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ASYMPTOTICS IN RANDOMIZED URN MODELS
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This paper studies a very general urn model stimulated by designs in
clinical trials, where the number of balls of different types added to the urn
at trialn depends on a random outcome directed by the composition at trials
1,2, . . . , n − 1. Patient treatments are allocated according to types of balls.
We establish the strong consistency and asymptotic normality for both the
urn composition and the patient allocation under general assumptions on
random generating matrices which determine how balls are added to the urn.
Also we obtain explicit forms of the asymptotic variance–covariance matrices
of both the urn composition and the patient allocation. The conditions on
the nonhomogeneity of generating matrices are mild and widely satisfied in
applications. Several applications are also discussed.

1. Introduction. In designing a clinical trial, the limiting behavior of the
patient allocation to several treatments during the process is of primary consid-
eration. Suppose patients arrive sequentially from a population. Adaptive designs
in clinical trials are inclining to assign more patients to better treatments, while
seeking to maintain randomness as a basis for statistical inference. Thus the cu-
mulative information of the responses of treatments on previous patients will be
used to adjust treatment assignment to coming patients. For this purpose, various
urn models [Johnson and Kotz (1977)] have been proposed and used extensively
in adaptive designs [for more references, see Zelen (1969), Wei (1979), Flournoy
and Rosenberger (1995) and Rosenberger (1996)].

One large family of randomized adaptive designs is based on the generalized
Friedman’s urn (GFU) model [Athreya and Karlin (1967, 1968), also called the
generalized Pólya urn (GPU) in the literature]. The model can be described as
follows. Consider an urn containing balls ofK types, respectively, representingK

“treatments” in a clinical trial. These treatments are to be assigned sequentially
in n stages. At the beginning, the urn containsY0 = (Y01, . . . , Y0K) balls, where
Y0k denotes the number of balls of typek, k = 1, . . . ,K . At stagei, i = 1, . . . , n,
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a ball is randomly drawn from the urn and then replaced. If the ball is of typeq,
then the treatmentq is assigned to theith patient,q = 1, . . . ,K , i = 1, . . . , n. We
then wait until we observe a random variableξ(i), which may include the response
and/or other covariates of patienti. After that, an additionalDqk(i) balls of typek,
k = 1, . . . ,K , are added to the urn, whereDqk(i) is some function ofξ(i). This
procedure is repeated throughout then stages. Aftern splits and generations, the
urn composition is denoted by the row vectorYn = (Yn1, . . . , YnK), whereYnk

represents the number of balls of typek in the urn after thenth split. This relation
can be written as the following recursive formula:

Yn = Yn−1 + XnDn,

whereXn is the result of thenth draw, distributed according to the urn composition
at the previous stage; that is, if thenth draw is a type-k ball, then thekth component
of Xn is 1 and other components are 0. Furthermore, writeNn = (Nn1, . . . ,NnK),
whereNnk is the number of times a type-k ball was drawn in the firstn stages,
or equivalently, the number of patients who receive the treatmentk in the firstn
patients.

For notation, letDi = 〈〈Dqk(i), q, k = 1, . . . ,K〉〉 and letFi be the sequence
of increasingσ -fields generated by{Yj }ij=0, {Xj }ij=1 and{Dj }ij=1. DefineHi =
〈〈E(Dqk(i)|Fi−1), q, k = 1, . . . ,K〉〉, i = 1, . . . , n. The matricesDi are called
addition rules andHi generating matrices. In practice, the addition ruleDi often
depends only on the treatment on theith patient and its outcome. In these cases,
the addition rulesDi are i.i.d. (independent and identically distributed) and the
generating matricesHi = H = EDi are identical and nonrandom. But in some
applications, the addition ruleDi depends on the total history of previous trials
[see Andersen, Faries and Tamura (1994) and Bai, Hu and Shen (2002)]; then
the general generating matrixHi is the conditional expectation ofDi givenFi−1.
Therefore, the general generating matrices{Hi} are usually random. In this paper,
we consider this general case. Examples are considered in Section 5.

A GFU model is said to behomogeneous if Hi = H for all i = 1,2,3, . . . . In
the literature, research is focused on asymptotic properties ofYn for homogeneous
GFU. First-order asymptotics for homogeneous GFU models are determined by
the generating matricesH. In most cases,H is an irreducible nonnegative matrix,
for which the maximum eigenvalue is unique and positive (called the maximal
eigenvalue in the literature) and its corresponding left eigenvector has positive
components. In some cases, the entries ofH may not be all nonnegative (e.g., when
there is no replacement after the draw), and we may assume that the matrixH has
a unique maximal eigenvalueλ with associated left eigenvectorv = (v1, . . . , vK)

with
∑

vi = 1. Under the following assumptions:

(i) Pr{Dqk = 0, k = 1, . . . ,K} = 0 for everyq = 1, . . . ,K ,
(ii) Dqk ≥ 0 for all q, k = 1, . . . ,K ,
(iii) H is irreducible,
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Athreya and Karlin (1967, 1968) prove that

Nnk

n
→ vk and

Ynk∑K
q=1Ynq

→ vk(1.1)

almost surely asn → ∞.
Let λ1 be the eigenvalue with a second largest real part, associated with a right

eigenvectorξ . If λ > 2 Re(λ1), Athreya and Karlin (1968) show that

n−1/2Ynξ
′ → N(0, c)(1.2)

in distribution, wherec is a constant. Whenλ = 2 Re(λ1) and λ1 is simple,
then (1.2) holds whenn−1/2 is replaced by 1/

√
n ln(n). Asymptotic results under

various addition schemes are considered in Freedman (1965), Mahmoud and
Smythe (1991), Holst (1979) and Gouet (1993).

Homogeneity of the generating matrix is often not the case in clinical trials,
where patients may exhibit a drift in characteristics over time. Examples are given
in Altman and Royston (1988), Coad (1991) and Hu and Rosenberger (2000).
Bai and Hu (1999) establish the weak consistency and the asymptotic normality
of Yn under GFU models with nonhomogeneous generating matricesHi . [In that
paper, it is assumed thatHi = EDi , so Hi are fixed (not random) matrices.]
They consider the following GFU model (GFU1):

∑K
k=1Dqk(i) = c1 > 0, for all

q = 1, . . . ,K andi = 1, . . . , n, the total number of balls added at each stage is a
positive constant. They assume there is a nonnegative matrixH such that

∞∑
i=1

αi

i
< ∞,(1.3)

whereαi = ‖Hi − H‖∞.
In clinical trials, Nnk represents the number of patients assigned to the

treatmentk in the first n trials. Doubtless, the asymptotic distribution and
asymptotic variance ofNn = (Nn1, . . . ,NnK) is of more practical interest than the
urn compositions to sequential design researchers. As Athreya and Karlin [(1967),
page 275] said, “It is suggestive to conjecture that(Nn1, . . . ,NnK) properly
normalized is asymptotically normal. This problem is open.” The problem has
stayed open for decades due to mathematical complexity. One of our main goals
of this paper is to present a solution to this problem.

Smythe (1996) defined the extended Pólya urn (EPU) (homogeneous) models,
satisfying

∑K
k=1 E(Dqk) = c1 > 0, q = 1, . . . ,K ; that is, the expected total

number of balls added to the urn at each stage is a positive constant. For EPU
models, Smythe (1996) established the weak consistency and the asymptotic
normality of Yn and Nn under the assumptions that the eigenvalues of the
generating matrixH are simple. The asymptotic variance ofNn is a more important
and difficult proposition [Rosenberger (2002)]. Recently, Hu and Rosenberger
(2003) obtained an explicit relationship between the power and the variance
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of Nn in an adaptive design. To compare the randomized urn models with other
adaptive designs, one just has to calculate and compare their variances. Matthews
and Rosenberger (1997) obtained the formula for asymptotic variance for the
randomized play-the-winner rule (K = 2) which was initially proposed by Wei
and Durham (1978). A general formula for asymptotic variance ofNn was still an
open problem [Rosenberger (2002)].

In this paper, we

(i) show the asymptotic normality ofNn for generalH;
(ii) obtain a general and explicit formula for the asymptotic variance ofNn;
(iii) show the strong consistency of bothYn andNn; and
(iv) extend these results to nonhomogeneous urn model with random generat-

ing matricesHi .

The paper is organized as follows. The strong consistency ofYn and Nn is
proved in Section 2 for both homogeneous and nonhomogeneous EPU models.
Note that the GFU1 is a special case of EPU. The asymptotic normality ofYn

for homogeneous and nonhomogeneous EPU models is shown in Section 3 under
the assumption (1.3). We consider cases where the generating matrixH has
a general Jordan form. In Section 4, we consider the asymptotic normality of
Nn = (Nn1, . . . ,NnK) for both homogeneous and nonhomogeneous EPU models.
Further, we obtain a general and explicit formula for the asymptotic variance ofNn.

The condition (1.3) in a nonhomogeneous urn model is widely satisfied in
applications. In some applications [e.g., Bai, Hu and Shen (2002)], the generating
matrix Hi may be estimates of some unknown parameters updated at each stage,
for example,Ĥi at ith stage. In these cases, we usually haveαi = O(i−1/2) in
probability orO(i−1/4) almost surely, so the condition (1.3) is satisfied. Also (1.3)
is satisfied for the case of Hu and Rosenberger (2000). Some other applications are
considered in Section 5.

2. Strong consistency of Yn and Nn. Using the notation defined in the
Introduction,Yn is a sequence of randomK-vectors of nonnegative elements
which are adaptive with respect to{Fn}, satisfying

E(Yi|Fi−1) = Yi−1Mi,(2.1)

whereMi = I + a−1
i−1Hi , Hi = E(Di|Fi−1) andai = ∑K

j=1 Yij . Without loss of
generality, we assumea0 = 1 in the following study.

In the sequel, we need the following assumptions.

ASSUMPTION2.1. The generating matrixHi satisfies

Hqk(i) ≥ 0 for all k, q and

K∑
k=1

Hqk(i) = c1 for all q = 1, . . . ,K,
(2.2)
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almost surely, whereHqk(i) is the(q, k)-entry of the matrixHi andc1 is a positive
constant. Without loss of generality, we assumec1 = 1 throughout this work.

ASSUMPTION 2.2. The addition ruleDi is conditionally independent of the
drawing procedureXi givenFi−1 and satisfies

E
(
D2+δ

qk (i)|Fi−1
)≤ C < ∞ for all q, k = 1, . . . ,K and someδ > 0.(2.3)

Also we assume that

cov
[(

Dqk(i),Dql(i)
)|Fi−1

]→ dqkl for all q, k, l = 1, . . . ,K,(2.4)

wheredq = (dqkl)
K
k,l=1, q = 1, . . . ,K , are someK × K positive definite matrices.

REMARK 2.1. Assumption 2.1 defines the EPU model [Smythe (1996)]; it
ensures that the number of expected balls added at each stage is a positive constant.
So aftern stages, the total number of balls,an, in the urn should be very close ton
(an/n converges to 1).

The elements of the addition rule are allowed to take negative values in the
literature, which corresponds to the situation of withdrawing balls from the urn.
But, to avoid the dilemma that there are no balls to withdraw, only diagonal
elements ofDi are allowed to take negative values, which corresponds to the case
of drawing without replacement.

To investigate the limiting properties ofYn, we first derive a decomposition.
From (2.1), it is easy to see that

Yn = (
Yn − E(Yn|Fn−1)

)+ Yn−1Mn

= Qn + Yn−1Gn + Yn−1(Mn − Gn)

= Y0G1G2 · · ·Gn +
n∑

i=1

QiBn,i +
n∑

i=1

Yi−1(Mi − Gi )Bn,i

= S1 + S2 + S3,

(2.5)

whereQi = Yi − E(Yi|Fi−1), Gi = I + i−1H andBn,i = Gi+1 · · ·Gn with the
convention thatBn,n = I andF0 denotes the trivialσ -field.

We further decomposeS3 as follows:

S3 =
n∑

i=1

Yi−1(a
−1
i−1Hi − i−1H)Bn,i

=
n∑

i=1

a−1
i−1Yi−1(Hi − H)Bn,i +

n∑
i=1

Yi−1

ai−1

i − ai−1

i
HBn,i

= S31 + S32.

(2.6)
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To estimate the above terms in the expansion, we need some preliminary results.
First, we evaluate the convergence rate ofan. To this end, we have the following
theorem.

THEOREM2.1. Under Assumptions 2.1and 2.2, (a)an/n → 1 a.s. as n → ∞,
and (b) n−κ(an − n) → 0 a.s. for any κ > 1/2.

PROOF. Let ei = ai − ai−1 for i ≥ 1. By definition, we haveei = XiDi1,
whereXi is the result of theith draw, multinomially distributed according to the
urn composition at the previous stages; that is, the conditional probability that
theith draw is a ball of typek (thekth component ofXi is 1 and other components
are 0) given previous status isYi−1,k/ai−1.

From Assumptions 2.1 and 2.2, we have

E(ei|Fi−1) = 1(2.7)

and

E(e2
i ) = E[E(e2

i |Fi−1)] = E[E(1′D′
iX

′
iXiDi1|Fi−1)]

= 1′E[E(D′
iX

′
iXiDi |Fi−1)]1

= 1′E
[
E
(
D′

i diag(a−1
i−1Yi−1)Di |Fi−1

)]
1

=
K∑

q=1

K∑
k=1

K∑
l=1

E
[
(a−1

i−1Yi−1,q)E
(
Dqk(i)Dql(i)|Fi−1

)]
≤ CK2,

(2.8)

so that

an − n = a0 +
n∑

i=1

(ei − 1) = 1+
n∑

i=1

(
ei − E(ei|Fi−1)

)
(2.9)

forms a martingale sequence.
From Assumption 2.2 andκ > 1/2, we have

∞∑
i=1

E

((
ei − 1

iκ

)2∣∣∣Fi−1

)
< ∞.

By three series theorem for martingales, this implies that the series
∞∑
i=1

ei − 1

iκ

converges almost surely. Then, by Kronecker’s lemma,

1

nκ

n∑
i=1

(ei − 1) → 0
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almost surely. This completes the proof for conclusion (b) of the theorem.
The conclusion (a) is a consequence of conclusion (b). The proof of Theo-

rem 2.1 is then complete.�

ASSUMPTION 2.3. Assume that (1.3) holds almost surely. Suppose that the
limit generating matrixH, K × K , is irreducible.

This assumption guarantees thatH has the Jordan form decomposition

T−1HT = J =


1 0 · · · 0
0 J1 · · · 0
· · · · · · · · · · · ·
0 0 · · · Js

 with Jt =


λt 1 0 · · · 0
0 λt 1 · · · 0
... · · · . . .

. . .
...

0 0 · · · λt 1
0 0 0 · · · λt

 ,

where 1 is the unique maximal eigenvalue of the matrixH. Denote the order ofJt

by νt andτ = max{Re(λ1), . . . ,Re(λs)}. We defineν = max{νt :Re(λt ) = τ }.
Moreover, the irreducibility ofH also guarantees that the elements of the left

eigenvectorv= (v1, . . . , vp) associated with the positive maximal eigenvalue 1 are
positive. Thus, we may normalize this vector to satisfy

∑p
i=1 vi = 1.

REMARK 2.2. Condition (1.3) in Assumption 2.3 is very mild, just slightly
stronger thanαi → 0, for example, if the nonhomogeneous generating matrixHi

converges to a generating matrixH with a rate of log−1−c i for somec > 0.
What we consider here is the general case where the Jordan form of the

generating matrixH is arbitrary, relaxing the constraint of a diagonal Jordan form
as usually assumed in the literature [see Smythe (1996)].

In some conclusions, we need the convergence rate ofHi as described in the
following assumption.

ASSUMPTION2.4.

‖Hi − EHi‖ =
{

O(i−1/2), if τ 
= 1
2,

O
(
i−1/2 log−1/2(i + 1)

)
, if τ = 1

2,
(2.10)

where‖(aij )‖ =
√∑

ij Ea2
ij , for any random matrix(aij ).

A slightly stronger condition is

‖Hi − EHi‖ = o(i−1/2).(2.11)

REMARK 2.3. This assumption is trivially true ifHi is nonrandom. It is also
true whenHi is a continuously differentiable matrix function of status at stagei,
such asYi , Ni or the relative frequencies of the success, and so on. These are true
in almost all practical situations.
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For further studies, we define

Vn =


√
n, if τ < 1/2,√
n logν−1/2n, if τ = 1/2,

nτ logν−1n, if τ > 1/2.

THEOREM 2.2. Under Assumptions 2.1–2.3,for some constant M ,

E‖Yn − EYn‖2 ≤ MV 2
n .(2.12)

From this, for any κ > τ ∨ 1
2, we immediately obtain n−κ(Yn − EYn) → 0, a.s.,

where a ∨ b = max(a, b). Also, if κ = 1 or the condition (1.3) is strengthened to

∞∑
i=1

αi√
i

< ∞,(2.13)

then EYn in the above conclusions can be replaced by nv. This implies that n−1Yn

almost surely converges to v, the same limit of n−1EYn, as n → ∞.

PROOF. Without loss of generality, we assumea0 = 1 in the following study.
For any random vector, write‖Y‖ := √

EYY′. Define yn = (yn,1, . . . , yn,K) =
YnT. Then, (2.12) reduces to

‖yn − Eyn‖ ≤ MVn.(2.14)

In Theorem 2.1, we have proved that‖an − n‖2 ≤ CK2n [see (2.9) and (2.8)].
Noticing thatEan = n + 1, the proof of (2.12) further reduces to showing that, for
anyj = 2, . . . ,K ,

‖yn,j − Eyn,j‖ ≤ MVn.(2.15)

We shall prove (2.15) by induction.
Supposen0 is an integer andM a constant such that

∞∑
i=n0

αi

i
< ε,

∞∑
i=n0

logν i

i5/4 < ε,

M = C1 + C2 + C3 + C4 + C5 + (C3 + 2C5)M0

1− 3ε
,

(2.16)

where ε < 1/4 is a prechosen small positive number,M0 = maxn≤n0{‖yn,j −
Eyn,j‖/Vn} and the constantsC’s are absolute constants specified later.

We shall complete the proof by induction. Considerm > n0 and assume that
‖ỹ − Eỹn‖ ≤ MVn for all n0 ≤ n < m.
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By (2.5) and (2.6), we have

ym,j = y0B̃m,0,j +
m∑

i=1

Q̃iB̃m,i,j +
m∑

i=1

yi−1

i
WiB̃m,i,j

+
m∑

i=1

(
i − ai−1

i

)
yi−1

ai−1
JB̃m,i,j +

m∑
i=1

(
i − ai−1

i

)
yi−1

ai−1
WiB̃m,i,j ,

(2.17)

whereQ̃i = QiT, Wi = T−1(Hi − H)T and

B̃n,i = T−1Bn,iT = (
I + (i + 1)−1J

) · · · (I + n−1J)

=



n∏
j=i+1

(
1+ 1

j

)
0 · · · 0

0
n∏

j=i+1

(I + j−1J1) · · · 0

· · · · · · · · · · · ·
0 0 · · ·

n∏
j=i+1

(I + j−1Js)


,

(2.18)

andB̃m,i,j is thej th column of the matrix̃Bm,i .
In the remainder of the proof of the theorem, we shall frequently use the

elementary fact that

n∏
j=i+1

(
1+ λ

j

)
=
(

n

i

)λ

ψ(n, i, λ),(2.19)

whereψ(n, i, λ) is uniformly bounded (say≤ ψ) and tends to 1 asi → ∞. In the
sequel, we useψ(n, i, λ) as a generic symbol, that is, it may take different values
at different appearances and is uniformly bounded (byψ , say) and tends to 1 as
i → ∞. Based on this estimation, one finds that the(h,h+�)-element of the block
matrix

∏n
i=j+2(I + i−1Jt ) is asymptotically equivalent to

1

�!
(

j

n

)−λt

log�

(
n

j

)
ψ(n, j, λt ),(2.20)

whereλt is the eigenvalue ofJt .
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By (2.17) and triangular inequality, we have

‖ym,j − Eym,j‖

≤ ‖y0B̃m,0,j‖ +
∥∥∥∥∥

m∑
i=1

Q̃iB̃m,i,j

∥∥∥∥∥
+
∥∥∥∥∥

m∑
i=1

(
i − ai−1

i

)
yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥+
m∑

i=1

∥∥∥∥∥
(

i − ai−1

i

)
yi−1

ai−1
WiB̃m,i,j

∥∥∥∥∥
+

m∑
i=1

∥∥∥∥yi−1Wi − Eyi−1Wi

i
B̃m,i,j

∥∥∥∥.

(2.21)

Consider the case where 1+ ν1 + · · · + νt−1 < j ≤ 1 + ν1 + · · · + νt . Then,
by (2.20) we have

‖y0B̃m,0,j‖ ≤ C1|mλt | logνt−1 m ≤ C1Vm.(2.22)

Since the elements ofE(Q̃∗
i Q̃i ) are bounded, we have∥∥∥∥∥

m∑
i=1

Q̃iB̃m,i,j

∥∥∥∥∥=
{

m∑
i=1

B̃∗
m,i,jE(Q̃∗

i Q̃i)B̃m,i,j

}1/2

≤ C2

{
m∑

i=1

(m/i)2 Re(λt ) log2νt−2(m/i)

}1/2

≤ C2Vm,

(2.23)

for all m and some constantC2.
Noticing thata−1

i−1‖yi−1‖ is bounded, forτ 
= 1
2, we have∥∥∥∥∥

m∑
i=1

(
i − ai−1

i

)
yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥
≤

m∑
i=1

∥∥∥∥∥
(

i − ai−1

i

)
yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥
≤

m∑
i=1

C3i
−1/2(|λt | + 1)

(
m

i

)Re(λt )

logνt−1
(

m

i

)

≤ C3√
m

m∑
i=1

(
m

i

)τ+1/2

logνt−1
(

m

i

)
≤ C3Vm,

for all m and some constantC3.



924 Z.-D. BAI AND F. HU

Now we estimate this term for the caseτ = 1
2. We have∥∥∥∥∥

m∑
i=1

(
i − ai−1

i

)
yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥
≤
∥∥∥∥∥

m∑
i=1

(
i − ai−1

i

)
E

yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥
+

m∑
i=1

∥∥∥∥( i − ai−1

i

)[
yi−1

ai−1
− E

yi−1

ai−1

]
JB̃m,i,j

∥∥∥∥.
First, we have∥∥∥∥∥

m∑
i=1

(
i − ai−1

i

)
E

yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥
2

=∑
ik

(
E(i − ai−1)(k − ak−1)

ik

)
E

yi−1

ai−1
JB̃m,i,jE

yk−1

ak−1
JB̃m,k,j

≤ C2
3

∑
i≤k≤m

‖i − ai−1‖2

ik

(
m

i

)1/2

logνt−1
(

m

i

)(
m

k

)1/2

logνt−1
(

m

k

)

≤ C2
3m log2νt−2 m

∑
i≤k≤m

1

k
√

ik

≤ C2
3m log2νt−1 m.

Here we point out a fact that for anyµ > 1, there is a constantCµ > 0 such that

E|an − n|µ ≤ Cµnµ/2.

This inequality is an easy consequence of the Burkholder inequality. [The
Burkholder inequality states that ifX1, . . . ,Xn is a sequence of martingale
differences, then for anyp > 1, there is a constantC = C(p) such that
E|∑m

i=1 Xi |p ≤ CpE(
∑n

i=1 E(|X2
i ||Fi−1)

p/2.]

By using 1
ai−1

= 1
i
+ i−ai−1

iai−1
and the above inequality, we have

m∑
i=1

∥∥∥∥( i − ai−1

i

)[
yi−1

ai−1
− E

yi−1

ai−1

]
JB̃m,i,j

∥∥∥∥
≤

m∑
i=1

∥∥∥∥( i − ai−1

i

)[
yi−1 − Eyi−1

i

]
JB̃m,i,j

∥∥∥∥+
m∑

i=1

‖(i − ai−1)
2‖

i2 ‖JB̃m,i,j‖

≤ C3

m∑
i=1

[‖yi−1 − Eyi−1‖
i5/4

+ P (|ai−1 − i| ≥ i3/4) + 1

i

]
‖JB̃m,i,j‖
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≤ C3M0

n0∑
i=1

Vi

i5/4

(
m

i

)1/2

logνt−1
(

m

i

)

+ C3M

m∑
i=n0+1

Vi

i5/4

(
m

i

)1/2

logνt−1
(

m

i

)

+ C3

m∑
i=1

i−1
(

m

i

)1/2

logνt−1
(

m

i

)
≤ (C3M0 + C3 + εM)

√
m logν−1m.

Combining the above four inequalities, we have proved∥∥∥∥∥
m∑

i=1

(
i − ai−1

i

)
yi−1

ai−1
JB̃m,i,j

∥∥∥∥∥≤ (C3M0 + C3 + εM)Vm.(2.24)

By (1.3) and the fact thata−1
i−1‖yi−1‖ is bounded, we have

m∑
i=1

∥∥∥∥( i − ai−1

i

)
yi−1

ai−1
WiB̃m,i,j

∥∥∥∥
≤

m∑
i=1

C4i
−1/2αi

(
m

i

)Re(λt )

logνt−1
(

m

i

)

≤ C4
√

m

m∑
i=1

αi

i

(
m

i

)τ−1/2

logνt−1
(

m

i

)
≤ C4Vm.

(2.25)

Next, we show that

m∑
i=1

∥∥∥∥yi−1Wi − Eyi−1Wi

i
B̃m,i,j

∥∥∥∥
≤

m∑
i=1

∥∥∥∥yi−1 − Eyi−1

i
WiB̃m,i,j

∥∥∥∥
+

m∑
i=1

∥∥∥∥E(yi−1 − Eyi−1)Wi

i
B̃m,i,j

∥∥∥∥
+

m∑
i=1

∥∥∥∥Eyi−1

i
(Wi − EWi)B̃m,i,j

∥∥∥∥
≤ (

2εM + C5(2M0 + 1)
)
Vm.

(2.26)
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By (1.3) and the induction assumption that‖yi−1 − Eyi−1‖ ≤ M
√

i,
m∑

i=1

∥∥∥∥yi−1 − Eyi−1

i
WiB̃m,i,j

∥∥∥∥
≤

n0∑
i=1

M0Vii
−1αi

(
m

i

)Re(λt )

logνt−1
(

m

i

)

+
m∑

i=n0+1

MVii
−1αi

(
m

i

)Re(λt )

logνt−1
(

m

i

)
≤ (C5M0 + εM)Vm.

By Jensen’s inequality, we have
m∑

i=1

∥∥∥∥E yi−1 − Eyi−1

i
WiB̃m,i,j

∥∥∥∥≤
m∑

i=1

∥∥∥∥yi−1 − Eyi−1

i
WiB̃m,i,j

∥∥∥∥
≤ (C5M0 + εM)Vm.

The estimate of the third term is given by
m∑

i=1

∥∥∥∥Eyi−1

i
(Wi − EWi)B̃m,i,j

∥∥∥∥
≤ C5

m∑
i=1

‖Wi − EWi‖
(

m

i

)Re(λt )

logνt−1
(

m

i

)

≤


C5

m∑
i=1

i−1/2
(

m

i

)Re(λt )

logνt−1
(

m

i

)
, if τ 
= 1

2
,

C5

m∑
i=1

i−1/2 log−1/2(i + 1)

(
m

i

)Re(λt )

logνt−1
(

m

i

)
, if τ = 1

2
,

≤ C5Vm.

(2.27)

The above three estimates prove the assertion (2.26).
Substituting (2.22)–(2.26) into (2.21), we obtain

‖yn,j −Eyn,j‖ ≤ (
3εM +C1 +C2 +C3 +C4 +C5 + (C3 +2C5)M0

)
Vm ≤ MVm.

We complete the proof of (2.15) and thus of (2.12).
Sinceκ > τ ∨ 1/2, we may chooseκ1 such thatκ > κ1 > τ ∨ 1/2. By (2.12),

we have

‖Yn − EYn‖2 ≤ Mn2κ1.

From this and the standard procedure of subsequence method, one can show that

n−κ(Yn − EYn) → 0 a.s.
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To complete the proof of the theorem, it remains to show the replacement
of EYn by nv, that is, to show that‖yn,j‖ ≤ MVn if (2.13) holds and that
‖yn,j‖ = o(n) under (1.3). Here the latter is for the convergence withκ = 1.

Following the lines of the proof for the first conclusion, we need only to change
Eym,j on the left-hand side of (2.21) and replaceEyi−1Wi on the right-hand
side of (2.21) by 0. Checking the proofs of (2.22)–(2.26), we find that the proofs
of (2.22)–(2.26) remain true. Therefore, we need only show that

m∑
i=1

∥∥∥∥Eyi−1Wi

i
B̃m,i,j

∥∥∥∥
≤

m∑
i=1

αi

(
m

i

)Re(λt )

logνt−1
(

m

i

)

=



√
m

m∑
i=1

αi√
i

(
m

i

)τ−1/2

logνt−1
(

m

i

)
≤ O(Vm), if (2.13) holds,

m

m∑
i=1

αi

i

(
m

i

)τ−1

logνt−1
(

m

i

)
≤ εm, if (1.3) holds.

(2.28)

This completes the proof of this theorem.�

Recall the proof of Theorem 2.2 and note thatε can be arbitrarily small; with
a slight modification to the proof of Theorem 2.2, we have in fact the following
corollary.

COROLLARY 2.1. In addition to the conditions of Theorem 2.2,assume (2.11)
is true. Then, we have

yn,− − Eyn,− =
n∑

i=1

Q̃iB̃n,i,− + op(Vn),(2.29)

where yn,− = (yn,2, . . . , yn,K) and B̃n,i,− = (B̃n,i,2, . . . , B̃n,i,K).
Furthermore, if (2.13)is true, Eyn,− in (2.29)can be replaced by 0.

PROOF. Checking the proof of Theorem 2.2, one finds that the term estimated
in (2.22) is not necessary to appear on the right-hand side of (2.21). Thus, to
prove (2.29), it suffices to improve the right-hand sides of (2.24)–(2.26) as toεVm.
The modification for (2.24) and (2.25) canbe done without any further conditions,
provided one notices that the vectoryi−1 in these inequalities can be replaced by
(0,yi−1,−). The details are omitted. To modify (2.26), we first note that (2.27) can
be trivially modified toεVm if the condition (2.10) is strengthened to (2.11). The
other two estimates for proving (2.26) can be modified easily without any further
assumptions. �
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Note that

Nn =
n∑

i=1

Xi =
n∑

i=1

(
Xi − E(Xi|Fi−1)

)+
n∑

i=1

Yi−1

ai−1
.

Since(Xi − E(Xi|Fi−1)) is a bounded martingale difference sequence, we have

n−κ
n∑

i=1

(
Xi − E(Xi|Fi−1)

)→ 0 a.s.

for anyκ > 1/2. Also,

n−κ

∥∥∥∥∥
n∑

i=1

Yi−1|i−1 − a−1
i−1|

∥∥∥∥∥≤ n−κ
n∑

i=1

i−1+κ1
|ai−1 − i|

iκ1
→ 0 a.s.

In view of these relations and Theorem 2.2, we have established the following
theorem for the strong consistency ofNn.

THEOREM2.3. Under the assumptions of Theorem 2.2,n−κ(Nn − ENn) → 0,

a.s. for any κ > τ ∨ 1/2. Also, in the above limit, ENn can be replaced by nv if
κ = 1 or (2.13)is true. This implies that n−1Nn almost surely converges to v, the
same limit of n−1ENn, as n → ∞.

3. Asymptotic normality of Yn. In the investigation of the asymptotic
normality of the urn composition, we first consider that ofan, the total number
of balls in the urn aftern stages.

THEOREM 3.1. Under Assumptions 2.1–2.3,n−1/2(an − n) is asymptotically
normal with mean 0 and variance σ11, where σ11 =∑K

q=1
∑K

k=1
∑K

l=1 vqdqkl .

PROOF. From Theorems 2.1 and 2.2, we have thatYn/an → v a.s. Similar
to (2.8), we have

n−1
n∑

i=1

var(ei|Fi−1) →
K∑

q=1

K∑
k=1

K∑
l=1

vqdqkl a.s.

Assumption 2.2 implies that{ei − E(ei|Fi−1)} satisfies the Lyapunov condition.
From the martingale CLT [see Hall and Heyde (1980)], Assumptions 2.1–2.3 and
the fact that

an − n = 1+
n∑

i=1

(
ei − E(ei|Fi−1)

)
,

the theorem follows. �
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THEOREM 3.2. Under the assumptions of Theorem 2.2, V −1
n (Yn − EYn)

is asymptotically normal with mean vector 0 and variance–covariance matrix
T−1∗�T−1, where � is specified later, V 2

n = n if τ < 1/2 and V 2
n = n log2ν−1 n if

τ = 1/2. Here τ is defined in Assumption 2.3.
Also, if (2.13)holds, then EYn can be replaced by nv.

PROOF. To show the asymptotic normality ofYn − EYn, we only need to
show that of(Yn − EYn)T = yn − Eyn.

From the proof of Theorem 3.1, we have

yn,1 − Eyn,1 = an − n − 1 =
n∑

i=1

(
ei − E(ei|Fi−1)

)
.

From Corollary 2.1, we have

yn,− − Eyn,− =
n∑

i=1

Q̃iB̃n,i,− + op(Vn).

Combining the above estimates, we get

yn − Eyn =



n∑
i=1

(
ei − E(e2|Fi−1)

)
n−1∑
i=1

Q̃iB̃n,i,2

· · · · · · · · ·
n−1∑
i=1

Q̃iB̃n,i,K


+ o(Vn).(3.1)

Again, Assumption 2.2 implies the Lyapunov condition. Using the CLT for
martingale sequence, as was done in the proof of Theorem 2.3 of Bai and Hu
(1999), from (3.1), one can easily show thatV −1

n (yn − Eyn) tends to aK-variate
normal distribution with mean 0 and variance–covariance matrix

(σ11 �12
�′

12 �22

)
. The

variance–covariance matrix�22 of the second to theK th elements ofV −1
n (yn −

Eyn) can be found in (2.17) of Bai and Hu (1999).
By Theorem 3.1, for the caseτ = 1/2, Vn = √

n logν−1/2n, σ11 = 0 and
�12 = 0. When τ < 1/2, Vn = √

n, σ11 = ∑K
q=1

∑K
k=1

∑K
l=1 vqdqkl . Now, let

us find �12. Write T = (1′,T1, . . . ,Ts) = (1′,T−), Tj = (t′j1, . . . , t′jνj
) and

B̃n,i,− = T−1Bn,iT− = (B̃n,i,2, . . . , B̃n,i,K), where1 = (1, . . . ,1) throughout this
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paper. Then the vector�12 is the limit of

n−1
n∑

i=1

cov[(ei,Qi )|Fi−1]TB̃n,i,−

= n−1
n∑

i=1

1 cov[(D′
iX

′
i,XiDi )|Fi−1]TB̃n,i,−

= n−1
n∑

i=1

1

(
K∑

q=1

vqdq + H∗(diag(v) − v∗v
)
H

)
TB̃n,i,− + op(1)

= 1

(
K∑

q=1

vqdq + H∗(diag(v) − v∗v
)
H

)
Tn−1

n∑
i=1

B̃n,i,− + op(1)

= 1

(
K∑

q=1

vqdq

)
Tn−1

n∑
i=1

B̃n,i,− + op(1),

(3.2)

where the matricesdq are defined in (2.4). Here we have used the fact that
1H∗(diag(v) − v∗v) = 1(diag(v) − v∗v) = 0.

By elementary calculation and the definition ofB̃n,i,−, we get

n−1
n∑

i=1

B̃∗
n,i,−

=



0 · · · 0

n−1
n∑

i=1

n∏
j=i+1

(I + j−1J1) · · · 0

... · · · ...

0 · · · n−1
n∑

i=1

n∏
j=i+1

(I + j−1Js)


.

(3.3)

In thehth block of the quasi-diagonal matrix

n−1
n∑

i=1

n∏
j=i+1

(I + j−1Jh),

the(g, g + �)-element (0≤ � ≤ νh − 1) has the approximation

n−1
n∑

i=1

1

�!
(

n

i

)λh

log�

(
n

i

)(
1+ o(1)

)→
(

1

1− λh

)�+1

.(3.4)

Combining (3.2)–(3.4), we get an expression of�12.
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Therefore,n−1/2(yn−Eyn) has an asymptotically joint normal distribution with
mean 0 and variance–covariance matrix�. Thus, we have shown that

n−1/2(Yn − EYn) → N
(
0, (T−1)∗�T−1)

in distribution.
When (2.13) holds,yn − ne1 has the same approximation of the right-hand side

of (3.1). Therefore, in the CLT,EYn can be replaced bynv. Then, we complete
the proof of the theorem.�

EXAMPLE 3.1. Consider the most important case in application, whereH has
a diagonal Jordan form andτ < 1/2. We have

T−1HT = J =


1 0 · · · 0
0 λ1 · · · 0
· · · · · · · · · · · ·
0 0 · · · λK−1

 ,

whereT = (1′, t′1, . . . , t′K−1). Now let

R =
K∑

j=1

vj dj + H∗(diag(v) − v∗v
)
H.

The variance–covariance matrix� = (σij )
K
i,j=1 has the following simple form:

σ11 = 1R1′ = ∑K
q=1

∑K
k=1

∑K
l=1 vqdqkl , σ1j = (1 − λj−1)

−11Rt′j−1 = (1 −
λj−1)

−1∑K
k=1 vk1dkt′j−1, j = 2, . . . ,K , and

σij = (1− λi−1 − λ̄j−1)
−1(t∗i−1)

′Rt′j−1.

4. Asymptotic normality of Nn. Now, Nn = (Nn1, . . . ,NnK), whereNnk is
the number of times a type-k ball is drawn in the firstn draws:

Nn = (Nn1, . . . ,NnK) = Nn−1 + Xn =
n∑

i=1

Xi ,

where the vectorsXi are defined as follows: If a type-k ball is drawn in theith
stage, then define the draw outcomeXi as the vector whosekth component is 1
and all others are 0. Therefore1X′

i = 1 and1N′
n = n. We shall consider the limiting

property ofNn.

THEOREM 4.1 (for the EPU urn). Under the assumptions of Corollary 2.1,
V −1

n (Nn − ENn) is asymptotically normal with mean vector 0 and variance–
covariance matrix T−1∗�̃T−1, where �̃ is specified later, V 2

n = n if τ < 1/2 and
V 2

n = n log2ν−1n if τ = 1/2. Here τ is defined in Assumption 2.3.
Furthermore, if (2.13)holds, then ENn can be replaced by nv.
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PROOF. At first we have

Nn =
n∑

i=1

(
Xi − E(Xi|Fi−1)

)+
n∑

i=1

E(Xi|Fi−1)

=
n∑

i=1

(Xi − Yi−1/ai−1) +
n−1∑
i=0

Yi/ai.

(4.1)

For simplicity, we consider the asymptotic distribution ofNnT. Since the first
component ofNnT is a nonrandom constantn, we only need consider the other
K − 1 components. From (2.29) and (4.1), we get

NnT− =
n∑

i=1

(Xi − Yi−1/ai−1)T− +
n−1∑
i=0

yi,−/ai

=
n∑

i=1

(Xi − Yi−1/ai−1)T−

+
n−1∑
i=0

yi,−/(i + 1) +
n−1∑
i=0

yi,−
ai

(
i + 1− ai

i + 1

)

=
n∑

i=1

(Xi − Yi−1/ai−1)T− +
n−1∑
i=0

yi,−
ai

(
i + 1− ai

i + 1

)
+ y0,−

+
n−1∑
i=1

1

i + 1

[
i∑

j=1

Q̃j B̃i,j,− + Eyi,− + op(Vi)

]

=
n∑

i=1

(Xi − Yi−1/ai−1)T−

+
n−1∑
j=1

Q̃j

(
n−1∑
i=j

1

i + 1
B̃i,j,−

)
+

n−1∑
i=1

Eyi,−
i + 1

+ o(Vn)

=
n∑

i=1

(Xi − Yi−1/ai−1)T +
n−1∑
j=1

Q̃j B̂n,j,− +
n−1∑
i=1

Eyi,−
i + 1

+ op(Vn),

(4.2)

whereB̃i,j = T−1Gj+1 · · · GiT, B̂n,j = ∑n−1
i=j

1
i+1B̃i,j , the matrices with a minus

sign in subscript denote the submatrices of the lastK − 1 columns of their
corresponding mother matrices. Here, in the fourth equality, we have used the fact
that

∑n−1
i=0

yi,−
ai

(
i+1−ai

i+1 ) = op(
√

n ) which can be proven by the same approach as
showing (2.24) and (2.28).
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In view of (4.2), we only have to consider the asymptotic distribution of the
martingale

U =
n∑

i=1

(Xi − Yi−1/ai−1)T− +
n−1∑
j=1

Q̃j B̂n,j,−.

We now estimate the asymptotic variance–covariance matrix ofV −1
n U. For this

end, we need only consider the limit of

�̃n = V −2
n

[
n∑

j=1

E(q∗
jqj |Fj−1) +

n−1∑
j=1

E(q∗
j Q̃j B̂n,j,−|Fj−1)

+
n−1∑
j=1

E(B̂∗
n,j,−Q̃∗

jqj |Fj−1) +
n−1∑
j=1

E(B̂∗
n,j,−R̃j B̂n,j,−|Fj−1)

]
,

(4.3)

whereqj = (Xj − Yj−1/aj−1)T− andR̃j = E(Q̃∗
j Q̃j |Fj−1) = T∗Rj T.

From Theorem 3.1, we know that

E(q∗
jqj |Fj−1) → T∗−

(
diag(v) − v∗v

)
T− = T∗− diag(v)T− asj → ∞,

sincevT− = 0. This estimate implies that

V −2
n

n∑
j=1

E(q∗
jqj |Fj−1)

→ �̃1 =
{T∗− diag(v)T−, if τ < 1/2,

0, if τ = 1/2,
asj → ∞.

(4.4)

BecausẽQj = [Xj Dj − (Yj−1/aj−1)Hj ]T,

V −2
n

n−1∑
j=1

E(q∗
j Q̃j B̂n,j,−|Fj−1)

= V −2
n

n−1∑
j=1

T∗−E(Xj − Yj−1/aj−1)
∗

× [Xj Dj − (Yj−1/aj−1)Hj |Fj−1]TB̂n,j,−

= T∗− diag(v)HT

(
V −2

n

n−1∑
j=1

B̂n,j,−
)

+ o(1).

(4.5)

From (2.18), we have

n−1
n−1∑
j=1

B̂n,j = n−1
n−1∑
j=1

n−1∑
i=j

1

i + 1

(
I + (j + 1)−1J

) · · · (I + i−1J).(4.6)
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Based on (2.18)–(2.20), we have that the(h,h+ �)-element of the block matrix

n−1
n∑

j=1

n−1∑
i=j

1

i + 1

(
I + (j + 1)−1Jt

) · · · (I + i−1Jt )

has a limit obtained by

n−1
n∑

j=1

n−1∑
i=j

1

i + 1

1

�!
(

j

i

)−λt

log�

(
i

j

)(
1+ o(1)

)

→ 1

�!
∫ 1

0

∫ u

0
u−1

(
v

u

)−λt

log�

(
u

v

)
dudv

=
(

1

1− λt

)�+1

.

(4.7)

Substituting this into (4.6) and then (4.5), whenV 2
n = n, we obtain that

V −2
n

n−1∑
j=1

E(q∗
j Q̃j B̂n,j,−|Fj−1) → �̃2 = T∗− diag(v)HTJ̃,

wherẽJ is aK ×(K −1) matrix whose first row is 0 and the rest is a block diagonal
matrix, thet-block isνt × νt and its(h,h + �)-element is given by the right-hand
side of (4.7). The matrix̃�2 is obviously 0 whenV 2

n = n log2ν−1n.
Note that the third term in (4.3) is the complex conjugate transpose of the second

term; thus we have also got the limit of the third term, that is,�̃∗
2.

Now, we compute the limit̃�3 of the fourth term in (4.3). By Assumption 2.2,
the matricesRj in (4.3) converge toR. Then, the fourth term in (4.3) can be
approximated by[

V −2
n

n∑
j=1

n−1∑
i=j+1

1

i

i∏
r=j+1

(I + r−1J∗
g)T

∗
gRTh

×
n−1∑

i=j+1

1

i

n∏
r=j+1

(I + r−1Jh)

]s

g,h=1

.

(4.8)

Similar to (4.7), we can show that the(w, t)-element of the(g,h)-block of the
matrix in (4.8) is approximately

V −2
n

w−1∑
w′=0

t−1∑
t ′=0

n−1∑
j=1

n−1∑
i=j

n−1∑
m=j

(i/j)λ̄g (m/j)λh logw′
(i/j) logt ′(m/j)

(i + 1)(m + 1)(w′)!(t ′)!
× [T∗

gRTh](w−w′,t−t ′),

(4.9)

where[T∗
gRTh](w′,t ′) is the(w′, t ′)-element of the matrix[T∗

gRTh]. Here, strictly
speaking, in the numerator of (4.9), there should be factorsψ(i, j,w′) and
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ψ(m, j, t ′). Since for anyj0, the total contributions of terms withj ≤ j0 is o(1)

and theψ ’s tend to 1 asj → ∞, we may replace theψ ’s by 1.
For fixedw,w′, t andt ′, if λg 
= λh or Re(λg) < 1/2, we have

1

n

n−1∑
j=1

n−1∑
i=j

n−1∑
m=j

(i/j)λ̄g (m/j)λh logw′
(i/j) logt ′(m/j)

(i + 1)(m + 1)(w′)!(t ′)!

→
w′∑

�=0

(t ′ + �)!
�!(t ′)! (1− λ̄g)

−(w′−�+1)(1− λ̄g − λh)
−(t ′+�+1)

+
t ′∑

�=0

(w′ + �)!
�!(w′)! (1− λh)

−(t ′−�+1)(1− λ̄g − λh)
−(w′+�+1).

(4.10)

Thus, whenτ < 1/2, if we split �̃3 into blocks, then the(w, t)-element of the
(g,h)-block�g,h (νg × νh) of �̃3 is given by

w−1∑
w′=0

t−1∑
t ′=0

[
w′∑

�=0

(t ′ + �)!
�!(t ′)! (1− λ̄g)

−(w′−�+1)(1− λ̄g − λh)
−(t ′+�+1)

+
t ′∑

�=0

(w′ + �)!
�!(w′)! (1− λh)

−(t ′−�+1)(1− λ̄g − λh)
−(w′+�+1)

]

× [T∗
gRTh](w−w′,t−t ′).

(4.11)

Whenτ = 1/2,�g,h = 0 if λg 
= λh or if Re(λg) < 1/2. Now, we consider�g,h

with λg = λh and Re(λg) = 1/2. If w′ + t ′ < 2ν − 2, then

n−1∑
j=1

n−1∑
i=j

n−1∑
�=j

(i/j)λ̄g (�/j)λg logw′
(i/j) logt ′(�/j)

(i + 1)(� + 1)(w′)!(t ′)!

≤
n−1∑
j=1

n−1∑
i=j

n−1∑
�=j

logw′+t ′ n

j
√

i�(w′)!(t ′)! ≤ n logw′+t ′+1n = o(V 2
n ).

Whenw′ = t ′ = ν−1 which impliesw = t = ν = νg = νh, by Abelian summation,
we have

V −2
n

n−1∑
j=1

n−1∑
i=j

n−1∑
�=j

(i/j)λ̄g (�/j)λg logν−1(i/j) logν−1(�/j)

(i + 1)(� + 1)[(ν − 1)!]2

→ |λg |−2[(ν − 1)!]−2(2ν − 1)−1.

(4.12)

Hence, for this case,�g,h has only one nonzero element which is the one on the
right-lower corner of�g,h and given by

|λg|−2[(ν − 1)!]−2(2ν − 1)−1[T∗
gRTh](1,1).(4.13)
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Combining (4.3), (4.4), (4.7), (4.11) and (4.12), we obtain an expression of�̃.
�

Now we consider one of the most important special cases, where the matrixH
has a diagonal Jordan form andτ < 1/2.

COROLLARY 4.1. Suppose the assumptions of Corollary 2.1 hold with
τ < 1/2 and

T−1HT = J =


1 0 · · · 0
0 λ1 · · · 0
· · · · · · · · · · · ·
0 0 · · · λK−1

 ,

where T = (1′, t′1, . . . , t′K−1). Now let

aij = (t∗i−1)
′(diag(v) − v∗v

)
t′j−1,

bij = λj−1(1− λj−1)
−1(t∗i−1)

′(diag(v) − v∗v
)
t′j−1

and

cij = [(1− λ̄i−1)
−1 + (1− λj−1)

−1](1− λ̄i−1 − λj−1)
−1(t∗i−1)

′Rt′j−1,

for i, j = 2, . . . ,K . Then n−1/2(Nn − ENn) is asymptotically normal with mean
vector 0 and variance–covariance matrix (T−1)∗�̃T−1, where �̃ = (σ̃ij )

K
i,j=1 has

the following simple form:

σ̃11 = σ̃1j = σ̃i1 = 0 and σ̃ij = aij + bij + b̄j i + cij

for i, j = 2, . . . ,K .

5. Applications.

5.1. Adaptive allocation rules associated with covariates. In clinical trials, it
is usual that the probability ofsuccess (here we assume that the subject response is
dichotomous) may depend upon some observable covariates on the patients, that
is, pik = pk(ξi), whereξi are covariates observed on the patienti and the result
of the treatment at theith stage. Herepik = P (Ti = 1|Xi = k, ξi), for i = 1, . . . , n

andk = 1, . . . ,K , whereXi = k indicates that a type-k ball is drawn at theith
stage andTi = 1 if the response of the subjecti is a success and 0 otherwise.
Thus, for a givenξi , the addition rule could beD(ξi) and the generating matrices
Hi = H(ξi) = ED(ξi).

Assume thatξ1, . . . , ξn are i.i.d. random vectors and letH = EH(ξ1). The
asymptotic properties of the urn compositionYn are considered by Bai and Hu
(1999). Based on the results in Sections 2 and 4, we can get the corresponding
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asymptotic results of the allocation number of patientsNn. Here we illustrate the
results by considering the caseK = 2.

Consider the generalized play-the-winner rule [Bai and Hu (1999)] and let
E(pk(ξi)) = pk , k = 1,2. Then the addition rule matrices are denoted by

D(ξi) =
(

d1(ξi) 1− d1(ξi)

1− d2(ξi) d2(ξi)

)
and H =

(
p1 q1
q2 p2

)
,

where 0≤ dk(ξi) ≤ 1 andqk = 1− pk for k = 1,2.
It is easy to see thatλ = 1, λ1 = p1 + p2 − 1, τ = max(0, λ1) and v =

(q2/(q1 + q2), q1/(q1 + q2)). Further, we have

R = (a1q2 + a2q1)(q1 + q2) + q1q2(p1 − q2)
2

(q1 + q2)
2

(
1 −1

−1 1

)
,

T =
(

1 q1
1 −q2

)
and T−1 = 1

q1 + q2

(
q2 q1
1 −1

)
,

whereak = Var(dk(ξ1)). For the caseτ < 1/2, we have thatVn = n and the values
corresponding to Corollary 4.1 are

a22 = q1q2, b22 = (1− q1 − q2)q1q2

q1 + q2
,

c22 = 2[(a1q2 + a2q1)(q1 + q2) + q1q2(p1 − q2)
2]

(q1 + q2)(1− 2(p1 + p2 − 1))
.

So

σ̃22 = q1q2+ 2(1− q1 − q2)q1q2

q1 + q2
+ 2[(a1q2 + a2q1)(q1 + q2) + q1q2(p1 − q2)

2]
(q1 + q2)(1− 2(p1 + p2 − 1))

.

From Theorem 2.3 and Corollary 4.1, we have

nδ

(
Nn

n
− v

)
→ 0 a.s. for anyδ < 1/2 and n1/2

(
Nn

n
− v

)
→ N(0,�1)

in distribution, where

�1 = (T−1)∗
(

0 0
0 σ̃22

)
T−1 = σ̃22

(q1 + q2)
2

(
1 −1

−1 1

)
.

For the randomized play-the-winner rule [Wei and Durham (1978)], we have
ak = pkqk , k = 1,2. Then we have

σ̃22 = (5− 2(q1 + q2))q1q2

2(q1 + q2) − 1
.

This result agrees with that of Matthews and Rosenberger (1997).
For the caseτ = 1/2, Vn = n logn and the value corresponding to (4.11) is

σ̃22 = 4[(a1q2 + a2q1)(q1 + q2) + q1q2(p1 − q2)
2].
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We have

(n logn)−1/2(Nn − nv) → N(0,�2)

in distribution, where

�2 = 4[(a1q2 + a2q1)(q1 + q2) + q1q2(p1 − q2)
2]

(q1 + q2)
2

(
1 −1

−1 1

)
.

For the case of the randomized play-the-winner rule, we have

�2 = 4q1q2

(q1 + q2)
2

(
1 −1

−1 1

)
.

5.2. Clinical trials with time trend in adaptive designs. Time trends are
present in many sequential experiments. Hu and Rosenberger (2000) have studied
time trend in adaptive designs and applied to a neurophysiology experiment. It is
important to know the asymptotic behavior of the allocation number of patients in
these cases.

In Section 5.1,pik = P (Ti = 1|Xi = k), whereXi = k if the kth element
of Xi is 1. There may be a drift in patient characteristics over time, for example,
limi→∞ pik = pk [Hu and Rosenberger (2000)]. Then the results in Sections 2,
3 and 4 are applicable here. For the caseK = 2, we can get similar results as in
Section 5.1.

The results in this paper may also apply for GFU model with homogeneous
generating matrix with a general Jordan form as well asτ = 1/2. In these cases,
the results of Smythe (1996) are not applicable.

5.3. Urn models for multi-arm clinical trials. For multi-arm clinical trials,
Wei (1979) proposed the following urn model (as an extension of the randomized
play-the-winner rule of two treatments): Starting fromY0 = (Y01, . . . , Y0K), when
a typek splits (randomly from the urn), we assign the patient to the treatmentk

and observe the patient’s response. A success on treatmentk adds a ball of typek
to the urn and a failure on treatmentk adds 1/(K − 1) ball for each of the other
K − 1 types. Letpk be the probability of success of treatmentk, k = 1,2, . . . ,K ,
andqk = 1− pk . The generating matrix for this urn model is

H =


p1 (K − 1)−1q1 · · · (K − 1)−1q1

(K − 1)−1q2 p2 · · · (K − 1)−1q2

· · · · · · · · · · · ·
(K − 1)−1qK (K − 1)−1qK · · · pK

 .

The asymptotic properties ofYn can be obtained from Athreya and Karlin (1968)
and Bai and Hu (1999). From Theorem 4.1 in Section 4, we obtain the asymptotic
normality ofNn and its asymptotic variance.
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Recently, Bai, Hu and Shen (2002) proposed an urn model which adds
balls depending on the success probabilities of each treatment. WriteNn =
(Nn1, . . . ,NnK) and Sn = (Sn1, . . . , SnK), where Nnk denotes the number of
times that thekth treatment is selected in the firstn stages, andSnk denotes the
number of successes of thekth treatment in theNnk trials, k = 1, . . . ,K . Define
Rn = (Rn1, . . . ,RnK) andMn = ∑K

k=1 Rnk, whereRn,k = Snk+1
Nnk+1, k = 1, . . . ,K .

The generating matrices are

Hi+1 =



p1
Ri2

Mi − Ri1
q1 · · · RiK

Mi − Ri1
q1

Ri1

Mi − Ri2
q2 p2 · · · RiK

Mi − Ri2
q2

· · · · · · · · · · · ·
Ri1

Mi − RiK

qK

Ri2

Mi − RiK

qK · · · pK


.

In this case,Hi are random matrices and converge to

H =



p1
p2

M − p1
q1 · · · pK

M − p1
q1

p1

M − p2
q2 p2 · · · pK

M − p2
q2

· · · · · · · · · · · ·
p1

M − pK

qK

p2

M − pK

qK · · · pK


almost surely, whereM = p1 + · · · + pK .

Bai, Hu and Shen (2002) considered the convergences ofYn/n andNn/n. The
asymptotic distributions ofYn andNn can be obtained from Theorems 3.2 and 4.1
in this paper. From Lemma 3 of Bai, Hu and Shen (2002) we haveαi = o(i−1/4)

almost surely, so the condition (1.3) is satisfied.
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