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ASYMPTOTICS IN DIRECTED EXPONENTIAL RANDOM GRAPH
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Although asymptotic analyses of undirected network models based on
degree sequences have started to appear in recent literature, it remains an
open problem to study statistical properties of directed network models. In
this paper, we provide for the first time a rigorous analysis of directed expo-
nential random graph models using the in-degrees and out-degrees as suffi-
cient statistics with binary as well as continuous weighted edges. We establish
the uniform consistency and the asymptotic normality for the maximum like-
lihood estimate, when the number of parameters grows and only one realized
observation of the graph is available. One key technique in the proofs is to ap-
proximate the inverse of the Fisher information matrix using a simple matrix
with high accuracy. Numerical studies confirm our theoretical findings.

1. Introduction. Recent advances in computing and measurement technolo-
gies have led to an explosion in the amount of data with network structures in a
variety of fields including social networks [20, 30], communication networks [1, 2,
12], biological networks [3, 32, 48], disease transmission networks [33, 43] and so
on. This creates an urgent need to understand the generative mechanism of these
networks and to explore various characteristics of the network structures in a prin-
cipled way. Statistical models are useful tools to this end, since they can capture the
regularities of network processes and variability of network configurations of in-
terests, and help to understand the uncertainty associated with observed outcomes
[40, 42]. At the same time, data with network structures pose new challenges for
statistical inference, in particular asymptotic analysis when only one realized net-
work is observed and one is often interested in the asymptotic phenomena with the
growing size of the network [14].

The in- and out-degrees of vertices (or degrees for undirected networks) prelim-
inarily summarize the information contained in a network, and their distributions
provide important insights for understanding the generative mechanism of net-
works. In the undirected case, the degree sequence has been extensively studied
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[6, 10, 25, 34, 39, 55]. In particular, its distributions have been explored under the
framework of the exponential family parameterized by the so-called “potentials”
of vertices recently, for example, the “β-model” by [10] for binary edges or “max-
imum entropy models” by [25] for weighted edges in which the degree sequence is
the exclusively sufficient statistic. It is also worth to note that the asymptotic the-
ory of the maximum likelihood estimates (MLEs) for these models have not been
derived until very recently [10, 25, 53, 54]. In the directed case, how to construct
and sample directed graphs with given in- and out-degree (sometimes referred as
“bi-degree”) sequences have been studied [11, 13, 29]. However, statistical infer-
ence is not available, especially for asymptotic analysis. The distributions of the
bi-degrees were studied in [41] through empirical examples for social networks,
but the work lacked theoretical analysis.

In this paper, we study the distribution of the bi-degree sequence when it is the
sufficient statistic in a directed graph. Recall the Koopman–Pitman–Darmois theo-
rem or the principle of maximum entropy [49, 50], which states that the probability
mass function of the bi-degree sequence must admit the form of the exponential
family. We will characterize the exponential family distributions for the bi-degree
sequence with three types of weighted edges (binary, discrete and continuous) and
conduct the maximum likelihood inference.

In the model we study, one out-degree parameter and one in-degree parameter
are needed for each vertex. As a result, the total number of parameters is twice
of the number of the vertices. As the size of the network increases, the number
of parameters goes to infinity. This makes asymptotic inference very challenging.
Establishing the uniform consistency and asymptotic normality of the MLE are
the aims of this paper. To the best of our knowledge, it is the first time that such
results are derived in directed exponential random graph models with weighted
edges. We remark further that our proofs are highly nontrivial. One key feature of
our proofs lies in approximating the inverse of the Fisher information matrix by a
simple matrix with small approximation errors. This approximation is utilized to
derive a Newton iterative algorithm with geometrically fast rate of convergence,
which leads to the proof of uniform consistency, and it is also utilized to derive
approximately explicit expressions of the estimators, which leads to the proof of
asymptotic normality. Furthermore, the approximate inverse makes the asymptotic
variances of estimators explicit and concise. We note that [21, 22] have studied
problems related to the present paper but the methods therein cannot be applied to
the model we study. This is explained in detail at the end of the next section after
we state the main theorems.

Next, we formally describe the models considered in this paper. Consider a
directed graph G on n ≥ 2 vertices labeled by 1, . . . , n. Let ai,j ∈ � be the weight
of the directed edge from i to j , where � ⊆ R is the set of all possible weight
values, and A = (ai,j ) be the adjacency matrix of G. We consider three cases: � =
{0,1}, � = [0,∞) and � = {0,1,2, . . .}, where the first case is the usual binary
edge. We assume that there are no self-loops, that is, ai,i = 0. Let di =

∑

j �=i ai,j
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be the out-degree of vertex i and d = (d1, . . . , dn)
⊤ be the out-degree sequence of

the graph G. Similarly, define bj =
∑

i �=j ai,j as the in-degree of vertex j and b =

(b1, . . . , bn)
⊤ as the in-degree sequence. The pair {b,d} or {(b1, d1), . . . , (bn, dn)}

are the bi-degree sequence. Then the density or probability mass function on G

parameterized by exponential family distributions with respect to some canonical
measure ν is

p(G) = exp
(

α⊤d + β⊤b − Z(α,β)
)

,(1.1)

where Z(α,β) is the log-partition function, α = (α1, . . . , αn)
⊤ is a parameter vec-

tor tied to the out-degree sequence, and β = (β1, . . . , βn)
⊤ is a parameter vector

tied to the in-degree sequence. This model can be viewed as a directed version of
the β-model [10]. It can also be represented as the log-linear model [16–18] and
the algorithm developed for the log-linear model can be used to compute the MLE.
As explained by [26], αi quantifies the effect of an outgoing edge from vertex i and
βj quantifies the effect of an incoming edge connecting to vertex j . If αi is large
and positive, vertex i will tend to have a relatively large out-degree. Similarly, if
βj is large and positive, vertex j tends to have a relatively large in-degree. Note
that

exp
(

α⊤d + β⊤b
)

= exp

(

n
∑

i,j=1;i �=j

(αi + βj )ai,j

)

(1.2)

=
n

∏

i,j=1;i �=j

exp
(

(αi + βj )ai,j

)

,

which implies that the n(n−1) random variables ai,j , i �= j are mutually indepen-
dent and Z(α,β) can be expressed as

Z(α,β) =
∑

i �=j

Z1(αi + βj ) :=
∑

i �=j

log
∫

�
exp

(

(αi + βj )ai,j

)

ν(dai,j ).(1.3)

Since an out-edge from vertex i pointing to j is the in-edge of j coming from i, it
is immediate that

n
∑

i=1

di =
n

∑

j=1

bj .

Moreover, since the sample is just one realization of the random graph, the density
or probability mass function (1.1) is also the likelihood function. Note that if one
transforms (α,β) to (α − c,β + c), the likelihood does not change. Therefore, for
identifiability, constraints on α or β are necessary. In this paper, we choose to set
βn = 0. Other constraints are also possible, for example,

∑

i αi = 0 or
∑

j βj = 0.
In total, there are 2n − 1 independent parameters and the natural parameter space
becomes

� =
{

(α1, . . . , αn, β1, . . . , βn−1)
⊤ ∈ R2n−1 : Z(α,β) < ∞

}

.
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Note that model (1.1) can serve as the null model for hypothesis testing, for ex-
ample, [17, 26], or be used to reconstruct directed networks and make statistical
inference in a situation in which only the bi-degree sequence is available due to
privacy consideration [24]. Moreover, many complex directed network models re-
ply on the bi-degree sequences, indirectly or directly. Thus, model (1.1) can be
used for preliminary analysis of network data for choosing suitable statistics in
describing network configurations, for example, [41].

It is worth to note that the above discussions only consider independent edges.
Exponential random graph models (ERGMs), sometimes referred as exponential-
family random graph models, for example, [27, 44], can be more general. If depen-
dent network configurations such as k-stars and triangles are included as sufficient
statistics, then edges are not independent and such models incur “near-degeneracy”
in the sense of [23], in which almost all realized graphs essentially either contain
no edges or are complete [9, 23, 44]. It has been shown in [9] that most real-
izations from many ERGMs look similar to the results of a simple Erdős–Rényi
model, which implies that many distinct models have essentially the same MLE,
and it was also proved and characterized in [9] the degeneracy observed in the
ERGM with the counts of edges and triangles as the exclusively sufficient statis-
tics. Further, by assuming a finite dimension of the parameter space, it was shown
in [45] that the MLE is not consistent in the ERGM when the sufficient statistics
involve k-stars, triangles and motifs of k-nodes (k ≥ 2), while it is consistent when
edges are dyadic independent. In view of the model degeneracy and problematic
properties of estimators in the ERGM for dependent network configurations, we
choose not to consider dependent edges in this paper.

For the remainder of the paper, we proceed as follows. In Section 2, we first
introduce notation and key technical propositions that will be used in the proofs.
We establish asymptotic results in the cases of binary weights, continuous weights
and discrete weights in Sections 2.2, 2.3 and 2.4, respectively. Simulation studies
are presented in Section 3. We further discuss the results in Section 4. Since the
technical proofs in Sections 2.3 and 2.4 are similar to those in Section 2.2, we show
the proofs for the theorems in Section 2.2 in the Appendix, while the proofs for
Sections 2.3 and 2.4, as well as those for Proposition 1, Theorem 7 and Lemmas 2
and 3 in Section 2.2 are relegated to the Online Supplementary Material [51].

2. Main results.

2.1. Notation and preparations. Let R+ = (0,∞), R0 = [0,∞), N =

{1,2, . . .}, N0 = {0,1,2, . . .}. For a subset C ⊂ R
n, let C0 and C denote the inte-

rior and closure of C, respectively. For a vector x = (x1, . . . , xn)
⊤ ∈ Rn, denote

by ‖x‖∞ = max1≤i≤n |xi |, the ℓ∞-norm of x. For an n × n matrix J = (Ji,j ), let
‖J‖∞ denote the matrix norm induced by the ℓ∞-norm on vectors in R

n, that is,

‖J‖∞ = max
x�=0

‖Jx‖∞

‖x‖∞
= max

1≤i≤n

n
∑

j=1

|Ji,j |.
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In order to characterize the Fisher information matrix, we introduce a class of
matrices. Given two positive numbers m and M with M ≥ m > 0, we say the (2n−

1) × (2n − 1) matrix V = (vi,j ) belongs to the class Ln(m,M) if the following
holds:

m ≤ vi,i −
2n−1
∑

j=n+1

vi,j ≤ M, i = 1, . . . , n − 1;

vn,n =
2n−1
∑

j=n+1

vn,j ,

vi,j = 0, i, j = 1, . . . , n, i �= j,

vi,j = 0, i, j = n + 1, . . . ,2n − 1, i �= j,(2.1)

m ≤ vi,j = vj,i ≤ M, i = 1, . . . , n, j = n + 1, . . . ,2n − 1, j �= n + i,

vi,n+i = vn+i,i = 0, i = 1, . . . , n − 1,

vi,i =
n

∑

k=1

vk,i =
n

∑

k=1

vi,k, i = n + 1, . . . ,2n − 1.

Clearly, if V ∈ Ln(m,M), then V is a (2n − 1) × (2n − 1) diagonally dominant,
symmetric nonnegative matrix and V has the following structure:

V =

(

V11 V12

V ⊤
12 V22

)

,

where V11 (n by n) and V22 (n − 1 by n − 1) are diagonal matrices, V12 is a non-
negative matrix whose nondiagonal elements are positive and diagonal elements
equal to zero.

Define v2n,i = vi,2n := vi,i −
∑2n−1

j=1;j �=i vi,j for i = 1, . . . ,2n − 1 and v2n,2n =
∑2n−1

i=1 v2n,i . Then m ≤ v2n,i ≤ M for i = 1, . . . , n − 1, v2n,i = 0 for i = n,n +

1, . . . ,2n − 1 and v2n,2n =
∑n

i=1 vi,2n =
∑n

i=1 v2n,i . We propose to approximate
the inverse of V , V −1, by the matrix S = (si,j ), which is defined as

si,j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δi,j

vi,i

+
1

v2n,2n

, i, j = 1, . . . , n,

−
1

v2n,2n

, i = 1, . . . , n, j = n + 1, . . . ,2n − 1,

−
1

v2n,2n

, i = n + 1, . . . ,2n − 1, j = 1, . . . , n,

δi,j

vi,i

+
1

v2n,2n

, i, j = n + 1, . . . ,2n − 1,
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where δi,j = 1 when i = j and δi,j = 0 when i �= j . Note that S can be rewritten
as

S =

(

S11 S12

S⊤
12 S22

)

,

where S11 = 1/v2n,2n + diag(1/v1,1,1/v2,2, . . . ,1/vn,n), S12 is an n × (n −

1) matrix whose elements are all equal to −1/v2n,2n, and S22 = 1/v2n,2n +

diag(1/vn+1,n+1,1/vn+2,n+2, . . . ,1/v2n−1,2n−1).
To quantify the accuracy of this approximation, we define another matrix norm

‖ · ‖ for a matrix A = (ai,j ) by ‖A‖ := maxi,j |ai,j |. Then we have the following
proposition, whose proof is given in the Online Supplementary Material [51].

PROPOSITION 1. If V ∈ Ln(m,M) with M/m = o(n), then for large

enough n,

∥

∥V −1 − S
∥

∥ ≤
c1M

2

m3(n − 1)2 ,

where c1 is a constant that does not depend on M , m and n.

Note that if M and m are bounded constants, then the upper bound of the above
approximation error is on the order of n−2, indicating that S is a high-accuracy
approximation to V −1. Further, based on the above proposition, we immediately
have the following lemma.

LEMMA 1. If V ∈ Ln(m,M) with M/m = o(n), then for a vector x ∈ R2n−1,
∥

∥V −1x
∥

∥

∞ ≤
∥

∥

(

V −1 − S
)

x
∥

∥

∞ + ‖Sx‖∞

≤
2c1(2n − 1)M2‖x‖∞

m3(n − 1)2 +
|x2n|

v2n,2n

+ max
i=1,...,2n−1

|xi |

vi,i

,

where x2n :=
∑n

i=1 xi −
∑2n−1

i=n+1 xi .

Let θ = (α1, . . . , αn, β1, . . . , βn−1)
⊤ and g = (d1, . . . , dn, b1, . . . , bn−1)

⊤.
Henceforth, we will use V to denote the Fisher information matrix of the parameter
vector θ and show V ∈ Ln(m,M). In the next three subsections, we will analyze
three specific choices of the weight set: � = {0,1}, � =R0, � = N0, respectively.
For each case, we specify the distribution of the edge weights ai,j , the natural
parameter space �, the likelihood equations, and prove the existence, uniqueness,
consistency and asymptotic normality of the MLE. We defer the proofs for the
results in Section 2.2 to the Appendix and all other proofs for Sections 2.3 and 2.4
to the Online Supplementary Material [51].
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2.2. Binary weights. In the case of binary weights, that is, � = {0,1}, ν is
the counting measure, and ai,j , 1 ≤ i �= j ≤ n are mutually independent Bernoulli
random variables with

P(ai,j = 1) =
eαi+βj

1 + eαi+βj
.

The log-partition function Z(θ) is
∑

i �=j log(1 + eαi+βj ) and the likelihood equa-
tions are

di =
n

∑

k=1,k �=i

eα̂i+β̂k

1 + eα̂i+β̂k

, i = 1, . . . , n,

(2.2)

bj =
n

∑

k=1,k �=j

eα̂k+β̂j

1 + eα̂k+β̂j

, j = 1, . . . , n − 1,

where θ̂ = (α̂1, . . . , α̂n, β̂1, . . . , β̂n−1)
⊤ is the MLE of θ and β̂n = 0. Note that in

this case, the likelihood equations are identical to the moment equations.
We first establish the existence and consistency of θ̂ by applying Theorem 7 in

the Appendix. Define a system of functions:

Fi(θ) = di −
n

∑

k=1;k �=i

eαi+βk

1 + eαi+βk
, i = 1, . . . , n,

Fn+j (θ) = bj −
n

∑

k=1;k �=j

eαk+βj

1 + eαk+βj
, j = 1, . . . , n,

F (θ) =
(

F1(θ), . . . ,F2n−1(θ)
)⊤

.

Note the solution to the equation F(θ) = 0 is precisely the MLE. Then the Jacobian
matrix F ′(θ) of F(θ) can be calculated as follows. For i = 1, . . . , n,

∂Fi

∂αl

= 0, l = 1, . . . , n, l �= i;
∂Fi

∂αi

= −
n

∑

k=1;k �=i

eαi+βk

(1 + eαi+βk )2 ,

∂Fi

∂βj

= −
eαi+βj

(1 + eαi+βj )2
, j = 1, . . . , n − 1, j �= i;

∂Fi

∂βi

= 0

and for j = 1, . . . , n − 1,

∂Fn+j

∂αl

= −
eαl+βj

(1 + eαl+βj )2
, l = 1, . . . , n, l �= j ;

∂Fn+j

∂αj

= 0,

∂Fn+j

∂βj

= −
n

∑

k=1;k �=j

eαk+βj

(1 + eαk+βj )2
,

∂Fn+j

∂βl

= 0, l = 1, . . . , n − 1.

First, note that since the Jacobian is diagonally dominant with nonzero diagonals,
it is positive definite, implying that the likelihood function has a unique optimum.



38 T. YAN, C. LENG AND J. ZHU

Second, it is not difficult to verify that −F ′(θ) ∈ Ln(m,M), thus Proposition 1 and
Theorem 7 can be applied. Let θ∗ denote the true parameter vector. The constants
K1, K2 and r in the upper bounds of Theorem 7 are given in the following lemma,
whose proof is given in the Online Supplementary Material [51].

LEMMA 2. Take D = R2n−1 and θ (0) = θ∗ in Theorem 7. Assume

max
{

max
i=1,...,n

∣

∣di −E(di)
∣

∣, max
j=1,...,n

∣

∣bj −E(bj )
∣

∣

}

(2.3)
≤

√

(n − 1) log(n − 1).

Then we can choose the constants K1, K2 and r in Theorem 7 as

K1 = n − 1, K2 =
n − 1

2
, r ≤

(logn)1/2

n1/2

(

c11e
6‖θ∗‖∞ + c12e

2‖θ∗‖∞
)

,

where c11 and c12 are constants.

The following lemma assures that condition (2.3) holds with a large probability,
whose proof is again given in the Online Supplementary Material [51].

LEMMA 3. With probability at least 1 − 4n/(n − 1)2, we have

max
{

max
i

∣

∣di −E(di)
∣

∣,max
j

∣

∣bj −E(bj )
∣

∣

}

≤
√

(n − 1) log(n − 1).

Combining the above two lemmas, we have the result of consistency.

THEOREM 1. Assume that θ∗ ∈ R
2n−1 with ‖θ∗‖∞ ≤ τ logn, where 0 < τ <

1/24 is a constant, and that A ∼ Pθ∗ , where Pθ∗ denotes the probability distribu-

tion (1.1) on A under the parameter θ∗. Then as n goes to infinity, with probability

approaching one, the MLE θ̂ exists and satisfies

∥

∥θ̂ − θ∗
∥

∥

∞ = Op

(

(logn)1/2e8‖θ∗‖∞

n1/2

)

= op(1).

Further, if the MLE exists, it is unique.

Next, we establish asymptotic normality of θ̂ and outline the main ideas in the
following. Let ℓ(θ;A) =

∑n
i=1 αidi +

∑n−1
j=1 βjbj −

∑

i �=j log(1 + eαi+βj ) denote
the log-likelihood function of the parameter vector θ given the sample A. Note that
F ′(θ) = ∂2ℓ/∂θ2, and V = −F ′(θ) is the Fisher information matrix of the param-
eter vector θ . Clearly, θ̂ does not have an explicit expression according to the sys-
tem of likelihood equations (2.2). However, if θ̂ can be approximately represented
as a function of g = (d1, . . . , dn, b1, . . . , bn−1)

⊤ with an explicit expression, then
the central limit theorem for θ̂ immediately follows by noting that under certain
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regularity conditions
gi −E(gi)

v
1/2
i,i

→ N(0,1), n → ∞,

where gi denotes the ith element of g. The identity between the likelihood equa-
tions and the moment equations provides such a possibility. Specifically, if we
apply Taylor’s expansion to each component of g − E(g), the second-order term
in the expansion is V (θ̂ − θ), which implies that obtaining an expression of θ̂ − θ

crucially depends on the inverse of V . Note that V = −F ′(θ) ∈ Ln(m,M) accord-
ing to the previous calculation. Although V −1 does not have a closed form, we
can use S to approximate it and Proposition 1 establishes an upper bound on the
error of this approximation, which is on the order of n−2 if M and m are bounded
constants.

Regarding the asymptotic normality of gi − E(gi), we note that both di =
∑

k �=i ai,k and bj =
∑

k �=j ak,j are sums of n − 1 independent Bernoulli random
variables. By the central limit theorem for the bounded case in [31], page 289, we
know that v

−1/2
i,i (di − E(di)) and v

−1/2
n+j,n+j (bj − E(bj )) are asymptotically stan-

dard normal if vi,i diverges. Since ex/(1 + ex)2 is an increasing function on x

when x ≥ 0 and a decreasing function when x ≤ 0, we have

(n − 1)e2‖θ∗‖∞

(1 + e2‖θ∗‖∞)2
≤ vi,i ≤

n − 1

4
, i = 1, . . . ,2n.

In all, we have the following proposition.

PROPOSITION 2. Assume that A ∼ Pθ∗ . If e‖θ∗‖∞ = o(n1/2), then for any fixed

k ≥ 1, as n → ∞, the vector consisting of the first k elements of S{g − E(g)} is

asymptotically multivariate normal with mean zero and covariance matrix given

by the upper left k × k block of S.

The central limit theorem is stated in the following and proved by establishing
a relationship between θ̂ − θ and S{g −E(g)} (see details in the Appendix and the
Online Supplementary Material [51]).

THEOREM 2. Assume that A ∼ Pθ∗ . If ‖θ∗‖∞ ≤ τ logn, where τ ∈ (0,1/44)

is a constant, then for any fixed k ≥ 1, as n → ∞, the vector consisting of the

first k elements of (θ̂ − θ∗) is asymptotically multivariate normal with mean 0 and

covariance matrix given by the upper left k × k block of S.

REMARK 1. By Theorem 2, for any fixed i, as n → ∞, the convergence rate
of θ̂i is 1/v

1/2
i,i . Since (n−1)e−2‖θ∗‖∞/4 ≤ vi,i ≤ (n−1)/4, the rate of convergence

is between O(n−1/2e‖θ∗‖∞) and O(n−1/2).

In this subsection, we have presented the main ideas to prove the consistency
and asymptotic normality of the MLE for the case of binary weights. In the next
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two subsections, we apply similar ideas to the cases of continuous and discrete
weights, respectively.

2.3. Continuous weights. Another important case of model (1.1) is when the
weight of the edge is continuous. For example, in communication networks, if an
edge denotes the talking time between two people in a telephone network, then its
weight is continuous. In the case of continuous weights, that is, � = [0,∞), ν is
the Borel measure and ai,j , 1 ≤ i �= j ≤ n are mutually independent exponential
random variables with the density

fθ (a) =
1

−(αi + βj )
e(αi+βj )a, αi + βj < 0,

and the natural parameter space is

� = {θ : αi + βj < 0}.

To follow the tradition that the rate parameters are positive in exponential families,
we take the transformation θ̄ = −θ , ᾱi = −αi and β̄j = −βj . The corresponding
natural parameter space then becomes

� = {θ̄ : ᾱi + β̄j > 0}.

Here, we denote by θ̂ the MLE of θ̄ . The log-partition Z(θ̄) is
∑

i �=j log(ᾱi + β̄j )

and the likelihood equations are

di =
n

∑

k=1;k �=i

(α̂i + β̂k)
−1, i = 1, . . . , n,

(2.4)

bj =
n

∑

k=1;k �=j

(α̂k + β̂j )
−1, j = 1, . . . , n.

Similar to Section 2.2, we define a system of functions:

Fi(θ̄) = di −
∑

k �=i

(ᾱi + β̄k)
−1, i = 1, . . . , n,

Fn+j (θ̄) = bj −
∑

k �=j

(ᾱk + β̄j )
−1, j = 1, . . . , n − 1,

F (θ̄) =
(

F1(θ̄), . . . ,F2n−1(θ̄)
)⊤

.

The solution to the equation F(θ̄) = 0 is the MLE, and the Jacobian matrix F ′(θ̄)

of F(θ̄) can be calculated as follows. For i = 1, . . . , n,

∂Fi

∂ᾱl

= 0, l = 1, . . . , n, l �= i;
∂Fi

∂ᾱi

=
∑

k �=i

1

(ᾱi + β̄k)2
,

∂Fi

∂β̄j

=
1

(ᾱi + β̄j )2
, j = 1, . . . , n − 1, j �= i;

∂Fi

∂β̄i

= 0,
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and for j = 1, . . . , n − 1,

∂Fn+j

∂ᾱl

=
1

(ᾱl + β̄j )2
, l = 1, . . . , n, l �= j ;

∂Fn+j

∂ᾱj

= 0,

∂Fn+j

∂β̄j

=
∑

k �=j

1

(ᾱj + β̄j )2
;

∂Fn+j

∂β̄l

= 0, l = 1, . . . , n − 1, l �= j.

It is not difficult to see that F ′(θ̄
∗
) ∈ Ln(m,M) such that Proposition 1 can be

applied, and the constants in the upper bounds of Theorem 7 are given in the fol-
lowing lemma.

LEMMA 4. Assume that θ̄
∗

satisfies qn ≤ ᾱ∗
i + β̄∗

j ≤ Qn for any 1 ≤ i �= j ≤ n

and

max
{

max
i=1,...,n

∣

∣di −E(di)
∣

∣, max
j=1,...,n

∣

∣bj −E(bj )
∣

∣

}

≤

√

8(n − 1) logn

γ q2
n

,(2.5)

where γ is an absolute constant. Then we have

r =
∥

∥

[

F ′(θ̄
∗)]−1

F
(

θ̄
∗)

∥

∥

∞ ≤

(

2c1Q
6
n

nq4
n

+
1

(n − 1)q2
n

)

√

8(n − 1) logn

γ q2
n

.

Further, take θ̄
(0)

= θ̄
∗

and D = �(θ̄
∗
,2r) in Theorem 7, that is, an open ball

{θ : ‖θ − θ̄
∗
‖∞ < 2r}. If qn−4r > 0, then we can choose K1 = 2(n−1)/(qn−4r)3

and K2 = (n − 1)/(qn − 4r)3.

The following lemma assures condition (2.5) holds with a large probability.

LEMMA 5. With probability at least 1 − 4/n, we have

max
{

max
i

∣

∣di −E(di)
∣

∣,max
j

∣

∣bj −E(bj )
∣

∣

}

≤

√

8(n − 1) logn

γ q2
n

.

Combining the above two lemmas, we have the result of consistency.

THEOREM 3. Assume that θ̄
∗

satisfies qn ≤ ᾱ∗
i + β̄∗

j ≤ Qn and A ∼ P
θ̄

∗ . If

Qn/qn = o{(n/ logn)1/18}, then as n goes to infinity, with probability approaching

one, the MLE θ̂ exists and satisfies

∥

∥θ̂ − θ̄
∗∥

∥

∞ = Op

(

Q9
n(logn)1/2

n1/2q9
n

)

= op(1).

Further, if the MLE exists, it is unique.
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Again, note that both di =
∑

k �=i ai,k and bj =
∑

k �=j ak,j are sums of n−1 inde-

pendent exponential random variables, and V = F ′(θ̄
∗
) ∈ Ln(m,M) is the Fisher

information matrix of θ̄ . It is not difficult to show that the third moment of the
exponential random variable with rate parameter λ is 6λ−3. Under the assumption
of 0 < qn ≤ ᾱ∗

i + β̄∗
j ≤ Qn, we have

∑n
j=1;j �=i E(a3

i,j )

v
3/2
i,i

=
6

∑n
j=1;j �=i(ᾱ

∗
i + β̄∗

j )−1

v
1/2
i,i

≤
6Qn/qn

(n − 1)1/2 for i = 1, . . . , n

and
∑n

i=1;i �=j E(a3
i,j )

v
3/2
n+j,n+j

=
6

∑n
i=1;i �=j (ᾱ

∗
i + β̄∗

j )−1

v
1/2
n+j,n+j

≤
6Qn/qn

(n − 1)1/2 for j = 1, . . . , n.

Note that if Qn/qn = o(n1/2), the above expression goes to zero. This implies
that the condition for the Lyapunov’s central limit theorem holds. Therefore,
v

−1/2
i,i (di − E(di)) is asymptotically standard normal if Qn/qn = o(n1/2). Simi-

larly, v
−1/2
n+j,n+j (bj −E(bj )) is also asymptotically standard normal under the same

condition. Noting that [S(g −E(g))]i = v−1
i,i (gi −E(gi))+ v−1

2n,2n(bn −E(bn)), we
have the following proposition.

PROPOSITION 3. If Qn/qn = o(n1/2), then for any fixed k ≥ 1, as n → ∞,
the vector consisting of the first k elements of S(g − E(g)) is asymptotically mul-

tivariate normal with mean zero and covariance matrix given by the upper k × k

block of the matrix S.

By establishing a relationship between θ̂ − θ̄
∗

and S{g − E(g)}, we have the
central limit theorem for the MLE θ̂ .

THEOREM 4. If Qn/qn = o(n1/50/(logn)1/25), then for any fixed k ≥ 1, as

n → ∞, the vector consisting of the first k elements of θ̂ − θ̄
∗

is asymptotically

multivariate normal with mean zero and covariance matrix given by the upper

k × k block of the matrix S.

REMARK 2. By Theorem 4, for any fixed i, as n → ∞, the convergence rate
of θ̂i is 1/v

1/2
i,i . Since (n − 1)/Q2

n ≤ vi,i ≤ (n − 1)/q2
n , the rate of convergence is

between O(n−1/2Qn) and O(n−1/2qn).

2.4. Discrete weights. In the case of discrete weights, that is, � = N0, ν is
the counting measure and ai,j , 1 ≤ i �= j ≤ n are mutually independent geometric
random variables with the probability mass function

P(ai,j = a) =
(

1 − e(αi+βj ))e(αi+βj )a, a = 0,1,2, . . . ,
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where αi + βj < 0. The natural parameter space is � = {θ : αi + βj < 0}. Again,
we take the transformation θ̄ = −θ , ᾱi = −αi and β̄j = −βj , and the correspond-
ing natural parameter space becomes

� = {θ̄ : ᾱi + β̄j > 0}.

The log-partition Z(θ̄) is
∑

i �=j log(1 − e−(ᾱi+β̄j )) and the likelihood equations
are

di =
∑

k �=i

e−(α̂i+β̂k)

1 − e−(α̂i+β̂k)
=

∑

k �=i

1

e(α̂i+β̂k) − 1
, i = 1, . . . , n,(2.6)

bj =
∑

k �=j

e−(α̂k+β̂j )

1 − e−(α̂k+β̂j )
=

∑

k �=j

1

e(α̂k+β̂j ) − 1
, j = 1, . . . , n − 1.(2.7)

We first establish the existence and consistency of θ̂ by applying Theorem 7.
Define a system of functions:

Fi(θ̄) = di −
∑

k �=i

1

e(ᾱi+β̄k) − 1
, i = 1, . . . , n,

Fn+j (θ̄) = bj −
∑

k �=j

1

e(ᾱk+β̄j ) − 1
, j = 1, . . . , n,

F (θ̄) =
(

F1(θ̄), . . . ,F2n−1(θ̄)
)⊤

.

The solution to the equation F(θ̄) = 0 is the MLE, and the Jacobian matrix F ′(θ̄)

of F(θ̄) can be calculated as follows: for i = 1, . . . , n,

∂Fi

∂ᾱl

= 0, l = 1, . . . , n, l �= i;
∂Fi

∂ᾱi

=
n

∑

k=1;k �=i

e(ᾱi+β̄k) − 1

(e(ᾱi+β̄k) − 1)2
,

∂Fi

∂β̄j

=
e(ᾱi+β̄j ) − 1

(e(ᾱi+β̄j ) − 1)2
, j = 1, . . . , n − 1, j �= i;

∂Fi

∂β̄i

= 0,

and for j = 1, . . . , n − 1,

∂Fn+j

∂ᾱl

=
e(ᾱl+β̄j ) − 1

[e(ᾱl+β̄j ) − 1]2
, l = 1, . . . , n, l �= j ;

∂Fn+j

∂ᾱj

= 0,

∂Fn+j

∂β̄j

=
∑

k �=j

e(ᾱk+β̄j ) − 1

[e(ᾱk+β̄j ) − 1]2
;

∂Fn+j

∂β̄l

= 0, l = 1, . . . , n − 1, l �= j.

Let θ̄
∗

be the true parameter vector. It is not difficult to see F ′(θ̄
∗
) ∈ Ln(m,M) so

that Proposition 1 can be applied. The constants in the upper bounds of Theorem 7
are given in the following lemma.
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LEMMA 6. Assume that θ̄
∗

satisfies qn ≤ ᾱ∗
i + β̄∗

j ≤ Qn for all i �= j , A ∼ P
θ̄

∗

and

max
{

max
i=1,...,n

∣

∣di −E(di)
∣

∣, max
j=1,...,n

∣

∣bj −E(bj )
∣

∣

}

≤

√

8(n − 1) logn

γ q2
n

,(2.8)

where γ is an absolute constant. Then we have

r =
∥

∥

[

F ′(θ̄
∗)]−1

F
(

θ̄
∗)∥

∥

∞ ≤ O

(

q−1
n

(

e3Qn
(

1 + q−4
n

)

+ eQn
)

√

logn

n

)

.

Further, take θ̄
(0)

= θ̄
∗

and D = �(θ̄
∗
,2r) in Theorem 7, that is, an open ball

{θ : ‖θ − θ̄
∗
‖∞ < 2r}. If qn −4r > 0, then we can choose K1 = 2(n−1)eqn−4r(1+

eqn−4r)(eqn−4r − 1)−2 and K2 = (n − 1)eqn−4r(1 + eqn−4r)(eqn−4r − 1)−2.

The following lemma assures that the condition in the above lemma holds with
a large probability.

LEMMA 7. With probability at least 1 − 4n/(n − 1)2, we have

max
{

max
i

∣

∣di −E(di)
∣

∣,max
j

∣

∣bj −E(bj )
∣

∣

}

≤

√

8(n − 1) logn

γ q2
n

.

Combining the above two lemmas, we have the result of consistency.

THEOREM 5. Assume that θ̄
∗

satisfies qn ≤ ᾱ∗
i + β̄∗

j ≤ Qn for all i �= j and

A ∼ P
θ̄

∗ . If (1 + q−11
n )e6Qn = o(n1/2/(logn)1/2) then as n goes to infinity, with

probability approaching one, the MLE θ̂ exists and satisfies

∥

∥θ̂ − θ̄
∗∥

∥

∞ = Op

(

e3Qn

(

1 +
1

q5
n

)

√

logn

n

)

= op(1).

Further, if the MLE exists, it is unique.

Note that both di =
∑

j �=i ai,j and bj =
∑

i �=j ai,j are sums of n−1 independent

geometric random variables. Also note that qn ≤ ᾱ∗
i + β̄∗

j ≤ Qn and V = F ′(θ̄
∗
) ∈

Ln(m,M), thus we have

eQn

(eQn − 1)2 ≤ vi,j ≤
eqn

(eqn − 1)2 , i = 1, . . . , n, j = n + 1, . . . ,2n, j �= n + i,

(n − 1)eQn

(eQn − 1)2
≤ vi,i ≤

(n − 1)eqn

(eqn − 1)2
, i = 1, . . . ,2n.
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Using the moment-generating function of the geometric distribution, it is not dif-
ficult to verify that

E
(

a3
i,j

)

=
1 − pi,j

pi,j

+
6(1 − pi,j )

p2
i,j

+
6(1 − pi,j )

2

p3
i,j

,

where pi,j = 1 − e
−(ᾱ∗

i +β̄∗
j ). By simple calculations, we also have

E
(

a3
i,j

)

= vi,j

(

6 +
e
ᾱ∗

i +β̄∗
j − 1

e
ᾱ∗

i +β̄∗
j

+
6

e
ᾱ∗

i +β̄∗
j − 1

)

.

It then follows
∑

j �=i E(a3
i,j )

v
3/2
i,i

≤
7 + 6(eqn − 1)−1

v
1/2
i,i

≤
[7 + 6(eqn − 1)−1](eQn − 1)

n1/2eQn/2 .

Note that if eQn/2/qn = o(n1/2), the above expression goes to zero, which implies
that the condition for the Lyapunov’s central limit theorem holds. Therefore, for
i = 1, . . . , n, v

−1/2
i,i (di − E(di)) is asymptotically standard normal if eQn/2/qn =

o(n1/2). Similarly, for i = 1, . . . , n, v
−1/2
n+i,n+i(bi − E(bi)) is also asymptotically

standard normal if eQn/2/qn = o(n1/2). Therefore, we have the following proposi-
tion.

PROPOSITION 4. If eQn/2/qn = o(n1/2), then for any fixed k ≥ 1, as n →
∞, the vector consisting of the first k elements of S{g − E(g)} is asymptotically

multivariate normal with mean zero and covariance matrix given by the upper

k × k block of the matrix S.

The central limit theorem for the MLE θ̂ is stated as follows.

THEOREM 6. If e9Qn(1 + q−15
n ) = o{n1/2/ logn}, then for any fixed k ≥ 1, as

n → ∞, the vector consisting of the first k elements of θ̂ − θ̄∗ is asymptotically

multivariate normal with mean zero and covariance matrix given by the upper

k × k block of the matrix S.

REMARK 3. By Theorem 6, for any fixed i, as n → ∞, the convergence rate
of θ̂i is 1/v

1/2
i,i . Since (n − 1)eQn(eQn − 1)−2 ≤ vi,i ≤ (n − 1)eqn(eqn − 1)−2, the

rate of convergence is between O(n−1/2eQn/2) and O(n−1/2eqn/2).

Comparison to [21, 22]. It is worth to note that [21] proved uniform consistency
and asymptotic normality of the MLE in the Rasch model for item response the-
ory under the assumption that all unknown parameters are bounded by a constant.
Further, Haberman ([22], page 60) wrote that “Since Holland and Leinhardt’s p1
model is an example of an exponential response model. . . ” and “The situation
in the Holland–Leinhardt model is very similar, for their model under ρ = 0 is
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mathematically equivalent to the incomplete Rasch model with g = h and Xii un-
observed.” Consequently, it was claimed that the method in [21] can be extended
to derive the consistency and asymptotic normality of the MLE of the p1 model
without reciprocity, but a formal proof was not given. However, these conclusions
seem premature due to the following reasons. First, in an item response experi-
ment, a total of g people give answers (0 or 1) to a total of h items. The outcomes
of the experiment naturally form a bipartite undirected graph, for example, [7],
while model (1.1) is directed. Second, each vertex in the Rasch model is only
assigned one parameter measuring either the out-degree effect for people or the in-
degree effect for items, while there are two parameters in model (1.1), one for the
in-degree and the other for the out-degree, for each vertex simultaneously. There-
fore, model (1.1) cannot be simply viewed as an equivalent Rasch model. We also
note that [19] pointed out that the Rasch model can be considered as the Bradley–
Terry model [8] for incomplete paired comparisons, for which [46] proved uni-
form consistency and asymptotic normality for the MLE with a diverging number
of parameters. Third, in contrast to the proofs in [21], our methods utilize an ap-
proximate inverse of the Fisher information matrix, requiring no upper bound on
the parameters, while the methods in [21] were based on the classical exponential
family theory of [4, 5]. Therefore, we conjecture that the methods in [21] cannot
be extended to study the model in (1.1).

3. Simulation studies. In this section, we evaluate the asymptotic results for
model (1.1) through numerical simulations. The settings of parameter values take
a linear form. Specifically, for the case with binary weights, we set α∗

i+1 = (n −

1 − i)L/(n − 1) for i = 0, . . . , n − 1; for the case with discrete weights, we set
ᾱ∗

i+1 = 0.2+(n−1−i)L/(n−1) for i = 0, . . . , n−1. In both cases, we considered
four different values for L, L = 0, log(logn), (logn)1/2 and logn, respectively.
For the case with continuous weights, we set ᾱ∗

i+1 = 1 + (n − 1 − i)L/(n − 1)

for i = 0, . . . , n − 1 and also four values of L are considered: L = 0, log(log(n)),
log(n) and n1/2. For the parameter values of β̄ , let β̄∗

i = ᾱ∗
i , i = 1, . . . , n − 1 for

simplicity and β̄∗
n = 0 by default.

Note that by Theorems 2, 4 and 6, ξ̂i,j = [α̂i − α̂j − (ᾱ∗
i − ᾱ∗

j )]/(1/v̂i,i +

1/v̂j,j )
1/2, ζ̂i,j = (α̂i + β̂j − ᾱ∗

i − β̄∗
j )/(1/v̂i,i + 1/v̂n+j,n+j )

1/2, and η̂i,j =

[β̂i − β̂j − (β̄∗
i − β̄∗

j )]/(1/v̂n+i,n+i + 1/v̂n+j,n+j )
1/2 are all asymptotically dis-

tributed as standard normal random variables, where v̂i,i is the estimate of vi,i by
replacing θ̄∗ with θ̂ . Therefore, we assess the asymptotic normality of ξ̂i,j , ζ̂i,j and
η̂i,j using the quantile–quantile (QQ) plot. Further, we also record the coverage
probability of the 95% confidence interval, the length of the confidence interval
and the frequency that the MLE does not exist. The results for ξ̂i,j , ζ̂i,j and η̂i,j

are similar, thus only the results of ξ̂i,j are reported. Each simulation is repeated
10,000 times.
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We consider two values for n, n = 100 and 200 and find that the QQ-plots for
them are similar. Therefore, we only show the QQ-plots when n = 200 in Figure 1
to save space. In this figure, the horizontal and vertical axes are the theoretical and
empirical quantiles, respectively, and the straight lines correspond to the reference
line y = x. In Figure 1(b), we can see that when the weights are continuous and
L = logn and n1/2, the empirical quantiles coincide with the theoretical ones very
well [the QQ-plots when L = 0 and log(logn) are similar to those of L = logn and
not shown]. On the other hand, for binary and discrete weights, when L = 0 and
log(logn), the empirical quantiles agree well with the theoretical ones while there
are notable deviations when L = (logn)1/2; again, to save space, the QQ-plots for
L = 0 in the case of binary weights and for L = log(logn) in the case of discrete
weights are not shown. When L = logn, the MLE did not exist in all repetitions
(see Table 1, thus the corresponding QQ-plot could not be shown).

Table 1 reports the coverage probability of the 95% confidence interval for
αi − αj , the length of the confidence interval, and the frequency that the MLE
did not exist. As we can see, the length of the confidence interval increases as L

increases and decreases as n increases, which qualitatively agree with the theory. In
the case of continuous weights, the coverage frequencies are all close to the nom-
inal level, while in the case of binary and discrete weights, when L = (logn)1/2

(conditions in Theorem 6 no longer hold), the MLE often does not exist and the
coverage frequencies for the (1,2) pair are higher than the nominal level; when
L = logn, the MLE did not exist in any of the repetitions.

4. Summary and discussion. In this paper, we have derived the uniform con-
sistency and asymptotic normality of MLEs in the directed ERGM with the bi-
degree sequence as the sufficient statistics; the edge weights are allowed to be
binary, continuous or infinitely discrete and the number of vertices goes to infinity.
In this class of models, a remarkable characterization is that the Fisher information
matrix of the parameter vector is symmetric, nonnegative and diagonally dominant
such that an approximately explicit expression of the MLE can be obtained.

In the case of discrete weights, only binary and infinitely countable values have
been considered. In the finite discrete case, we may assume ai,j takes values in the
set � = {0,1, . . . , q − 1}, where q is a fixed constant. By (1.1), it can be shown
that the probability mass function of ai,j is of the form

P(ai,j = a) =
1 − e−(αi+βj )

1 − e−(αi+βj )q
× e−(αi+βj )a, a = 0, . . . , q − 1,

and the likelihood equations become

di =
∑

j �=i

1 − e−(αi+βj )

1 − e−(αi+βj )q

q−1
∑

k=0

e−k(αi+βj ),

bj =
∑

i �=j

(

1

eα̂i+β̂j − 1
−

q

e(α̂i+β̂j )q − 1

)

.
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FIG. 1. The QQ-plots of ξ̂i,j (n = 200). (a) Binary weights. (b) Continuous weights. (c) Infinite

discrete weights.



DIRECTED EXPONENTIAL RANDOM GRAPH MODELS 49

TABLE 1
The reported values are the coverage frequency (×100%) for αi − αj for a pair (i, j)/the length of

the confidence interval/the frequency (×100%) that the MLE did not exist

n (i, j) L = 0 L = log(logn) L = (log(n))1/2 L = log(n)

Binary weights

100 (1,2) 94.81/0.57/0 95.63/0.10/0.30 98.60/1.46/15.86 NA/NA/100
(50,51) 94.78/0.57/0 95.18/0.76/0.30 95.41/0.93/15.86 NA/NA/100
(99,100) 94.87/0.57/0 95.02/0.63/0.30 94.97/0.68/15.86 NA/NA/100

200 (1,2) 95.35/0.40/0 95.50/0.75/0 98.13/1.10/1.02 NA/NA/100
(100,101) 95.03/0.40/0 95.08/0.55/0 95.23/0.68/1.02 NA/NA/100
(199,200) 95.28/0.40/0 95.32/0.45/0 95.26/0.48/1.02 NA/NA/100

Continuous weights

100 (1,2) 95.46/1.12/0 95.32/2.37/0 95.55/4.82/0 95.16/9.09/0
(50,51) 95.28/1.12/0 95.44/1.93/0 95.71/3.48/0 95.51/6.13/0
(99,100) 95.38/1.12/0 95.63/1.50/0 95.81/2.07/0 95.72/2.83/0

200 (1,2) 95.25/0.79/0 95.04/1.74/0 95.42/3.78/0 95.01/8.71/0
(100,101) 95.10/0.79/0 95.21/1.41/0 95.31/2.68/0 95.39/5.73/0
(199,200) 95.53/0.79/0 95.62/1.07/0 95.40/1.52/0 95.21/2.28/0

Discrete weights

100 (1,2) 95.22/0.23/0 96.83/1.98/0.54 99.72/3.29/56.83 NA/NA/100
(50,51) 95.72/0.23/0 95.93/1.15/0.54 96.18/1.66/56.83 NA/NA/100
(99,100) 95.49/0.23/0 95.73/0.52/0.54 95.63/0.61/56.83 NA/NA/100

200 (1,2) 95.08/0.16/0 96.02/1.51/0 98.26/2.56/12.63 NA/NA/100
(100,101) 95.31/0.16/0 95.55/0.87/0 95.43/1.23/12.63 NA/NA/100
(199,200) 95.28/0.16/0 95.54/0.38/0 95.31/0.44/12.63 NA/NA/100

It can be shown that the Fisher information matrix of θ is also in the class of matri-
ces Ln(m,M) under certain conditions. Therefore, except for some more complex
calculations in contrast with the binary case, there is no extra difficulty to show that
the conditions of Theorem 1 hold, and the consistency and asymptotic normality
of the MLE in the finite discrete case can also be established.

It is worth noting that the conditions imposed on qn and Qn may not be best
possible. In particular, the conditions guaranteeing the asymptotic normality seem
stronger than those guaranteeing the consistency. For example, in the case of
continuous weights, the consistency requires Qn/qn = (n/ logn)1/18, while the
asymptotic normality requires Qn/qn = n1/50/(logn)1/25. Simulation studies sug-
gest that the conditions on qn and Qn might be relaxed. We will investigate this in
future studies and note that the asymptotic behavior of the MLE depends not only
on qn and Qn, but also on the configuration of the parameters.

Regarding the p1 model by [26], which is related to model (1.1), one of the key
features of the p1 model is to measure the dyad-dependent reciprocation by the
reciprocity parameter ρ. In the p1 model, there is also another parameter (λ) that
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measures the density of edges, and the sufficient statistic of the density parameter λ

is a linear combination of the in-degrees of vertices and the out-degrees of vertices.
Specifically, the item λ

∑

i �=j ai,j +
∑

i αidi +
∑

j βjbj in the p1 model can be
rewritten as

∑

i(αi +λ+βn)di +
∑

j (βj −βn)bj . Therefore, when there is no reci-
procity parameter ρ, by taking the transformation of parameters α̃i = αi + λ + βn

and β̃j = βj − βn, we obtain the model (1.1). If the reciprocity parameter is in-
corporated into model (1.1), the induced Fisher information matrix is no longer
diagonally dominant and Proposition 1 cannot be applied. However, simulation
results in [52] indicate that the MLEs still enjoy the properties of uniform consis-
tency and asymptotic normality, in which the asymptotic variances of the MLEs
are the corresponding diagonal elements of the inverse of the Fisher information
matrix. In order to extend the current work to study the reciprocity parameter, a
new approximate matrix to the inverse of the Fisher information matrix is needed.
We plan to investigate this problem in further work.

Finally, we note that the results in this paper can be potentially used to test the fit
of the p1 model. For example, the issue of testing the fit of the p1 model has been
discussed in several previous work, including [15, 17, 26, 37], but mostly in heuris-
tic ways. In view of the result in this paper that the MLE enjoys good asymptotic
properties in model (1.1), the conjectures in the above references on the asymp-
totic distribution of the likelihood ratio test for testing the fit of p1 model seem
reasonable. For example, to test H0 : ρ = 0 against H1 : ρ �= 0, the likelihood ratio
test proposed by [26] is likely well approximated by the chi-square distribution
with one degree of freedom.

APPENDIX: PROOFS OF THEOREMS

In this section, we give proofs for the theorems presented in Section 2.

A.1. Preliminaries. We first present the interior mapping theorem of the
mean parameter space, and establish the geometric rate of convergence for the
Newton iterative algorithm to solve a system of likelihood equations that will be
used in this section.

A.1.1. Uniqueness of the MLE. Let σ� be a σ -algebra over the set of weight
values � and ν be a canonical σ -finite probability measure on (�,σ�). In this
paper, ν is the Borel measure in the case of continuous weight and the counting
measure in the case of discrete weight. Denote νn(n−1) by the product measure
on �n(n−1). Let P be all the probability distributions on �(n

2) that are absolutely
continuous with respective to ν(n

2). Define the mean parameter space M to be the
set of expected degree vectors tied to θ from all distributions P ∈ P:

M = {EPg :P ∈ P}.
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Since a convex combination of probability distributions in P is also a probability
distribution in P, the set M is necessarily convex. If there is no linear combina-
tion of the sufficient statistics in an exponential family distribution that is constant,
then the exponential family distribution is minimal. It is true for the probability
distribution (1.1). If the natural parameter space � is open, then P is regular. By
the general theory for a regular and minimal exponential family distribution (The-
orem 3.3 of [49]), the gradient of the log-partition function maps the natural pa-
rameter space � to the interior of the mean parameter space M, and this mapping

∇Z : � →M
◦

is bijective. Note that the solution to ∇Z(θ) = g is precisely the MLE of θ . Thus,
we have established the following.

PROPOSITION 5. Assume � is open. Then there exists a solution θ ∈ � to the

MLE equation ∇Z(θ) = g if and only if g ∈ M◦, and if such a solution exists, it is

also unique.

A.1.2. Newton iterative theorem. Let D be an open convex subset of R2n−1,
�(x, r) denote the open ball {y ∈ R

2n−1 : ‖x − y‖∞ < r} and �(x, r) be its clo-
sure, where x ∈R

2n−1. We will use Newton’s iterative sequence to prove the exis-
tence and consistency of the MLE. Convergence properties of the Newton’s itera-
tive algorithm have been studied by many mathematicians [28, 35, 36, 38, 47]. For
the ad-hoc system of likelihood equations considered in this paper, we establish a
fast geometric rate of convergence for the Newton’s iterative algorithm given in the
following theorem, whose proof is given in Online Supplementary Materials [51].

THEOREM 7. Define a system of equations

Fi(θ) = di −
n

∑

k=1,k �=i

f (αi + βk), i = 1, . . . , n,

Fn+j (θ) = bj −
n

∑

k=1,k �=j

f (αk + βj ), j = 1, . . . , n − 1,

F (θ) =
(

F1(θ), . . . ,Fn(θ),Fn+1(θ), . . . ,F2n−1(θ)
)⊤

,

where f (·) is a continuous function with the third derivative. Let D ⊂ R
2n−1 be a

convex set and assume for any x,y,v ∈ D, we have

∥

∥

[

F ′(x) − F ′(y)
]

v
∥

∥

∞ ≤ K1‖x − y‖∞‖v‖∞,(A.1)

max
i=1,...,2n−1

∥

∥F ′
i (x) − F ′

i (y)
∥

∥

∞ ≤ K2‖x − y‖∞,(A.2)
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where F ′(θ) is the Jacobin matrix of F on θ and F ′
i (θ) is the gradient

function of Fi on θ . Consider θ (0) ∈ D with �(θ (0),2r) ⊂ D, where r =
‖[F ′(θ (0))]−1F(θ (0))‖∞. For any θ ∈ �(θ (0),2r), we assume

F ′(θ) ∈ Ln(m,M) or −F ′(θ) ∈ Ln(m,M).(A.3)

For k = 1,2, . . . , define the Newton iterates θ (k+1) = θ (k) − [F ′(θ (k))]−1F(θ (k)).
Let

ρ =
c1(2n − 1)M2K1

2m3n2 +
K2

(n − 1)m
.(A.4)

If ρr < 1/2, then θ (k) ∈ �(θ (0),2r), k = 1,2, . . . , are well defined and satisfy
∥

∥θ (k+1) − θ (0)
∥

∥

∞ ≤ r/(1 − ρr).(A.5)

Further, limk→∞ θ (k) exists and the limiting point is precisely the solution of

F(θ) = 0 in the range of θ ∈ �(θ (0),2r).

A.2. Proofs of Theorems 1 and 2.

A.2.1. Proof of Theorem 1. Assume that condition (2.3) holds. Recall the
Newton’s iterates θ (k+1) = θ (k) − [F ′(θ (k))]−1F(θ (k)) with θ (0) = θ∗. If θ ∈
�(θ∗,2r), then −F ′(θ) ∈ Ln(m,M) with

M =
1

4
, m =

e2(‖θ∗‖∞+2r)

(1 + e2(‖θ∗‖∞+2r))2
.

If ‖θ∗‖∞ ≤ τ logn with the constant τ satisfying 0 < τ < 1/16, then as n →

∞, n−1/2(logn)1/2e8‖θ∗‖ ≤ n−1/2+8τ (logn)1/2 → 0. By Lemma 2 and condi-
tion (2.3), for sufficiently small r ,

ρr ≤

[

c1(2n − 1)M2(n − 1)

2m3n2 +
(n − 1)

2m(n − 1)

]

×
(logn)1/2

n1/2

(

c11e
6‖θ∗‖∞ + c12e

2‖θ∗‖∞
)

≤ O

(

(logn)1/2e12‖θ∗‖∞

n1/2

)

+ O

(

(logn)1/2e8‖θ∗‖∞

n1/2

)

.

Therefore, if ‖θ∗‖∞ ≤ τ logn, then ρr → 0 as n → ∞. Consequently, by Theo-

rem 7, limn→∞ θ̂
(n)

exists. Denote the limit as θ̂ , then it satisfies

∥

∥θ̂ − θ∗
∥

∥

∞ ≤ 2r = O

(

(logn)1/2e8‖θ∗‖∞

n1/2

)

= o(1).

By Lemma 3, condition (2.3) holds with probability approaching one, thus the
above inequality also holds with probability approaching one. The uniqueness of
the MLE comes from Proposition 5.
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A.2.2. Proof of Theorem 2. Before proving Theorem 2, we first establish two
lemmas.

LEMMA 8. Let R = V −1 − S and U = Cov[R{g −Eg}]. Then

‖U‖ ≤
∥

∥V −1 − S
∥

∥ +
(1 + e2‖θ∗‖∞)4

4e4‖θ∗‖∞(n − 1)2
.(A.6)

PROOF. Note that

U = WV W⊤ =
(

V −1 − S
)

− S(I − V S),

where I is a (2n − 1) × (2n − 1) diagonal matrix, and by inequality (C3) in [51],
we have

∣

∣

{

S(I − V S)
}

i,j

∣

∣ = |wi,j | ≤
3(1 + e2‖θ∗‖∞)4

4e4‖θ∗‖∞(n − 1)2
.

Thus,

‖U‖ ≤
∥

∥V −1 − S
∥

∥ +
∥

∥S(I2n−1 − V S)
∥

∥

≤
∥

∥V −1 − S
∥

∥ +
3(1 + e2‖θ∗‖∞)4

4e4‖θ∗‖∞(n − 1)2
.

�

LEMMA 9. Assume that the conditions in Theorem 1 hold. If ‖θ∗‖∞ ≤ τ logn

and τ < 1/40, then for any i,

θ̂i − θ∗
i =

[

V −1{

g −E(g)
}]

i + op

(

n−1/2)

.(A.7)

PROOF. By Theorem 1, we have

ρ̂n := max
1≤i≤2n−1

∣

∣θ̂i − θ∗
i

∣

∣ = Op

(

(logn)1/2e8‖θ‖∞

n1/2

)

.

Let γ̂i,j = α̂i + β̂j − αi − βj . By Taylor’s expansion, for any 1 ≤ i �= j ≤ n,

eα̂i+β̂j

1 + eα̂i+β̂j

−
e
α∗

i +β∗
j

1 + e
α∗

i +β∗
j

=
e
α∗

i +β∗
j

(1 + e
α∗

i +β∗
j )2

γ̂i,j + hi,j ,

where

hi,j =
e
α∗

i +β∗
j +φi,j γ̂i,j (1 − e

α∗
i +β∗

j +φi,j γ̂i,j )

2(1 + e
α∗

i +β∗
j +φi,j γ̂i,j )3

γ̂ 2
i,j ,

and 0 ≤ φi,j ≤ 1. By the likelihood equations (2.2), we have

g −E(g) = V
(

θ̂ − θ∗)

+ h,
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where h = (h1, . . . , h2n−1)
⊤ and,

hi =
n

∑

k=1,k �=i

hi,k, i = 1, . . . , n,

hn+i =
n

∑

k=1,k �=i

hk,i, i = 1, . . . , n − 1.

Equivalently,

θ̂ − θ∗ = V −1(

g −E(g)
)

+ V −1h.(A.8)

Since |ex(1 − ex)/(1 + ex)3| ≤ 1, we have

|hi,j | ≤
∣

∣γ̂ 2
i,j

∣

∣/2 ≤ 2ρ̂2
n, |hi | ≤

∑

j �=i

|hi,j | ≤ 2(n − 1)ρ̂2
n.

Note that (Sh)i = hi/vi,i + (−1)1{i>n}h2n/v2n,2n, and (V −1h)i = (Sh)i + (Rh)i .
By direct calculations, we have

∣

∣(Sh)i
∣

∣ ≤
|hi |

vi,i

+
|h2n|

v2n,2n

≤
16ρ̂2

n(1 + e2‖θ∗‖∞)2

e2‖θ∗‖∞
≤ O

(

e20‖θ∗‖∞ logn

n

)

,

and by Proposition 1, we have

∣

∣(Rh)i
∣

∣ ≤ ‖R‖∞ ×
[

(2n − 1)max
i

|hi |
]

≤ O

(

e22‖θ∗‖∞ logn

n

)

.

If ‖θ∗‖∞ ≤ τ logn and τ < 1/44, then
∣

∣

(

V −1h
)

i

∣

∣ ≤
∣

∣(Sh)i
∣

∣ +
∣

∣(Rh)i
∣

∣ = o
(

n−1/2)

.

This completes the proof. �

PROOF OF THEOREM 2. By (A.8), we have

(θ̂ − θ)i =
[

S
{

g −E(g)
}]

i +
[

R
{

g −E(g)
}]

i +
(

V −1h
)

i .

By Lemmas 8 and 9, if ‖θ∗‖∞ ≤ τ logn and τ < 1/44, then

(θ̂ − θ)i =
[

S
{

g −E(g)
}]

i + op

(

n−1/2)

.

Therefore, Theorem 2 follows directly from Proposition 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotics in directed exponential random graph mod-

els with an increasing bi-degree sequence.” (DOI: 10.1214/15-AOS1343SUPP;
.pdf). The supplemental material contains proofs for the lemmas in Section 2.2,
the theorems and lemmas in Sections 2.3 and 2.4, Proposition 1 and Theorem 7.
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