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ASYMPTOTICS IN RANDOMIZED URN MODELS
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Northeast Normal University and National University of Sngapore,
and University of Virginia

This paper studies a very general urn model stimulated by designs in
clinical trials, where the number of balls of different types added to the urn
at trialn depends on a random outcome diegtby the composition at trials
1,2,...,n — 1. Patient treatments are allocated according to types of balls.
We establish the strong consistency and asymptotic normality for both the
urn composition and the patient atlation under general assumptions on
random generating matrices which determine how balls are added to the urn.
Also we obtain explicit forms of the asymptotic variance—covariance matrices
of both the urn compositio and the patient allocation. The conditions on
the nonhomogeneity of generating matrices are mild and widely satisfied in
applications. Several applications are also discussed.

1. Introduction. In designing a clinical trial, the limiting behavior of the
patient allocation to several treatments during the process is of primary consid-
eration. Suppose patients arrive sequentially from a population. Adaptive designs
in clinical trials are inclining to assign more patients to better treatments, while
seeking to maintain randomness as a basis for statistical inference. Thus the cu-
mulative information of the responses of treatments on previous patients will be
used to adjust treatment assignment to coming patients. For this purpose, various
urn models [Johnson and Kotz (1977)] have been proposed and used extensively
in adaptive designs [for more references, see Zelen (1969), Wei (1979), Flournoy
and Rosenberger (1995) and Rosenberger (1996)].

One large family of randomized adaptive designs is based on the generalized
Friedman’s urn (GFU) model [Athreya and Karlin (1967, 1968), also called the
generalized Pdlya urn (GPU) in the literature]. The model can be described as
follows. Consider an urn containing balls &ftypes, respectively, representikg
“treatments” in a clinical trial. These treatments are to be assigned sequentially
in n stages. At the beginning, the urn contaifigs= (Yo1, ..., Yox) balls, where
Yor denotes the number of balls of typek =1, ..., K. At stagei, i =1,...,n,
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a ball is randomly drawn from the urn and then replaced. If the ball is of #ype
then the treatment is assigned to thgh patientg =1,...,K,i=1,...,n. We
then wait until we observe a random variab(@), which may include the response
and/or other covariates of patientAfter that, an additionaD, (i) balls of typex,
k=1,...,K, are added to the urn, wherg, (i) is some function of (/). This
procedure is repeated throughout thetages. Aften splits and generations, the
urn composition is denoted by the row vectof = (Y;,1, ..., Y k), whereY,,
represents the number of balls of type the urn after thezth split. This relation
can be written as the following recursive formula:

Yn = Yn—l + XnDna

whereX,, is the result of theth draw, distributed according to the urn composition
atthe previous stage; that s, if thth draw is a typek ball, then thetith component
of X,, is 1 and other components are 0. Furthermore, vdjte= (N1, ..., Nuk),
where N, is the number of times a typeball was drawn in the first stages,
or equivalently, the number of patients who receive the treatiémthe firstn
patients.

For notation, leD; = ((D,«(i),q.k =1, ..., K)) and let¥; be the sequence
of increasings -fields generated bfY ;};_q, {X;};_, and{D;}’;_,. DefineH; =
((E(Dgr(i)|Fi—1), g,k =1,...,K)), i =1,...,n. The matricesD; are called
addition rules andH; generating matrices. In practice, the addition rulB; often
depends only on the treatment on thle patient and its outcome. In these cases,
the addition ruleD; are i.i.d. (independent and identically distributed) and the
generating matricebl; = H = ED; are identical and nonrandom. But in some
applications, the addition rulB; depends on the total history of previous trials
[see Andersen, Faries and Tamura (1994) and Bai, Hu and Shen (2002)]; then
the general generating mattik is the conditional expectation &f; given %; _1.
Therefore, the general generating matrifids} are usually random. In this paper,
we consider this general case. Examples are considered in Section 5.

A GFU model is said to beomogeneousif H; =H foralli =1,2,3,.... In
the literature, research is focused on asymptotic propertigs @r homogeneous
GFU. First-order asymptotics for homogeneous GFU models are determined by
the generating matricds. In most casedl is an irreducible nonnegative matrix,
for which the maximum eigenvalue is unique and positive (called the maximal
eigenvalue in the literature) and its corresponding left eigenvector has positive
components. In some cases, the entridd ofay not be all nonnegative (e.g., when
there is no replacement after the draw), and we may assume that the Fhatasx
a unigue maximal eigenvaluewith associated left eigenvector= (vy, ..., vk)
with 3" v; = 1. Under the following assumptions:

(i) Pr{Dyx=0,k=1,...,K}=0foreveryg=1,...,K,
(i) Dy =0forallg,k=1,...,K,
(i) H isirreducible,
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Athreya and Karlin (1967, 1968) prove that

N Y,
(1.1 Tnk v and % — Uk
n Zq:l an

almost surely ag — oo.
Let A1 be the eigenvalue with a second largest real part, associated with a right
eigenvectok. If A > 2Re\1), Athreya and Karlin (1968) show that

(1.2) n~Y2Y £ - N(O,¢)

in distribution, wherec is a constant. When. = 2Rgi1) and A1 is simple,

then (1.2) holds when—/2 is replaced by 1./n In(n). Asymptotic results under
various addition schemes are considered in Freedman (1965), Mahmoud and
Smythe (1991), Holst (1979) and Gouet (1993).

Homogeneity of the generating matrix is often not the case in clinical trials,
where patients may exhibit a drift in characteristics over time. Examples are given
in Altman and Royston (1988), Coad (1991) and Hu and Rosenberger (2000).
Bai and Hu (1999) establish the weak consistency and the asymptotic normality
of Y, under GFU models with nonhomogeneous generating matdecedn that
paper, it is assumed th&t; = ED;, so H; are fixed (not random) matrices.]
They consider the following GFU model (GFU]})j,{‘:1 Dy (i) = c1 > 0, for all
g=1...,Kandi =1,...,n, the total number of balls added at each stage is a
positive constant. They assume there is a nonnegative nkasixch that

(1.3) >

. — <00,
i—1 !

whereq; = |H; — H|| .

In clinical trials, N,; represents the number of patients assigned to the
treatmentk in the first n trials. Doubtless, the asymptotic distribution and
asymptotic variance dfl,, = (N1, ..., N, i) is of more practical interest than the
urn compositions to sequential design researchers. As Athreya and Karlin [(1967),
page 275] said, “It is suggestive to conjecture tliak,1,..., N,x) properly
normalized is asymptotically normal. This problem is open.” The problem has
stayed open for decades due to mathematical complexity. One of our main goals
of this paper is to present a solution to this problem.

Smythe (1996) defined the extended Pélya urn (EPU) (homogeneous) models,
satisfying Z,leE(Dqk) =c1>0¢9=1...,K; that is, the expected total
number of balls added to the urn at each stage is a positive constant. For EPU
models, Smythe (1996) established the weak consistency and the asymptotic
normality of Y,, and N,, under the assumptions that the eigenvalues of the
generating matri¥ are simple. The asymptotic varianceNyf is a more important
and difficult proposition Rosenberger (20Q0R Recently, Hu and Rosenberger
(2003) obtained an explicit relationship between the power and the variance
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of N,, in an adaptive design. To compare the randomized urn models with other
adaptive designs, one just has to calculate and compare their variances. Matthews
and Rosenberger (1997) obtained the formula for asymptotic variance for the
randomized play-the-winner rule&k(= 2) which was initially proposed by Wei
and Durham (1978). A general formula for asymptotic variandd,pivas still an
open problem [Rosenberger (2002)].

In this paper, we

(i) show the asymptotic normality &,, for generaH;
(il) obtain a general and explicit formula for the asymptotic variandd,of
(iii) show the strong consistency of bo¥h, andN,,;; and
(iv) extend these results to nonhomogeneous urn model with random generat-
ing matricesH; .

The paper is organized as follows. The strong consistency,,0dndN,, is
proved in Section 2 for both homogeneous and nonhomogeneous EPU models.
Note that the GFUL is a special case of EPU. The asymptotic normali¥, of
for homogeneous and nonhomogeneous EPU models is shown in Section 3 under
the assumption (1.3). We consider cases where the generating rHatnixs
a general Jordan form. In Section 4, we consider the asymptotic normality of
N, = (Nu1, ..., Nyx) for both homogeneous and nonhomogeneous EPU models.
Further, we obtain a general and explicit formula for the asymptotic variandg. of

The condition (1.3) in a nonhomogeneous urn model is widely satisfied in
applications. In some applications [e.g., Bai, Hu and Shen (2002)], the generating
matrix H; may be estimates of some unknown parameters updated at each stage,
for example, H; atith stage. In these cases, we usually haye= 0(i~1/?) in
probability orO (i ~1/4) almost surely, so the condition (1.3) is satisfied. Also (1.3)
is satisfied for the case of Hu and Rosenberger (2000). Some other applications are
considered in Section 5.

2. Strong consistency of Y, and N,. Using the notation defined in the
Introduction, Y, is a sequence of randotki-vectors of nonnegative elements
which are adaptive with respect &, }, satisfying
(2.1) EY;|Fi—1) =Y;-1M;,

whereM; = | + ¢, 1H;, H; = E(D;|%_1) anda; = 5_, v;;. Without loss of
generality, we assumg) = 1 in the following study.
In the sequel, we need the following assumptions.

ASSUMPTION2.1. The generating matrid; satisfies
Hy (i) >0 forallk,q and

2.2) K
> Hyri) = c1 forallg=1,...,K,
k=1
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almost surely, wherél . (i) is the(q, k)-entry of the matriXH; andc; is a positive
constant. Without loss of generality, we assume- 1 throughout this work.

ASSUMPTION2.2. The addition ruld; is conditionally independent of the
drawing procedur; given¥;_1 and satisfies

(2.3) E(D§k+5(i)|ﬂ_1)§C<w forallg,k=1,..., K and some > O.
Also we assume that
(2.4)  co(Dyk(i), Dgi (D)) Fi-1] = dgui forallg,k,l=1,...,K,

whered, = (qu,),flzl, g=1,...,K,are some& x K positive definite matrices.

REMARK 2.1. Assumption 2.1 defines the EPU model [Smythe (1996)]; it
ensures that the number of expected balls added at each stage is a positive constant.
So aftem stages, the total number of balis,, in the urn should be very close ito
(an/n convergesto 1).

The elements of the addition rule are allowed to take negative values in the
literature, which caesponds to theitsiation of withdrawing balls from the urn.

But, to avoid the dilemma that there are no balls to withdraw, only diagonal
elements oD; are allowed to take negative values, which corresponds to the case
of drawing without replacement.

To investigate the limiting properties &f,, we first derive a decomposition.
From (2.1), itis easy to see that

Yn = (Yn - E(Yn|\(Fn—l)) + Yn—an
= Qn + Yn—lGn + Yn—l(Mn - Gn)

(2.5) i "
=Y0G1G2---Gu 4+ )_QiBui+ Y Yi-1(M; — G;)B,,;

i=1 i=1
=S1+S+Ss,

whereQ; =Y; — E(Y;|%i_1), G; =1 + i 'H andB,; = G;;1---G, with the
convention thaB,, , = | and%p denotes the triviad -field.
We further decomposg; as follows:

n
Ss=) Y@ 4H; —iTH)B,,
i=1

(26) Y,'_l i — a1

HB,.;

n n
= Za,‘__llYi—l(Hi —H)B,,i + Z a1 i
i=1 """

i=1

= S31+ Sa2.
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To estimate the above terms in the expansion, we need some preliminary results.
First, we evaluate the convergence rate;of To this end, we have the following
theorem.

THEOREM2.1. Under Assumptions2.1and 2.2, (a)a,/n — la.s.asn — oo,
and (b) n ™" (a, —n) — Oas. foranyx > 1/2.

PROOF Lete; =a; —a;_1 for i > 1. By definition, we have; = X;D;1,
whereX; is the result of theéth draw, multinomially distributed according to the
urn composition at the préus stages; that is, theorditional probability that
theith draw is a ball of typé (thekth component oK; is 1 and other components
are 0) given previous status¥s_1 x/a;_1.

From Assumptions 2.1 and 2.2, we have

(2.7) E(ei|Fi-1) =1
and
E(e?) = E[E(e?|Fi—1)] = E[E(X'D;X}X;D;1|F;_1)]
= 1E[E(D}X/X;D;|Fi—1]1
= 1'E[E(D} diagla; Y;-1)D;|Fi—1)]1

2.8)
K K K
= > > E[(a; 4 Yi-19) E(Dgr (D) Dy ()| Fi-1)]
g=lk=1i=1
<CK?,
so that
n n
(2.9) an—n=ao+y (e —1) =1+ (¢; — E(¢;|Fi-1)
i=1 i=1

forms a martingale sequence.
From Assumption 2.2 and > 1/2, we have

> ()

By three series theorem for martingales, this implies that the series

X e —1
e

i=1
converges almost surely. Then, by Kronecker's lemma,

\(Fi—l) < Q.

1 n
_/(Z(ei — 1) -0
niz1
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almost surely. This completes the proof for conclusion (b) of the theorem.

The conclusion (a) is a consequence of conclusion (b). The proof of Theo-
rem 2.1 is then complete

ASSUMPTION2.3. Assume that (1.3) holds almost surely. Suppose that the
limit generating matrixH, K x K, is irreducible.

This assumption guarantees thbhas the Jordan form decomposition

Lo o A 1 0 -+ 0
0O » 1 --- 0

UCLESE e IR I |
0 0 0 - X

where 1 is the unique maximal eigenvalue of the matriDenote the order af,

by v, andt = maxRe(r1), ..., Re(Ay)}. We definev = maxX{v; : Re(A;) = t}.
Moreover, the irreducibility oH also guarantees that the elements of the left

eigenvectov= (vy, ..., v,) associated with the positive maximal eigenvalue 1 are

positive. Thus, we may normalize this vector to satsfy/ ; v; = 1.

REMARK 2.2. Condition (1.3) in Assumption.2 is very mild, just slightly
stronger tharny; — 0, for example, if the nonhomogeneous generating métyix
converges to a generating mattixwith a rate of log '~ for somec > 0.

What we consider here is the general case where the Jordan form of the
generating matrix is arbitrary, relaxing the constraint of a diagonal Jordan form
as usually assumed in the literature [see Smythe (1996)].

In some conclusions, we need the convergence raté; gfs described in the
following assumption.

ASSUMPTIONZ2.4.
0=, if ©# 3,

2.10 H, — EH;| =
( ) IH; ill {o(i—l/zlog_l/z(i _{_1))’ if 1= %,

where|(a;)|l = /ZU Ealzj for any random matrixa; ;).

A slightly stronger condition is
(2.11) IH; — EH;|| = 0(i~Y?).

REMARK 2.3. This assumption is trivially true H; is nonrandom. It is also
true whenH; is a continuously differentiable matrix function of status at stgge
such asy;, N; or the relative frequencies of the success, and so on. These are true
in almost all practical situations.



ASYMPTOTICS OF URN MODELS 921

For further studies, we define

Jn, if T <1/2,
V, =1 /nlog"?n, if t=1/2,
n®log" 1n, if 7> 1/2.

THEOREM2.2. Under Assumptions 2.1-2.3for some constant M,
(2.12) E|Y,—EY,|> < MV2.

Fromthis, for any « > 7 v 3, we immediately obtain (Y, — EY,) — 0, as,,
wherea v b = max(a, b). Also, if k = 1 or the condition (1.3)is strengthened to

0 o
(2.13) 39,

then EY,, in the above conclusions can be replaced by nv. Thisimpliesthat n=1Y,,
almost surely convergesto v, the same limit of n~1EY,, asn — oo.

PROOF  Without loss of generality, we assumg= 1 in the following study.
For any random vector, writg¢Y || := VEYY’. Definey, = (yp.1, ..., Yn.x) =
Y,T. Then, (2.12) reduces to

(2.14) 1Yn — EYull < MV,.

In Theorem 2.1, we have proved that, — n|? < CK?n [see (2.9) and (2.8)].
Noticing thatEa, = n + 1, the proof of (2.12) further reduces to showing that, for
anyj=2,...,K,

(2.15) ”yn,j _E)’n,j” <MV,.

We shall prove (2.15) by induction.
Supposer is an integer and/ a constant such that

0 . o0 IO )
Z % <E§, Z % <ég,
216) =o' i=no !
M= C1+Co+C3+ C4+ Cs+ (C3+2Cs5) Mo

1-3¢

wheree < 1/4 is a prechosen small positive numbgfg = max, <, {lly.; —
Ey, ill/V,} and the constantS’s are absolute constants specified later.

We shall complete the proof by induction. Consigder- ng and assume that
IV — EY,|l <MV, forallng<n < m.
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By (2.5) and (2.6), we have

- m — m y 1
Ym,j =YoBm,0j + Y QiBuij+ Y

i=1 i=1

iBm,ij
(2.17)

m

—aj—1 1.~ I —a;i-1\Yi-1,,, 5
S e e

i=1 ! ai-1

Bui=T B, T=(1+G+1 1) (1 +n1)

" 1
I1 (1+ —,) 0 0
=i+l J
n
(2.18) B 0 H a+;73) - 0
- j=i+1 ’
0 0 T A+

j=i+1

andB,, ; ; is the jth column of the matri8,, ;.
In the remainder of the proof of the theorem, we shall frequently use the
elementary fact that

(2.19) ]‘[ 1<1+ %) - (?)Aw(n, i),

J=i+

whereyr (n, i, 1) is uniformly bounded (sax ) and tends to 1 as— oc. In the
sequel, we usé (n, i, A) as a generic symbol, that is, it may take different values
at different appearances and is uniformly boundedyhyay) and tends to 1 as

i — oo. Based on this estimation, one finds thatthg: + £)-element of the block
matrix [} ol + i~1J,) is asymptotically equivalent to

L\ Ay
(2.20) E(i) gt (%) a. .20
£\ n J

wherej; is the eigenvalue af;.
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By (2.17) and triangular inequality, we have

”ym,j - Eym,j”

m ~ ~
> QiBum.i.;

i=1

D —ai—1\Yio1
+ Z T JBn,i,j

i=1 ! ai-1

< lyoBm.o.jll +

m

+2

i=1

(2.21)

I —ai—1\Yi-1,,, 5
( - )y W;B.i,

i aj-1

Yi- 1W _Eyz 1W §

m,i,j |

Consider the case wheredvy + --- 4+ v,1 < j <14 v+ --- 4+ ;. Then,
by (2.20) we have

(2.22) 1YoBum.o.jll < C1lm™|log”~tm < C1 V.

Since the elements df (Q*Q;) are bounded, we have

1/2
[ZB,,“]E@ Q,>Bm,,}

(2.23) m 1/2
< @{Z(W:‘)ZRW logz”f—2<m/i>}
i=1

=< C2Vm7

for all m and some constaxb.
Noticing thata 1yi—1ll is bounded, for ;é 5, we have

m 7 — . . ~
Z(l fll_l)yl__lJBm,i,j

i=1 ! di-1

—daj-1 -1.5
( - ) JBm’l’]
ai—1

Re(As)
=3 a2, |+1>(’") Iog”f‘l(ﬁ)

i=1 !
m T+1/2
3 m _1m
< —= — log" <—><CV,
_ﬂIZX;(l) g i) = 3Vm

for all m and some constadts.
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Now we estimate this term for the case= % We have

m o —_ . . ~
Z(l ?l—l)yl—lJBm?in/_

i=1 ! di-1

m . ) ) ~
Z(l ?z—l)EYz—lJBm’i’j
i=1 ! ai-1

( — di- 1)[3/1'—1 _Eyi—1:|\]§m’i?/_ '
l ai—1 ai—1 ’
First, we have

2
m . ) ) ~
Z(l ?z—l)Eyz—lJBm’i’j

<

i=1 ! it
E(i —ai 1)k — a 133 —JB
ZZ( (i —a 1.)( ax 1)>Eyl 1JBm7i7jEMJBm,kJ
ik ik “ e
2,12 12
2 i —ai-all* (m =1 (T (2
< ¥ () e ()(F) e (T)
i<k<m
1

< C3mlog® 2 m > :
i<k<m kﬂ

< C2mlog? 1
Here we point out a fact that for apy> 1, there is a constat, > 0 such that
Ela, —n|* < Cﬂn“/z.

This inequality is an easy consequence of the Burkholder inequality. [The
Burkholder inequality states that iX4,..., X, is a sequence of martingale
differences, then for any > 1, there is a constan€ = C(p) such that
E| X0y XilP < CpE(X)_y E(X?||Fi-)P/2]

By using % = # + %=L and the above inequality, we have

]

i—ai—1\[Yi-1 Yi—1] .
( i >|:Cli—l ai—li| by

—ai-1\[Yi-1— EYi-1] .5
( - )[ 0 ]JBm*’

1 E !
<C§i@L__l_ﬂ+p¢hl_wNWﬁ+]wamm

m

2

i=1

m . 2
G —ai—)?)| =~
+2i72’||\18m,,-, il
1=
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no : 1/2
V.

1

Vi /m 1/2 A m
+ C3M Z 5/4< ) log"" 1(7>

—n0+1

m 1/2
+ ngi‘l(?) Iog”f‘1<m—,)
i-1

l
< (C3Mo+ C3+ eM)/mlog’tm

Combining the above four inequalities, we have proved

(i —ai—1\Yi-1 .z
Z(il)y JBm,i,j

i=1 ! di-1

(2.24)

<(C3Mo+ C3+eM)V,,.

By (1.3) and the fact thail.__11||y,-_1|| is bounded, we have

(l — fli—l) yi—lwl_ §m,i,j

i aj-1

m Re();)
<3 iV (ﬂ) Iog”f‘1<mf)
l
i=1

m

2

i=1

l

Moo (m\TY? m
< Cavym Z —l<—> |Ogvt_l<f)
o i\ i

= C4 Vin.

(2.25)

Next, we show that

>

i=1

Yi—iW; — Ey; _1W; 5

i

m,i,j

Vi— l_Eyl
i

53

i=1

+ZHE(yl

E yl

"WiBi.j

(2.26) —E y, DW,; ~

Bm A

(W —EW)Bm,,

< (28M + C5(2Mo+ 1)) Vyy
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By (1.3) and the induction assumption thigt_1 — Ey;_1]| < M/,

m

Yi-1— EYi-1,,, 5
Y I WiB
i=1 !

Re(2r)
< ZM()VZ a,(lf'.l) IOgUI_1<Z)

i=1 !

Re(X;)
+ Z MVz_loe,< ) |Og”’_1<mf)

i=ng+1 l
< (CsMo+eM)Vy,.
By Jensen’s inequality, we have

—F ~ —F
ZH pYi-1 Yi-1 WiBm,i,j : Yi— Wle”
i=1
< (CsMgo+eM)V,,.
The estimate of the third term is given by
m
Ey;i 1 -
Z Y i —EW)Bp, ;i ;
i=1
Re();)
< Cs 3 IW; — EW, (%) rog (%)
i=1 !
(2.27) 1o 1\ R m 1
CsY i~ /2(—) lo ”f—l(—), if -,
5Zl ; g i T?éz
: 12 {am—1/2 Re(h) 1fm 1
C lo 1 log"—( — |, if T=—,
521 g (z+)< ) 9 (l) =5

i=1
< Cs5Vy.

The above three estimates prove the assertion (2.26).
Substituting (2.22)—(2.26) into (2.21), we obtain

¥n,j — Eyn,jll < (3eM 4+ C1+C2+C3+ Ca+ Cs5+ (C3+2C5)Mo) Viy < M V.

We complete the proof of (2.15) and thus of (2.12).
Sincex > 7 v 1/2, we may choose; such thatc > «1 > 7 v 1/2. By (2.12),
we have

1Yy = EY, 1% < Mn®,
From this and the standard procedure of subsequence method, one can show that
n“Y,—EY,)—0 a.s.
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To complete the proof of the theorem, it remains to show the replacement
of EY, by nv, that is, to show thatly, ;|| < MV, if (2.13) holds and that
lyn,j Il = o(n) under (1.3). Here the latter is for the convergence with 1.

Following the lines of the proof for the first conclusion, we need only to change
Eyn j on the left-hand side of (2.21) and replagg;_1W,; on the right-hand
side of (2.21) by 0. Checking the proofs of (2.22)—(2.26), we find that the proofs
of (2.22)—(2.26) remain true. Therefore, we need only show that

m

2

i=1

Eyi—.lwi 5

1

m m Re(Ar) o /m
< Z“i(T) log™ 1(7)
i—1

(2.28) '

m,i, j

m . T—1/2
NS f‘_fl(’zl) |ogvr—1<’14) <O0(V,), if(2.13)holds,
i=1

m . -1
mzﬁf(Z) Iog”"1<m—,> <em, if (1.3) holds.
l l
This completes the proof of this theoreni]

Recall the proof of Theorem 2.2 and note thatan be arbitrarily small; with
a slight modification to the proof of Theorem 2.2, we have in fact the following
corollary.

COROLLARY 2.1. Inadditionto the conditions of Theorem2.2,assume (2.11)
is true. Then, we have

n
(2.29) Yn,— — EYn,—= ZQiBn,i,— +o0,(Va),
i=1

Whereyn,— = ()’n,Z’ cees )’n,K) and §n,i,— = (én,i,Zv cee §n,i,K)-
Furthermore, if (2.13)istrue, Ey, _ in (2.29)can be replaced by 0.

PROOF Checking the proof of Theorem 2.2, one finds that the term estimated
in (2.22) is not necessary to appear on the right-hand side of (2.21). Thus, to
prove (2.29), it suffices to improve the right-hand sides of (2.24)—(2.26)s48,t0
The modification for (2.24) and (2.25) cae done without any further conditions,
provided one notices that the vecigr 1 in these inequalities can be replaced by
(0,y;—1,—). The details are omitted. To modify (2.26), we first note that (2.27) can
be trivially modified toeV,, if the condition (2.10) is strengthened to (2.11). The
other two estimates for proving (2.26) can be modified easily without any further
assumptions. O
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Note that

o= 2% = 20

i=1 zl -1

Since(X; — E(X;|¥;_1)) is a bounded martingale difference sequence, we have

n
K Z(X’ — E(Xl'|37i_1)) —0 a.s.
i=1

for anyx > 1/2. Also,

n

.—1 -1
ZYi—1|l _a,'_1|
i=1

In view of these relations and Theorem 2.2, we have established the following
theorem for the strong consistencylf.

n

aj_1—1
sn‘KZi—lJrKlll.lil -0 a.s.
i=1 i

—K

THEOREMZ2.3. Under theassumptionsof Theorem2.2,n*(N,, — EN,,) — 0,
as. for any k¥ > t v 1/2. Also, in the above limit, EN,, can be replaced by nv if
x =1or (2.13)istrue Thisimpliesthat n~IN,, almost surely convergesto v, the
samelimit of n=1EN,,, asn — oo.

3. Asymptotic normality of Y,. In the investigation of the asymptotic
normality of the urn composition, we first consider thatagf the total number
of balls in the urn after stages.

THEOREM3.1. Under Assumptions 2.1-2.31~Y/2(a,, — n) isasymptotically
normal with mean 0 and variance o11, where o11 = Y01 S8 1 /1 vgdgur.

PrROOF From Theorems 2.1 and 2.2, we have tha{a, — v a.s. Similar
to (2.8), we have

K K K

1Zvar(el |Fi1) — Z Z Z vq gkl a.s.

q=1k=11=1
Assumption 2.2 implies thdk; — E(e;|F;_1)} satisfies the Lyapunov condition.
From the martingale CLT [see Hall and Heyde (1980)], Assumptions 2.1-2.3 and
the fact that
n
an—n=1+Y (ei — E(e;|Fi-1)),

the theorem follows. O
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THEOREM 3.2. Under the assumptions of Theorem 2.2, Vn—l(Yn — EY,)
is asymptotically normal with mean vector 0 and variance—covariance matrix
T-*2T-1, where T is specified later, V2 =n if t < 1/2 and V2 =nlog® ~1n if
7 =1/2.Here t isdefined in Assumption 2.3.

Also, if (2.13)holds, then EY,, can be replaced by nv.

PrRoOOE To show the asymptotic normality of,, — EY,,, we only need to
show that of(Y,, — EY )T =y, — EY,.
From the proof of Theorem 3.1, we have

n
Yni— Eyni=an —n—1=73 (e — E(&;|Fi-1)).
i=1
From Corollary 2.1, we have
n ~ o~
Yn— = EYn— =) 0iByi— +0,(Vy).
i=1

Combining the above estimates, we get

n

> (ei — E(e2 Fi—1))

i=1

n—1
(3.1) Yo — Eyy = ;Qf Br.i.2 +o(Vy).

i=1

Again, Assumption 2.2 implies the Lyapunov condition. Using the CLT for
martingale sequence, as was done in the proof of Theorem 2.3 of Bai and Hu
(1999), from (3.1), one can easily show th@;tl(yn — EY,) tends to aK -variate

normal distribution with mean 0 and variance—covariance méftix g;g) The
12

variance—covariance matri¥,, of the second to th&'th elements 01Vn‘1(y,, -
Ey,) can be found in (2.17) of Bai and Hu (1999).

By Theorem 3.1, for the case = 1/2, V,, = /nlog"*?n, o117 = 0 and
T12=0. Whent < 1/2, V, = /n, o11 = Y01 Y X5 vydgu. Now, let
us find £1o. Write T = (2, Ty,...,Ty) = @, To), T; = (t/jl,...,t/jvi) and
Bui_ =T 1B,:T_ =B,z ....B.ix), wherel=(1,..., 1) throughout this
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paper. Then the vectdi,» is the limit of
n ~
n~t> " covi(ei, Q)| Fi—1lTB,i -
i=1

n
=n"1Y " 1coM(D)X}, X;D)| Fi-11TBy .-

N
i=1

n K
(3.2) =n"ty" 1( > " vgdy + H*(diagv) — v*v)H)Tén,i,_ +0,(2)
i=1 q=1

K n
= 1( > " vgdy + H*(diagv) — V*V)H)Tn_lz Bi— +0,(D)
q:l i=1

i=1

K n
= 1( Z quq>Tn_1Z B,i,— +0,(1),
q=1

where the matricesl, are defined in (2.4). Here we have used the fact that
1H*(diag(v) — v*v) = 1(diag(v) — v*v) = 0.

By elementary calculation and the definition&)f ; _, we get

n

n_lzﬁz,i’_

i=1

0 0
n n

(3.3) nD T o+ - 0

i=1j=i+1

n n

0 DY T a+571)
i=1j=i+1

In the ith block of the quasi-diagonal matrix

S TT a4+,

i=1j=i+1

the (g, g + £)-element (O< ¢ < v, — 1) has the approximation

(3.4) n—lég—ll(z—_)kh |og‘<'lz—_)(1+o(1)) N (1_1%)”1'

Combining (3.2)—(3.4), we get an expressioriab.
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Thereforep=2(y, — Ey,) has an asymptotically joint normal distribution with
mean 0 and variance—covariance ma¥ixThus, we have shown that

n~Y2(Y, —EY,) = NO,(T"H*=T7?

in distribution.

When (2.13) holdsy,, — ne;1 has the same approximation of the right-hand side
of (3.1). Therefore, in the CLTIEY,, can be replaced byv. Then, we complete
the proof of the theorem.d

ExaMPLE 3.1. Consider the mostimportant case in application, whiehas
a diagonal Jordan form and< 1/2. We have

Tr=g=| 0 2 O
0 0 - Aix_1

whereT = (1',t}, ..., t,_;). Now let

K
R=> v;d; +H*(diagv) — v*v)H.
j=1

The variance—covariance matrix = (cr,-j)l-szl has the following simple form:

o1 = 1RY = YN 38 Y vdgu, 01j = 1 — 2 MRY = (1 -
e P wddit g, j=2,..., K, and

oij=(1—Ai_1—Aj_1) H(t}_)'RY;_;.

4. Asymptotic normality of N,. Now, N,, = (N,1, ..., Nyk), whereN,; is
the number of times a typeball is drawn in the firsk draws:

n
Nn = (ana ooy Nyg) = Nn—l +Xn = th
i=1
where the vectorX; are defined as follows: If a type-ball is drawn in the'th
stage, then define the draw outcoXgeas the vector whoskth component is 1
and all others are 0. TherefalX; = 1 and1N;, = n. We shall consider the limiting
property ofN,,.

THEOREM 4.1 (for the EPU urn). Under the assumptions of Corollary 2.1,
Vn—l(Nn — EN,) is asymptotically normal with mean vector 0 and variance—
covariance matrix T~ ET -1, where ¥ is specified later, V2 = n if ¢ < 1/2 and
V2 =nlog?1nif r = 1/2. Here r isdefined in Assumption 2.3.

Furthermore, if (2.13)holds, then EN,, can be replaced by nv.
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PrRooFr At first we have

n

N, =Y (Xi — EXi|Fi—1) + > EX;|Fi—1)
(41) i=1 i=1

n n—1
=Y Xi—Yi_1/ai—) + > Yi/a;.

i=1 i=0

For simplicity, we consider the asymptotic distribution fT. Since the first
component olN,, T is a nhonrandom constant we only need consider the other
K — 1 components. From (2.29) and (4.1), we get

n n—1
=Y Xi=Yi_t/ai_ )T+ Vi /ai
i=1 i=0

=Y Xi—Yi_1/a;i_D)T_

i=1

+Zyl /(z+1)+Z

(l—l—l—al)
a; i+1

. i (i+1-a
= Z(Xi =Yi—1/ai-)T-+ Z ya’_ (ﬁ) +Yo,-

i i+1

(4.2) .

n—1
+Zl+1|:ZQJ z/—+Ey, +0p(V)i|

= Z(Xi —Yi—1/ai-)T-
i=1

n-1 — /n—-1 1
+;Qj<2i+l b )

i=

—Z(X =Y 1/a;- l)T+ZQ] n]—+

j=1

),

whereB; ; =T71G;y1---G/T, B, ; = X/= 7B: ;, the matrices with a minus

sign in subscript denote the submatrices of the st 1 columns of their
corresponding mother matrices. Here, in the fourth equality, we have used the fact
that >°/—5 Y= (B4 = 0,(/n) which can be proven by the same approach as
showing (2.24) and (2.28).
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In view of (4.2), we only have to consider the asymptotic distribution of the
martingale

U= Z(X Yl 1/al l)T +ZQ/ n,j,—-

j=1

We now estimate the asymptotic variance—covariance matrixatJ. For this
end, we need only consider the limit of

n—1
n—V_2|:ZE(q q]lf] 1)+ZE(q Q] n]—|j“] l)

1 1
(4.3) / /=
— . - n—1 R o
+Y E®;; _QiqjlFj-0+ )Y E®B;; R; Bn,/,—|?j—1)}
= =

whereq; = (X; = Y;_1/a;_1)T_ andR —E(Q*Q]Lf] 1) =T"'R;T.
From Theorem 3.1, we know that

E(q70;1Fj-1) — T* (diagy) —v'v)T_ =T diagn)T_  as;j — oo,

sincevT _ = 0. This estimate implies that

V, 2> E(q34,1Fj-1)
(4.4) j=1
~ {Tf diagv)T_, if t<1/2,
— XY=

0, if t=1/2,
Becausd); = [X;D; — (Y j_1/a;_1)H;IT,

asj — oo.

n—1
V2> E(@5Q)B.j—1Fj-1)

j=1
2n—l
=V, ?Y TEXX;-Yj_1/aj_1)"
(4.5) =]

x [X;D; — (Y j_1/aj—D)H ;| Fj_1]TB, ;.-

n—1
=T* diagV)HT (Vn_z > §,,,‘,-,_) +0(1).

j=1
From (2.18), we have
n—1n-1

(4.6) _128,,,_11_122 +1 I+G+D1) - +i71).

]1lJ
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Based on (2.18)—(2.20), we have that theh + ¢£)-element of the block matrix

n n—1

nty Z l+G+D78)--(a+i71)

j=li= J
has a limit obtained by

n e +w< ) |Og< )(1+o<1>)

j=li=j

(4.7) ev/ /Z | (_) Iog( )a’udv
~(:25)

Substituting this into (4.6) and then (4.5), Wh@,ﬁ = n, we obtain that

n—1
V, 2y E@5Q;Baj—1Fj-1) > E2=T* diagw)HTJ,
j=1
wherel is ak x (K — 1) matrix whose first row is 0 and the rest is a block diagonal
matrix, thet-block isv; x v, and its(k, h + £)-element is given by the right-hand
side of (4.7). The matri; is obviously 0 wherV/? = nlog?’ ~n
Note that the third term in (4.3) is the complex conjugate transpose of the second
term; thus we have also got the limit of the third term, thasis,
Now, we compute the limi&3 of the fourth term in (4.3). By Assumption 2.2,
the matricesR; in (4.3) converge taR. Then, the fourth term in (4.3) can be
approximated by

n i
e S 2 T aerman,
1li= 1 r=j+1

4.8) JELiEAL =

x Z ]‘[ (+r- 13,,)} :
i= ]+l r=j+1 g.h=1
Similar to (4.7), we can show that the, r)-element of the(g, )-block of the
matrix in (4.8) is approximately
w—=1t—1n—-1n—-1n-1 ., .\X i lo w s lo ¢/ .

Vn_z Z Z ZZ Z @/J) g(.m/]) g (l/]/) /9 (m/j)

(4.9) TS (D D))
X [TERTh](w—w’,t—t’),

where[T;RT ] 1) is the(w’, t')-element of the matriXT;RT,]. Here, strictly
speaking, in the numerator of (4.9), there should be factb¢s j, w’) and
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¥ (m, j,t"). Since for anyjo, the total contributions of terms with < jg is o(1)
and they’s tend to 1 ag — oo, we may replace thé¢’s by 1.
For fixedw, w’, r andt’, if A, # A, or ReA4) < 1/2, we have

}2121 Zl (i /1) (m/j)* log” (i/j)log” (m /)

j=li=j m=j (i +Dm+D(w)H({E)!

w’ (l/+g)' - / 1 - / 1
(4.10) =3 ) (L—2g) W=D @ — ), — )~ HEFD
=0

t ’
Z (w +E)!(l—)\.h)_(t/_g+1)(l—i _)"h)_(w,+e+1)-
= W) &

Thus, whenr < 1/2, if we split Y3 into blocks, then thew, r)-element of the
(g, h)-block X, » (v, x v;) of X3 is given by

X_: i |:Z (' '+/E') (1= g) W=D 5, — )"0 HEHD
w'=0¢=0L ¢=0 @)

(4.11) L+ 0)!
AedERCANY -+ 1 7 _ —(w'+£+1)
+ )] (1—An) (I—=2g—2n) }

£=0
X [TERTh](w—w/,t—t/) .

Whent =1/2,%, , =0if 1, # 4, orif Re(A,) < 1/2. Now, we consideE, ;
with A, =15 and RéA,) =1/2. If w’' +1" < 2v — 2, then

n—1n—-1n-1 ,. ; \A Y w e ¢ .
(i/7)*s(L/j) ¢ log” (i/j)log" (£/5)
222 i+ DU+ D))

j=Li=j t=]
n—1n-1n-1 Iogu) +t
/ / 1 2
<ZZZ <nlogw+’+n:0(Vn).

Whenw' =t' = v —1 whichimpliesw = r = v = v, = v, by Abelian summation,
we have

V_Z"i“i"f (i/i)s (€/)s 10g" (i /j) log (¢ /)
(4.12) imlimj t=j (i +D+Div-D12
— Al A =D 22—
Hence, for this case,, , has only one nonzero element which is the one on the
right-lower corner ofz, , and given by

(4.13) Al 2w — DI 2@2v — DHTERT 4l
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Combining (4.3), (4.4), (4.7), (4.11) and (4.12), we obtain an expressiéh of
O

Now we consider one of the most important special cases, where the idatrix
has a diagonal Jordan form and< 1/2.

COROLLARY 4.1. Suppose the assumptions of Corollary 2.1 hold with
7 <1/2and

1 0 0
THT=g= 0 2 O
0 0 - Ag.1

whereT = (1, t], ..., tx_;). Nowlet
ajj = (t_p)'(diagv) — v*V)t;_y,
bij = hj-1(1— ;-0 "ty (diagv) — v')t;_;
and
cij=lA—Ai—) '+ @ —2j—0) @ —Xica— Aj—) Tt )'RY_,

fori,j=2,...,K. Then n~2(N, — EN,) is asymptotically normal with mean
vector 0 and variance—covariancematrix (T~1)*ST~1, where £ = (&;));_, has
the following simple form:

511:51‘/' =5;1=0 and 5,"/' = ajj —{-b,'j +bj,' + ¢ij

fori,j=2,...,K.
5. Applications.

5.1. Adaptive allocation rules associated with covariates. In clinical trials, it
is usual that the mbability of success (here we assume that the subject response is
dichotomous) may depend upon some observable covariates on the patients, that
is, pir = pr (&), whereg; are covariates observed on the patieand the result
of the treatment at theh stage. Herg;, = P(T; = 1|1X; =k, §;),fori=1,...,n
andk=1,..., K, whereX; = k indicates that a typé-ball is drawn at theth
stage andl; = 1 if the response of the subjectis a success and 0 otherwise.
Thus, for a giverg;, the addition rule could bB(¢;) and the generating matrices
H; =H() = ED().

Assume thatt, ..., &, are ii.d. random vectors and lét = EH(&1). The
asymptotic properties of the urn compositi¥p are considered by Bai and Hu
(1999). Based on the results in Sections 2 and 4, we can get the corresponding
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asymptotic results of the allocation number of patidts Here we illustrate the
results by considering the cake= 2.

Consider the generalized play-the-winner rule [Bai and Hu (1999)] and let
E(pr(&)) = pr, k=1, 2. Then the addition rule matrices are denoted by

di(&) 11— dl(Ei)> <p1 ql)
D(;) = and H= ,
€= "0 " ae % pa
where O<di(§)<landgy,=1— pyfork=1,2.
It is easy to see that =1, A1 = p1+ p2 — 1, t = max0,11) andv =
(92/(q1+ q2), q1/(q1 + g2)). Further, we have

R— (a192 + a2q1)(q1+ q2) +611612(P1—612)2< 1 —1)
(q1+q2)? -1 1)
1
T=<1 611) and T-1— <612 611)’
1 —a a+tg\1 -1

wherea; = Var(d(¢1)). For the case < 1/2, we have thaV, = n and the values
corresponding to Corollary 4.1 are

1—-q91—92)q192
q1+q2

az2 = qi1q2, by =

2]

Cop= 2[(a192 + a2q1)(q1 + q2) + q192(p1 — q2)
(@1 +g2)(L—=2(p1+ p2—1))

So
2]

2(1—-q1—q2)q192 | 2(a1q2 + a2q1)(q1 + q2) + q192(p1 — q2)
+
g1+ g2 (q1+492)(1—2(p1+ p2—1)
From Theorem 2.3 and Corollary 4.1, we have

G22=q1q2+

N N
n5<—" - v) —~0 as. forany <1/2 and n1/2<—" - v) — N(0, =1
n

n

in distribution, where

_ 0 O _ 622 1 -1
1= o 022 (g1+g2?\-1 1

For the randomized play-the-winner rule [Wei and Durham (1978)], we have
ar = prqr, k =1, 2. Then we have
- (0—2(q1+g2)q192
022= :
2(q1+4g2 —1

This result agrees with that of Matthews and Rosenberger (1997).
For the case =1/2, V, = nlogn and the value corresponding to (4.11) is

22 = A(a192 + a2q1)(q1 + g2) + q192(p1 — q2)°1.
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We have
(nlogn)~Y?(N,, — nv) > N(O, =p)

in distribution, where

5, = A@192 + a291) (g1 + 42) +4192(p1 = q2)?] ( 1 —1)
(91 + q2)? -1 1)
For the case of the randomized play-the-winner rule, we have
5, = 49192 ( 1 —1)
(q1+q2?\-1 1)°

5.2. Clinical trials with time trend in adaptive designs. Time trends are
present in many sequential experiments. Hu and Rosenberger (2000) have studied
time trend in adaptive designs and applied to a neurophysiology experiment. It is
important to know the asymptotic behavior of the allocation number of patients in
these cases.

In Section 5.1,p;x = P(T; = 1|X; = k), where X; = k if the kth element
of X; is 1. There may be a drift in patient characteristics over time, for example,
lim; .~ pixr = pr [HU and Rosenberger (2000)]. Then the results in Sections 2,
3 and 4 are applicable here. For the c&se- 2, we can get similar results as in
Section 5.1.

The results in this paper may also apply for GFU model with homogeneous
generating matrix with a general Jordan form as welt as1/2. In these cases,
the results of Smythe (1996) are not applicable.

5.3. Urn models for multi-arm clinical trials. For multi-arm clinical trials,
Wei (1979) proposed the following urn model (as an extension of the randomized
play-the-winner rule of two treatments): Starting frddp= (Yoz, ..., Yox), when
a typek splits (randomly from the urn), we assign the patient to the treatiment
and observe the patient’'s response. A success on treaknaglals a ball of typé
to the urn and a failure on treatmentidds ¥ (K — 1) ball for each of the other
K — 1 types. Letp, be the probability of success of treatménk =1,2, ..., K,
andgr = 1 — px. The generating matrix for this urn model is

p1 (K-D7Yqy - (K-D7 g1
no | K- D1 P2 o (K=D71g2
(K- (K-D7lgx --- Pk

The asymptotic properties of,, can be obtained from Athreya and Karlin (1968)
and Bai and Hu (1999). From Theorem 4.1 in Section 4, we obtain the asymptotic
normality ofN,, and its asymptotic variance.
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Recently, Bai, Hu and Shen (2002) proposed an urn model which adds
balls depending on the success probabilities of each treatment. Wyite
(Ny1, ..., Nyg) and S, = (Su1, ..., Suk), where N, denotes the number of
times that thekth treatment is selected in the firststages, and,,; denotes the
number of successes of thth treatment in thev,, trials, k =1, ..., K. Define
Ry = (Ru1,..., Ruk) and M, = Y5 | Rux, whereR, y = 253, k=1, K.
The generating matrices are

pP1 M, — Rilql M, — Ri1611
Ri1 Rik
Hiy1= qu p2 qu
Ri1 Ri2
q9K ) I Pk

M; — Rk M; — Rk
In this caseH; are random matrices and converge to

P1 bz qr - PK q1
M — p1 M—p1
n q2 P2 PK q2
H=| M—p M — p2
41 P2

qK qK - PK
M — pk M — pg

almost surely, wherdf = p1 + --- + pg.

Bai, Hu and Shen (2002) considered the convergenc¥g ot andN,,/n. The
asymptotic distributions of , andN,, can be obtained from Theorems 3.2 and 4.1
in this paper. From Lemma 3 of Bai, Hu and Shen (2002) we kave o(i ~1/4)
almost surely, so the condition (1.3) is satisfied.
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