ASYMPTOTICS FOR THE PARTIAL AUTOCORRELATION
FUNCTION OF A STATIONARY PROCESS

AKIHIKO INOUE

1. INTRODUCTION

The purpose of this paper is to study the long-time behaviour of the partial
autocorrelation function of a stationary process.

Let {X,} = {X, : n € Z} be a real, zero-mean, weakly stationary process,
defined on a probability space (2, F, P), which we shall simply call a stationary
process. Throughout this paper, we assume that {X,,} is purely nondeterministic

(see §2). The autocovariance function v(-) of {X,} is defined by
v(n) = E[X,,Xo| (n € Z).

We denote by H the closed real linear hull of { X}, : k € Z} in L*(Q2, F, P). Then

H is a real Hilbert space with inner product
(Y1,Ys) := EV1Y3]

and norm
Y] = (Y, V)"V

For n > 1, we write Hj, ) for the subspace of H spanned by {X;,..., X}, and
Py ) for the orthogonal projection operator of H onto H .
The partial autocorrelation a(n) is the correlation coefficient of the two resid-
uals obtained after regressing Xy and X, on the intermediate observations X,
..y Xy—1. More precisely, the partial autocorrelation function o(-) of {X,} is
defined by

B[22,
E(ZPT 7 - Bl(Z; TP

a(n) = (n=2,3,...),

where

Z7 = Xn— Pap_yXa, Z, :=Xo— Punp_1Xo.
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Furthermore, (1) is defined by

a(1) :=~y(1)/4(0).

We think of ZT as the part of X that cannot be explained by the intermediate
observations Xi, ..., X,,_1, and Z_ as the part of X,, that cannot be explained
by these observations. So the partial autocorrelation «(n) is a kind of ‘pure’
correlation coefficient between X, and X,,. See Brockwell-Davis [BD, §3.4 and
§5.2] for background.

One of the important facts about the partial autocorrelation function af-)
is that we can calculate the value of a(n) easily (at least numerically) from the
values of v(0), v(1), ..., y(n). To do that, one may just use the Durbin—Levinson
algorithm (see [BD, Proposition 5.2.1]). Moreover, if we look at the algorithm
carefully, we find that conversely the values of v(0), a(1), ..., a(n) determine
the value of y(n). In this sense, the partial autocorrelation function «(-) has the
same information as the autocovariance function ~(-).

What does a(n) look like for n large? This seemingly simple problem, which
is our central concern in this paper, turns out to be much harder than it looks at
first. The difficulty is related to the fact that the definition of partial autocor-
relation function involves the prediction from a finite part of time. This setting
makes the asymptotic analysis particularly difficult.

We are especially interested in the case in which {X,,} is a long-memory pro-
cess; roughly speaking, this means that the autocovariance y(k) of {X,} tends
to zero as k — oo so slowly that ~(-) is not summable (see [BD, §13.2]). In
our main theorem (Theorem 2.1), we determine the desired asymptotics for the
partial autocorrelation function, modulo absolute value, for a class of stationary
processes which includes long-memory processes. Our result presents a surpris-
ing regularity in the asymptotics. More precisely, let —oco < d < % and ¢ be a
slowly varying function at infinity (see §2). Then under certain conditions (on

the MA(oc0) and AR(o0) coefficients of {X,,}), it is shown that,

(1.1) y(n) ~n*7U(n)  (n— o0)
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implies

D) o oo
(1.2) e~ s )-

In particular, if 0 < d < %, that is, 0 < 1 — 2d < 1, then

(1.3) la(n)| ~ % (n — 00).

We wish to emphasize some features of the results presented just above. It
should be noted that the assumption (1.1) simply says (-) is regularly varying
with negative index (cf. Bingham et al. [BGT, §1.4.2]) since the index 2d — 1
may take any negative values. It is perhaps surprising that there exists such a
simple formula as (1.2). As one sees, the result (1.3) for the long-memory case
0<d< % is particularly simple; the index over n is one, whence independent of
d, and the slowly varying function ¢ has even disappeared. We also notice that
the quantity d, which is important in a long-memory process, appears explicitly
in (1.3).

We tackle the problem above via the asymptotic analysis of the relevant ex-
pected prediction error (Theorems 6.4, 6.6 and 6.7). The idea is to use the precise
asymptotics for the sequence {¢,} of MA(oo) coefficients and the sequence {a,}
of AR(o0) coefficients. Here we note that the sequences {c,} and {a,} are de-
fined for every purely nondeterministic stationary process (§2). To deduce the
desired asymptotic behaviour of the partial autocorrelation function from that
of the prediction error, we use a Tauberian argument. So naturally we need an
adequate Tauberian condition. It turns out that the most elementary Tauberian
condition, that is, monotonicity, is available here.

We verify the desired monotonicity by an explicit representation of the predic-
tion error in terms of {¢, } and {a,} (Theorems 4.5 and 4.6). This representation,
in turn, is obtained by an argument on the geometry of the Hilbert space H (The-
orem 4.1). Here we use a discrete-time analogue of the Seghier-Dym theorem.
The (original) Seghier-Dym theorem ([S], [Dy2]) concerns the intersection of
past and future of a continuous-time stationary process. This theorem originates
in the work of Levinson-McKean [LM]. We prove an analogue of this theorem
for discrete-time stationary processes (Theorem 3.1) and then apply it to our

problem.



In the main theorem, we assume some conditions which are given in terms of
{c,} and {a,}. As an example, we consider the stationary processes whose au-
tocovariance functions are completely monotone. This property for a stationary
process is called reflection positivity. For example, if —oco < d < %, then the sta-
tionary process with autocovariance function of the form (n) = (14 |n|)?**~! has
reflection positivity (Example in §7). See Okabe [O] as well as [I2, OI] for earlier
work. Since we wish to consider long-memory processes (as well as short-memory
ones), our class of stationary processes with reflection positivity is different from
those studied in these references; the latter do not include long-memory pro-
cesses. We show that the stationary processes in our class satisfy the conditions
of the main theorem (Theorem 7.3).

We state the main theorem in §2. In §3, we prove the Seghier-Dym type
theorem. In §4, we give some representation theorems in terms of {¢,} and {a,}.
We obtain the necessary asymptotics for {c,} and {a,} in §5. In §6, we first
show the necessary results on the asymptotics for the prediction error and then
prove the main theorem using them. In §7, we consider the stationary processes
with reflection positivity and show that they satisfy the conditions of the main

theorem.

2. MAIN THEOREM

In this section, we shall state the main theorem. To do that, we need some
notation.

Let {X,} = {X, : n € Z} be a stationary process; as stated in §1, this
means that {X,} is a real, zero-mean, weakly stationary process, defined on a
probability space (2, F, P). Let v(-) be the autocovariance function of {X,}.
As we also stated in §1, we write H for the real Hilbert space spanned by { X} :
k€ Z} in L*(Q, F, P), with inner product (Y1,Y3) := E[Y1Y3] and norm Y| :=
(Y,Y)¥2. For I C Z, denote by H; the closed real linear hull of {X}, : k € I'} in
H. In particular, for m € Z and n € Z with m < n, we write H(_o m), Hm,00)
and Hpy, ) for Hy with I ={k € Z: —oco <k <m},{k€Z:m <k < oo} and

{k € Z : m < k <n}, respectively. For I C 7Z, we denote by P; the orthogonal
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projection operator of H onto H;. We write Pf = Iy — P, where Iy is the
identity map of H. So Pj- is the orthogonal projection operator of H onto Hj .
As we stated in §1, we assme throughout this paper that the stationary process

{X,} is purely nondeterministic, that is,

N, Hioon = {0}
or, equivalently, there exists a positive even and integrable function A(-) on
(—m, ) such that

(n) = /W NG ) /W llog A(8)[d6 < oo

(see [BD, §5.7] and Rozanov [Ro, Chapter II]; in the latter, the term linearly
reqular is used instead of purely nondeterministic). We call A(-) the spectral
density of {X,}. It should be pointed out that there exists an a.e. ambiguity for
A(+). We define the outer function h(-) of {X,} by

12 1 [Tel+z
(2.1)  h(z) = (2m)" expq — . log A(0)do (z€C, |2| <1).
The function h(-) is actually an outer function which is in the Hardy space H?*
of class 2 over the unit disk |z| < 1 (see Rudin [Ru, Definition 17.14]).
Let ¢, be the power series coefficients of h(z):

h(z)=> ez (|2l <1).

n=0

The coefficients ¢, are real and satisfy Y °(¢,,)? < oo (see [Ru, Theorem 17.12]).
We call ¢, the nth MA(oo) coefficient of {X,,} (see (4.7) below for background).
The sequence {c,} is often called the canonical representation kernel of {X,},
too. Now the outer function h(z) has no zeros in |z| < 1, whence we have another
holomorphic function 1/h(z) in |z| < 1. Let a, be the power series coefficients

of the function —1/h(z):

1 - n
e = ;anz (lz| < 1).

Then a, are also real. We call a,, the nth AR(co) coefficient of {X,,} (see (4.9)

below for background). Since

(2.2) (Z:’:O anz”> (Z:’:O cnz”> — 1 (7<),
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we have the following relation between {c,} and {a,}:
(2.3) D ajen_j=—0w  (n20).
=0

We state the main theorem under the following conditions on the sequences

{entoZos {antnzo and {an — anyi1 by

(C1) cn >0 foralln > 0;

(C2) {cn} is eventually decreasing to zero;
(A1) {an} is eventually decreasing to zero;
(A2) {a, — ans1} is eventually decreasing to zero.

We write Ry for the class of slowly varying functions at infinity: the class of
positive, measurable ¢, defined on some neighbourhood [A, c0) of infinity, such

that

lim {(Ax)/l(x) =1 forall A >0

Tr—00

(see [BGT, Chapter 1] for background). Let ¢ € Ry, and choose B so large that

() is locally bounded on [B,oc0) (see [BGT, Corollary 1.4.2]). When we say

[ U(s)ds/s = oo, it means that [ ((s)ds/s = oc. If so, then we define another

slowly varying function ¢ by

(2.4) i) == /BI @ds (x > B)

(see [BGT, §1.5.6]). The asymptotic behaviour of {(z) as # — oo does not

depend on the choice of B because we have assumed that [~ ¢(s)ds/s = cc.
Let «a(-) be the partial autocorrelation function of {X,}. Here is the main

theorem.

Theorem 2.1. Let —oo < d < 5 and { € Ry. We assume (C1), (C2), (Al),

and (A2). Suppose that

(2.5) v(n) ~ n*1e(n) (n — 00).
Then
(2.6 ) ~ = (o)

holds. In other words,



(1) if 0 < d < 5, then

(2.7) a(n)] ~ (n — 00);

(2) if d=0 and [*{(s)ds/s = oo, then
_y £(n)
20(n)

(3) if —oo < d <0, and if futher [ ((s)ds/s < oo for d =0, then
2d lg(n)

> (k)

We must point out that what we actually do below is to prove (2.7)—(2.9) sepa-

(2.8) a(n)] ~n (n — o0);

(2.9) la(n)| ~ (n — 00).

rately rather than to prove (2.6) directly. It is easy to show that the asymptotics
(2.7)—(2.9) are unified in (2.6) but it is still mysterious why this is so.

3. INTERSECTION OF PAST AND FUTURE

In this section, we prove a discrete analogue of the Seghier-Dym theorem ([S],
[Dy2]; see also Levinson-McKean [LM, §6¢], Dym-McKean [DM, §4.3] and Dym
[Dy1, Theorem 2.1]). It plays a crucial role in this paper though it is used only
once, viz. in the proof of Theorem 4.1 below. Note that, as stated in §2, the

stationary process { X} is assumed to be purely nondeterministic.

Theorem 3.1. If the spectral density A(+) of {X,} satisfies [T A(0)~'df < oo,
then

(31) H(—oo,l)] N H[_moo) = H[—n,O]

holds for every n > 0.

Proof. Step 1. We denote by H® the closed complex linear hull of {X; : k €
Z} in L*(Q,F,P). Then H® is a complex Hilbert space with inner product
(Y1,Ys) := E[Y1Y;]. We define its closed subspaces HEC—OO,OP ch_moo) and ch_mo]
as we defined H(_o o), H|—pn o) and H[_, g in §2, but replacing R by C. We prove

(3.2) HE oo NHE, )= Hf,q foralln>0.

The assertion (3.1) for the real case follows from this.
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We write L for the complex Hilbert space L*((—m, ), A(6)d#) with the inner

product

(f,9)L = /_7r f(0)g(@)A(8)ds.

For I C Z, we denote by L; the closed complex linear hull of {¢®*’ : k € I} in
L. In particular, for m € Z and n € Z with m < n, we write L(_so,m], Ljm,o0)
and Ly, for Ly with I ={k € Z: —oco <k <m}, {k€Z:m <k < oo} and
{k € Z:m <k <n}, respectively.

The stationary process {X,,} permits a spectral representation of the form

(3.3) X(k) = / ’ e*Z(do)  (n € 7),

where Z is the spectral measure such that E[Z(A)Z(B)] = [, 5 A(0)d6 (see
[BD, §4.8]). The mapping f — [ f(#)Z(df) gives a Hilbert space isomorphism
of L onto H®. For I C Z, the subspace L; is mapped to HF. So in order to

prove (3.2), it is enough to prove
L—s0,0) N Li—p,oc) = Li—p for all n > 0.

However, the implication D is trivial; hence we prove only the opposite one (C).

We write H?* for the Hardy space H?' of class 2 over the unit disk |z] < 1,
and H?~ for that over the region |z| > 1 of the Riemann sphere C U {co}. As
usual, we identify each function f(z) in H*T or H*~ with its boundary function
f(e%) and regard both H?** and H?~ as subspaces of L2((—x,7), df).

We define an outer function h in H*T by (2.1), and h* € H?~ by h*(z) :=
1(1/Z) (|z| > 1). We define h,, € H?** by h,(2) := 2"h(2). Then since L{_p ) =
e Lo ), 1t follows that

1 1 5
L[—n,oo) - h_}IQ—i-7 L(_Oovo] - ?HQ

(see Ibragimov and Rozanov [IR, I1.2, Theorem 1]; Beurling’s theorem is essential
here). So, for any f(€) € L(_oo 0N L{—n o0, there exist g, € H*" and g_ € H*~
such that

0y _ g+(e"”) _ g-(e"”)
fe”) = h(e®) () a.e. on (—m, 7).
For these g, and ¢g_, we put f(2) = g.+(2)/ha(2) for |z] < 1, and f(2) :=
g—(2)/h*(2) for |z| > 1. Then f is meromorphic in |z| < 1 and possibly has a
8



unique pole at zero, of order at most n, while f is holomorphic in the region
|z] > 1 of the Riemann sphere. We claim that the function f can be continued
analytically from |z| < 1 to |z| > 1 across the unit circle |z| = 1.

This claim implies that the function f so obtained is meromorphic over the
Riemann sphere, whence it is a rational function. By the above description
of singularity, f must be of the form f(z) = Y ;_,axz™" with some a, € C
(k =1,...,n), whence f(e") = >}_,are™™*®. Therefore f(e®) € L, 0, and
this gives the desired implication L(_o 0] N Lj—p,00) C Li—n0]-

Step 2. We complete the proof by proving the claim above. It should be pointed
out that the argument below is parallel to that of [LM, §6c].

Put Ay, := {0 € (—m,m) : sup;_(py<pey | f(re?)| > k} for k =1,2,.... Then

A D A1 (k=1,2,...). Moreover, since

[ e <{ [ |f(e"9)\2A(0)d0}1/2 I A(@)‘%l@}m .

Egoroft’s theorem implies that the Lebesgue measure of A tends to zero as
k — oo.

Now we have

‘ ‘ 1/2 ‘ 1/2
eiar < { [ gureipanh | [ ey an)
Ag Ak A

4 1/2
< g o { / \h(rewﬂ-?de} ,
A

where ||gy||2+ is the H* -norm of g, . Let

(3.4) )= — 1"
) T —2rcos B + 12

be the Poisson kernel. By Jensen’s inequality,

Ih(re®)| 2 = exp {i /ﬂ PO —1) logA(t)_ldt}

2w 2 J_.

1 L
< o | po-naw

—Tr

whence, for k > 2,

sup /A |f(rei9)\d9

1—(1/k)<r<1

1/2
27| g+ [|2+ /W 1 !
_ 2llg4lla+ sup — [ Pt—0)d S A dt|
N (27T)1/2 -7 1—(1/k)p<r<1 27 Ag ( ) <)
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For m € N and for almost all ¢ € (—m, 1), we have

1
0 <limsup sup — P.(t —0)do
k—oo 1—(1/k)<r<1 4T J A,

1
< lim  sup — P.(t—0)d0 = 14,,(1).
k=00 1_(1/k)<r<1 2T J A,

Let m — oo. Then we obtain
. 1
lim sup — [ P(t—0)dd=0 a.e. on (—m, 7).
k—oo1_(1/k)<r<1 24T J 4,
Consequently,
lim  sup / |f(re®)|do = 0,
k—oo1_(1/k)<r<1J A,

so that

im [ 17(6") = f(re")ld =0,

The analogous result for r | 1 follows similarly from the fact g_ € H*~.

Choose a € (—m,7) so that f(re®) tends boundedly to f(e*) as r — 1. For
z = re” in the region D = {re : 1 <r <2, a <0 < a+ 27}, define F(z)
by F(z) := [ f(w)dw, where the path I' = 7 + 7, from €* to z is defined by
Y1(t) := te'™ with t from 1 to r and then 5(t) := re with ¢ from « to 6. Then
the function F is holomorphic in Dy := D\ {z € D : |z| = 1} and continuous
in D, whence F' is holomorphic in D by the reflection principle. Since f = F’
in Dy, this implies that f can be continued analytically in D across |z| = 1.
Since we can choose a different o and do the same thing, we conclude that f can

be continued analytically across the whole unit circle |z| = 1, as claimed. This

completes the proof. O

4. REPRESENTATIONS

In this section, we establish some representation theorems in terms of the
MA (00) coefficients ¢,, and AR(o0) coefficients a,, for a purely nondeterministic
stationary process {X,}. These enable us to carry out the asymptotic analysis
via {c,} and {a,} in §6.

For Y € H and I C 7Z, we may think of P;Y as the best predictor of Y on

the observations {Xj : k € I}, whence PY =Y — P;Y as its prediction error.
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From the orthogonal decompositions

P[fn,o] = P(l—oo,()] + P[in,o]P(—qu] = Pt + P[fn,o} Pp o)

[_nvoo)
we have
1P Y12 = 1PtV I 4 1By P Y I

+ HP[in,o}P[—n,OO)P(—oo,O]YHQ,
and similarly, by induction, for m > 0,

HP[fn,o}YHQ = Z HP(L—oo,o]{P[—moo)P(—oo,O]}kYH2
k=0

(4.2) =
+ D 1P o {Poc 0 Ponoo) Y Poo Y II?

k=0
+ HP[J—_n,O]{P[—n,OO)P(—oo,O]}m+1YH2-

Now what will happen if we let m — oo? The following theorem gives an answer.

Theorem 4.1. If the spectral density A(-) of X satisfies [T A(6)7'df < oo,
then for’ Y € H and n > 0,

1P oY 1P = D I1PE ol Ponoe) Peosa Y I
k=0

+ D N PEuc {PoonPnso) Y Prsoa Y II*
k=0

(4.3)

Proof. It follows from Theorem 3.1 that H(_.0) N H[—n,o0) = H|—pn . Hence,

s-lim {P(_OO70]P[_n7OO)}m = P[—n,O]

(see, for example, Halmos [Ha, Problem 122]). This implies that the last term
of the right-hand side of (4.2) tends to zero as m — oo. Thus the theorem
follows. O

The point of Theorem 4.1 is that it enables us to investigate the prediction
problem from a finite part of time via the prediction from an infinite past and
that from an infinite future.

We can give the key assumption [" A(#)~'df < oo above in different ways.

Proposition 4.2. The following conditions are equivalent:

(1) J7_A(0)df < oo;
11



(2) bt e H**;
(3) 22¢ (an)? < o0.
Proof. The implication (2)<(3) follows from the well-known characterization of

the space H?' in terms of power series coefficients (see [Ru, Theorem 17.12]).

On the other hand, since

1 1 [Tel+z
—— = (2m)" '/ —/ — log{1/A(6)}df 1
= en e { L[S ampo) (<)
we see that (1) and (2) are equivalent (see [Ru, Theorem 17.16]). O

We look at the relation between the condition above and those in §2.

Proposition 4.3. If (C1) and (A1) hold, then we have Y " |a,| < 0o and hence
I A(B)1do < oo.

Proof. Bearing in mind that {a, } is eventually non-negative, we apply the mono-

tone convergence theorem to (2.2). Then it follows that

S ==l (37 ) € (00,0

which implies Y " |a,| < oo. In particular, we have > °(a,)* < oo, so that, by
Proposition 4.2, [* A(0)~'df < . O

Now we consider P_o X, for n > 1. We vaguely think of it as a linear
combination of {Xj : —oo < k < 0}. We make this point clear to the extent

sufficient for our purpose. We put

(4.4) D= Cmoprs;  (m=1, §>0).
k=1

Theorem 4.4. If > |ay| < oo, then forn € N,
(45) P(—oo,O]Xn = Z b?X—%
=0

the sum converging absolutely in H.

Proof. Recall the spectral representation (3.3) for the stationary process {X,,}.

Since |h(e?)|> = 27 A(f) > 0 a.e. on (—7, ), we may put

(4.6) £, = /_ " it {W}_l Z(d9)  (ne).

™
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Then, as is well known, {§, : n € Z} forms a complete orthonormal system for

H such that

n

(4.7) Xo= ) i€y Heom=Hewnll) (n€D),

j=—00
where H(_o (&) is the closed subspace of H spanned by {{, : —oo < k <
n} (see [Ro, Chapter II]). The representation (4.7) is the so-called canonical
representation of {X,}. It follows that

a8 S Xt e = [ m@Fs@Es  men,
where
fm(0) == h(c) + kz:;akeik@ (—m <0 <m).

By assumption, A7!(-) is in H**. Hence we have the Fourier series expansion

6Z9 o Z ake

in L?((—m, m),df), which yields f,,,(6) = — >~ | axe’™. The condition Y " |ax| <
oo now implies that f,,(0) tends boundedly to zero as m — oo, and so the right-
hand side of (4.8) converges to zero as m — oo. Thus we obtain the following

AR(oc0) representation for {X,,}:

(4.9) Y i Xj+&=0 (neD)

j=—00
We set Y, := P_w X, for n € N. By (4.9), the sequence {Y,, : n € N} is a

solution to

(4.10) Y tnmYm=—) a;X_;  (n€eN).
m=1 =0

On the other hand, by (2.3),

Zan mmeX_j = Z <Z i chm kakﬂ> X

Jj=0 j=0 \m=1

(Z A+ Zan k pcp) X—j = - Zan+jX—j7
k=1 Jj=0

which implies that the sequence {77 07X ; : n € N} is also a solution to

7=0

(4.10). However, the solution to (4.10) is unique because ag # 0. Thus (4.5)

follows. 0
13



Since the stationary process {X,} is assumed to be purely nondeterministic,
we have P(J;oo,O]Xl # 0; use (4.16) below and the fact ¢y # 0. So we put

1P, X0l = 1P
(la=

(_0070]

X4]?

(—00,0]

X2

(4.11) e(n) == (n=0,1,...).

We note that €¢(n) — 0 as n — oo because, by (4.1) and (4.7),
HP[J__n,O}Xl H2 _ HP(J;oo O]X1 H2 — HP[J_'n 0] Zin-ﬂ ngl—j

= HZ] =n+2 CISE :ZJ n+2(cj)2—>0 (n — 00).

In §6, we give a detailed treatment of the asymptotic behaviour of €(n) as n — oo.

2

Here we prove a representation of €(n) in terms {c;} and {a}.

Theorem 4.5. If > °|ax| < 0o, then forn € N,

(4.12) e(n)=>_ Y di(n,p)*

k=1 p=0

where di(n,p) == > oo Colpiniatp and for k> 2,

00 0o
M2 M1
E An+1+my E bn+m2 ’ E bn-l—mk,l E bn+p+mkcmk 1

mip=1 mao=1 mg_1=1 mp=1

Proof. By Theorem 4.4, we have
Plco,0) Xm anﬂX—n —j (mod Hi_ )

for m > 1 and n > 0. Let S, and 6 be the k-step shift operator and reflection

operator on H:
Sk(Xm) = Xtk 0(Xm) = X .

Then Sy and 6 are Hilbert space automorphisms of H such that S;' = S,
6~' = 6. In view of the identity (65,) ' P—c0,0(055) = Pl_no0), We have

Po)Xonm = Z br X,  (mod Hi_yg).
Hence
{P[—n,oo)P(—oo,O]}le = Co Z An+14+mq Z bnm_sl_m2
(4.13) e et
> bt Z bt X, (mod Hi_pq)),
my_1=1 my=1

14



where r := 2k. This and
—o0 O]X Z Cm—q€q (m € N)

yield

00 00 0o 00 my

— mi My —2 My —1

=Co E Ant14my E bn+m2 e E bn—kmr_l E bn-l—mr E Cmr—Q§Q'
mi1=1 mo=1 my_1=1 my=1 q=1

Therefore, for p > 0,

(P o0 { Pronoo) P01} X1, Epi1) = codar(n, p),

so that
||P(l—oo,()]{P[—n,oo)P(—ooyo]}leH2

4.14 o

( ) = ( ooO]{P noo)P ooO]} X1,£p+1 CO Zd2k np
p=0

Similarly, we obtain

||P[J;n,oo){P(_OO,O]P[—TL,OO)}kP(_OO7O]X1H2

4.15) -
( =[P, ) Pco0l{ Plenoo) Presoa X1 |17 = (0)* D dogra (n, p)°

Since we have ["_ A(#)~'df < oo by Proposition 4.2, it follows from Theorem
4.1 that

IPL g X0 lP = [Pl Xall® 4 (0)* D D di(n, p)

k=1 p=0
However,
(4.16) 1PL X1 lPP = lleo&al® = (0)?,
whence (4.12) follows. O

Theorem 4.6. We assume (C1) and (A1), and choose M € N so that apo > 0
for allm > M. Then, for di(n,p) in Theorem 4.5 with n > M and p > 0, we

have

(o)

[ee] [ee]
(4'17) do (n,p) = Z Cusy Z Cuy Z Qvg+m+n+2+4pQv; +m4n+2,
v1=0

v2=0

15



and for k > 3,

00 00
)= D o 2 Cus

v =0 v _1=0

(4.18) E Cyy § Ay 4+mp_ 1 +n+24p E Qup_y+mp_1+mp_o+n+2
v1=0

M — 1—0 mp_o= =0

o0 o0

: E Ayg+mz+ma+n+2 E Avg+ma+ma+n+20v; +mg +n+2-
mo=0 m1=0

Proof. We first note that, by Proposition 4.3, Y " |aiy| < co holds. By assump-
tion, we can apply the Fubini—Tonelli theorem to exchange the order of sums. In

particular, for n > M,

o0 [e'¢) o0
_ bmkfl'f‘l bmk72+1
- Coy, n+14+vg+p n+14+mp_1

'Uk:O mk_1:0 mk_Q:O
oo oo
A bm2+1 bml+1
n+1+ms n+1+m2am1+n+2
mo=0 m1=0
Since b;’f:{l =Y Colm—pijtro for m >0 and j > 0, it follows that
o] oo mi
E mi+1 _ E E
bn+1+m2 Amy+nt2 = Cy1 Amy—vi+ma+n+2 | Amq+n+2
m1=0 m1=0 \v1=0
oo oo
= E Coy E Amy+mi+n+2Quv +my+n+2-
v1=0 m1=0

This gives (4.17). Similarly

o
bmg +1 bml +1
n+1+ms n+14+mso Amy+n+2
=0

m1=0
00 oo mo 00
= E Cuy § E Cua my—vo+ms+n+2 E Ama+mi4+n+20uy +my +n+2
v1=0 ma2=0 \v2=0 m1=0
o [o.¢] [o.¢] [o¢]
= E E E Amz+ma+n+2 E Avg+my+my+n+2Qu+my+n+2-
0=0 1=0 mo=0 m1=0
Repeating the same arguments, we arrive at (4.18). O

5. ASYMPTOTIC RELATIONS

The aim of this section is to give the link among the asymptotics for the
autocovariance function ~y(-), spectral density A(-), sequence {¢,} of MA(00) co-
efficients, and sequence {a,} of AR(00) coefficients for a purely nondeterministic

stationary process {X,}. We refer to [I1]-[I6] for related work.
16



Since the spectral density A(-) of {X,,} is an even function, we have
(5.1) Y(n) =2 / A(B) cos(nf)dd  (n € Z),
0

(5.2) ch (2m)% exp {4; /7T P,.(0)log A(G)d@} (—l<r<1l)

—T

(recall P,.(f) from (3.4)). On the other hand, it follows from (4.7) that

(5.3) V() =) Cnsmem  (n>0).

If the sequence {c,} satisfies (C1) and (C2), then the sequence {v(n)}5° is even-

tually decreasing to zero; and so the Fourier series

(5.4) Z'y cos(nb)

converges to a continuous function on (—m,7) \ {0} (see Zygmund [Z, Chapter
I, (2.6)]). Moreover, by Lebesgue’s theorem ([Z, Chapter III, (3.9)]), the Fourier
series coincides with A(f) almost everywhere. So in the sequel, we identify A(0)
with the Fourier series (5.4).

To state the result for the boundary case, we recall the notion of II-variation.
For ¢ € Ry, the class I, is the class of real-valued measurable g, defined on some

neighbourhood [A, c0) of infinity, such that
lim {g(Az) — g(z)}/l(x) = clog\ for all A >0

with ¢ € R called the (-index of g (see [BGT, Chapter 3| for background).
The following theorems are the results for the long-memory processes, bound-

ary case, and intermediate-memory processes ([BD, p. 520]), respectively.

Theorem 5.1. Let { € Ry and 0 < d < 3. We assume (C1) and (C2). Then
(2.5) and the following are equivalent:

1
5.5 A(0) ~ 67%(1/9) - 60— 0
(55) () WO sra—2yemeay @O0
o ((n) 1/2
~poA=d) ) PN
(5.6) Cp N {B(d,1—2d)} (n — 0).
If we further assume (A1), then each of these conditions implies that

—(1+d l(n) -1/2 dsin(md)
(5.7) Uy ~ 1" ){m} — (n — 00).
17



Theorem 5.2. Let d =0, and { € Ry such that [~ {(s)ds/s = co. We assume
(C1) and (C2). Then (2.5) is equivalent to

(5.8) A(1/-) € 11, with ¢-index 7.
Both imply
(5.9) cn ~n~(n){20(n)} 12 (n — 00).

If we further assume (A1), then all imply
(5.10) an ~ n"(n){20(n)} /2 (n — 00).
Theorem 5.3. Let —oo < d <0 and { € Ry. We further assume [~ ((s)ds/s <

oo if d=10. We also assume (C1) and (C2). Then (2.5) is equivalent to
n~(1=2d)¢(n)

5.11 Cp ~ = n — 00).
10 T=ampe T
If we further assume (A1), then both imply

—(1-2d)
(5.12) Ay ~ " fn) (n — o).

{3 (k)32
To prove the theorems above, we start by proving the following lemma which

link the asymptotic behaviour of {c,} with that of {a,}.

Lemma 5.4. Let{ € Ry. Let {u,}° and {v,}5° be real sequences such that both

are eventually decreasing to zero and satisfy the relation

(5.13) <ZZO=0 unz”) <ZZO:0 Unz”) =—1 (lz| < 1).

(1) Let 0 < d < 1. Suppose either Y o u, = 0o or Y o v, = 0. Then the

following are equivalent:

(5.14) Uy ~ n~1D(n) (n — 00),
p(d+1) sin(7
(5.15) Uy ~ ﬁ(n; 4 7r( 9) (n — 00).

(2) We assume [~ ((s)ds/s = oo. Suppose either Y o u, = 00 or Y o v, = 0.

Then the following are equivalent:

(5.16) U, ~n(n) (n — 00),
Uy ~ 0t f(n) n — 00).
(5.17) n )2 ( )



(3) Let 1 < p < oo. Suppose that Y o u, is finite and nonzero. Then the

following are equivalent:

(5.18) Uy ~ n Pl(n) (n — 00),
(5.19) oy o ),

(>0 uk)?

Proof. (1) By assumption, » “u, = oo if and only if > v, = 0. We set
Wy := Y 5, Uk for n > 0. Then

(5.20) ivnz” =(z—-1) i wy2",
n=0

n=0

and so

(5.21) (1—-2) <Z:;1 unz") <ZZO:1 wnz") =1 (2] < 1).

By the monotone density theorem ([BGT, §1.7]), (5.15) holds if and only if

—d . d
0, ~ n~" sin(md)

l(n) T

(n — o0),

which, by Karamata’s Tauberian theorem for power series ([BGT, Corollary

1.7.3]), is equivalent to

> N 1
2w~ g =g 1Y

Now by (5.21) this is equivalent to
Zuns" ~ (1 —=5)"%(1/(1 - s))I'(d) (s11),
n=0

which, again by [BGT, Corollary 1.7.3], is equivalent to (5.14).
(2) We set U(z) := Zf]:o uy, for x > 0 and := 0 for < 0. Here [-] denotes
the integer part. We write U for the Laplace-Stieltjes transform of U:

Uz) := / e dU(t) = u,e™™ (x> 0).
[0,00) n—0

Similarly we put V(z) := Zﬂo vy, for > 0 and V(z) := 0% v,e™" for z > 0.

First we assume (5.16). Then U(1/:) € II, with f-index 1, by de Haan’s
theorem (see [I5, Theorems 2.3 and 2.4]). On the other hand, since U(z) ~
{(z) as © — oo, Karamata’s Tauberian theorem ([BGT, Theorem 1.7.1]) gives

U(1/x) ~ l(z) as & — oo. We put Ell(gx) .= {(x)/{(x)?. Then, by (5.13), for



A >0,

V(A dx) =V(1/z) U@ Az)=U(ljx)  {Qx)  lx) ()

by () {(z) Ul/xz) U(1/z) ()
— log A (x — 00).

Therefore, we see that V(l /) € Il with ¢;-index 1, which, by de Haan’s Taube-
rian theorem, implies (5.17).
Next we assume (5.17). Let w, be as in (1). We write, as above, W(z) =

25}:0 w, for x >0, and W(z) = S qwpe™ for x> 0. Since

Wy ~ /OO Gt =1/in) (0 — oo),

we see that W(z) ~ z/l(x) as x — oo. By Karamata’s Tauberian theorem,
W(1/z) ~ z/l(z) as © — oo, so that, by (5.21), V(1/z) ~ 1/{(z) as z — co. On
the other hand, (5.17) implies V'(1/-) € II,, with f1-index 1. Therefore, from an
argument similar to the above, it follows that U(1/) € II, with f-index 1, and
so (5.16).

(3) We use an argument similar to that of the proof of [I1, Theorem 4.1].
Since Yo vy, is also finite and nonzero, by symmetry it is enough to prove (5.18)

= (5.19) only. Set f(z) := >~ uye ™ for z > 0. Then from (5.13) we obtain

oo

Zvne_m” =—1/f(z) (x > 0).

n=0

Let r := [p] be the integer part of p. By differentiating both sides of the above r

times with respect to x, we obtain

- r_—nx Z;’O: unnre—na@ FT(‘T)
2 ol = S

where F) is a polynomial in {f(™ :m =0,1,...,r — 1} (see [I1, Lemma 3.3]).

n=1

Since r — p > —1 and
upn” ~n""Pl(n) (n — 00),
it follows that
f: Upn" e ~ 2P Y1 2)D(r —p+ 1) (x — 0+)
n=0

(see [I2, Theorem 5.3]). On the other hand, for any ¢ > 0 and 0 < m <r —1,

we have

2 f™(z) — 0 (x — 0+)
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(cf. [I12, Lemma 5.5]); and so

x)/ {a""(1/z)} — 0 (x — 0+).

Thus
Zvnnre_m ~ 2PN (1 ) ((TZ_O P +) D (x — 0+).

Since the sequence {log(n"v,)} is slowly increasing ([BGT, §1.7.6]), it follows

from Karamata’s Tauberian theorem that
vpn” ~n""Pl(n) (n — o0)

(see [12, Theorem 5.3]). This yields (5.19). O

Proof of Theorem 5.1. We use an argument similar to that of the proof of [I6,
Theorem 4.1]. The implication (2.5)<(5.5) follows from the Abel-Tauber theo-
rem for Fourier cosine series (see [BGT, Corollary 4.10.2]). If we put g(t) := ¢y
for ¢ > 0, then y(n) = [~ g(t + n)g(t)dt for n € N, and so, by [I6, Proposition
4.3], (5.6) implies (2.5). We put

1—r

147

Then, by the change of variable § = 2 arctant, we have

(5.23) /OO Hog F(O)] 5, 1/ llog A(8)|d6 < o,

1+¢2

(5.22) f(t) == A(2arctant), x(r) =

(5.24) _W F,(0)log A(0)d0 = /_oo %

Since (5.5) implies

log f(t)dt (—1<r<1).

F(t) ~ t_zdﬁ(l/t> . 9241T(1 _12d) sin(md)

it follows from [I6, Theorem 4.4] that

(t — 0+),

chr (2m)Y2 exp {;ﬂ /_00 %log f(t)dt} ~ {21 f(x(r))}/?

n=0
. 1/2
~ (1 =r)"e(1/(1—r))'? 1).
R ] B CRR
Hence (5.6) follows from [BGT, Corollary 1.7.3]. Finally, Lemma 5.4(1) gives the

implication (5.6)=(5.7). O
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We use the following lemma in the proof of Theorem 5.2 below.

Lemma 5.5. Let ¢ be a positive constant, and let £ be a slowly varying function

such that foo U(s)ds/s = co. For a positive, even, and measurable function g on

R such that

% ]
/ \ogg(t)ldKOO,
142

we set
K(x):=exp {i /OO T logg(t)dt} (x > 0).
21 J_ o x4+ 12
Then g € 11, with (-index ¢ implies K € Iy, with {1-index \/c/2, where {1(-) is

defined by £1(t) := £(t)/(t)"/2.

Compare the proof below with that of [I6, Theorem 5.2].

Proof. In view of de Haan’s theorem ([BGT, Theorem 4.4]), we have
(5.25) g(t) ~ cl(t) (t — )

(see the argument in [BGT, p. 164]). Since

K(1/2) = exp {i /OO o logg(l/t)dt} (x> 0),

2 J_ o a2+ 12
it follows from [I6, Theorem 4.4] that
(5.26) K(x) ~ {cl(z)}'/? (x — 00).

We note that K(x) = exp A(z), where

1 <1

Let A > 1. Then, by the mean value theorem, we have
K(Ar) — K(z) = {A(Az) — A(z)} exp Bx(z),

where By (z) is between A(Az) and A(z). Since, by (5.26), both K (\z)/f(z)"/?
and K (z)/0(z)"/? tend to /¢ as  — oo, we see that

(5.27) exp By (z) ~ {cl(x)}'/? (x — 00).
Again, by the mean value theorem, we have

log g(Axt) — log g(at) = 2{2g()\a:t) — g(xt)} kx(x, 1),



where ky(x,t) is between g(Axt) and g(zt). By (5.25), both g(z)/g(Axt) and

g(x)/g(xt) tend to 1 as x — oo, whence
(5.28) g(x)/kx(x,t) — 1 (x — o0) forall t>0.

We note that, by [BGT, Theorems 1.5.6 and 3.8.6] (Potter-type bounds), there

exist positive constants D and M such that
lg(Az) — g(@)|/l(x) < DX (x = M),
(y)/0(x) < Dmax ((y/=)"*, (y/x)" ") (&> M, y> M),
9(x)/9(y) < Dmax ((y/)"*, (y/x)"Y) (¢ > M, y > M).

Now we have

A?ﬁ&é$>:mw—H@%HH@%
where
I(2) —féig)/ 7 s s
o= 80 [ o
M(z) := fég) /OOO Fy(x, t)dt
with

L [t gt} () o)
1412 {(xt) Ux)  ky(z,t)

By (5.28), Fi(z,t) tends to c(1+t?)"'log A as & — oo for all ¢ > 0. On the other

hand, we have, for x > M,

Fx(x,t) = Itp/w00)(t)

g(x) g(x) g(x) )

Tougeoo) ()7 .0 = Tor/eo () max (g( Net) 9(al)
< DAY max (¥4 1714,
whence, for x > M and t > 0,
,max(tt/2 ¢71/2)

Fy(z.t)| < D3\

Therefore, applying the dominated convergence theorem, we obtain
1 />~ 1 log
As for I(z), we have
((z)
mal(x)

()] < A|mw@mﬁeo (z — 00).
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Similarly, II(x) — 0 as  — oo. Thus
A(Ax) — A(x) . log A
U(x)/l(x) 2
Combining this with (5.27), we obtain
K(\z) — K(x) . Ve
() /()2 2

This proves the lemma. O

Proof of Theorem 5.2. By [14, Theorem 1.3], (2.5) and (5.8) are equivalent. Define
f 