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ABSTRACf 

In order statistics sums involving incomplete gamma functions are met. The 

asymptotic behaviour of such sums is studied, going beyond the results obtain­

able by the central limit theorem. 

1. Introduction 

Some colleagues*) of the author have posed the following problem: 

Determine the asymptotic behaviour for ~~oo of the sums 

(1) S (Jl, m, n):= I. /m(Jl, k)(1-/ (~, k)t 
k=O 

(2) T(Jl, m,n):= I. (~_k)/m (~, k)(1-I(jl,k)t 
k=O 

where m and n are positive integers and 

11 

(3) I(Jl,k):=(k!r1 J e-1tkdt (J.t>O,kElNo) 
o 

This problem arose in the study of the expectation and variance of the order statistics in a random 

sample from the Poisson distribution with large mean jl. In section 2 we present the results. A 

brief description of the derivation is given in section 3. The details of the derivation are given in 

sections 4 to 8. 

*) F.W. Steutel and D.A. Overdijk, Department of Mathematics, Eindhoven University of Technology. 
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2. Results 

The sums S and T have the following asymptotic behaviour: 

(4) S(j..L,m,n)=A(m,n)1l1 /2+B(m,n)+O(Il-112) (j..L~oo) , 

(5) T(j..L,m,n) = C (m,n)Il+D (m,n)1l
1/2 + 0 (1) (Il~oo) , 

where 

(6) A (m,n) = -{2 f rex)r(-x)dx , 

(7) B em,n) = -2/3 f xrex)r(-x)dx , 

(8) C (m,n) = -3B (m,n) , 

00 

(9) D (m,n) = -{2 f fm(x)r(-x)( 2/3-x 2)dx , 

and 

x 

(10) f (x):= n-1/2 f e-
s2 

ds (XE IR) . 

Clearly f can be expressed in the errorfunction but formulas (6) to (l0) do not become simpler in 

doing so. Some coefficients are 

(11) A (1,1) = 2A (1,2) = 2A (2,1) = n-1/2 

B (n,n) = 0 (nE IN) 

BO,2)=-B(2,1)=B(1,3) =-B(3,1)= ~ n-1 

DO , l) = 2D (1,2) = 2D l2, 1) = ~ n-1/2 . 
4 

3. Sketch of the derivation 

The results are obtained by taking the following steps. 

(i) The sums are approximated by sums over 1 u-k ISll2l3 with an error of O(e-c ILl/3) (j..L~oo) 

where c is some positive constant. 

(ii) For k E [11- C 11213 , 11 + c 11213 ] the asymptotic behaviour of! (IJ., k) for Il~OO is determined. 

Let x E IR be defined by 

x =kll2lh(llk-l_1) 11!2sgn(ll-k) 
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whereh(s):=-s+log(1+s) (s>-I) . 

Roughly x = ()l-k) (2~r1l2. Then I (~,k) has a complete asymptotic expansion in powers 

of ~-!l2 wich is uniform with respect to x E JR, x = 0 (~1 / 6) ()l~oo). 

I (~, k) =: f (x)-2 112 3-1
1t-

1/2 e-
x2 ~-1 / 2 + .. .. (~~oo), 

where f is defined by (10), i.e. 

I k - ~ I $; CJl2J3 ~ I/C~, k) - {f(x) + e-x
' I. ql(x) ~-1I2} I$; B ~-(N+I)l2 . 

/=1 

Ciii) The sums L are approximated by integrals f ... dk with an error which, for 
I Il-k 1$112/3 1 Il-k 1$112/3 

every positive number r, is 0 C~-r) ()l~oo). Then these integrals are transformed into 

integrals over x and then approximated by integrals J dx with errors of the kind 

4. The truncation of the sum 

The function l()l, k) interpreted as a function of the real variable kE [0,00) is decreasing on [0,00). 

This statement follows from 

Let k$1l-1l2J3:=a. Then substituting t=k(l+s) we have 

I-JCll, k~ 1-1 (ll,a)=(rca+ l)r l e-aa o+1 f eoh(s) ds 
0-'11-1 

where h(s):=-s+log(l+s) . The function h is concave and negative on (-1,00) , whence 

h(s~h(~-I_l) + (s -~a-I + 1) h' (~-I-l) (s~~-I-l). 

It follows that 

0< e-a a o+1 (rca + 1»-1 f e oh (s)ds$e-aa o+1 (rCa+l)rl e oh (a-'Il- I ) Ca h' ~-I-l)rl 
0-'11-1 

Hence, for both of the sums in (1) and (2) 
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3" If) 113 

0< L <11 . 113/2 e -Til = 0 (e-!l ) (Il~oo) 
O:;l6a 

k-' !l-I 

Let k~Il+1l2l3 . Then 1(Il,k)=e-ke+I (r(k+1)r l f ekh(s)ds. Since h(s)::;-1/2s 2 on (-1, 0] 
-I 

we have 

k-'JI-I 

1(11, k)~e-kkk+I(r(k+l)rl f e-I!2ks
2 
ds 

-I 

~e-kkk+l(r(k+1)rl f e-l12ks2 ds 

I-k-'!l 

~ekkk+I(r(k+1))-1 f e-I!2k(l-k-'!l)sds 

I-k-'!l 

~1l-1/6 e-1/2k (j!'I)+lr' (1£8) . 

Hence, for both of the sums 

0< L ~ 11-1/6 L k e-Y2km (j!'I)+lr' ~2jle-1!3m!l'1) (1£8) . 

k2: JI+!l2JJ k2:!l+!l2JJ 

Hence, in both cases 

II) 

L = L +O(e-CJI
) (Il~oo) 

k='J 1!l-kI5!l2JJ 

where c is a positive number. 

5. The incomplete gamma function 

As we have seen already the substitution 

(12) t=k(1+s) 

in the integral representation of 1(Il,k) gives 

k-'JI-l 

(13) 1(Il,k)=(k!rJ e-kk k+1 f ekh(s)ds , 

-I 

where 

(14) h (s):= -s+log (1+s) (s>-1). 

We introduce a new integration variable y by 
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(15) y:=kI!2Ih(s)Il!2sgn(s) (s>-I). 

Then we get 

(16) 

x 

f -/ ds d 
e dy y • 

where 

To study the transfonnation (15) we introduce first in (13) 

(18) -r=lh(s)Il!2sgn (s) . 

Then 

(19) {2 't=S(1-2/3s+2/4s2_2/5s 3+ .... )!l2 (lskI) • 

=s-l/3s 2+7/36s 3+. .. (Is I <1) • 

the radius of convergence being one since h (s)/s2 has no zeros inside the unit circle. By the 

Bunnann-Lagrange theorem we can expand s as a powerseries in • wil11 a positive radius of con­

vergence, say p. 

We calculate 

(20) 

(21) 

The transfonnation (18) changes the integral (13) into 

(22) 
ds 
-d. 
d. 

We shall study the asymptotic behaviour of this integral for k~oo and fixed XE JR. Therefore we 

shall denote the right hand of (22) by J(x.k) . 

In order to use (21) we must truncate the interval of integration. Now it is easily shown that 

where c is a positive number. 

Inside the circle 1.1$1!2p the powerseries in (21) is also an asymptotic series. i.e. for every 

NE IN we have 
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(23) 
ds,- .J2 2 3 N-I N - = \/2 + 4/3. + -. -8/135. + ... +CN-I T +0 ('r) (I. I~ 1/2p) 
d. 6 

Hence 

(24) [-(x.k) -- (k 1.)-le-kkk+1 f -h?(-'-2+ 4 + + N-l+O (-N»d e \1') - •. .. . CN-IT T · . 

l'tISl/2p,'t<k-I12x 3 

Now we change the lower bound imo -00 and. evenuaUy. the upper bound into k-l/2x. thereby 

making an error of the kind o (e-
cktr3

) (k~oo) uniformly inxE JR. 

Then we substitute 't=k-1I2y and we get 

(25) 

kIf) 

+0 (e-C ) (k~oo) uniformly inXE fR. 

x 

Since f e-i 0 (k-
N/2

y N) dy = 0 (k-
N/2

) (k~oo) uniformly in XE JR. we have 

(26) i(x,k)=.JJJ%l 
{2; 

uniformly in XE JR. where 

Hence 

N-I 

x 

f e-i (.J2+4/3r I/2y+ '" +CN_Ir(N-I)IZy N-I) dy 

(28) i(x.k)=g (k) L cJ/(X)k-1!2+0(k-N1Z ) (k~oo) uniformly in XE JR. 
1=0 

where the c/s are given by (21) and 

;c 

(29) !i(x):=(21tr I /2 f / e-i dy (IE IN 0) . 
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Integration by parts gives 

where lis defined by (10) and 

l (l-I)!~ 
(31) PI(X):=-r3/21t-II2r( 1+1 ) L (r( 1+1 -s))-I XI-I-2s (IE IN) . 

2 s=O 2 

Letting x~oo we find thatfJ(oo)=O if 1 is odd andfJ(oo)=r( 1;1 )(21tr l12 if 1 is even. 

Since lim I (j.t,k)=1 we get the asymptotic series for (g (k»-I by letting x~oo in (28). We have 
11~00 

00 

(32) 1::: g (k) LClfJ(oo)rI/2 (k~oo) . 
1=0 

Comparing (28) (30) and (32) we see that the factor with which I (x) occurs in (28) has the same 

asymptotic expansion as the factor g (k) in (32). Hence 

_ 00 2 

(33) l(x,k»:::/(x)+g(k) LCle-x PI(x)k-1I2 (k~oo)uniformlyinxE JR. 
1=1 

(i.e. after truncation the (absolute) error is smaller than C k-(N+I)/2 with C independent of x). 

According to the results of section 4 we restrict ourselves to values of kE [j.1-1l2J3 , ~l+1l2J3]. Then 

x=o (1l1l6
) (Il~oo). 

In order to get an asymptotic series for I (Il,k) for Il~OO we have to express k as a function of Il 

and x. From (17) we have kh(jlk-l_ l )=-x2
, sgnx=sgn(ll-k). Putting k=Il(1-'I') and 1l-1/2X=z we 

get 

(34) 'I'+(1-'I')10g(1-'I')=z2 

whence 

(35) 

Then 

(36) 

By the Biirmann-Lagrance inversion theorem there is a postive number r such that 
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(37) 'II- 'Ldiz
i 

(I z I <,) . 
i=1 

Hence 

00 

(38) k=J.l,- 'Ldi~l-iI2X' (Ix I <,--{;). 
i=1 

Clearly. for Jl sufficiently large. x is within the range of convergence since x=O CJl1/6) CJl~oo). 

A few coefficients di are calculated. 

(39) 

We need also expansions for k-l!2 • k-1 and k-3/2 : 

Clearly. there is a positive number '0 such that for all ae U? the function O-'Jlf has a power­

series expansion in z which converges for I z I <'0; if 

00 

(40) O-'JIf= 'La/a)zi (I z 1<'0) 
)=0 

then 

00 

(41) ka=~a(l-'JIf= 'La/a)~a-'/2xj (Ix I <'0 ~1I2) . 
)=0 

We calculate 

(42) 

(43) 

(44) 

k- l12 = ~-1I2+Tl/2~-1 x+-.LJl-3/2x 2+ 13 {2 Jl-2x 3+ ... 
12 36 

k-l=Jl-l+2112~-3/2x+5/3~-2X2+ . .. 

k-312= ~-312+3.2-1 / 2~-2x+ ... 

An asymptotic expansion for g (k) can be detcnnined from (32). 

00 

(45) g(k) ::: 'Lg,k-'12 (k~oo) 

'=0 

Some coefficients g, are 

(46) go=1.g 2=-1I12andg,=Oif l=odd. 

Substituting (46) into (33) and then using (41) we get a complete asymptotic series for I CJl.k) . 
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(47) I (JJ.,k) =f (x)+e-
x2 L ql(X)Il-1I2 (JJ.~oo) 

1=1 

The ql's are polynominals. We calculate 

(48) 

(49) 

q 1 (x)=-21I2rl7t-1/2 

Q2(X)=-2.-7t-
I12 x 

12 

6. The replacement of the sum by an integral 

We have already 

v-

(50) ! I (ll,k)=(r(k+l)r2 5 dt f e-I-t (t'T/log(t'T-J)d'T 
o 0 

By induction one can prove easily that 

(51 ) d
l

l/ (Il,k)=(r(k+1))-I-l {dt J 
dk 0 0 

where the functions L('To,'Tj, .. . ,'TI) are defined by 

(52) L('To) =1 

With methods simular to those used in the treatment of I (Il ,k ) in section 5 we can prove easily 

that 

(54) 

Furthermore, if we restrict ourselves to values of k such that IIl-k 1$;11213
, then the integrals in 

)1 )1+2v-213 )1+2v-213 

(51) can be replaced by J J. . . f 
v-- 2v-213 )1+2v-213 v--2v-2Il 

II) 

with an error of the kind 0 (e-CV- ) (JJ.~oo) . 

Then it follows from (51) that for IIl-k 1$;112/3 

(55) 
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From (52) and (53) it follows that 

[ 
J.I.+21l2l3ll+1 

M1+1::;M1log 213 (LEINO), 
Jl-2Jl 

whence, by (54) and (55), we have for all kE IN 

(56) I d
l

l 
1 (J.!,k) I =0 (Jl-1i3) (Jl~oo) (LE INa). 

dk 

Now we apply the Euler-Maclaurin sumformula: For every fixed rE IN we have 

q q 

(57) L/ (k)= J / (x)dx+ 112/ (q)+ 112/ (P) 
k=p p 

+ i B2J [f21-1)(q)-f21-1)(P~ 
1=1 (21)~ j 

+o[ /11"'cX)11 Wp) 

Taking/(k)= I
m

(ll,k) (1-1 (Il,k)t, p=f Jl-Jl213l, q= l ll+1l2/
3J ' 

we find, for every rE IN, using (54), (56) and (57) 

(58) L ImCIl,k) 0-/(11, k»" = 
Ik-IJ.I:>IJ.

2IJ 

Simularly 

1J.+1J.
2IJ 

J ImCIl,k) (1-1 (Il,k»" dk 
2IJ 

IJ.-IJ. 

1J.+1J.
2IJ 

(59) L (u-k)/
m

(Jl,k)(l-/(Il,k)t = J (J.!-k)l
m

(ll, k) (l-/(Jl, k)t dk 

I k-IJ.I:>IJ.
2IJ 

1J.-Jl213 

7. The asymptotic behaviour of Sand T 

According to section 6 the sums L can be replaced by integrals with small errors which 
IIJ.-k 1:>1J.

2IJ 

are, for every r>O , 0 (J.!-r) (J.!~oo). Then these integrals are transformed into integrals 
B()J.) 

J ... dk dx where A (Jl) and B (11) are asymptotically equivalent with 112-£ 111/6 (J.!~oo) 
-A()J.) dx 
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By means of (38) and (47) we get complete asymptotic expansions for the two integrands. 

(60) Im(J.t,k)(l-I (J.t,k)t: ::: :i: S'(X)~-/l2 (J.t-700) • 
I~I 

(61) 

both uniformly in xe IR ,x = o (J.t1/6) (J.t -7 00). The functions S/(X) and tl(X) are absolutely integr­

able over (-<>0,00). Now we proceed as follows. Let Ne IN. Then 

1l+1l'1lJ 

t Im(J.t,k)(l-I(J.t,k»": dx 
Il-Il 

It is easily seen that the functions s,(x) are of the form 
2 2 2 

p(x,e-X J(x» e-X +q(x,e-X J(x» f(x)(1-f(x», where p and q are polynomials. Hence 

f IS/(x)ldxand f IS/(x)ldxareO(e-
CIl11J

) (~-700). 
x<-A()t) x>B ()t) 

II follows that S (~,m, n) has a complete asymptotic expansion 

00 

(62) S (~,m,n)::: L ~-1I2 J s/(x)dx e~-7oo) 
/=-1 

A simular argument holds for Te~,m,n). 

00 
00 

(63) T()l,m,n)::: L ~-/l2 f t,ex)dx ()l-700). 
1=-2 

We calculate 

(64) LI (x)=;[2j(x)!"(-x) 

(65) so(x)=2/31t-1I2 [ nfm(x)r-1 (-x) -mj-I (X)r(-X~ e-
x2 

-2/3xfm(x)!" (-x) 

(66) L2(X) =2 x j(x)f" (-x) 

(67) '-I (x)= 

23123-11t-1/2 [nj(X)r-I(-x)-mj-I(X)r(-x~ xex2_21/2x2j(x)!"(_x) 

2 

The term with factor e-x in the right hand of (65) gives 0 upon integration. 
2 

Integration by parts of the term with factor xe-x in the right hand of (67) gives 
00 

2/3;[2 f jex)r(-x)dx. 
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8. Computation of some coefficients 

= = 
A (1,1)="'2 f / (x)(1-/(x»dx=-"'27t-

1/2 f x (1-2/ (x»e-
X1 

dx 

= = 
=2"'27t-1/2 f / (x)xe-

X2 
dx="'2Tt-1 f e-

2x2 
dx=Tt- 1I2 

= 
A (1 ,2)=A (2, 1)= 112"'2 f (f (x)l(-x)+/ (-x)l(x»dx 

= 

=112"'2 f / (x)/ (-x)dx= 112A (1,1) 

B (1,1)=-2/3 f xf (x)/ (-x)dx=O . 

B (1 ,2)=-B (2, 1)=-2/3 J xf (x)l(-x)(f (x) + / (-x»dx 

=-2/3 J xf (x)l(-x)dx=B (1 ,3)=-B (3, 1) 

B (1,2)=-2/3 J x(f (x)-2/2 (x)+l (x»dx 

= 

= 1/37t-
1I2 f x 2e-

x2 
(l-4/ (x)+3/2(x»dx 

= 

= l/6Tt- 1/2 f e-
x2 

0-4/ (x)+3/2(x) + 7t-1!2xe -x
1 
(-4+6/ (x»)dx 

= 
= 116 J (l-4/(x)+3/2(x»f (x)dx+rr- I f xe-

2x2

/(x)dx 

= ..fl: 
1/4 -3/2 f -3.1' dx 3_1 = Tt e = -Tt 

-00 12· 

= 
D (1,1 )=2/3A (1,1)- "'2 f x 2

/ (x)/ (-x)dx 

-f) = 
=2/3A(l,1)-2 ~ Tt-1!2 f x 3e-

x2
/(x)dx 

-00 
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=2/3A(11)-~1t-1I2 = 1!41t-1/2 . 
, 12 

00 

D (l,2)=D (2,l)=2/3A 0,2)-112£ f x 2(f (X)f2(-X) + f2(x) f (-x))dx = 

00 

=2/3A(1,2)-1I2£ f x 2f(x)f(-x)dx 

=2/3A 0,2)+ 1I2DO,l)-l/3A (1, 1)= 1!81t-1/2. 


