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ASYMPTOTICS, FREQUENCY MODULATION, AND LOW REGULARITY
ILL-POSEDNESS FOR CANONICAL DEFOCUSING EQUATIONS

By MICHAEL CHRIST, JAMES COLLIANDER, and TERRENCE TAO

Abstract. In a recent paper, Kenig, Ponce and Vega study the low regularity behavior of the fo-
cusing nonlinear Schrödinger (NLS), focusing modified Korteweg-de Vries (mKdV), and complex
Korteweg-de Vries (KdV) equations. Using soliton and breather solutions, they demonstrate the
lack of local well-posedness for these equations below their respective endpoint regularities. In this
paper, we study the defocusing analogues of these equations, namely defocusing NLS, defocusing
mKdV, and real KdV, all in one spatial dimension, for which suitable soliton and breather solutions
are unavailable. We construct for each of these equations classes of modified scattering solutions,
which exist globally in time, and are asymptotic to solutions of the corresponding linear equations
up to explicit phase shifts. These solutions are used to demonstrate lack of local well-posedness
in certain Sobolev spaces, in the sense that the dependence of solutions upon initial data fails to
be uniformly continuous. In particular, we show that the mKdV flow is not uniformly continuous
in the L2 topology, despite the existence of global weak solutions at this regularity. Finally, we
investigate the KdV equation at the endpoint regularity H−3/4, and construct solutions for both
the real and complex KdV equations. The construction provides a nontrivial time interval [− T , T]
and a locally Lipschitz continuous map taking the initial data in H−3/4 to a distributional solution
u ∈ C0([−T , T]; H−3/4) which is uniquely defined for all smooth data. The proof uses a generalized
Miura transform to transfer the existing endpoint regularity theory for mKdV to KdV.

1. Introduction. The purpose of this paper is to study asymptotic behaviour
of solutions, and low regularity well-posedness, for the defocusing nonlinear
Schrödinger equation (NLS), the defocusing modified Korteweg-de Vries equation
(mKdV), and the real Korteweg-de Vries equation (KdV). This may be viewed
as a follow-up to the work of Kenig, Ponce, and Vega [18] on the focusing
analogues of these equations. We work on the real line R; the case of the torus
R/2πZ is substantially easier and described in the last section. In the next three
sub-sections we describe our results for each of these equations in turn.

1.1. The defocusing nonlinear Schrödinger equation. The Cauchy prob-
lem for the cubic one-dimensional defocusing nonlinear Schrödinger equation
(The minus sign in −iut is convenient for our purposes, but can be removed if
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desired by replacing u with u.) (NLS) is

{
−iut + uxx = |u|2u; u: [− T , T]× Rx �−→ C,
u(0, x) = u0(x),

(1.1)

where u0 is an element of a Sobolev space Hs
x(R) for some s ∈ R. The nonlinear

Schrödinger equation is of widespread relevance in wave phenomena [34], [25].
Indeed, the expectation is that whenever a physical system under consideration
is described by a PDE which has a strongly dispersive linearization (D2

kω(k) �=
0), is weakly nonlinear and the solutions of interest are nearly monochromatic
plane waves, NLS arises as an approximate model for the slowly varying wave
amplitude. In this sense, NLS is a canonical dispersive equation.

If the initial datum u0 is in the Schwartz space S, then there is a unique
global smooth solution u (see e.g. [12]). In particular for each time t we have
a nonlinear evolution operator S(t): S → S defined by S(t)u0 := u(t), and a
uniquely defined solution map S: S → C∞t (R;S) defined by Su0 := u.

We are interested in the question of whether the solution map S can be
extended to rough initial data, such as data in the Sobolev space Hs

x for some
s ∈ R. If for every radius R > 0, there exists a time T = T(R) > 0 such
that the solution map S can be uniformly continuously and uniquely extended
to a map from the ball {u0 ∈ Hs

x : ‖u0‖Hs
x
< R} to the space (Of course,

we endow the space C0
t (( − T , T); Hs

x) with the topology induced by the norm
supt∈(−T ,T) ‖u(t)‖Hs

x
.) then we say that the equation (1.1) is locally well-posed.

Remark 1.1. This (minimal) notion of local well-posedness is designed to
provide meaning to rough solutions obtained through a limiting procedure of
smooth functions. It differs subtly from what may be the “most natural” definition:
For any R > 0 there exists T = T(R) > 0 such that the data-to-solution map S is
uniformly continuous and uniquely defined from the ball {u0 ∈ Hs

x : ‖u0‖Hs
x
< R}

to the space C0([−T , T]; Hs
x). An alternative notion of local well-posedness is also

in common use which replaces the space C0([− T , T]; Hs
x) in the “most natural”

definition by C0([ − T , T]; Hs
x)
⋂

YT where YT is an auxiliary Banach space of
functions of spacetime. This alternative well-posedness is stronger than the “most
natural” notion in the sense that it provides extra YT -regularity of the solution
but weaker in the sense that the uniqueness property is in the smaller intersected
space. Of course, if the space YT contains all smooth solutions (which in practice
it always does) then this alternative local well-posedness implies the minimal
notion of local well-posedness defined in the main text. The positive results of
Kenig, Ponce and Vega we quote from [16] and [17] establish well-posedness
with an appropriate space YT which contains all smooth solutions.

If one can make T arbitrarily large (this is not quite the same as setting
T = +∞, as the uniform continuity of the solution map may be destroyed in
the infinite time limit) and independent of R, then we say that (1.1) is globally
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well-posed in Hs
x. Since proofs of well-posedness based on a fixed point argument

provide analytic dependence on the initial data, it is also natural to consider a
more restricted notion of well-posedness requiring smoother dependence (e.g. Ck)
upon the data than uniform continuity.

The following result is due to Tsutsumi:

THEOREM 1. [35] If s ≥ 0, then the equation (1.1) is globally well-posed in Hs
x.

This raises the question of what happens for s < 0. The scale invariance

u(t, x) �→ 1
λ

u
(

t
λ2 ,

x
λ

)
suggests that local well-posedness should fail for s < −1/2, while the Galilean
invariance

u(t, x) �→ eiαx/2eiα2t/4u(t, x + αt)

suggests that local well-posedness should fail for s < 0. This is because the spaces
Ḣ−1/2

x and L2
x are invariant under scaling, and under Galilean transformations,

respectively. However, these arguments are merely heuristic and do not constitute
a rigorous proof of ill-posedness.

In [18], Kenig, Ponce and Vega extended their earlier work [3] with Birnir
and Svanstedt (see also [4]) and studied the focusing analogue of (1.1), in which
the nonlinear term |u|2u is replaced by −|u|2u. All the above results for the
defocusing equation extend to the focusing case, and furthermore there exist
soliton solutions in this case. By using the scale and Galilean invariances with
these special soliton solutions, Kenig, Ponce and Vega show that the focusing
NLS equation is not locally well-posed in Hs

x for any s < 0. More precisely, they
proved that the solution map S, restricted to initial data in the Schwartz class, fails
to be uniformly continuous in the required norms. Despite this negative result
below L2, it is still possible to obtain local well-posedness in certain spaces
“rougher” than L2 if one abandons the Sobolev scale of regularity. See [37].

Another instance where ill-posedness for a defocusing equation has been
established is a paper of Lebeau [20] on the real-valued supercritical defocusing
wave equation in R3 with nonlinearity u7. A more dramatic form of ill-posedness
is demonstrated there. Burq, Gérard, and Tzvetkov [8] have proved ill-posedness
of the nonlinear Schrödinger equation (1.1) in the periodic case, and have obtained
interesting ill-posedness results related to global geometry on higher-dimensional
spheres.

There are a number of papers in the literature in which it is shown that the
solution operator for various nonlinear equations fails to be Ck for some specific
value of k, e.g. k = 1 or k = 2, or fails to be Lipschitz continuous. Among
the recent works along these lines are [7], [24], [36]. To establish such results
amounts to showing that certain multilinear operators acting on Sobolev spaces
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fail to satisfy certain a priori inequalities. In contrast, ill-posedness results like
those of [18] and [20] depend on the analysis of certain exact solutions of the
equations. The fundamental issue in the defocusing case is how to construct a
suitable family of solutions, which are sufficiently ill-behaved to demonstrate
ill-posedness.

The first result of this paper extends the results of [18] concerning NLS to
the defocusing case.

THEOREM 2. The Cauchy problem (1.1) is not locally well-posed in Hs
x for any

s < 0.

We prove this theorem in Sections 3, 4, again by showing that the restriction
of S to Schwartz class initial data fails to be uniformly continuous. (This map was
previously shown in [5] in both focusing and defocusing cases to be nonanalytic,
and indeed not even C2 in Hs

x for s < 0. Similar results were also obtained
for the mKdV and KdV equation in [5], [36].) The new difficulty in this case
is the lack of soliton solutions (or indeed of any nonzero exact solution). An
inspection of the arguments in [18] reveals that soliton/breather solutions are not
essential; instead, it suffices to have smooth solutions to (1.1) whose global time
development can be accurately controlled, and is sufficiently sensitive to initial
conditions. The scale and Galilean invariances can then be used to convert such
solutions to a family of solutions whose dependence on their initial data can be
made arbitrarily nonuniform in Hs

x norm for any s < 0. Observe that this scaling
procedure can convert long times to arbitrarily short times, which explains our
desire for global control of solutions.

To construct such global smooth solutions we shall use the modified scattering
asymptotics introduced by Ozawa [26] (The authors are indebted to Kenji Nakan-
ishi for suggesting this approach.). Following Ozawa, we first use the pseudo-
conformal transformation to convert the global problem to a local one, and then
approximate the PDE by an associated ODE, using energy methods to estimate
the error. This approach will be expanded upon in detail in Section 3, with the
application to ill-posedness given in Section 4. It works equally well for focusing
NLS.

Interestingly, our arguments are different in the subcritical s > −1/2, critical
s = 1/2, and supercritical s < −1/2 cases. For the supercritical analysis, we
introduce a different construction of solutions, based on an approximation by the
zero dispersion limit −iut = |u|2u of the equation. These solutions are controlled
only for short times, yet still suffice for the ill-posedness argument. After this
paper was nearly completed, we discovered how a frequency-modulated version
of this zero dispersion limit construction could be used to obtain ill-posedness of
NLS for arbitrary s < 0; thus scattering-type solutions could be eliminated from
the discussion. We plan to discuss this in a subsequent paper.
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1.2. The defocusing modified Korteweg-de Vries equation. The Cauchy
problem for the defocusing modified Korteweg-de Vries equation is{

ut + uxxx = 6u2ux

u(0, x) = u0(x),
(1.2)

where u is a real-valued function on R × ( − T , T) and u0 ∈ Hs
x(R) for some

s ∈ R.

Remark 1.2. The distinction between focusing and defocusing cases is only
meaningful in the real setting here, because substituting u = iv converts one to
the other. Note also that the global well-posedness result in Theorem 3 is only
known to be valid in the real-valued setting.

The modified KdV equation arises as a natural extension of the 1d wave
equation [25] and is therefore a canonical dispersive equation. As with NLS, one
has unique global smooth solutions from Schwartz data (see e.g. [14]), and so
again we have a solution operator S. We can then ask whether (1.2) is locally
well-posed in Hs

x.
This question was studied in a series of papers [12], [27], [28], [13], [14],

[11], [16], [10] culminating in the following local and global results.

THEOREM 3. The equation (1.2) is locally well-posed in Hs
x for s ≥ 1/4 [16],

and is globally well-posed in Hs
x for s > 1/4 [10].

It is likely that one also has global well-posedness at the endpoint s = 1/4, but
we do not pursue this question here. In Section 5 we review the arguments from
[16] as we shall need them again here. It is a paradoxical fact that, in the absence
of exact solutions, we need the well-posedness theory at high regularities in order
to prove the ill-posedness at low regularities. This is because we need some sort
of well-posedness to control the low regularity solution accurately enough to
quantify the ill-posedness. See also Lemma 2.1, in which smooth functions are
used to construct rough ones.

As with NLS, there is a scale invariance

u(t, x) �→ 1
λ

u
(

t
λ3 ,

x
λ

)
(1.3)

which again suggests ill-posedness for s < −1/2, however there is no exact
analogue of the Galilean invariance of NLS. On the other hand, we have (formally
at least) a conservation law for the L2 norm∫

u(T , x)2 dx =
∫

u0(x)2 dx for all T ∈ R(1.4)

so one might hope to have some sort of local well-posedness at the L2 level.
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In complete analogy with NLS, there is a focusing variant of (1.2) in which
the nonlinearity 6u2ux is replaced by −6u2ux, and Theorem 3 extends to the
focusing case. As with NLS, the focusing case admits a rich family of soliton
solutions, and in [18] Kenig, Ponce and Vega were able to show failure of local
well-posedness in Hs for s < 1/4, despite the conservation law (1.4). No solitons
are available for the defocusing mKdV equation. Nevertheless, we extend this
ill-posedness result to the defocusing case:

THEOREM 4. The Cauchy problem (1.2) is not locally well-posed in Hs
x for any

−1/4 < s < 1/4; more precisely, the solution operator fails to be uniformly
continuous with respect to the Hs norm.

It seems likely that the restriction s > −1/4 is merely an artifact of our
method. Perhaps arguments related to the alternative we use in the supercritical
range s < −1/2 for the nonlinear Schrödinger equation might be extended and
adapted to this case.

It is interesting to view this theorem at s = 0 in the light of Kato’s construction
[14] of global weak solutions in L2

x . Thus the mKdV flow can be defined in L2
x in a

weak sense, but the resulting flow is not uniformly continuous. It is natural to ask
whether it might be nonunique. These issues may be related to the nonuniqueness
of weak solutions of the Euler equation [29], [32].

(1.2) is defocusing in the sense that the positive definite quantity
∫

(ux(x, t)2 +
u(x, t)4) dx is formally conserved; for focusing mKdV the corresponding con-
served quantity is not semidefinite. Moreover, (1.2) is also defocusing in a second
sense: in certain asymptotic regimes, it can be approximated well by defocus-
ing NLS as described in the following paragraphs. See [30], [6] for a related
approximation of real KdV by NLS.

We prove Theorem 4 in Section 6, after a review of the local well-posedness
theory in Section 5. One idea is to approximate the mKdV equation by the
NLS equation. In a different asymptotic regime, such an approximation has been
carried out by Schneider [30]. We also give an alternate argument in Sections 7
and 8.

Here we briefly sketch the means of approximation. Define the spacetime
Fourier transform

ũ(τ , ξ) :=
∫

e−itτe−ixξu(t, x) dt dx.

We expect time-localized solutions to the NLS equation to have spacetime Fourier
transform near the parabola τ = ξ2, while time-localized solutions to the mKdV
equation should have spacetime Fourier transform near the cubic τ = ξ3.

Pick a large number N � 1. If we make the linear change of variables

τ = N3 + 31/2N3/2ξ′ + τ ′; ξ = N + 3−1/2N−1/2ξ′
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then the cubic τ = ξ3 becomes

τ ′ = (ξ′)2 + 3−3/2N−3/2(ξ′)3.

Thus, for |ξ′| � N, this linear transformation converts the cubic to an approximate
parabola.

Unraveling this transformation using the spacetime Fourier transform, we are
led to the following heuristic: if u solves the NLS equation (1.1), then the function

v(t, x) :=

√
2

3N
Re eiNxeiN3tu

(
t,

x + 3N2t

31/2N1/2

)
(1.5)

is an approximate solution to (1.2). (To approximately equate the cubic NLS
nonlinearity |u|2u with the cubic mKdV nonlinearity 6u2ux requires further cal-

culations which are omitted here; those calculations give rise to the factor
√

2
3N

and the real part operator Re. The derivative in the mKdV nonlinearity is ap-
proximated by iN on the Fourier side, so that no derivative appears in the NLS
approximation.) If the NLS solution u is mostly supported in the frequency range
|ξ′| � N, then we observe that the H1/4 norm of v(t) is comparable to the L2

norm of u(t). Thus Theorem 4 is closely related to Theorem 2.
We are left with the problem of proving the existence of exact solutions of

defocusing mKdV which are well approximated by these solutions of NLS. This
part of the analysis is somewhat technical; we present two separate methods (one
based on local smoothing and Strichartz estimates, one on energy estimates) for
doing so and controlling the error in the approximation. The method based on
energy methods seems quite general, and should be able to yield a class of global
solutions to a variety of equations.

1.3. The Korteweg-de Vries equation. Our final results concern the Cauchy
problem for the Korteweg-de Vries equation (KdV)

{
ut + uxxx = 6uux

u(t, x) = u0(x),
(1.6)

where u(t, x) is defined on ( − T , T) × R and is either real or complex-valued.
The real-valued KdV equation arises as an approximate model to the standard
real-valued 1d wave equation providing corrections due to weak nonlinearity and
dispersion [34], [25]. The universal relevance of the wave equation and these
corrections justifies referring to the KdV as a canonical dispersive equation. Again
(see e.g. [12]) smooth solutions of (1.6) are known to exist for Schwartz initial
data. Indeed, we have:
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THEOREM 5. In both the real and complex cases, the Cauchy problem (1.6) is
locally well-posed in Hs for s > −3/4 [17], and, in the real valued case, is also
globally well-posed in Hs for s > −3/4 [10].

Our first result (proven in Section 10) is to extend part of the local result to
the endpoint s = −3/4.

THEOREM 6. In both the real and complex cases, for any φ ∈ H−3/4, there exist
T = T(‖φ‖H−3/4 ) > 0 and a locally Lipschitz map

H−3/4 � φ �−→ u ∈ C([0, T]; H−3/4)

which extends the smooth-data-to-solution map for the initial value problem (1.6).
Moreover, for each φ ∈ H−3/4, u(t, x) is a weak solution of the KdV equation (1.6).

Thus the initial value problem (1.6) is well-posed in H−3/4, in the minimal
sense defined above.

It is likely that one also has a global-in-time result at H−3/4 for the real KdV
equation, but again we do not address these issues here.

A different endpoint result (with H−3/4 replaced by a Besov variant) has
been independently obtained recently by Muramatu and Taoka [23]. The bilinear
estimate used to obtain the local results for s > −3/4 fails at the endpoint
s = −3/4 [24]; instead, we study the endpoint s = −3/4 from the theory of
the mKdV equation at s = 1/4 by using a variant of the Miura transform u �→
ux + u2, which maps solutions of defocusing mKdV to real KdV. (The variant
u �→ ux + iu2 maps focusing mKdV to complex KdV.) Observe that this transform
maps H1/4 continuously to H−3/4. Unfortunately the Miura transform is not
invertible; however, we will modify the Miura transform slightly (in a manner
reminiscent of Gardner’s modification of the Miura transform [21], see also [22])
to make the transform invertible and close the argument.

Next, we address the situation when s < −3/4. The scale invariance

u(t, x) �→ 1
λ2 u

(
t
λ

,
x
λ

)
suggests there is ill-posedness for s < −3/2. Again there is no direct analogue
(the Galilean invariance u(x, t) �−→ u(x + 6βt, t) + β of KdV does not preseve
decay properties at spatial infinity) of Galilean invariance, nevertheless there are
breather solutions for complex KdV, and in [18] it was shown that the complex
KdV equation is not locally well-posed in Hs for any s < −3/4.

In analogy with our prior results, we extend this result to the real case.

THEOREM 7. The real KdV equation is not locally well-posed in Hs for any
−1 ≤ s < −3/4; more precisely, the solution operator fails to be uniformly
continuous with respect to the Hs norm.
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This will be proved as a simple consequence of Theorem 4 and the Miura
transform in Section 9. The condition −1 ≤ s can certainly be relaxed but we do
not pursue this matter here.

1.4. Periodic analogues. These results have analogues in the periodic case.
Let T = R/2πZ, and consider the same partial differential equations now for
(t, x) ∈ R× T.

THEOREM 8. The defocusing nonlinear Schrödinger equation is illposed in
Hs(T) for all s < 0. The modified real Korteweg-de Vries equation is illposed
in Hs(T) for all s ∈ (−1, 1/2). The real Korteweg-de Vries equation is illposed in
Hs(T) for all s ∈ (−2,−1/2).

Local and global well-posedness are known to hold for all larger exponents
s [5], [17], [9], [10]. As we shall see, the ill-posedness results are substantially
easier to obtain in the periodic case, although of the same basic flavor. The
first of these three conclusions has already been obtained by Burq, Gérard and
Tzvetkov [8].

We believe that the lower bounds on s in the theorems for the KdV and
mKdV equations are merely artifacts of the method of proof.

2. Notation and modulation bounds. C denotes various constants depend-
ing only on s. The notations A � B or A = O(B) denote the estimate A ≤ CB.

We define the spatial Fourier transform by

û(t, ξ) :=
∫

e−ixξu(t, x) dx.

The operator ∂x is conjugated to the multiplier iξ by the Fourier transform.
The following lemma will be used to estimate Hs norms of high-frequency

modulations of smooth functions.

LEMMA 2.1. Let −1/2 < s, σ ∈ R+ and u ∈ Hσ(R). For any M ≥ 1, τ ∈ R+,
x0 ∈ R, and A > 0 let

v(x) = vM,τ ,x0,A(x) := AeiMxu((x− x0)/τ ).

(i) Suppose s ≥ 0. Then there exists a constant C1 <∞, depending only on s,
such that whenever M · τ ≥ 1,

‖v‖Hs ≤ C1|A|τ 1/2Ms‖u‖Hs

for all u, A, x0.
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(ii) Suppose that s < 0 and that σ ≥ |s|. Then there exists a constant C1 <∞,
depending only on s and on σ, such that whenever 1 ≤ τ ·M1+(s/σ),

‖v‖Hs ≤ C1|A|τ 1/2Ms‖u‖Hσ

for all u, A, x0.
(iii) There exists c1 > 0 such that for each u there exists Cu <∞ such that

‖v‖Hs ≥ c1|A|τ 1/2Ms‖u‖L2

whenever τ ·M ≥ Cu.

Proof.

A−2τ−1M−2s‖v‖2
Hs = cτ−1M−2s

∫
(1 + |ξ|2)sτ 2|û(τ (ξ −M))|2 dξ

= c
∫ (

τ 2 + |Mτ + η|2
τ 2M2

)s

|û(η)|2 dη

�
∫
|η|≤τM/2

|û(η)|2 +
∫

1
2 τM≤|η|≤2τM

M−2s|û(η)|2

+
∫
|η|≥τM/2

|η|2s

(τM)2s |û(η)|2

= I + II + III.

Term I is � ‖u‖2
L2 . If s ≥ 0 then M−2s ≤ 1, so II � ‖u‖2

L2 , and III � ‖u‖2
Hs ,

because τM ≥ 1.
If s < 0 then III � ‖u‖2

L2 , since |η|/τM � 1. Moreover, II � M−2s(τM)−2σ

‖u‖2
Hσ , which is � ‖u‖2

Hσ under the further hypothesis 1 ≤ τ ·M1+(s/σ).
To obtain (iii), it suffices to consider term I: for any u,

∫
|η|≤τM/2 |û(η)|2

approaches c‖u‖2
L2 as τM →∞.

3. The pseudo-conformal transformation.

3.1. Definition of the pc transform and some basic properties. In this
section we introduce the pseudo-conformal change of variables

(y, s) :=
(

x
t + 1

,
1

t + 1

)
; (x, t) =

(
y
s

,
1
s
− 1

)
(3.1)

to analyze the asymptotic behavior of the NLS equation (1.1) as t → +∞. The
+1 shift in time is introduced purely to avoid an artificial singularity at the initial
time t = 0 and should be ignored on a first reading.
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A standard stationary phase computation (see e.g. [33]; alternatively, one
can use the fundamental solution Ct−1/2e−ix2/4t) shows that solutions to the free
Schrödinger equation −iut + uxx = 0 behave asymptotically as t→ +∞ like

u(t, x) ≈ (1 + t)−1/2 exp (− ix2/4(t + 1))φ(y)

for some function φ (which is essentially the Fourier transform of u(− 1)).
Motivated by this, we introduce the pseudo-conformal transformation v =

pc (u), u = pc−1 (v) defined by the formulae

u(t, x) := (1 + t)−1/2 exp (− ix2/4(t + 1))v(s, y)(3.2)

v(s, y) := s−1/2 exp (iy2/4s)u(t, x),(3.3)

where it is understand that (y, s) is always related to (x, t) by the pseudo-conformal
transformation (3.1).

For each fixed time t, the map u(t) → v(s) is a linear isometry on L2. This
map is not so well behaved on other Sobolev spaces Hk because of the highly
oscillatory factors e−ix2/4(t+1), eiy2/4s. To get around this we shall work in weighted
Sobolev spaces, which we now discuss.

For any integer k ≥ 0, we define the space Hk,k
x to be the closure of Schwartz

functions under the norm

‖u‖
Hk,k

x
:=

∑
i,j≥0: i+j≤k

‖xi∂j
xu‖L2

x
.

Thus the Hk,k
x norm controls the Hk

x norm but also incorporates some spatial
decay. Roughly speaking, Hk,k

x is to the Hermite operator −∆ + |x|2 as Hk
x is to

the Laplacian −∆.
The next three simple lemmas control the behaviour of the Hk,k

x spaces un-
der the pseudo-conformal transformation, pointwise multiplication, and the free
Schrödinger flow. To simplify the notation we shall often omit the variable x
from the norms Hk,k

x , Hk
x , etc. when it is clear from context what the variable is.

LEMMA 3.1. Let v = pc (u). Then

‖u(t)‖Hk
y

� ‖v(s)‖
Hk,k

y

for all t ≥ 0 and integer k ≥ 0, where the implicit constant depends on k but not
on t. In the case t = 0 we can improve this to

‖u(0)‖
Hk,k

x
� ‖v(1)‖

Hk,k
y

.
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Proof. A brute force induction shows that a derivative ∂a
x u(t) of u(t) can be

expressed as a finite linear combination of terms of the form

(1 + t)−b−1/2
(

x
1 + t

)c

e−ix2/4(t+1)∂d
y v(s, y)

where b, c, d are nonnegative integers such that c+d ≤ a. The first claim follows.
The second claim follows from the identity u(0, x) = exp ( − ix2/4)v(0, x) and
another brute force induction.

LEMMA 3.2. For any k ≥ 1,

‖uv‖Hk,k � ‖u‖Hk,k‖v‖Hk,k(3.4)

where the implicit constant is allowed to depend on k. More precisely,

‖uv‖Hk,k � ‖u‖Hk,k‖v‖L∞ + ‖u‖Hk−1,k−1‖v‖Hk+1,k+1 .(3.5)

If u is real, then

‖ exp (iu)v‖Hk,k � (1 + ‖u‖Hk,k )k‖v‖Hk,k .(3.6)

Proof. Let i, j ≥ 0 be such that i + j ≤ k. Observe that xi∂j
x(uv) can be

written as a finite linear combination of terms of the form xi(∂l
xu)(∂m

x v), where
l + m = j. At least one of l, m must be less than or equal to k − 1; without loss
of generality we may assume m ≤ k − 1. But then by Sobolev embedding we
have ‖∂m

x v‖∞ � ‖v‖Hk � ‖v‖Hk,k . The claim (3.4) then follows by Hölder’s
inequality.

To prove (3.5) we refine the above argument. If l = k then we can take v out
in L∞ to estimate this term by ‖u‖Hk,k‖v‖L∞ . If l < k then we take ∂m

x v out in
L∞ and use Sobolev to majorize this term by ‖u‖Hk−1,k−1‖v‖Hk+1,k+1 .

The inequality (3.6) is proven similarly to (3.4), but one uses the chain rule
l times to expand out ∂l

x exp (iu), and then discards the bounded factor exp (iu).
The details are left to the reader.

LEMMA 3.3. If t = O(1) and 1 ≤ k ∈ N then we have the estimate

‖ exp (it∂xx)u‖
Hk,k

x
� ‖u‖

Hk,k
x

where the implicit constant depends on k.

In phase space, this Lemma asserts that the norm |x| + |ξ| is stable under the
flow (x, ξ) �→ (x + tξ, ξ) for t = O(1).
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Proof. Taking Fourier transforms, and observing from Plancherel and the
product rule that ‖û‖

Hk,k
x

� ‖u‖
Hk,k

x
, we see it suffices to show that

‖∂l
ξ(ξ

meitξ2
û)‖L2

ξ
� ‖û‖

Hk,k
x

whenever 0 ≤ l, m and l + m ≤ k. By the product and chain rule, we can expand
the left-hand side as a bounded linear combination (for t = O(1)) of terms of the
form ξaeitξ2

∂b
ξ û, where 0 ≤ a, b and a + b ≤ k. The claim follows.

3.2. Relation to Schrödinger equations. We now return to nonlinear
Schrödinger equations. Some tedious computation using (3.3) yields

vs := s−5/2eiy2/4s

(
− s

2
u− iy2

4
u− yux − ut

)

vy := s−5/2eiy2/4s
(

iys
2

u + sux

)
vyy := s−5/2eiy2/4s

(
−y2

4
u + iyux +

is
2

u + uxx

)

so that we have the identity

ivs + vyy = s−5/2 exp (iy2/4s)(− iut + uxx)(3.7)

for arbitrary u. Because of this, the map pc transforms the Cauchy problem (1.1)
to a backwards Cauchy problem{

ivs + vyy = s−1|v|2v
v(1, y) = v1(y), 0 < s ≤ 1

(3.8)

where v1(y) := eiy2
u0(y).

The singular term 1/s suggests that solutions of this equation should become
singular in some sense as s→ 0+. Indeed, dropping the dispersive term vyy leaves
the associated ODE

ivs = s−1|v|2v,(3.9)

for which there are explicit solutions v = v [w] of the form

v [w](s, y) := w(y) exp (− i|w(y)|2 log s)(3.10)

for any function w(y). Now v [w] is singular, in the sense that it has no limit as s→
0+. The authors are indebted to Kenji Nakanishi for the idea of introducing this
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ODE as an approximating equation. Moreover, for smooth w, ∂2
x v [w] ∼ ( log s)2

with the implicit constant depending upon w. Since ( log s)2 � s−1, we appear
to be justified in ignoring the dispersive term in (3.8). This idea seems to be due
to Ozawa [26].

We now show the following asymptotic completeness result, which is crucial
to all of our ill-posedness results.

LEMMA 3.4. Let K ≥ 5 be an integer, and let w ∈ HK+2,K+2(R) have an
HK+2,K+2 norm of O(ε) for some small constant 0 < ε � 1. Then if ε is suffi-
ciently small, there exists v1 ∈ HK,K(R) such that the unique solution v = v〈w〉 to
the backwards Cauchy problem (3.8) with initial datum v1 satisfies

‖v〈w〉(s)− v [w](s)‖HK,K � εs(1 + | log s|)C for all 0 < s ≤ 1(3.11)

Furthermore, the map w �→ v is Lipschitz continuous from the ball {w ∈ HK+2,K+2 :
‖w‖HK+2,K+2 ≤ ε} to L∞t ((0, 1]; HK,K), i.e.

sup
0<s≤1

‖v〈w′〉(s)− v〈w〉(s)‖HK,K � ‖w′ − w‖HK+2,K+2(3.12)

for all w, w′ in the above ball.

Notational convention. Throughout the paper, square bracket superscripts (as
in v [w]) are used to denote explicit, but approximate, solutions to nonlinear PDE,
whereas angular bracket superscripts (as in v〈w〉) denote related exact solutions.
The functions w will be in some sense “data” for these solutions, though not
always in the classical sense of initial data. Our strategy throughout is to first
find an approximate solution v [w], then to carry out a perturbation analysis to
pass from v [w] to an exact solution v〈w〉.

One can relax the condition K ≥ 5 substantially, but this has no advantage
here, and in fact for our ill-posedness application it will be useful to have K
arbitrarily large.

Proof of Lemma 3.4. Fix w. We solve (3.8) by writing an Ansatz

v = v〈w〉 = v [w] + φ.

It is easily verified that φ will solve the difference equation

iφs + φyy = −v [w]
yy + s−1F(φ)

where F = Fw denotes the quantity

F(φ) := (|v [w] + φ|2(v [w] + φ)− |v [w]|2v [w]).
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We proceed by solving the forward Cauchy problem with data φ(y, 0) = 0, in the
sense that ‖φ(s)‖HK,K → 0 as s → 0+, rather than by specifying v1 and solving
the backwards Cauchy problem. We then define v1(y) = v〈w〉(y, 1).

We can write the difference equation in integral form as

φ(s) = −
∫ s

0
U(s− s′)v [w]

yy (s′) ds′ + s−1
∫ s

0
U(s− s′)F(φ(s′)) ds′(3.13)

where U(s) := exp (− is∂yy) is the free Schrödinger evolution operator. We can
solve this equation by setting up an iteration scheme

φ(k+1)(s) = −
∫ s

0
U(s− s′)v [w]

yy (s′) ds′ + s−1
∫ s

0
U(s− s′)F(φ(k)(s′)) ds′

with φ(0) := 0.
We claim inductively that

‖φ(k)(s)‖Hj,j ≤ Cεs(1 + | log s|)10Kj+10K(3.14)

for all 0 < s ≤ 1, 0 ≤ j ≤ K and all k, where the constant C is independent of
k. This is trivial for k = 0. Now assume it is proven for k. To prove it for k + 1,
we observe from Minkowski’s inequality and Lemma 3.3 that

‖φ(k+1)(s)‖Hj,j �
∫ s

0
‖v [w]

yy (s′)‖Hj,j ds′ + s−1
∫ s

0
‖F(φ(k)(s′))‖Hj,j ds′.

By hypothesis we have ‖w‖HK+2,K+2 � ε � 1. From (3.10), (3.4), (3.6) and
the chain rule we observe the estimate

‖v [w](s′)‖HK+2,K+2 � ε(1 + | log (s′)|)K+2

and in particular that

‖v [w]
yy (s′)‖HK,K � ε(1 + | log (s′)|)K+2.

On the other hand, the L∞ norm of v [w] satisfies a bound free of logarithms:

‖v [w](s′)‖L∞ � ε.

By expanding out F and using the Sobolev embedding ‖u‖∞ � ‖u‖H1,1

together with the bound on ‖v [w](s′)‖L∞ , we obtain

‖F(φ(k)(s′))‖L2 � ‖φ(k)(s′)‖L2 (ε + ‖φ(k)(s′)‖HK,K )2.
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If we expand out F and use (3.4) (for multiplying φ(k) with itself) and (3.5) (for
multiplying anything with v [w]), we obtain

‖F(φ(k)(s′))‖Hj,j � (‖φ(k)(s′)‖Hj,j + ‖φ(k)(s′)‖Hj−1 (1 + | log (s′)|)K+2)

× (ε + ‖φ(k)(s′)‖HK,K )2

for 1 ≤ j ≤ K. Inserting these bounds into the previous and applying the induction
hypothesis we obtain

‖φ(k+1)(s)‖Hj,j � εs(1 + | log (s)|)K+2 + C3ε3s(1 + | log (s)|)10Kj+10K

+ C3ε3s(1 + | log (s)|)10K( j−1)+10K(1 + | log (s)|)K+2.

If C is sufficiently large, and ε is sufficiently small depending on C, we may thus
close the induction and obtain the desired bounds (3.14).

A standard variant of the above argument in fact shows that the iterates φ(k)

converge in L∞t ((0, 1]; HK,K) to a solution φ to (3.13) such that ‖φ(s)‖HK,K → 0
as s → 0+; indeed from (3.14) with j = K we obtain (3.11). v1(y) := v〈w〉(y, 1)
then belongs to HK,K . By further standard arguments we can obtain the Lipschitz
bound (3.12).

3.3. Decoherence and lack of scattering in L2. Now let 0 < ε � 1, and
let w be a nonzero H7,7

y function with norm O(ε); for concreteness, let us take

w(y) := εe−y2
. For any real number a in the interval [1/2, 2] we apply Lemma 3.4

with K = 5, and consider the function v〈aw〉. At time s = 1 this function depends
continuously on a in H5,5

y norm. However, we have the following decoherence
property as s→ 0+.

LEMMA 3.5. If |a|, |a′| = O(1) and a �= a′ then

lim sup
s→0+

‖v [aw](s)− v [a′w](s)‖L2
y
� (|a| + |a′|)‖w‖L2 .

Proof. The conclusion is apparent from

‖v [aw](s)− v [a′w](s)‖2
L2 =

∫
R

|aw(y)e−ia2|w(y)|2 log (s) − a′w(y)e−i(a′)2|w(y)|2 log (s)|2 dy.

Indeed, it is immediate for each fixed y that the integrand is of the order of
(|a| + |a′|)2|w(y)|2 on the average, and the claim follows by integrating in s and
using Fubini’s theorem.

From Lemma 3.5 and (3.11) we thus have

lim sup
s→0+

‖v〈aw〉 − v〈a
′w〉‖L2

y
� 1(3.15)
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for any a �= a′, where the implicit constant depends on w, a, a′. This shows that
the backwards Cauchy problem (3.8) is not uniformly well-posed in L2 on the
backwards interval 0 < s ≤ 1, even for initial data v〈w〉 with arbitrarily small
H5,5 norm.

The functions v〈aw〉(s, y) solve the equation (3.8). By using the pseudo-
conformal transformation (3.2) we may thus construct solutions u〈aw〉 := pc−1

(v〈aw〉) to (1.1).

Remark 3.1. To avoid confusion, we emphasize that u〈aw〉 is not the solution
to the Cauchy problem (1.1) with initial datum u(0) = aw. The “initial condition”
involving w is not posed at time t = 0, but rather at time t = ∞, being given
by the pullback of (3.11) under the pseudo-conformal transformation. However,
since u[aw](0) = pc−1 (v [aw])(1) = aw, we expect from (3.11) that u(0) is in some
sense “close” to aw. Also, we do not know whether the map w → u〈w〉(0) is
onto, even for Schwartz data; there may exist global solutions to (1.1) whose
asymptotic development does not resemble the one given here. Certainly in the
focusing case, the soliton solutions do not behave like the u〈aw〉.

Together, Lemmas 3.4 and 3.1 imply that

sup
0≤t<∞

‖u〈aw〉(t)‖H5
x

� ε.(3.16)

Furthermore, (3.11) and Lemma 3.1 imply

‖u〈aw〉(t)− u[aw](t)‖H5
x

� ε(1 + t)−1 logC (2 + t)(3.17)

for 0 ≤ t <∞, where u[aw] = pc−1 v [aw] can be written explicitly as

u[aw](t, x) = (1 + t)−1/2 exp (− ix2/4(t + 1))aw(x/t)(3.18)

× exp (ia2|w(x/t)|2 log (1 + t)).

This implies that there is no scattering in L2, or more precisely that that each
element u〈aw〉(t, x) of a large class of solutions fails to be asymptotically equal in
L2

x norm to some solution of the free Schrödinger evolution; this failure follows
from the corresponding failure for u[aw](t, x) together with the inequality (3.17).
(Indeed, free L2 solutions transform under pc to functions v which can be con-
tinuously extended in L2 to the time s = 0, whereas the function v [aw] cannot be).
It may be that this failure of scattering can be repaired by modifying the free
evolution appropriately, see [26].

Together, (3.12) and Lemma 3.1 give us

‖u〈aw〉(0)− u〈a
′w〉(0)‖H5

x
� ‖v〈aw〉(1)− v〈a

′w〉(1)‖H5,5
x

� ε|a− a′|,(3.19)
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while Lemma 3.1 and (3.15) imply

lim sup
t→+∞

‖u〈aw〉(t)− u〈a
′w〉(t)‖L2

x
= lim sup

s→0+
‖v〈aw〉 − v〈a

′w〉‖L2
y
� 1.(3.20)

We conclude in particular that the solution map S for (1.1) fails to be uniformly
continuous from L2

x to L∞t ((−∞,∞); L2
x). Thus the global well-posedness in L2

in Theorem 1 is not uniform in time. (Indeed, this argument shows one does not
have uniformity for any Hs for s ≥ 0).

4. Ill-posedness of NLS. We now indicate how the solutions u〈w〉 to (1.1)
constructed in the previous section disprove uniform continuity of the solution
operator for defocusing NLS in Hs for s < 0. Let 0 < δ � ε� 1 and T > 0 be
arbitrary. We shall find two solutions u = φ〈a〉,φ〈a

′〉 to (1.1) such that

‖φ〈a〉(0)‖Hs
x
, ‖φ〈a′〉(0)‖Hs

x
� ε(4.1)

‖φ〈a〉(0)− φ〈a′〉(0)‖Hs
x

� δ(4.2)

sup
0≤t<T

‖φ〈a〉(t)− φ〈a′〉(t)‖Hs
x

� ε.(4.3)

This implies the solution map S is not uniformly continuous from the ball {u0 ∈
Hs

x : ‖u0‖Hs
x
� ε} to L∞t ([0, T]; Hs

x), thus proving Theorem 2. It turns out that the
subcritical case −1/2 < s < 0, the critical case s = −1/2, and the supercritical
case s < −1/2 must be treated separately.

4.1. The subcritical case. Fix s ∈ (− 1
2 , 0). Let N � 1, λ > 0 be parameters

to be chosen later, and let K ≥ 5 be a large integer. Consider the functions

φ〈a〉(t, x) := λeiNxeiN2tu〈aw〉(λ2t,λ(x + 2tN))

where a ∈ [1/2, 2] is a parameter to be chosen later and w is as in the previous
section, with ‖w‖HK+2,K+2 = O(ε). We similarly define φ〈a

′〉 for some a′ �= a also
in [1/2, 2].

The Galilean and scale invariances of (1.1) imply that φ〈a〉 and φ〈a
′〉 are

solutions of NLS. Moreover, Lemma 2.1 gives

‖φ〈a〉(0)‖Hs
x
� Nsλ1/2‖u〈aw〉(0)‖HK

x
,

provided that its hypothesis 1� λ−1N1+(s/K) is satisfied for all sufficiently large
N. We thus set λ := N−2s � 1, so that (4.1) holds. The condition 1� λ−1N1+(s/K)

then becomes 1 � N1+2s+(s/K); hence for any s > −1/2 this condition will be
obeyed for N and K sufficiently large.
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Similarly, from Lemma 2.1 and (3.19) we have

‖φ〈a〉(0)− φ〈a′〉(0)‖Hs
x
� ε|a− a′|.

Thus (4.2) holds if a and a′ are sufficiently close depending on δ (but still
unequal).

By (3.20) there exists a time t0 > 0 depending on a, a′ (but not on N, λ)
such that

‖u〈aw〉(t0)− u〈a
′w〉(t0)‖L2

x
� ε.

Fix this t0. From (3.16) we have

‖u〈aw〉(t0)‖HK
x

, ‖u〈a′w〉(t0)‖HK
x

� ε.

By Lemma 2.1 we thus have

‖φ〈a〉(t0λ−2)− φ〈a′〉(t0λ−2)‖Hs
x
∼ Nsλ1/2ε = ε.

If we choose N large enough, we can make t0λ−2 < T , and so (4.3) follows.
This concludes the proof of Theorem 2 when −1/2 < s < 0.

4.2. The critical case. As s→ −1/2 in the subcritical argument above we
see that we need the Galilean invariance less and less, and rely more on scaling.
Thus in the critical case s = −1/2 we expect to obtain ill-posedness purely by
scaling the solutions u〈aw〉 used earlier. However there is a slight difficulty in
that we need some vanishing of the Fourier transform at the origin to make the
Ḣ−1/2 norm converge. Fortunately this can be easily achieved by making all the
solutions odd.

We turn to the details. We fix K = 5 and 0 < δ � ε � 1, T > 0 as before,
and let w be a function obeying ‖w‖HK+2,K+2 � ε. We also assume that w is odd
(in order to create vanishing at the frequency origin). Then for any a = O(1),
the function v [aw] defined by (3.10) is also odd (in space), and an inspection
of the argument in Lemma 3.4 shows that v〈aw〉 is similarly odd. Inverting the
pseudo-conformal transformation using Lemma 3.4 and Lemma 3.1, we see in
particular that the initial datum u〈aw〉(0) is odd and obeys the estimates

‖u〈aw〉(0)‖H5,5 � ε.

Taking Fourier transforms, we see in particular that

|∂a
ξ û〈aw〉(0)(ξ)| � (1 + |ξ|)−1
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for a = 0, 1. Since u〈aw〉(0) is odd, its Fourier transform vanishes at the origin,
and so we thus have

|û〈aw〉(0)(ξ)| � min (|ξ|, |ξ|−1).

A similar argument yields

| ̂u〈a′w〉(0)(ξ)| � |a− a′|min (|ξ|, |ξ|−1).

Now we pick a large parameter λ� 1 and redefine the functions φ〈a〉 by

φ〈a〉(t, x) := λu〈aw〉(λ2t,λx)

(i.e., we just scale, and perform no additional Galilean transformation). The esti-
mates (4.1), (4.2) then follow directly from the above pointwise Fourier transform
estimates, while the proof of (4.3) is identical to the subcritical case.

4.3. The supercritical case. Finally, we address the supercritical case s <
−1/2. We will once again construct solutions φ〈aw〉,φ〈a

′w〉 of (1.1) satisfying
the conditions (4.1), (4.2) and (4.3). The construction in this case will rely on
an approximation by the zero dispersion limit of NLS rather than the modified
scattering solutions above. The method used here is rather general and might
potentially be used to establish ill-posedness in the supercritical regime for many
equations.

We begin by considering the small dispersion defocusing NLS initial value
problem {

−ivt + δ2vxx = |v|2v
v(0, x) = f (x)

(4.4)

where the dispersion parameter δ satisfies 0 < δ ≤ 1. We assume that the
initial datum f belongs to the Schwartz space S. In the limit δ = 0, a solution is
v(t, x) = f (x)eit| f (x)|2 .

We will consider solutions of (4.4) with initial data aw(x), where a ∈ C varies
freely within the unit ball, and w ∈ S is fixed. Set v [aw](t, x) = aw(x)eit|aw(x)|2 .

LEMMA 4.1. Let w ∈ S and N ∈ N be given. Then there exist constants C, q ∈
R+ and a lifespan function T: (0, 1] �→ R+, such that T(δ) → +∞ as δ → 0, with
the following property. For each δ ∈ (0, 1] and each a ∈ C satisfying |a| ≤ 1, there
exists a solution v = v〈aw,δ〉(t, x) in C0(R, HN,N) of the small dispersion NLS initial
value problem (4.4) with dispersion coefficient δ2 satisfying

‖v〈aw,δ〉(t, ·)− v [aw](t, ·)‖HN,N (R) ≤ Cδq(4.5)

uniformly for all |t| ≤ T(δ).
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The proof is based on the standard energy method, very much like the proofs
of Lemma 3.4 and Theorem 12. Existence of a solution for all time is well
known, since a simple change of variables reduces matters to the case δ = 1.
Plugging the initial approximation v [aw] into the differential equation, one finds
that −iv [aw]

t + δ2v [aw]
xx − |v [aw]|2v [aw] is O(δ2) in C0(R, HN,N) norm. Seeking a

solution of the form v [aw] + u, one then analyzes ∂t‖u(t·)‖2
Hk,k . Only upper bounds

for δ, together with the condition δ2 ∈ R, are required to carry this out. The
details of the proof are left to the reader.

From the remainder bound of Lemma 4.1 together with an elementary com-
parison of the approximate solutions v [aw] there follows a decoherence property:
For any distinct a, a′ ∈ C satisfying |a|, |a′| ≤ 1 and any r ∈ R, there exists η > 0
such that for each δ ≤ η, there exists τ > 0 satisfying τ ≤ C||a|2 − |a′|2|−1 for
which

‖v〈aw,δ〉(τ , ·)− v〈a
′w,δ〉(τ , ·)‖Hr(R) ≥ c|a| + c|a′|.(4.6)

Consider next the functions

g〈aw,δ〉(t, x) = v〈aw,δ〉(t, δx),

g[aw](t, x) = v [aw](t, δx) = aw(δx)ei|aw(δx)|2 .

g〈aw,δ〉 is an exact solution of the defocusing NLS equation (1.1), with initial
datum aw(δx).

As they stand, these solutions are unsuitable for an ill-posedness argument,
because the Hs norm of the initial datum tends to infinity as δ → 0. However,
further solutions may obtained via the scaling symmetry of the equation: For each
λ ∈ R+,

φ〈aw,δ,λ〉(t, x) = λ−1g〈aw,δ〉(λ−2t,λ−1x)(4.7)

is also a solution of (1.1), with initial datum λ−1aw(λ−1δx). For φ〈a,δ〉 we have
the approximation φ[a,δ](t, x) = λ−1aw(λ−1δx)eiλ−2t|aw(δx)|2 .

Suppose now that s < −1/2, so that the Sobolev space Hs is supercritical
for the NLS equation. We wish to choose λ as a function of δ, so that the
Hs norm of the initial datum λ−1aw(λ−1δx) is ∼ |a|, uniformly as δ → 0. A
simple calculation shows that in the homogeneous Sobolev space Ḣs, such a
normalization is achieved by taking

λ = δγ where γ = γ(s) =
−2s + 1
−2s− 1

.(4.8)

For all s < −1/2, γ > 1.
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Before proceeding, we impose a restriction on the Schwartz class function w
which will be needed below:

ŵ(ξ) = O(|ξ|κ) as ξ → 0,(4.9)

where κ is a large positive integer, depending on s, to be specified below. Of
course, we also require that w not vanish identically; more specifically, we require
that ŵ not vanish identically on the interval I = [1, 2].

We now define a two-parameter family of solutions of the NLS equation by

φ〈a,δ〉(t, x) = φ〈aw,δ,λ〉(t, x) where λ = δγ(s).

The corresponding initial data are ϕa,δ(x) = δ−γaw(δ1−γx). Since δ1−γ → ∞
as δ → 0, and ŵ(0) = 0, these initial data are composed primarily of higher-
frequency Fourier modes as δ becomes smaller. The corresponding explicit ap-
proximations are φ[a,δ](t, x) = δ−γaw(δ1−γx)eiδ−2γ t|aw(δ1−γx)|2 . The functions
φ〈a,δ〉(t, x) satisfy the NLS equation globally in time; however, we have rea-
sonably good control over them only for short times |t| ≤ δ2γT(δ).

We next verify that these initial data are approximately normalized in the
inhomogeneous Sobolev spaces Hs. Since ϕ̂a,δ(ξ) = aδ−1ŵ(δγ−1ξ),

‖ϕa,δ‖2
Hs = |a|2δ−1−γ

∫
R

|ŵ(ξ)|2 (1 + |δ1−γξ|2)s dξ.

Split the region of integration into two parts. The contribution of the region
|ξ| ≥ δγ−1 is

∼ |a|2δ−1−γδ2s(1−γ)
∫
|ξ|≥δγ−1

|ŵ(ξ)|2 dξ.

Since (1 + γ)/(1− γ) = 2s, and since δγ−1 → 0 as δ → 0, this is

∼ c|a|2‖w‖2
L2 as δ → 0.

The contribution of the region |ξ| ≤ δγ−1 is

≤ C|a|2δ−1−γδ(γ−1)(1+2κ).

Since γ > 1, for any given s < −1/2 there exists κ such that this last expression
is O(|a|2δ) as δ → 0. Thus we conclude that

‖ϕa,δ‖2
Hs = c0|a|2‖w‖2

L2 + O(|a|2δ) as δ → 0.

The next step is to argue that φ〈a,δ〉 is nearly equal to φ[a,δ]. Here arises
a complication, because there is no analogue for positive time of the condition
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ŵ(ξ) = O(|ξ|κ). We hope to exploit this in a future paper to establish a more
dramatic form of ill-posedness, in the supercritical case. What does follow directly
from Lemma 4.1 is that

∫
|η|≥1

∣∣∣∣φ̂〈a,δ〉(t, η)− φ̂[a,δ](t, η)
∣∣∣∣2 (1 + |η|2)s dη ≤ Cδ2q(4.10)

uniformly for |t| ≤ δ2γT(δ). Indeed, in this region (1+|η|2)s ∼ |η|2s, and a change
of variables as in the above calculation of the norm of ϕa,δ, together with the
bound from Lemma 4.1, yields the result. The factor of δ2γ in the upper bound
for |t| arises because the definition of φ〈a,δ〉 involves a rescaling of time. Here
the Fourier transform is taken in the variable x, for each time t.

Next,

∫
1<δγ−1η<2

|φ̂[a,δ](t, η)− φ̂[a′,δ](t, η)|2(1 + |η|2)s dη

∼
∫

1<ξ<2
|(aweiδ−2γ t|aw|2 )∧(ξ)− (a′weiδ−2γ t|a′w|2 )∧(ξ)|2 dξ

in the sense that each side is dominated by a universal constant multiple of the
other. The right-hand side equals

|a|2
∫

1<ξ<2
|(weiδ−2γ t|aw|2 )∧(ξ)− (weiδ−2γ t|a′w|2 )∧(ξ)|2 dξ + O(|a− a′|),

since w ∈ S and |a|, |a′| ≤ 1.
Set F(s) = (weis|w|2 )∧, regarded as an element of L2(I), where I = [1, 2].

F is an entire holomorphic function, depending periodically on the real part of
s with period 2π. By choosing a generic Schwartz function w (still satisfying
ŵ(ξ) = O(|ξ|κ)) we may ensure that F is nonconstant. From this it follows by
elementary reasoning that whenever b �= b′ ∈ [0, 1], there exist s ∈ R satisfying
0 < s ≤ C|b − b′|−1 and b′′ ∈ [0, 1] such that 1

2 ≤ |b − b′′|/|b − b′| ≤ 1,
such that ‖F(bs)− F(b′′s)‖L2(I) ≥ c0 > 0. Hence whenever |a| �= |a′|, there exist
0 < t∗ ≤ Cδ2γ ||a|2 − |a′|2|−1 and a′′ such that 1

2 ≤ |a− a′′|/|a− a′| ≤ 1 and

∫
1<δγ−1η<2

|φ̂[a,δ](t∗, η)− φ̂[a′′,δ](t∗, η)|2(1 + |η|2)s dη = c0|a|2 + O(|a− a′′|),

where c0 is a nonvanishing constant depending only on w.
If in addition ||a|2− |a′′|2|−1 ≤ cT(δ) for a sufficiently small constant c > 0,

as is the case for all sufficiently small δ, then we may combine this with (4.10)
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to conclude that there exists 0 < t∗ ≤ Cδ2γ ||a|2 − |a′′|2|−1 such that

∫
1<δγ−1η<2

|φ̂〈a,δ〉(t∗, η)− φ̂〈a′′,δ〉(t∗, η)|2(1 + |η|2)s dη ≥ c0|a|2 + O(|a− a′′|)

+ O(|a|δ2a).

Fix any a, a′ such that 0 < |a| < 1, |a| �= |a′| and ||a′| − |a||/|a| is less than a
small fixed constant. To these associate a substitute parameter a′′, as above. Then
for every sufficiently small δ there exists t∗ = O(δ2γ) such that

‖φ〈a,δ〉(t∗, ·)− φ〈a′′,δ〉(t∗, ·)‖Hs(R) ≥ 1
2 c0|a|2.

Because δ2γ → 0 as δ → 0, this means that the solution operator fails to be
uniformly continuous, even when restricted to any small neighborhood of the
origin in Hs.

Remark. The essential feature of the supercritical case used in this proof is
that the same scaling transformations which reduce the (homogeneous) Ḣs norm
also contract the time variable.

4.4. Remarks.

Remark 4.1. For this discussion we stay in the subcritical case s > −1/2
and allow implicit constants to depend on ε and T . A more careful inspection
of Lemma 3.5 shows that one begins to have decoherence at time s ∼ exp ( −
C/|a − a′|). In our application |a − a′| ∼ δ. Chasing through all the constants
we obtain N ∼ exp (C/δ). Thus, our counterexample is quite weak in the sense
that we need to go out to frequencies ∼ exp (C/δ) to obtain a failure of uniform
continuity at uncertainty δ. In comparison, the soliton-based arguments in [18]
only require that one go out to frequencies ∼ δ−C to achieve a similar result. It
would potentially be interesting if this weakness reflected a genuine feature of
the equation.

Remark 4.2. One may informally compare the results here and those in [18]
from the perspective of complete integrability. The NLS equation is completely
integrable and can be studied by inverse scattering techniques. For the focusing
NLS equation, a general solution can be split into a “multisoliton” component,
which eventually resolves into a collection of disjoint solitons, and a “dispersive”
component, which eventually decays [31], [38]. In the defocusing equation there
are far fewer solitons, and the behaviour is mostly dispersive. The NLS results
in [18] can be viewed as a statement that the soliton component of NLS is badly
behaved in negative Sobolev spaces; the results here say (informally speaking)
that the dispersive component is also badly behaved in these spaces (though to a
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lesser degree—see previous remark). One can also view the results on KdV and
mKdV in this way. However we emphasize that our methods here do not require
complete integrability or explicit travelling wave solutions, and should extend to
other, nonintegrable equations such as the nonlinear wave equation.

5. A review of local well-posedness for mKdV. We now turn our attention
to the modified KdV (mKdV) equation (1.2). We begin by reviewing the local
well-posedness theory of [16] for (1.2) at the endpoint regularity H1/4. We recall
from [16] the following linear estimates for the Airy equation.

THEOREM 9. [16] Suppose that u solves the inhomogeneous problem

ut + uxxx = F; u(0, x) = u0(x)

on the slab [0, T]×R. Then u satisfies the smoothing estimate (cf. [14], [19], [16])

‖ux‖L∞x (L2
t ) � ‖u0‖L2

x
+
∫ T

0
‖F(t)‖L2

x
dt(5.1)

and the maximal function estimates

‖u‖L4
x(L∞t ) � ‖u0‖H1/4 +

∫ T

0
‖F(t)‖H1/4 dt(5.2)

‖u‖L2
x(L∞t ) � ‖u0‖H3/4+ε +

∫ T

0
‖F(t)‖H3/4+ε dt.(5.3)

The estimate (5.3) is not really needed for the present discussion, but will be
used to deal with an mKdV-like system in Section 10.

For any time interval I = [t0, t0 + T], let X = X(I × R) denote the norm

‖u‖X(I×R) := ‖u‖
L∞t (H1/4

x )
+ ‖u‖L4

x(L∞t ) + ‖D−1/2−εu‖L2
x(L∞t )(5.4)

+ ‖∂xD1/4u‖L∞x (L2
t )

on the spacetime slab I × R, where D :=
√

1 + (− ∆). From the above theorem
and energy estimates there follows the inequality

‖u‖X(I×R) � ‖u(t0)‖
H1/4

x
+
∫ t0+T

t0
‖(∂t + ∂xxx)u(t)‖

H1/4
x

dt.(5.5)

In [16] the following trilinear estimate was proven (see also the proof of
Proposition 1):

THEOREM 10. [16] On any spacetime slab I × R, we have

‖D1/4(uvwx)‖L2
x(L2

t ) � ‖u‖X‖v‖X‖w‖X .
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By combining this estimate with (5.5) one can obtain local well-posedness for
mKdV in H1/4; see [16]. One can also use these estimates in a standard manner
to obtain the following perturbation result for the mKdV flow in H1/4:

LEMMA 5.1. Suppose that u is a smooth solution to the mKdV equation (1.2),
and suppose that v is an approximate Schwartz solution to mKdV in the sense that

vt + vxxx = 6v2vx − E

for some error function E. Let t0 be a time, and let e be the solution to the inhomo-
geneous problem

et + exxx = E; e(t0) = 0.

Suppose that we have the estimates

‖u(t0)‖
H1/4

x
, ‖v(t0)‖

H1/4
x

� ε; ‖e‖X([t0,t0+1]×R) � ε

for some sufficiently small absolute constant 0 < ε� 1. Then we have

‖u− v‖X([t0,t0+1]×R) � ‖u(t0)− v(t0)‖
H1/4

x
+ ‖e‖X([t0,t0+1]×R).

In particular we have

sup
t0≤t≤t0+1

‖u(t)− v(t)‖
H1/4

x
� ‖u(t0)− v(t0)‖

H1/4
x

+ ‖e‖X([t0,t0+1]×R).(5.6)

In other words, any function v which approximately satisfies mKdV in the
above sense stays close to the exact mKdV flow.

Proof. In this proof we work entirely on the spacetime slab [t0, t0 + 1] × R.
Write the equation for v in integral form as

v(t) = U(t − t0)v(t0)− e(t) +
∫ t

t0
U(t′ − t0)(6v2vx)(t′) dt′

where U(t) := exp (− t∂xxx) is the free Airy evolution operator. Taking X norms
of both sides and using (5.5) we obtain

‖v‖X � ‖v(t0)‖
H1/4

x
+ ‖e‖X + ‖v2vx‖

L1
t (H

1
4
x )

.
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By Hölder’s inequality we may estimate the L1
t (H1/4

x ) norm by the L2
t (H1/4

x ) norm.
Using Theorem 10 we thus have

‖v‖X � ‖v(t0)‖
H1/4

x
+ ‖e‖X + ‖v‖3

X .

If ε is sufficiently small, we thus deduce via a continuity argument that

‖v‖X � ε.(5.7)

If we write u = v + w, then w satisfies the equation

wt + wxxx = 2∂x(3wv2 + 3w2v + w3) + E; w(t0) = u(t0)− v(t0)

which can be written in integral form as

w(t) = U(t − t0)(u(t0)− v(t0)) + e(t) +
∫ t

t0
U(t′ − t0)2∂x(3wv2 + 3w2v + w3)(t′) dt′.

We again take X norms and use (5.5) to obtain

‖w‖X � ‖u(t0)− v(t0)‖
H1/4

x
+ ‖e‖X + ‖D1/4∂x(3wv2 + 3w2v + w3)‖L1

t ([t0,t0+1];L2
x).

Again we estimate the L1
t (L2

x) norm by the L2
t (L2

x) norm and use Theorem 10 to
obtain

‖w‖X � ‖u(t0)− v(t0)‖
H1/4

x
+ ‖e‖X + ‖w‖X(‖w‖X + ‖v‖X)2.

By another continuity argument and (5.7) we obtain the desired result, if ε is
sufficiently small.

6. A crude proof of Theorem 4. In this section we give a proof of Theo-
rem 4 relying on the rather crude perturbation result of Lemma 5.1. While this
suffices to establish ill-posedness, it is quite poor quantitatively, and in the next
two sections we shall give an argument which is similar in strength to the proof
of Theorem 2.

The first step is to construct H1/4-normalized solutions whose asymptotic
development can be controlled for relatively long periods of time. Then, as in
Section 4, we shall use a scaling argument to demonstrate ill-posedness below
H1/4.

We recall from Section 3 the global solutions u〈aw〉 to the NLS equation (1.1)
for all a ∈ [1/2, 2], where w(x) = ε exp (− x2) for some parameter 0 < ε � 1
to be chosen later. As foreshadowed in the introduction, we shall use these NLS
solutions to construct approximate solutions V [a] to (1.2), defined using the change
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of variables

(s, y) :=

(
t,

x + 3N2t

31/2N1/2

)

by

V [a](t, x) :=

√
2

3N
Re eiNxeiN3tu〈aw〉(s, y),(6.1)

where N � 1 is a large parameter to be chosen later. From (3.16) and Lemma
2.1 we have

sup
0≤t<∞

‖V [a](t)‖
H1/4

x
� ε.

Now we show that V [a] is an approximate solution to mKdV. A straightforward
computation shows that

(∂t + ∂xxx)V [a](t, x) =

√
2

3N
Re eiNxeiN3t(∂s + i∂yy + 3−3/2N−3/2∂yyy)u〈aw〉(s, y)

and that

2∂x(V [a](t, x)3) =

√
2

3N
N−1∂x

(
Re eiNxeiN3t|u〈aw〉(s, y)|2u〈aw〉(s, y)

+
1
3

Re e3iNxe3iN3tu〈aw〉(s, y)3
)

=

√
2

3N
N−1

[
Re iNeiNxeiN3t|u〈aw〉(s, y)|2u〈aw〉(s, y)

+ Re eiNxeiN3t3−1/2N−1/2∂y(|u〈aw〉(s, y)|2u〈aw〉(s, y))

+ Re iNe3iNxe3iN3tu〈aw〉(s, y)3

+
1
3

Re e3iNxe3iN3t3−1/2N−1/2∂y(u〈aw〉(s, y)3)
]

.

Since u〈aw〉 is a solution of (1.1), the main terms of the preceding two equations
agree, leaving

(∂t + ∂xxx)V [a](t, x) = 2∂x(V [a](t, x))3 − E

where the error term E is a linear combination of the real and imaginary parts of
the expressions

E1 := N−2eiNxeiN3tu〈aw〉
yyy (s, y)

E2 := N−2eiNxeiN3t∂y(|u〈aw〉(s, y)|2u〈aw〉(s, y))
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E3 := N−2e3iNxe3iN3t∂y((u〈aw〉(s, y))3)

E4 := N−1/2e3iNxe3iN3t(u〈aw〉(s, y))3.

We now give some estimates for E1, . . . , E4, or more precisely for the solution
to the inhomogeneous problem with these forcing terms.

LEMMA 6.1. Let t0 ≥ 0. For each j ∈ {1, 2, 3, 4} let ej be the unique solution
to the problem

(∂t + ∂xxx)ej = Ej; ej(t0) = 0.

Then

‖ej‖X([t0,t0+1]×R) � εN−3/2

where X([t0, t0 + 1]×R) norm is as defined in (5.4). The inequality holds uniformly
in t0.

Proof. First suppose that j ∈ {1, 2, 3}. Then by (5.5) it will suffice to show
that

sup
t
‖Ej(t)‖H1/4

x
� εN−3/2.

However, from (3.16) and the fact that Hk
y is closed under multiplication for all

k ≥ 1, we see that the functions u〈aw〉
yyy , ∂y(|u〈aw〉|2u〈aw〉), and ∂y((u〈aw〉)3) all have

an H1
y norm of O(ε). The above claim then follows directly from Lemma 2.1.

These arguments do not work for E4 as this term does not contain enough
negative powers of N, and one would only obtain a bound such as O(ε3) which
is insufficient for our purposes. To do better we take advantage of the oscillation
e3iNxe3iN3t, using the fact that the frequency (τ , ξ) = (3N3, 3N) is quite far away
from the cubic τ = ξ3.

A computation shows that

(∂t + ∂xxx)E4 = −24iN3E4 + f

where f is a linear combination of

f1 := N−1/2e3iNxe3iN3t∂s(u
〈aw〉(s, y)3)

f2 := Ne3iNxe3iN3t∂y(u〈aw〉(s, y)3)

f3 := N−1/2e3iNxe3iN3t∂yy(u〈aw〉(s, y)3)

f4 := N−2e3iNxe3iN3t∂yyy(u〈aw〉(s, y)3).
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Rewriting the above as

(∂t + ∂xxx)
(

e4 −
1

−24iN3 E4

)
= − 1
−24iN3 f

and using (5.5) we thus have

‖e4‖X � N−3

‖E4‖X + ‖E4(t0)‖
H1/4

x
+

4∑
j=1

∫ t0+1

t0
‖fj(t)‖H1/4

x
dt

 .

To estimate the functions fj, we again observe from (3.16) that the functions
∂s(u〈aw〉(s, y)3) and ∂m

y (u〈aw〉(s, y)3) are in H1
y for m = 1, 2, 3 (for the ∂s derivative,

we use the Leibnitz rule followed by (1.1) to convert it to spatial derivatives),
and so these terms are O(N+3/2), as a consequence of Lemma 2.1. Taking the
factor of N−3 which multiplies each fj into account, we obtain the desired bound
O(N−3/2).

It remains to treat the E4 terms; since ‖E4‖X controls ‖E4(t0)‖
H1/4

x
it will

suffice to show that

‖E4‖X � εN3/2.

This can be done by direct computation (possibly using Sobolev embedding to
first replace the mixed spacetime norms by unmixed norms) but one can also
exploit (a modulated version of) (5.5). Define Ẽ4 by

Ẽ4 := e24iN3tE4 = N−1/2e3iNxe27iN3tu〈aw〉(s, y)3;

observe that Ẽ4 has the same X norm as E4, but unlike E4, the function Ẽ4 lives
near the cubic τ = ξ3 in frequency space. By (5.5) it will suffice to show that

‖Ẽ4(t0)‖
H1/4

x
+
∫ t0+1

t0
‖(∂t + ∂xxx)Ẽ4(t)‖

H1/4
x

dt � εN3/2.

The first term is easily checked by Lemma 2.1 and (3.16), so we turn to the latter.
We can expand (∂t +∂xxx)Ẽ4(t) as a linear combination of e24iN3tfj for j = 1, 2, 3, 4.

But these terms have already been shown to be O(N+3/2) in L∞t (H1/4
x ), and we

are done.

Let V〈a〉 be the global smooth solution to (1.2) with initial datum V〈a〉(0) =
V [a](0). Lemma 6.1, Lemma 5.1, and an easy induction argument give

‖V〈a〉(t)− V [a](t)‖
H1/4

x
� εCtN−1(6.2)



ILL-POSEDNESS FOR CANONICAL DEFOCUSING EQUATIONS 1265

for all 0 ≤ t� log N. Indeed, applying the two lemmas gives

sup
j≤t≤j+1

‖V〈a〉(t)− V [a](t)‖
H1/4

x
≤ C‖V〈a〉( j)− V [a]( j)‖

H1/4
x

+ CεN−1

≤ C sup
j−1≤t≤j

‖V〈a〉(t)− V [a](t)‖
H1/4

x
+ CεN−1

and the desired conclusion follows by induction on j for j � log (N); for j = 0
one uses instead the identity V〈a〉(0) = V [a](0).

We conclude that for any η > 0, there exists a constant c0 > 0 such that

sup
0≤t≤c0 log N

‖V〈a〉(t)− V [a](t)‖
H1/4

x
� εN−1+η,(6.3)

uniformly for all N ≥ 2.
We have thus constructed a one-parameter family V〈a〉 of H1/4-normalized

solutions of the mKdV equation (1.2), which are well controlled for an interval
of time which increases without bound as N → ∞. These can be considered a
weak analogue of the global solutions u〈aw〉 to NLS constructed in Section 3, but
for mKdV, and only for times 0 < t� log N rather than 0 < t <∞.

Conclusion of proof of Theorem 4. We now use scale invariance as in Section 4
to construct Hs solutions for −1/4 < s < 1/4.

Let 0 < δ � ε � 1 and T > 0 be arbitrary. As in Section 4, we shall find
two solutions u = φ〈a〉,φ〈a

′〉 to (1.2) such that (4.1), (4.2), and (4.3) hold.
Let λ � 1 be a large parameter to be chosen later. Let φ〈a〉 denote the

function

φ〈a〉(t, x) := λV〈a〉(λ3t,λx).

Since V〈a〉 is a global smooth solution to mKdV, so also is φ〈a〉.
Similarly define

φ[a](t, x) := λV [a](λ3t,λx);

thus

φ〈a〉(0, x) = φ[a](0, x) = λV [a](0,λx) = λ

√
2

3N
Re eiNλxu〈aw〉(0,λx/

√
3N).

To estimate the Hs
x norm of this function, we apply Lemma 2.1 with M = Nλ and

τ = N1/2λ−1; then Mτ ≡ N3/2 � 1 as N → ∞. Thus when s ≥ 0 Lemma 2.1
gives

‖φ〈a〉(0)‖Hs
x
� λ1/2+sNs−1/4‖u〈aw〉(0)‖H1

x
.
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For −1/4 < s < 0, we can still apply Lemma 2.1 since Mτ 1+s/K � 1 for
sufficiently large K, the only difference being that the H1

x norm on the right must
now be replaced by HK

x .
If we thus define λ by

λ := N(1/4−s)/(1/2+s)(6.4)

then by (3.16) we have (4.1): ‖φ〈a〉(0)‖Hs
x
, ‖φ〈a′〉(0)‖Hs

x
� ε. A similar argument

using (3.19) instead of (3.16) gives (4.2): ‖φ〈a〉(0)− φ〈a′〉(0)‖Hs
x
� δ.

Now we show (4.3): sup0≤t<T ‖φ〈a〉(t) − φ〈a
′〉(t)‖Hs

x
� ε. A routine scaling

calculation shows

‖φ〈a〉(t)− φ[a](t)‖Hs
x
� λmax (s,0)+1/2‖V〈a〉(λ3t)− V [a](λ3t)‖Hs

x
.(6.5)

Bounding the Hs
x norm by the H1/4

x norm, we thus see from (6.3) that

‖φ〈a〉(t)− φ[a](t)‖Hs
x
� λmax (s,0)+1/2εN−1+η(6.6)

whenever 0 < t � log N/λ3. Applying (6.4) and the hypothesis s > −1/4, we
observe that the right-hand side is � ε if η is chosen sufficiently small.

In particular, from Lemma 2.1 we have

‖φ〈a〉(t)‖Hs
x
� ε.(6.7)

From (3.20) there exists a time t0 > 0 depending on a, a′ (but not on N, λ)
such that

‖u〈aw〉(t0)− u〈a
′w〉(t0)‖L2

x
� ε.

Fix this t0; we may choose N so large that t0 � log N. From (3.16) and Lemma 2.1
as before we thus have

‖φ[a](t0/λ
3)− φ[a′](t0/λ

3)‖Hs
x
∼ λ1/2+sNs−1/4ε = ε,

so by (6.6) (and the remark immediately following) we have

‖φ〈a〉(t0/λ3)− φ〈a′〉(t0/λ3)‖Hs
x
∼ ε.

If we choose N (and hence λ) large enough, we can make t0/λ3 < T , and so
(4.3) follows. This concludes the proof of Theorem 4.

7. Energy estimates. In the last section we proved the ill-posedness of
the mKdV equation below H1/4. However this proof is not as “strong” as the
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corresponding argument for NLS in Section 1.1, because it did not rely on a
family of global solutions to mKdV. Instead, it relied on solutions which could
only be controlled for very short times (roughly on the order of log N/Nc for
some exponent c > 0). Although this does suffice to disprove uniform continuity
of the solution map, it is not as satisfactory as the NLS argument, and does not
give very good quantitative control on the ill-posedness.

In this section and the next, we rectify this shortcoming by constructing a
large family of global-in-time solutions to mKdV, similar to the global solutions
u = u〈w〉 to NLS constructed in Section 3. Unfortunately there seems to be
no simple analogue of the pseudo-conformal transformation for mKdV, so our
arguments will be more complicated. On the other hand, these methods seem to
be quite general and should be applicable to a wider class of nonlinear equations
than those studied here.

In analogy with Section 3 we expect our solutions u to contain highly oscil-
lating factors such as eiNx. These oscillations force certain modifications in the
estimates, but we use a lifting device to eliminate much of these difficulties. This
device is closely related to the method of “slow and fast” variables, which is
frequently used in describing behavior in various asymptotic regimes.

This section and the next are devoted to the proof of:

THEOREM 11. Let w ∈ C∞(R) be real-valued and compactly supported. Then
for each sufficiently small ε > 0 and sufficiently large R � N < ∞ there exist
an exact solution v〈w〉(x, t) and an approximate solution v [w](x, t) of the defocusing
modified KdV equation vt + vxxx = 6v2vx, defined for all t ≥ 2, with the following
properties:

The approximate solution takes the form

v [w] = 2εN−1/2t−1/2 cos (φ(x, t)) w(z)(7.1)

where

z = N−1/2t−1
(

x + 3N2t
)

φ(x, t) = −(− 4x3/27t)1/2 + 6ε2 log (t)N−1(− x/3t)1/2w2(z),

and satisfies

‖v [w](t)‖H1/4 ∼ ε for all t ≥ 2.(7.2)

The exact solution v〈w〉 is asymptotic to v [w] in the sense that

‖v〈w〉(t)− v [w](t)‖H1/4 � εt−1/2 for all t ≥ 2.(7.3)
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Here the phase φ is approximately equal to Nx + N3t, to leading order, so
heuristically

v〈w〉(t, x) ≈ 2εN−1/2t−1/2 cos (Nx + N3t)w
(

N−1/2t−1(x + 3N2t)
)

.

7.1. Lifting. Fix N large. We shall work in the cylinder R × (R/2πZ) =
{(y, θ) : y ∈ R, θ ∈ (R/2πZ)}. We observe that we can embed the real line R
into the cylinder by the map x �→ (x/N1/2, Nx); informally, this wraps R around
the cylinder in a very tight spiral.

Our solution u(t, x) shall be obtained by descent from a function ũ(t, y, θ) on
the cylinder, via the transformation

u(t, x) := N−1/2ũ(t, x/N1/2, Nx).(7.4)

Indeed, observe from (7.4) that

∂xu = N−1/2(N−1/2∂y + N∂θ)ũ

and so if ũ satisfies the PDE

(∂t + (N−1/2∂y + N∂θ)
3)ũ = 2N−1(N−1/2∂y + N∂θ)(ũ

3)(7.5)

on the cylinder, then u will satisfy mKdV.
The lifting device expresses the highly oscillating function eiNx on the real

line as eiθ on the cylinder, eliminating the dependence on N. This will allow
us to express certain nonstandard energy-type estimates for functions of x as
more standard energy estimates for functions of (y, θ). A disadvantage is that the
dispersive term (N−1/2∂y + N∂θ)3 has a large coefficient, as N →∞.

We can also control u in terms of ũ by Sobolev norms, by the following
variant of the Sobolev trace lemma:

LEMMA 7.1. If u and ũ obey (7.4), then

‖u(t)‖
H1/4

x
� ‖ũ(t)‖H2

y,θ
.

The argument below actually allows one to lower H2 to H3/4+, which is
consistent with the Sobolev trace lemma, but this yields no improvement in our
application. If ũ(t) has the special form eikθa(y) for some small k and smooth a

(e.g. a ∈ H2), then one can also obtain corresponding lower bounds for the H1/4
x

norm of u(t) via Lemma 2.1.
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Proof. It will suffice to prove the bound

‖u(t)‖L2
x
� N−1/4‖ũ(t)‖H1

y,θ
.(7.6)

Indeed, by applying the operator ∂x = N−1/2∂y + N∂θ to this estimate one obtains

‖∂xu(t)‖L2
x
� N−1/4‖(N−1/2∂y + N∂θ)ũ(t)‖H1

y,θ
� N3/4‖ũ‖H2

y,θ

and then the claim follows by interpolation.
It remains to prove (7.6). From Fubini’s theorem we observe

‖u(t)‖2
L2

x
=
∫

u(t, x)2 dx = CN−2
∫ 2π

0

∣∣∣∣∣∣
∑
k∈Z

ũ(t, (k + θ)/N3/2, θ)2

∣∣∣∣∣∣ dθ

where we have identified R/2πZ with [0, 2π) in the obvious manner. This it will
suffice to prove the one-dimensional estimate

N−3/2
∑
k∈Z
| f (N−3/2θ)|2 � ‖f‖2

H1
y

for any function f (y) and any θ ∈ [0, 2π).
The left-hand side is bounded by∑

j∈Z
‖f‖2

L∞([ j,j+1]),

which by the local Sobolev (or Poincaré) inequality is bounded by∑
j∈Z
‖f‖2

H1
y([ j−1,j+2]).

The claim follows.

7.2. Approximating the lifted evolution. From the previous Lemma, we
see that to construct global H1/4

x solutions u to mKdV, it will suffice to construct
global H2

y,θ solutions ũ to (7.5).

Remark 7.1. This H2
y,θ norm may of course be reinterpreted in the single x

coordinate, by replacing the Fourier multiplier 1 + |∇y,θ|2 used to define H2
y,θ

by a multiplier mN(D), whose symbol mN(ξ) looks roughly like mN(kN + a) :=
N1/4(1 + |k|)2(1 + N1/2a)2 whenever k is an odd integer and |a| ≤ N. Then the
following analysis can be performed purely in the one-dimensional model using
mN(D), and indeed this was our initial approach, but it is more complicated
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technically, mainly due to the need to develop a good Leibnitz rule for mN(D).
The lifting device allows us to work with more standard energy-type norms.

We will construct global H2
y,θ solutions to (7.5) in two steps, constructing

explicit global approximate solutions, then modifying them to obtain exact solu-
tions. The following result, based on the energy method, asserts that any global
approximate solution is asymptotic to an exact solution, provided that the approx-
imate solution satisfies (7.5) modulo a sufficiently small remainder, as t→∞.

THEOREM 12. Let 0 < ε � 1 be a small number. Suppose that ṽ(t, y, θ) =
ṽN(t, y, θ) is a one-parameter family of global real-valued smooth functions, rapidly
decreasing in y, such that ṽ and the error E = EN defined by

E := (∂t + (N−1/2∂y + N∂θ)
3)ṽ − 2N−1(N−1/2∂y + N∂θ)(ṽ

3)(7.7)

obey the estimates

‖ṽ(t)‖C3
y,θ

� εt−1/2(7.8)

‖E(t)‖H2
y,θ

� εt−β(7.9)

for t ≥ 2, uniformly for all N ≥ 1. Suppose that

β >
3
2

.

Then, if ε is sufficiently small, there exists for each N a global real-valued smooth
solution ũ(t, y, θ) = ũN(t, y, θ) to the transformed mKdV equation (7.5) satisfying

‖ũ(t)− ṽ(t)‖H2
y,θ

� εt1−β(7.10)

for all t ≥ 2, uniformly for N ≥ 1. In particular,

t1/2‖ũ(t)− ṽ(t)‖H2
y,θ
→ 0 as t→∞.

The conditions (7.8), (7.9) arise naturally in our construction of the ap-
proximate solution ṽ in the next section; we will actually have ‖E(t)‖H2

y,θ
�

εt−2( log t)C.

Proof. We write (7.5) as

ũt = Aũ + D(ũ3)
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and (7.7) as

ṽt = Aṽ + D(ṽ3) + E

where A is the anti-self-adjoint constant-coefficient differential operator

A := −(N−1/2∂y + N∂θ)
3

and D is the constant coefficient vector field

D := 2N−3/2∂y + 2∂θ,

whose coefficients are uniformly bounded for N ≥ 1.
We pick a large time T0 � 1 (which will eventually be set to infinity; all our

bounds will be independent of T0) and solve the backwards Cauchy problem

ũt = Aũ + D(ũ3); ũ(T0) = ṽ(T0)

on the region 2 ≤ t ≤ T0. This has a global smooth solution (for the same reason
that the Cauchy problem for mKdV has global smooth solutions; indeed one can
foliate the cylinder into tightly wound copies of the real line on which the above
equation is just a rescaled version of mKdV). Writing ũ = ṽ + w, we see that w
satisfies the difference equation

wt = Aw + D(w3 + 3ṽw2 + 3ṽ2w)− E ; w(T0) = 0.(7.11)

We now introduce the energies

Ej(t) :=
1
2

∫
|∇j

y,θw(t)|2 dx

for j = 0, 1, 2. Clearly Ej(T0) = 0 for j = 0, 1, 2. We claim the estimates

Ej(t) ≤ C0ε
2t2−2β for j = 0, 1, 2(7.12)

for all 2 ≤ t ≤ T0, where C0 is a large absolute constant and assuming ε is
sufficiently small (depending on C0).

To prove these estimates, we make the a priori assumption that

Ej(t) ≤ 2C0ε
2t2−2β for j = 0, 1, 2(7.13)

for all T ≤ t ≤ T0, and some T ∈ [2, T0]. We will then prove (7.12) for all
T ≤ t ≤ T0. Since w is smooth, this implies that the set of times t for which
(7.12) holds is both open and closed, and contains T0. From the continuity method
we thus see that (7.12) will indeed hold for all 2 ≤ t ≤ T0.
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We thus fix T and assume (7.13). In particular we have

‖w(t)‖H1
y,θ

� εC1/2
0 t1−β; ‖w(t)‖C1

y,θ
� ‖w(t)‖H2

y,θ
� εC1/2

0 t1−β .(7.14)

By the hypothesis β > 3/2, we have therefore the essential bound

‖w(t)‖C1
y,θ

� εt−1/2.

We differentiate E0 to obtain E′0(t) =
∫

wwt, and substitute (7.11) for wt. Since
A is anti-self-adjoint and commutes with ∇y,θ, its contribution to E′0(t) vanishes,
and we obtain

E′0(t) =
∫

w ·
(

D(w3 + 3ṽw2 + 3ṽ2w)− E
)

.

We expand out the cubic terms, using the Leibnitz rule. Any term of the form∫
wDwṽ ṽ can be rewritten as −

∫
wwṽDṽ using the identity wDw = 1

2 D(w2)
and integration by parts. Thus we obtain a finite sum of integrals, in each of
which there are least two factors of w on which no derivatives fall. We then use
Cauchy-Schwarz to obtain

|E′0(t)| � ‖w‖2
L2

y,θ

(
‖w‖C1

y,θ
+ ‖ṽ‖C1

y,θ

)2

+ ‖w‖L2
y,θ
‖E‖L2

y,θ
.

Applying (7.14), (7.8), (7.9) we obtain

|E′0(t)| � C2
0ε

4t2−2β(t−1/2)2 + C1/2
0 ε2t1−βt−β .

Integrating this (using E0(T0) = 0) we thus obtain E0(t) ≤ C0ε
2t2−2β as desired,

provided C0 is sufficiently large and ε sufficiently small (depending on C0).
The higher-order quantities E1, E2 are handled in the same way. Consider

first E1. By arguing as before (and noting that A commutes with ∇y,t) we have

E′1(t) =
∫
∇y,tw · ∇y,t(D(w3 + 3ṽw2 + 3ṽ2w)− E).

The most dangerous terms are those involving a ∇y,tw · D∇y,tw factor, but by
using the identity

∇y,tw · D∇y,tw =
1
2

D(|∇y,tw|2)

and integrating by parts we may transfer D to another factor, as we did in analyz-
ing E0. Thus no factor w with two derivatives on it will remain. Unfortunately,
there may remain a factor ṽ with two derivatives on it, but if that is the case
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then all but one of the factors of w will have no derivatives. Applying Hölder,
we then obtain

|E′1(t)| � ‖w‖2
H1

y,t
(
∥∥∥w‖C1

y,t
+ ‖ṽ‖C1

y,t

)2
+ ‖w‖H1

y,t
‖w‖L2

y,t
‖w‖L∞y,t

‖ṽ‖C2
y,t

+ ‖w‖H1
y,t
‖E‖H1

y,t
.

To majorize E2, we differentiate with respect to t and argue as before, ob-
taining

E′2(t) =
∫
∇2

y,tw · (D∇2
y,t(w

3 + 3ṽw2 + 3ṽ2w)− E).

We again apply the Leibnitz rule. Again the most dangerous terms are those
with ∇2

y,tw · D∇2
y,tw = 1

2 D(|∇2
y,tw|2), but each such term may be rewritten by

distributing the D to a factor of w on which no other derivatives fall. Thus no
factor of w will carry more than two derivatives. Since there are at most five
derivatives in any of the terms, for any term involving two factors of ∇2

y,tw, all
other terms carry derivatives of at most first order. From this and Cauchy-Schwarz
we see that

|E′2(t)| � ‖w‖2
H2

y,t
(‖w‖C1

y,t
+ ‖ṽ‖C1

y,t
)2 + ‖w‖H2

y,t
‖w‖H1

y,t
(‖w‖C1

y,t
+ ‖ṽ‖C3

y,t
)2

+ ‖w‖H2
y,t
‖E‖H2

y,t
.

From these two differential inequalities we deduce as for E0 that Ej(t) ≤
C0ε

2t2−2β for j = 1, 2. This concludes the proof of (7.12).
Finally, we need to remove the restriction t < T0. This can be achieved by

letting T0 → +∞, and taking a weak limit in H2
x of the functions w(t) = w(T0)(t)

(which is thus strongly convergent in H2−ε
x , by Rellich embedding); observe

that all the above bounds were independent of T0. One then obtains in the limit
a new function w(+∞)(t) which obeys (7.11) and (7.12) (and hence (7.10), if
ũ := ṽ + w(+∞)) for all t ≥ 2. We omit the details.

8. Construction of the approximate solution. In this section we construct
solutions ṽ to (7.7) which obey the bounds (7.8), (7.9). For this task it is more
convenient to work with the original equation, rather than in the (y, θ) variables,
mainly because ∂3

x is often more convenient to work with than (N−1/2∂y + N∂θ)3.
We will begin by constructing a family of approximate real solutions v = v [ϕ1]

to mKdV. These depend on a bump function ϕ1 which is smooth and rapidly
decaying, but is otherwise arbitrary. We introduce the Ansatz

v := v−3 + v−1 + v1 + v3(8.1)
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where the vk are complex functions depending upon ϕ1 (which one should think
of as oscillating essentially like eiNkx in space) obeying v−k = vk. The dominant
terms will be v±1; for instance, their L∞ norm will be O(N−1/2t−1/2), whereas
v±3 will be O(N−7/2t−3/2) in L∞. However, the correction terms v±3 will be
necessary in order to obtain the t−2 logC (t) decay (7.9) for the error term E ;
without these terms, the error turns out to decay only like t−1 logC (t). We shall
assume t ≥ 2 throughout to avoid the (artificial) singularity at t = 0.

We now construct an approximate solution v = v−3 + v−1 + v1 + v3 to mKdV
which has the properties stated in the previous section. In fact we shall construct
a family of such solutions v which depend on an arbitrarily chosen bump function
ϕ1(z).

With v of the general form (8.1),

vt + vxxx = 2(v3)x + E

where the error E =
∑

k odd: |k|≤9 Ek is given by

Ek := (∂t + ∂xxx)vk − 2∂x

∑
k1+k2+k3=k

vk1vk2vk3 .

In particular we have E−k = Ek. We note in particular that

E1 = (∂t + ∂xxx)v1 − 6∂x(|v1|2v1) + Ẽ1

E3 = (∂t + ∂xxx)v3 − 2∂x(v3
1 ) + Ẽ3

Ek = Ẽk for k = 5, 7, 9

where the Ẽk are linear combinations of expressions of the form ∂x(vk1vk2vk3 ),
where k1 +k2 +k3 = k and at least one of the k1, k2, k3 is equal to ±3. Heuristically,
the Ẽk terms will be negligible because v3 is much smaller than v1; most of the
work will arise in controlling the dominant terms in E1, and to a lesser extent in
E3.

We introduce the corresponding functions of the (y, θ) variables

ṽ(t, y, θ) :=
∑

k=−3,−1,1,3

N1/2eikθe−iN3/2kyvk(t, N1/2y)

E(t, y, θ) :=
∑

k=−9,...,9

N1/2eikθe−iN3/2kyEk(t, N1/2y),

and observe (from the fact that ∂x = N−1/2∂y + N∂θ annihilates eikθe−iN3/2ky) that
ṽ and Ẽ obey (7.7). Thus we will be able to invoke Theorem 12 provided that



ILL-POSEDNESS FOR CANONICAL DEFOCUSING EQUATIONS 1275

we are able to construct vk (and hence Ek) obeying the estimates

‖e−iN3/2kyvk(t, N1/2y)‖C3
y

� εN−1/2t−1/2(8.2)

‖e−iN3/2kyEk(t, N1/2y)‖H2
y

� εN−1/2t−2 logC t(8.3)

for all t ≥ 2 and all k for which the above make sense.
Introduce the coordinate

z := N−1/2t−1x + 3N3/2 = N−1/2t−1
(

x + 3N2t
)

.(8.4)

We will work partly in coordinates (x, t), and partly in coordinates (z, t); we will
always work in a region in which z is uniformly bounded, so that

−x
3t

= N2(1− 1
3 N−3/2z) = N2 + O(N1/2).(8.5)

Thus we have x = −3N2t + O(N1/2t), and in particular x is always negative (This
reflects the fact that solutions to the Airy equation tend to propagate rapidly to
the left, especially if the solution is high frequency as is the case here.) and
|x| ∼ N2t. Thus fractional powers of −x are well defined.

We set

vk = εkN(2−3|k|)/2t−|k|/2eikφ(t,x)ϕk(z),(8.6)

for various real-valued bump functions ϕk to be chosen later, and a real phase
function φ(t, x) which is chosen to satisfy a naturally arising eikonal-type equa-
tion. Of course, we choose ϕ−k = ϕk in order to have vk = v−k.

Suppose vk takes the form (8.6). From

∂te
ikφ = ikφte

ikφ

∂xeikφ = ikφxeikφ

∂xxeikφ = (− k2φ2
x + ikφxx)eikφ

∂xxxeikφ = (− ik3φ3
x − 3k2φxφxx + ikφxxx)eikφ

and

∂tϕ(z) = −N−1/2xt−2ϕ′(z)

∂xϕ(z) = N−1/2t−1ϕ′(z)

∂xxϕ(z) = N−1t−2ϕ′′(z)

∂xxxϕ(z) = N−3/2t−3ϕ′′′(z)
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follows the fundamental formula

(∂t + ∂xxx)vk = εkN1−3|k|/2t−|k|/2eikφ(8.7)

·
[(

ikφt − ik3φ3
x − 3k2φxφxx −

|k|
2

t−1 + ikφxxx

)
ϕk(z)

+
(
−x

t
− 3k2φ2

x + 3ikφxx

)
N−1/2t−1ϕ′k(z)

+ 3ikφxN−1t−2ϕ′′k (z)

+N−3/2t−3ϕ′′′k (z)
]

.

Terms that decay like t−5/2 or better will turn out to be negligible. When k = 1,
this will include the terms involving ϕ′′1 , ϕ′′′1 , φxxϕ

′
1, or φxxx; when k = 3, this

will include all terms except the very first two, ikφt − ik3φ3
x .

We have not yet specified what the phase function φ is. Before proceeding
with the detailed estimation of the terms in (8.7), we briefly indicate the heuris-
tic considerations which lead naturally to the choice of this function. As initial
approximations to solutions of mKdV, we begin with solutions

∫
eixξ+itξ3

h(ξ) dξ
of the Airy equation (∂t + ∂xxx)u = 0. Assuming that h ∈ C∞0 is supported in a
compact subset of (0,∞), the stationary phase method gives the leading-order
asymptotics as t→ +∞ to be ceiΦ(x,t)t−1/2h̃((− x/3t)1/2) where

Φ(x, t) = −(− 4x3/27t)1/2(8.8)

and h̃ is another bump function, h̃(ξ) = h(ξ)ξ−1/2. We therefore take (8.8) as an
initial approximation to φ.

Taking φ = Φ in (8.7), one finds that the right-hand side is O(t−5/2), as is
desired. However, (∂t + ∂xxx)v1 − 6∂x(|v1|2v1) is larger. Indeed, the main term of
6∂x(|v1|2v1) is 6iε3N−3/2t−3/2Φxϕ

3
1eiφ; see (8.20) below. Thus we set φ = Φ +ψ

and solve for ψ by setting the main new term resulting from the replacement of
φ = Φ by φ = Φ + ψ in (8.7) equal to this main term of 6∂x(|v1|2v1). This gives

i(∂t − 3Φ2
x∂x)ψ ·

(
εN−1t−1/2

)
eiφ = 6iε3N−3/2t−3/2Φxϕ

3
1eiφ,

whence

(∂t − 3Φ2
x∂x)ψ = 6ε2t−1N−1Φxϕ

2
1.(8.9)

When rewritten in the coordinates (z, t), ∂t − 3Φ2
x∂x becomes just ∂t. Since Φx =

(− x/3t)1/2 is a function of z alone, the latter equation may be solved explicitly:

ψ = 6ε2 log (t)N−1Φxϕ
2
1.
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This phase correction should be compared with (3.10); it is relatively small com-
pared to the dominant term Φ of the phase (which is O(N3t) compared to O( log t)
for the phase correction).

We therefore define

φ(t, x) := Φ(t, x) + ε2φ̃(z) log (t)(8.10)

where

φ̃(z) := 6N−1Φxϕ
2
1(z) = 6

( −x
3N2t

)1/2

ϕ2
1(z) = 6(1− 1

3 N−3/2z)1/2ϕ2
1(z).(8.11)

ϕ1 will be an arbitrary smooth function with compact support. However, it re-
mains to specify ϕ3, which must be chosen to satisfy an equation (see (8.22)
below) in order that E3 will be sufficiently small for our purpose.

A convention will simplify the notation. We write f (t, x) = O(Nαtβ log (t)γ)
to mean that uniformly for all t ≥ 2 and (x, t) in the support of φ1(z),

|∂a
t ∂

b
x f (t, x)| ≤ Cf ,a,bNαtβ log (t)γ t−a(N1/2t)−b

for all a, b ≥ 0. When α = β = γ = 0 we will often write f = O(1). Observe in
particular that ϕ(z) = O(1) for any C∞ function ϕ.

By Taylor expansion,( −x
3N2t

)α
= (1− 1

3 N−3/2z)α = 1 +O(N−3/2) = O(1)

for any α ∈ R. In particular we have

Φt =

(
−x3

27t3

)1/2

= N3 +O(N3/2)

Φx =
(−x

3t

)1/2

= N +O(N−1/2)

Φxx = −
( −1

12xt

)1/2

= −1
6

N−1t−1 +O(N−5/2t−1)

Φxxx =
( −1

48x3t

)1/2

= O(N−3t−2).

If we then add in the phase correction ε2φ̃(z) log (t) = O( log (t)) we obtain the
following estimates for φ:

φt =

(
−x3

27t3

)1/2

+ ε2φ̃(z)t−1 − ε2N−1/2xt−2φ̃′(z) log (t)(8.12)

= N3 +O(N3/2)



1278 M. CHRIST, J. COLLIANDER, AND T. TAO

φx =
(−x

3t

)1/2

+ ε2N−1/2t−1 log (t)φ̃′(z) = N +O(N−1/2)(8.13)

φxx = −
( −1

12xt

)1/2

+ ε2O(N−1t−2 log (t)) = O(N−1t−1)(8.14)

φxxx = O(N−3/2t−2).(8.15)

The functions vk and Ek will be linear combinations of expressions of the
form eikφO(1). To prove the desired estimates (8.2), (8.3) we use the following
lemma.

LEMMA 8.1. Let k = O(1) be an integer and t ≥ 2, and suppose that fk(t, x) =
eikφO(1) is supported where |z| = |N−1/2t−1x + 3N3/2| is bounded by some fixed
constant. Let g(y) denote the function

g(y) := e−iN3/2kyfk(t, N1/2y).

Then

‖g(y)‖C3
y

� 1

‖g(y)‖H2
y

� t1/2.

Proof. The H2 norm bound follows directly from the C3 bound and the
support hypothesis on f . Since for any n, ∂n

yO(1) = O(t−n) = O(1), it suffices to
verify that

∂j
y(φ(t, N1/2y)− N3/2y) = O(1)

on the support of ϕ1(y) for all j = 1, 2, 3. But this follows directly from (8.13),
(8.14), (8.15).

From the above lemma we see immediately that v obeys (8.2). To prove
(8.3), it will suffice to show that Ek = εO(N−1/2t−5/2 logC (t))eikφ for all k. (Of
course, any term in Ek which decays even faster in t or has more powers of ε and
N−1 will also be acceptable). We may of course restrict our attention to positive
k since E−k = Ek.

We begin by computing certain expressions involving the phase φ which
appear in (8.7).

LEMMA 8.2. We have

iφt − iφ3
x = 6iN−1t−1φxε

2ϕ2
1(z) +O(t−2 log2 (t))(8.16)

3iφt − 27iφ3
x = −24i

(−x
3t

)3/2

+O(N3/2t−1 log (t))
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= −24iN3(1− 1
3 N−3/2z)3/2 +O(N3/2t−1 log (t))(8.17)

−3φxφxx −
1
2t

= O(t−2 log (t))(8.18)

−x
t
− 3φ2

x = O(N1/2t−1 log (t)).(8.19)

Proof. We begin with (8.16), (8.17). From (8.13) we have

φ3
x =

(−x
3t

)3/2

+ 3
(−x

3t

)
ε2N−1/2t−1 log (t)φ̃′(z) +O(t−2 log2 (t))

while from (8.12) we have

φt =
(−x

3t

)3/2

+ ε2φ̃(z)t−1 − ε2N−1/2xt−2 log (t)φ̃′(z).

Meanwhile, we have

6iN−1t−1φxε
2ϕ2

1(z) = 6iN−1t−1Φxε
2ϕ2

1(z) +O(N−1/2t−2 log (t))

= iε2t−1φ̃(z) +O(N−1/2t−2 log (t)).

The claims (8.16), (8.17) follow.
Now we prove (8.18). From (8.13) and (8.14) we have

φx =
(−x

3t

)1/2

+O(N−1/2t−1 log (t)); φxx = −
( −1

12xt

)1/2

+O(N−1t−2 log (t))

and hence

φxφxx = − 1
6t

+O(t−2 log (t))

which is (8.18). Likewise

φ2
x =
−x
3t

+O(N1/2t−1 log (t))

which is (8.19).

Using this Lemma, (8.7), (8.14), and (8.15) we can now expand

(∂t + ∂xxx)v1 = (6iN−1t−1φxε
2ϕ2

1(z)

+O(t−2 log (t)))t−1/2εN−1/2eiφϕ1(z)

+O(N1/2t−1 log (t))εN−1t−3/2eiφϕ′1(z)
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+O(t−5/2)εN−1/2eiφϕ′′1(z)

+ t−7/2εN2eiφϕ′′′1 (z),

which simplifies to

(∂t + ∂xxx)v1 = 6iε3N−3/2t−3/2φxeiφϕ3
1(z) + εO(N−1/2t−5/2 log (t))eiφ.

Meanwhile, we have

6∂x(|v1|2v1) = 6ε3N−3/2t−3/2iφxeiφϕ3
1(z) + 18ε3N−2t−5/2eiφϕ2

1(z)ϕ′1(z).(8.20)

As foreshadowed in our heuristic derivation of φ, the two leading terms here
match. From the definition of E1 we thus have

E1 = Ẽ1 + εO(N−1/2t−5/2 log (t))eiφ.

The last term is of the desired form; we will see below that Ẽ1 is also.
Before verifying this, we turn to E3. We begin by expanding (∂t + ∂xxx)v3.

Using (8.7), estimating the main terms using (8.17), and majorizing all the other
terms crudely by (8.13), (8.14), and (8.15), we can write this expression as

(∂t + ∂3
x )v3 =

(
−24i

(−x
3t

)3/2

+O(N3/2t−1 log (t))

)
ε3N−7/2t−3/2e3iφϕ3(z)

+ (N2O(1))ε3N−4t−5/2e3iφϕ′3(z)

+O(1)ε3N−7/2t−7/2e3iφϕ′′3(z)

+ ε3N−5t−9/2e3iφϕ′′′3 (z),

which simplifies to

(∂t + ∂3
x )v3 = −24i

(−x
3t

)3/2

ε3N−7/2t−3/2e3iφϕ3(z) + εO(N−1/2t−5/2 log (t))e3iφ.

Meanwhile, we have

2∂x(v3
1 ) = 6ε3N−3/2t−3/2iφxe3iφϕ3

1(z) + 6ε3N−2t−5/2e3iφϕ2
1(z)ϕ′1(z)

= 6iε3N−3/2t−3/2ϕ3
1

[(−x
3t

)1/2

+O(N−1/2t−1 log (t))

]
e3iφ

+ ε3O(N−2t−5/2)e3iφ

= 6iε3N−3/2t−3/2ϕ3
1

(−x
3t

)1/2

e3iφ + ε3O(N−2t−5/2 log (t))e3iφ.
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If we equate the first term of this last line with the leading term of (∂t + ∂3
x )v3,

then we obtain the relation

− 24i
(−x

3t

)3/2

ε3N−7/2t−3/2ϕ3(8.21)

= 6iε3N−3/2t−3/2ϕ3
1

(−x
3t

)1/2

(1 +O(N−3/2)).

Therefore if we define

ϕ3(z) = −1
4ϕ

3
1(z)N2

(−x
3t

)−1

= −1
4
ϕ3

1(z)
(

1− 1
3

N−3/2z
)−1

= O(1),(8.22)

then

(∂t + ∂3
x )v3 − 2∂x(v3

1 ) = ε3O(N−1/2t−5/2 log (t))e3iφ.

In particular, the support of ϕ3 is a subset of the support of ϕ1, hence is bounded
in the z coordinate, uniformly in t. Consequently all vj and Ej share this same
uniform support property.

From the definition of E3 we thus have

E3 = Ẽ3 + εO(N−1/2t−5/2 log (t))e3iφ.

In light of these estimates, it will thus suffice to control the minor errors Ẽk, i.e.,
to show that

Ẽk = εO(N−1/2t−5/2 log (t))e3ikφ

for k = 1, 3, 5, 7, 9. Expanding out Ẽk, it thus suffices to show that

(vk1 )xvk2vk3 = ε3O(N−1/2t−5/2 log (t))e3i(k1+k2+k3)φ

for all k1, k2, k3 ∈ {−3,−1, 1, 3} with at least one of k1, k2, k3 equal to ±3. But
this follows from the estimates

v±1 = εO(N−1/2t−1/2)e±iφ

v±3 = εO(N−7/2t−3/2)e±3iφ

(v±1)x = εO(N1/2t−1/2)e±iφ

(v±3)x = εO(N−5/2t−3/2)e±3iφ,

which come from (8.6) and (8.13). (Indeed, there is substantial room to spare, in
terms of powers of N.)
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This completes the proof of (8.3). Thus all the conditions of Theorem 12 are
obeyed for this choice v = v [ϕ1] of approximate solution. Applying this theorem
followed by Lemma 7.1, we see that we can construct global H1/4 solutions
u = u〈ϕ1〉 depending on an initial choice of bump function ϕ1 which can be
approximated in H1/4 as t → +∞ by an explicit function v given by the above
Ansatz. These solutions u〈ϕ1〉 are closely analogous to the global solutions u〈w〉

to NLS constructed in Section 3. As with NLS, the logarithmic factor in the
phase leads to a proof of Theorem 4 which is closely analogous to the proof
of Theorem 2 (and yields similar quantitative control of the nature of the ill-
posedness). Since ill-posedness has already been established by an alternative
argument, we omit the details.

However, one small comment is needed. In establishing ill-posedness in Hs

for s < 0, a problem arises close to the scaling threshold s = −1/2 if the solutions
u〈ϕ1〉 have a substantial low frequency component, as this will not scale favorably.
This can be ruled out by observing that the function ṽ(t, y, θ) constructed earlier
in this section has the symmetry

ṽ(t, y, θ + π) = −ṽ(t, y, θ)

(because all the integers k in the summation are odd). An inspection of the proof
of Theorem 12 reveals that ũ must also have this symmetry (since it is preserved
by the flow (7.5)). Thus when ũ is expanded in Fourier series in the angular
variable θ, Fourier components eikθ with nonzero coefficients arise only for odd
k. In particular, there is no zero Fourier mode. From this and a variant of Lemma
2.1 one can show that the solutions u〈ϕ1〉 will be extremely small at the frequency
origin (especially if the H2

y,θ control on ũ is improved to Hl for sufficiently large
l, in order to control higher Sobolev norms). Again, we omit the details.

9. The Miura transform. In this section we review the Miura transform
relating solutions of defocusing mKdV (1.2) to real solutions of KdV (1.6), and
show how this transform, combined with Theorem 4, gives Theorem 7. In the
next section we will introduce a generalization of the Miura transform (related
to the Gardner transform) which will be used to prove Theorem 6.

The Miura transform M is defined by

M(v) := vx + v2.

Observe that if v is a smooth real-valued solution to the mKdV equation (1.2),
then u = M(v) is a smooth real-valued solution to KdV equation (1.6). Indeed:

(∂t + ∂xxx)u = (∂t + ∂xxx)(vx + v2)

= ∂x(∂t + ∂xxx)v + 2v(∂t + ∂xxx)v + 6vxvxx

= ∂x(6v2vx) + 12v3vx + 6vxvxx
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= ∂x(6v2vx + 3v4 + 3v2
x )

= ∂x(3u2).

The Miura transform acts roughly like a derivative, and in particular maps
Hs(R) to Hs−1(R):

LEMMA 9.1. For any 0 ≤ s < 1/2 and r > 0, the Miura transform M is
Lipschitz continuous from the ball {v0 ∈ Hs(R) : ‖v‖Hs(R) ≤ r} to Hs−1(R).

Proof. The continuity is clear for the linear portion vx of the transform. To
obtain continuity for the quadratic portion v2 we use the bilinear estimate

‖vw‖Hs−1
x

� ‖vw‖L1
x
� ‖v‖L2

x
‖w‖L2

x
� ‖v‖Hs

x
‖w‖Hs

x
(9.1)

coming from Hölder and Sobolev embedding.

From this we expect to use Theorem 4 to obtain Theorem 7. Unfortunately,
due to low frequency issues, the Miura transform is not bilipschitz from Hs to
Hs−1, and so one must do a little computation (cf. the corresponding argument
in [18]).

Let 0 ≤ s < 1/4, and let 0 < δ � ε � 1 and 0 < T0 be given. By the
results in Section 6 we can find smooth global solutions φ〈a〉, φ〈a

′〉 to the mKdV
equation (1.2) such that

‖φ〈a〉(0)‖Hs
x

+ ‖φ〈a′〉(0)‖Hs
x

� ε

‖φ〈a〉(0)− φ〈a′〉(0)‖Hs
x

� δ

sup
0≤t<T

‖φ〈a〉(t)− φ〈a′〉(t)‖Hs
x

� ε

for some small 0 < T � log N/λ3 � T0, where N, λ are as in Section 6. In
particular, λ = N(1/4−s)/(1/2+s) tends to ∞ as N →∞. Let ψ〈a〉 := M(φ〈a〉). Then
by Lemma 9.1 we have

‖ψ〈a〉(0)‖Hs−1
x

, ‖ψ〈a′〉(0)‖Hs−1
x

� ε

and

‖ψ〈a〉(0)− ψ〈a′〉(0)‖Hs−1
x

� δ.

To finish the argument we would like to show

sup
0≤t<T

‖ψ〈a〉(t)− ψ〈a′〉(t)‖Hs−1
x

� ε,
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but this not quite automatic because M is not bilipschitz at low frequencies. To
get around this we shall need more explicit control on the ψ〈a〉, using the details
of the construction in Section 6.

By (3.20) we may find 0 ≤ t < T such that the NLS solutions u〈a〉, u〈a
′〉

constructed in Section 3 obey

‖u〈a〉(tλ3)− u〈a
′〉(tλ3)‖H5

x
� ε.(9.2)

Fix this t. By the arguments in Section 6, this implies that

‖φ〈a〉(t)− φ〈a′〉(t)‖Hs
x
� ε.

From (6.7) we have

‖φ〈a〉(t)‖Hs
x

+ ‖φ〈a′〉(t)‖Hs
x
� ε.

From (6.6) and Lemma 9.1 we have

‖ψ〈a〉(t)−M(φ[a])(t)‖Hs−1
x

= ‖M(φ〈a〉)(t)−M(φ[a])(t)‖Hs−1
x

� εN−3/4−s � ε.

It will thus suffice to show that

‖M(φ[a])(t)−M(φ[a′])(t)‖Hs−1
x

� ε.

From (9.1) we have

‖φ[a](t)2 − φ[a′](t)2‖Hs−1
x

� ‖φ[a](t)− φ[a′](t)‖Hs
x
‖φ[a](t) + φ[a′](t)‖Hs

x
� ε2 � ε,

so it suffices to show

‖∂x(φ[a](t)− φ[a′](t))‖Hs−1
x

� ε.

We recall that for any a, φ[a](t) has the explicit form

φ[a](t, x) := λ

√
2

3N
Re eiNλxeiN3λ3tu〈aw〉

(
1

λ3t + 1
,

λx
λ3t + 1

)
.

We subtract φ[a′] from φ[a] and differentiate in x. The worst term arises when
the derivative hits eiNλx; by using (9.2), Lemma 2.1, and (6.4) we see that the
Hs−1

x norm of this term is � ε. If the derivative hits the factor u〈aw〉 − u〈a
′w〉,

the resulting term is much smaller; indeed, (3.16), Lemma 2.1, and (6.4) imply
that the Hs−1 norm of this term is O(ελ/N), which equals O(εN−(1/4+2s)/(1/2+s)).
Since we are assuming that s ≥ 0, this is o(1) · ε as N → ∞. The claim then
follows from the triangle inequality. This completes the proof of Theorem 7.
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10. A generalized Miura transform. We saw in the previous section how
the Miura transform can convert ill-posedness for mKdV in Hs to ill-posedness
for KdV in Hs−1. One might hope to also use this transform to convert the well-
posedness for mKdV in H1/4 (from Theorem 3, or Section 5) to well-posedness
for KdV at H−3/4. However a difficulty arises because the Miura transform
u = vx + v2 is not invertible. For instance, if v ∈ S is real-valued then

∫
u must

be nonnegative. Furthermore, if u lies in the range of M, then the Schrödinger

operator − d
dx

2
+ u = ( d

dx + v)( d
dx + v)∗ cannot have any negative eigenvalues. See

also the paper [2] of Ablowitz, Kruskal and Segur in which the range of the
Miura transform is described.

On the other hand, for high frequencies |ξ| � 1 the derivative operator
v → vx is invertible, and the lower order term v2 is negligible (as can be seen
by the amount of surplus regularity in (9.1)). So it seems the Miura transform
would be invertible if we could omit low frequency errors.

Motivated by this, we define a generalized Miura transform M: H1/4
x ×H1

x →
H−3/4

x by

M(v, w) := vx + v2 + w,(10.1)

where v and w are complex valued. (The H1 regularity of the error is not par-
ticularly special – anything between H1/4 and H5/4 will suffice for the argument
below.)

LEMMA 10.1. The transform M: H1/4
x ×H1

x → H−3/4
x is locally Lipschitz. Also,

for any A > 0 there exists a Lipschitz transform WA : H−3/4
x → H1/4

x × H1/4
x such

that M ◦WA is the identity on the ball BA := {u ∈ H−3/4
x : ‖u‖H−3/4 ≤ A}.

Proof. The continuity of M is immediate from Lemma 9.1. Now to construct
the inverse map WA. Fix A, and let P be a smooth Fourier projection to the region
|ξ| � CA for some large CA depending on A.

We need to construct v ∈ H1/4
x and w ∈ H1

x such that vx + v2 + w = u. We
begin by constructing v. Observe that for CA, C′A large enough, the map

v �→ ∂−1
x P(u− v2)

is a contraction on the ball {v ∈ H1/4
x : ‖v‖H1/4 ≤ C′AA}. Indeed we have

(cf. (9.1))

‖∂−1
x P(u− v2)‖

H1/4
x

� ‖u‖
H−3/4

x
+ C−3/4

A ‖v2‖L2
x

� A + C−3/4
A ‖v‖2

L4
x

� A + C−1/8
A ‖v‖2

H1/4
x

,
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so the above map maps the ball to itself, and the contraction property can also
be obtained by a similar argument. Thus we can construct a v in this ball such
that

vx = P(u− v2).

If one then sets w := u−vx−v2 = (1−P)(u−v2) and WA(u) := (v, w), we see that
we have constructed a map with the desired properties (the Lipschitz behavior
following from similar estimates to the above).

Of course, the modified Miura transform M(v, w) no longer transforms mKdV
to KdV. However, if (v, w) are smooth solutions to the mKdV-like system

vt + vxxx = 6(v2 + w)vx(10.2)

wt + wxxx = 6(v2 + w)wx

v(x, 0) = v0(x)

w(x, 0) = w0(x)

then the function u(t) := M(v(t), w(t)) will satisfy (1.6) with u0 := M(v0, w0).
Indeed, we have

(∂t + ∂xxx)u = (∂t + ∂xxx)(vx + v2 + w)

= ∂x(∂t + ∂xxx)v + 2v(∂t + ∂xxx)v + 6vxvxx + (∂t + ∂xxx)w

= ∂x(6(v2 + w)vx) + 12v(v2 + w)vx + 6vxvxx + 6(v2 + w)wx

= ∂x(6v2vx + 3v4 + 3v2
x + 3w2 + 6wvx + 6wv2)

= ∂x(3u2).

Can this algebraic identity be explained within the AKNS [1] framework?
The transform (10.1) is an extension of Gardner’s generalization [22] of the

Miura transform: If a, b are constants and y satisfies

yt + yxxx = 6(a2y2 + by)yx

then u := ayx + ay2 + by satisfies (1.6). (Indeed, one applies the generalized Miura
transform with v := ay and w := by).

PROPOSITION 1. The Cauchy problem (10.2) is locally well-posed in the space
H1/4

x × H1
x .

Proof. Intuitively, the system (10.2) is a hybrid of the mKdV equation at H1/4
x

and the KdV equation at H1
x , and so the results should follow from the arguments

in [16]. As the arguments below show, this will indeed be the case.
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We recall the X norm defined in (5.4). For technical reasons involving the
fractional Leibnitz rule it will be convenient to replace this norm with the aug-
mented Besov-type norm

‖v‖X∗ := ‖v‖X +

∑
j∈Z
‖Qjv‖2

X

1/2

(10.3)

where for each integer j, Pj is a standard Littlewood-Paley projection in space to
frequencies |ξ| � 2j, and Qj := Pj−Pj−1. Since the Qj are essentially orthogonal
in Hs

x, it is easy to see that the key energy estimate (5.5) continues to hold when
X is replaced with X∗.

We shall iterate (v, w) in the norm

‖(v, w)‖X∗∗ := ‖v‖X∗ + ‖D3/4w‖X∗(10.4)

on the slab [0, T]×R for some sufficiently small T . From the augmented version
of (5.5) and (10.2) (noting that D3/4 commutes with the Airy operator ∂t + ∂xxx)
we have

‖v‖X∗ + ‖D3/4w‖X∗ � ‖v(0)‖
H1/4

x
+ ‖w(0)‖H1

x
+ ‖D1/4((v2 + w)vx)‖L1

t (L2
x)

+ ‖D((v2 + w)wx)‖L1
t (L2

x).

By a Hölder in time we can estimate the L1
t (L2

x) norm by the L2
t (L2

x) norm, gaining
a power of T1/2. If T is sufficiently small, we may use a standard contraction
mapping argument to obtain local well-posedness provided that we show the
trilinear and bilinear estimates

‖D1/4(vv ′v ′′x )‖L2
x(L2

t ) � ‖v‖X∗‖v ′‖X∗‖v ′′‖X∗(10.5)

‖D(vv ′wx)‖L2
x(L2

t ) � ‖v‖X∗‖v ′‖X∗‖D3/4w‖X∗(10.6)

‖D(ww′x)‖L2
x(L2

t ) � ‖D3/4w‖X∗‖D3/4w‖X∗(10.7)

‖D1/4(wvx)‖L2
x(L2

t ) � ‖D3/4w‖X∗‖v‖X∗ .(10.8)

To prove these estimates we first argue informally. Heuristically, the worst
terms should arise when the powers of D fall on the roughest function. Ignoring
all other terms, we are left with proving the estimates

‖vv ′D1/4ux‖L2
x(L2

t ) � ‖v‖X∗‖v ′‖X∗‖u‖X∗

and

‖wD1/4ux‖L2
x(L2

t ) � ‖D3/4w‖X∗‖u‖X∗ .
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But these follow from Hölder, after estimating v, v ′ in L4
x(L∞t ), w in L2

x(L∞t ), and
D1/4ux in L∞x (L2

t ).
To argue more rigorously it is easiest to use Littlewood-Paley decomposition

1 =
∑

j Qj. (One can also proceed using the fractional Leibnitz rule but one has
to be careful because of all the L∞ norm. See [16] for a further discussion of this
issue.) For sake of illustration we prove (10.6); the other estimates are similar.

We can expand the left-hand side of (10.6) as∥∥∥∥∥∥
∑

j1,j2,j3

D((Qj1v)(Qj2v
′)(Qj3wx))

∥∥∥∥∥∥
L2

t (L2
x)

.

Let us first consider the contribution of the terms when j1, j2 < j3 − 10. In this
case, the summands have Fourier transform in the region |ξ| ∼ 2j3 and so by
orthogonality we can estimate the previous by

∑
j3

‖2j3
∑

j1,j2<j3−10

(Qj1v)(Qj2v
′)(Qj3wx)‖2

L2
t (L2

x)

1/2

.

We can collapse the summations to rewrite this as

∑
j3

‖2j3 (Pj3−10v)(Pj3−10v ′)(Qj3wx)‖2
L2

t (L2
x)

1/2

.

Using Hölder as indicated in the nonrigorous argument, and observing the Pj, Qj

are all bounded on X∗, we can estimate this by

∑
j3

(2j3‖v‖X∗‖v ′‖X∗2
−j3‖D3/4Qj3‖X)2

1/2

which is acceptable by the definition of X∗.
The terms when j2, j3 < j1−10 or when j1, j3 < j2−10 can be treated similarly

(in fact one gets some additional exponential gains due to the derivative ∂x falling
on a relatively low frequency). Together, these three cases cover all the “high-
low” interactions when one of the j’s is much larger than the other two. The
remaining terms can be grouped into several “high-high” interactions in which
two of the j’s are comparable to each other, and the third is comparable or smaller.
A typical such group of interactions is∥∥∥∥∥∥

∑
j3

∑
j3−10≤j2≤j3+10

∑
j1≤j3+10

D((Qj1v)(Qj2v
′)(Qj3wx))

∥∥∥∥∥∥
L2

t (L2
x)

.
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Collapsing the j1 summation and using the triangle inequality, we can bound this
by ∑

j3

∑
j3−10≤j2≤j3+10

‖D((Pj3+10v)(Qj2v
′)(Qj3wx))‖L2

t (L2
x).

The expression inside the norm has frequency � 2j3 , so we can estimate the D
by a 2j3 . Applying Hölder as before, we can then estimate this by∑

j3

∑
j3−10≤j2≤j3+10

2j3‖v‖X∗‖Qj2v
′‖X2−j3‖D3/4Qj3‖X ,

and the claim follows from Cauchy-Schwarz and the definition of the X∗ norms.
The other terms can be treated similarly (and in some cases one even gets some
additional exponential gains). We omit the details.

We combine Lemma 10.1 and Proposition 1 to prove Theorem 6.
Let φm ∈ S, the Schwarz class, for all 1 ≤ m ∈ Z. Assume φm → φ in

H−3/4
x . Then there exists A > 0 such that ‖φ‖

H−3/4
x
≤ A and we may assume

that ‖φm‖H−3/4
x
≤ A. By Lemma 10.1, we have that WA(φm) = (vm(0), wm(0)) ∈

H1/4
x × H1

x , and there exists B > 0 such that ‖(vm(0), wm(0))‖
H1/4

x ×H2
x
≤ B. The

Lipschitz continuity of WA implies (vm(0), wm(0))→ (v(0), w(0)) = WA(φ).
Proposition 1 implies there exists T = T(B) > 0 such that for all 1 ≤ m ∈ Z,

there exists a uniquely defined continuous map from

H1/4
x × H1

x �−→ X∗∗ ⊂ C0([0, T]; H1/4
x × H1

x )

taking (vm(0), wm(0)) to (vm, wm), a solution of the initial value problem for the
modified KdV system. Furthermore, the smoothness properties of the data persist
during the evolution: (vm(t), wm(t)) ∈ Hk

x × Hk
x if (vm(0), wm(0)) ∈ Hk

x × Hk
x .

For t ∈ [0, T], define um(t) = M(vm(t), wm(t)). Then um is such that φm �−→
um(t) is a smooth well understood KdV evolution, by the explicit calculation
following (10.2).

Remark 10.1. Uniqueness is known to hold in the setting of smooth KdV so-
lutions. Therefore, the preceding procedure for the construction of KdV solutions
(by sending φ → WA(φ) = (v, w) then evolving the mKdV system to (v(t), w(t))
and applying the generalized Miura transform M(v(t), w(t)) = u(t)) is independent
of the parameter A.

The continuity properties of the map WA, the mKdV system data-to-solution
map, the time evolution of the mKdV system and the generalized Miura trans-
form combine to imply that the sequence um converges to some limit u in the
C0([0, T]; H−3/4) norm, and, in this way defines a locally Lipschitz continuous
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data-to-solution map H−3/4 � φ �−→ u ∈ C0([0, T], H−3/4) for the KdV initial
value problem.

The justification that u is a weak solution of KdV requires that we show that
ϕu2 ∈ L1

xt where ϕ is a test function. Thus, it suffices to show that u ∈ L2
xt,loc.

Lemmas 9.1 and 10.1 imply that u has essentially the same regularity properties
as vx, where v ∈ X∗. Since v ∈ X∗, we know that v ∈ X and (see (5.4)) therefore
∂xD

1
4 v ∈ L∞x L2

t . Thus, D
1
4 u ∈ L∞x L2

t and u ∈ L2
xt,loc.

Remark 10.2. The construction above does not identify a Banach space of
functions of spacetime contained in C0([0, T]; H−3/4) in which we may assert
uniqueness of solutions of the KdV initial value problem. In contrast, the solutions
constructed in [17] for Hs

x data with s > −3/4 are known to be unique in the Bour-

gain space Xs,1/2+. A subset of C0([0, T]; H−3/4
x ) in which such a uniqueness prop-

erty does hold is the generalized Miura image M([solutions of system (10.2)] ∩
X∗∗). However, this is a rather unsatisfying uniqueness criterion because it is not
easy to test whether a function u lies in this class. A more satisfactory resolution
of these issues would be to prove uniqueness of KdV solutions evolving from
Hs

x data in the space C0([0, T]; Hs
x). This remains open for −3/4 ≤ s < 0 but has

been established [39] by Zhou for s ≥ 0.

11. Proofs for the periodic case. To prove Theorem 8, we begin with the
simplest equation, the defocusing nonlinear Schrödinger equation. A family of
explicit solutions is

uN,a(t, x) = aei(Nx+N2t−|a|2t),

where a ∈ C and N is any positive integer. Suppose that s < 0. Since ‖uN,a(0, ·)‖Hs

∼ Ns, we choose a = a(N) = N−sα. Comparing two solutions uN,a and uN,a′ with
a =,αN−s and a′ = α′N−s, the Hs norm of their difference at t = 0 is O(|α−α′|),
while there exist some 0 < t ≤ T(N,α,α′) = C|α − α′|−2N2s for which the
Hs norm of their difference is � |α| + |α′|. If s < 0 then for any fixed α,α′,
T(N,α,α′) may be made arbitrarily small, by choosing N sufficiently large. This
implies illposedness in Hs. Exactly this argument was given by Burq, Gérard and
Tzvetkov [8]

Consider next the real mKdV equation. Fix an exponent s ∈ (− 1, 1/2). We
construct solutions u = uN,β of the form

u(t, x) =
′∑
k

bkeikψ(11.1)

ψ(t, x) = Nx + N3t + σt(11.2)

b1 = βN−s(11.3)
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where σ, bk are real numbers, b−k ≡ bk for all k, β > 0, and the notation
∑′

means that the sum extends over all odd integers.
Formally, such a function satisfies mKdV if and only if the numerical coef-

ficients satisfy the system of equations


σ = b−1

1 6N
′∑

k1+k2+k3=1

bk1bk2bk3

bk =
6N

N3(1− k2) + σ

′∑
k1+k2+k3=k

bk1bk2bk3 for all |k| > 1.

(11.4)

Here the sums extend over all three-tuples of odd integers satisfying the stated
relations.

We claim that, for any s ∈ (− 1, 1/2), for any δ > 0 and any β ∈ [δ, 1], for
all sufficiently large N there exist σ, {bk} satisfying

σ ∼ N1−2s

|bk| ≤ AN−sN−η·(|k|−1) for all |k| > 1,

where η, A ∈ R+ depend only on δ, s. In particular, for large N, the dominant
terms in the sum defining u are those with k = ±1. The restriction s > −1
means that N1−2s � N3, hence the term σ appearing in the denominator of the
equation for bk for |k| �= 1 is negligible. These estimates imply that the series
(11.1) converges rapidly for large N, and that ‖u(0, x)‖Hs ∼ β.

Because 1− 2s > 0, The factor eiσt multiplying ei(Nx+N3t) causes solutions to
become out of phase within a timespan � |β − β′|−2N2s−1. Because 1− 2s > 0,
this tends to zero as N → ∞ so long as β,β′ are fixed. Thus the equation is
ill-posed for this range of exponents.

Existence of, and the bounds for, solutions of (11.4) for large N can be proved
by a straightforward application of the contraction mapping principle; details are
left to the reader. This completes the discussion of periodic real mKdV.

The ill-posedness for real KdV is obtained from that for real mKdV via the
Miura transform, as in Section 9.
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[28] , Quelques généralisations de l’équation de Korteweg-de Vries. II, J. Differential Equations
33 (1979), 320–335.

[29] V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), 343–401.
[30] G. Schneider, Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation,

J. Differential Equations 147 (1998), 333–354.
[31] H. Segur, Asymptotic solutions and conservation laws for the nonlinear Schrodinger equation II,

J. Math. Phys. 17 (1976), 714–716.
[32] A. Shnirelman, On the Non-uniqueness of Weak Solution of the Euler Equations, Journées “Equations aux
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