
e-mail: monique.dauge@univ-rennes1.fr
Communicated by Christian Gérard
Submitted: October 13, 2005
Accepted: December 19, 2005

To access this journal online:
http://www.birkhauser.ch

