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Abstract. This paper is the last of a series of two, where we study the asymptotics
of the displacement in a thin clamped plate as its thickness tends to 0 . In Part I,
relying on the structure at infinity of the solutions of certain model problems posed on
unbounded domains, we proved that the combination of a polynomial Ansatz (outer
expansion) and of a boundary layer Ansatz (inner expansion) yields a complete multi-
scale asymptotics of the displacement and optimal estimates in energy norm. The
“profiles” for the boundary layer terms are solutions of such model problems. In this
paper, adapting Saint-Venant’s principle to our framework, we prove the results which
we used in Part I.

Investigating more precisely the structure of the boundary layer terms, we go fur-
ther in the analysis performed in Part I: the introduction of edge layer terms along the
intersections of the clamped face with the top and the bottom of the plate respectively,
allows estimates in higher order norms. These edge layer terms are constructed with
the help of stable asymptotics, and are the singular parts of the boundary layer terms.
As a by-product of all these investigations, we obtain expansions and estimates for
the stress tensor in various anisotropic norms, and also estimates in L∞ - norm form
the displacement field.
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INTRODUCTION

Boundary value problems in thin plates appear as singularly perturbed problems
with respect to the thickness parameter ε , and the boundary conditions on the part
of the boundary transverse to the mean surface give rise in general to boundary layer
terms.

More precisely, let us introduce thin plates as a family of three dimensional do-
mains of the form Ωε = ω × (−ε, +ε) where the two-dimensional domain ω is the
mean surface of the plates; an interesting question is the investigation of the asymp-
totic behavior as ε → 0 of the solution uε of the linear elasticity system on Ωε .
In general the boundary conditions on the lateral side Γε

0 = ∂ω × (−ε, +ε) cannot
be satisfied by any polynomial Ansatz for uε and as usual in singularly perturbed
problems, see Il’in [14], there appears a boundary layer in the neighborhood of Γε

0 .
To our knowledge, the only situation where there is no boundary layer, is the case
of periodic boundary conditions on the lateral side Γε

0 (when ω is a rectangle, see
J. C. Paumier [23]): indeed the periodicity conditions imposed on the right hand
sides cancel any boundary layer terms.

Boundary layer terms can be roughly described by saying that they behave like
e−c r/ε , where r is the distance to Γε

0 . For isotropic materials, it is known that the
possible values of the constant c are determined by the Papkovich-Fadle eigenfunc-
tions, see R. D. Gregory & F. Y. Wan [13]. Even two-dimensional models for
thin plates, as the Reissner-Mindlin model, are singularly perturbed problems: see
the papers by D. N. Arnold & R. S. Falk [2, 3] where the boundary layer terms
of the Reissner-Mindlin model have been exhibited.

In the part I of this paper [11] we constructed an expansion of the solution uε

as the sum of an outer (polynomial) part and inner (boundary layer) part, with
estimates in H1 and L2 of the error between truncated expansions and the solution
itself. The remaining part of the proof is that relating to the behavior at infinity
of the solutions of some model problems on a half-strip, which may be referred as
Saint-Venant problems. In this part II, we prove that such solutions can be split into
the sum of a rigid displacement and an exponentially decreasing term (this result was
stated in [11] and referred as Theorem 3.2 and Corollary 3.4).

We also extend the results of [11] by the investigation of estimates in other norms:
error on the strain and the stress tensors, or estimates in L∞ or H2 norms for
instance, which requires the splitting of the solutions of different problems in regular
and singular parts in a stable way, cf [9], with respect to the curvilinear abscissa s
along the boundary ∂ω , which can be considered as a parameter. The outcome is that
the singular part of the expansion of the three-dimensional solution is concentrated
in the boundary layer terms.
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1 THE ORIGIN OF BOUNDARY LAYER TERMS. OUTLINE OF THE PAPER

1.1 The scaled plate problem

In the plate Ωε = ω × (−ε, ε) , where ω ⊂ R2 is a bounded plane domain with a
smooth boundary, we investigate the behavior as ε → 0 of the displacement uε in
the case when the plate Ωε is clamped along its lateral face Γε

0 = ∂ω × (−ε, ε) and
when the governing equations are those of the linearized elasticity. Denoting by A
the rigidity matrix and by e(uε) = (eij(u

ε))
ij

the linearized strain tensor defined by

eij(v) = 1
2
(∂ivj + ∂jvi) , the displacement uε of the clamped plate corresponding to

volume forces f ε is the unique solution of the variational elasticity problem:

uε ∈ V (Ωε), (1.1a)

∀vε ∈ V (Ωε),

∫

Ωε

A e(uε) : e(vε) =

∫

Ωε

f ε · vε, (1.1b)

where the variational space V (Ωε) is defined as

V (Ωε) = {v = (v1, v2, v3) ∈ H1(Ωε)3 | v = 0 on Γε
0}.

The 9 × 9 rigidity tensor A , with coefficients Aijkl , satisfies the usual symmetry
relations Aijkl = Ajikl = Aijlk = Aklij and is supposed to be uniformly positive
definite, namely:

∀xε ∈ Ωε, ∀(tij) ∈ R
9 s.t. tij = tji, Aijkl(x

ε) tkltij ≥ c t2ij (1.2)

where c > 0 is a positive constant. Moreover, we assume that the coefficients of A
do not depend on the “vertical” coordinate x3 and smoothly depend on the in-plane
variables (x1, x2) and, as in [12], [24] that





Aαβγ3 = 0 ∀α, β, γ ∈ {1, 2}

Aα333 = 0 ∀α ∈ {1, 2}.
(1.3)

The relations (1.3) are satisfied for any isotropic material, and allow the uncoupling
of the system of elasticity into bending and membrane problems.

Problem (1.1) is studied with the help of a scaling in order to set the problem on
the reference set Ω = ω × (−1, 1) , which is the image of Ωε through a dilatation
along the normal direction to the plane containing ω :

xε = (xε
1, x

ε
2, x

ε
3) ∈ Ωε 7−→ x = (x1, x2, x3) = (xε

1, x
ε
2, ε

−1xε
3) ∈ Ω.
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The corresponding “scaled” linearized strain tensor denoted by κ(ε)(v) is defined for
any function v ∈ H1(Ω)3 by:

καβ(ε)(v) = eαβ(v), κα3(ε)(v) = ε−1 eα3(v), κ33(ε)(v) = ε−2 e33(v), (1.4a)

where we use the convention that the Greek indices α and β span the set {1, 2} .
Correspondingly, the convenient scaling of the components of uε writes

uα(ε)(x) = uε
α(xε) and u3(ε)(x) = ε uε

3(x
ε), (1.4b)

for which the resulting scaled displacement u(ε) satisfies e(uε)(xε) = κ(ε)(u(ε))(x) .
The corresponding canonical scaling for the body forces writes

fα(ε)(x) := f ε
α(xε) and f3(ε)(x) := ε−1 f ε

3 (xε). (1.4c)

Our analysis holds if the scaled body force f(ε) satisfies an asymptotic property like

f(ε)(x) ≃ f 0(x) + ε f 1(x) + ε2 f 2(x) + · · ·+ εk fk(x) + · · · (1.5)

Then the scaled displacement u(ε) solves the new problem:

u(ε) ∈ V (Ω), (1.6a)

∀v ∈ V (Ω),

∫

Ω

A κ(ε)(u(ε)) : κ(ε)(v) =

∫

Ω

f(ε) · v, (1.6b)

where
V (Ω) = {v ∈ H1(Ω)3 | v = 0 on Γ0 = ∂ω × (−1, 1)}. (1.7)

1.2 Multi-scale asymptotics

In part I of this work, we exhibited an algorithm of construction of a multi-scale
asymptotics for u(ε) . Our result can be compared with many others, relating to
various problems, e.g. the homogeneization of periodic elastic structures [22], re-
lated problems in thin plates [2, 3], [25], [21]. The outcome of this algorithm is an
asymptotics for u(ε) of the form

u(ε)(x) ≃ Ψ0(x,
r

ε
) + ε Ψ1(x,

r

ε
) + ε2 Ψ2(x,

r

ε
) + · · · + εk Ψk(x,

r

ε
) + · · ·

with r the distance to the clamped part of the boundary ( r is also the distance to
∂ω in the in-plane variables (x1, x2) ) and

Ψ0(x, t) = u0(x), (1.8a)

Ψk(x, t) = uk(x) − χ(r) wk(t, s, x3) for k ≥ 1 (1.8b)

with






t = r ε−1, s is a curvilinear abscissa along ∂ω,

wk(t, s, x3) is uniformly exponentially decreasing as t → +∞,

χ is a cut-off function equal to 1 in a neighborhood of r = 0.

(1.8c)
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In this expansion, the polynomial or outer part is
∑

k≥ 0 εk uk , whereas the remaining
sum

∑
k≥ 1 εk wk( r

ε
, s, x3) is the boundary layer or inner part.

The necessity of such a multi-scale Ansatz was proved in Part I [11], where was
explained how the Dirichlet traces of the polynomial part of the Ansatz could be
compensated by those of the boundary layer part. Roughly speaking, the equations
inside Ω and the Neumann boundary conditions involved in (1.6) can be solved by
a polynomial Ansatz. Thus the remaining part has to solve a non homogeneous
Dirichlet problem, with homogeneous Neumann and interior right hand sides.

1.3 Reduced-normal problems

As already hinted, we introduce smooth local coordinates (r, s) in a tubular neigh-
borhood V of ∂ω : r is the distance to ∂ω and the curvilinear abscissa s belongs
to S the disjoint union L1S

1 ∪· · · · ∪· LIS
1 , where L1, . . . , LI are the lengths of the

connected components of ∂ω . The change of variables (x1, x2, x3) 7→ (r, s, x3) maps
V onto a domain Ω̃ = (0, ρ) × S × (−1, 1) with lateral face Γ̃0 = {0} × S × (−1, 1)
and the problem solved by the terms wk has the form

w(ε) ∈ H1(Ω̃)3 and w(ε) = h(ε) on Γ̃0, (1.9a)

∀v ∈ V (Ω̃),

∫

Ω̃

Ã κ̃(ε)(w(ε)) : κ̃(ε)(v) + Ã′(w(ε), v) = 0, (1.9b)

where the 9×9 matrix Ã = Ã(r, s) has the same features as A (positivity, smooth-
ness and property (1.3) on the coefficients), κ̃(ε) is the scaled strain tensor in the
variables (r, s, x3) and Ã′ is a first order integro-differential form: if i and j denote
multi-indices in N3 :

Ã′(w, v) =
∑

|i|+|j|≤ 1

∫

Ω̃

cij(r, s) ∂iw ∂jv.

Keeping in mind that r is now a fast variable as xε
3 , we set t = r ε−1 — like

x3 = xε
3 ε−1 . Thus ∂t = ε ∂r and for purposes of homogeneity we introduce the

following change in the displacements

(wr, ws, w3) 7−→ (ϕt, ϕs, ϕ3) = (ε wr, ε ws, w3). (1.10)

Now, problem (1.9) is transformed into the problem on Σ̃ := R+ × S × (−1, 1) :

ϕ ∈ H1(Σ̃)3 and ϕ = g on Γ̃0, (1.11a)

∀v ∈ V (Σ̃),

∫

Σ̃

Ã(εt, s) e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) +
4∑

k=1

εk Ãk(ϕ, v) = 0, (1.11b)

where Ãk is a second order integro-differential form:

Ãk(ϕ, v) =
∑

|i|, |j| ≤ 1

∫

Σ̃

ck
ij(εt, s) ∂iϕ ∂jv.
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With the help of the Taylor expansion of the coefficients ck
ij in t = 0 , we obtain for

problem (1.11) the formal expansion

ϕ ∈ H1(Σ̃)3 and ϕ = g on Γ̃0, (1.12a)

∀v ∈ V (Σ̃),

∫

Σ̃

Ã(0, s) e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) +
∑

k≥ 1

εk Bk(ϕ, v) = 0, (1.12b)

where for any k ≥ 1 , Bk is a second order integro-differential form:

Bk(ϕ, v) =
∑

|i|, |j| ≤ 1

∫

Σ̃

bk
ij(t, s) ∂iϕ ∂jv

whose coefficients bk
ij are polynomials of t with smooth coefficients in s .

Thus, the only slow variable is now s and we see that the “principal part” (in the
sense of the powers of ε ) of this problem does not involve any more the tangential
derivation ∂s : thus the variable s is a mere parameter. The following definition is
now natural (it was referred as Definition 3.1 in [11]).

Definition 1.1 The matrix Ã(r, s) being the matrix transformed from A by the
change of variables (x1, x2) 7→ (r, s) , we denote by B(s) the matrix

B(s) = Ã(0, s).

The matrix B(s) is positive definite, depends smoothly on s ∈ S and its coefficients
satisfy the same symmetry properties as A . Let Σ+ and γ0 denote the semi-infinite
strip and its lateral face:

Σ+ = {(t, x3) | t > 0, −1 < x3 < 1} and γ0 = {(t, x3) | t = 0, −1 < x3 < 1}.

The space of admissible displacements on Σ+ is

V (Σ+) = {v ∈ H1(Σ+)3 | v = 0 on γ0}. (1.13)

For each s fixed in S , the reduced-normal problem is the mixed Dirichlet-Neumann
problem in Σ+ :

ϕ ∈ H1(Σ+)3 and ϕ
∣∣∣
γ0

= g, (1.14a)

∀v ∈ V (Σ+),

∫

Σ+

B(s) e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) = 0, (1.14b)

with unknown ϕ = (ϕt, ϕs, ϕ3) and data g = (gt, gs, g3) .

Thus the canonical reduced-normal problem has zero interior (in Σ+ ) and Neu-
mann (on R+ × {−1, 1} ) data. But, due to the presence of the operators Bk in
formula (1.12b), the profiles wk appearing in (1.8b) are associated to functions ϕk

according to (1.10) which have to solve a recursive system of the form:





ϕk(s)
∣∣∣
γ0

= gk(s)

∀v ∈ V (Σ+),

∫

Σ+

B(s) e(∂t, 0, ∂3)(ϕ
k) : e(∂t, 0, ∂3)(v) = −

∫

Σ+

k−1∑

j=1

Bj(ϕk−j, v)

(1.15)
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for k ≥ 0 , with some (smooth) trace functions gk(s) . Thus we are lead to con-
sider non zero interior right-hand sides and we introduce Sobolev spaces with an
exponential weight:

Definition 1.2 Let η ∈ R . For m ≥ 0 let Hm
η (Σ+) be the space of functions

v such that eηtv belongs to Hm(Σ+) . Let V ′
η(Σ

+) be the space of distributions
w = (wt, ws, w3) such that eηtw belongs to the dual space of V (Σ+) .

Let B satisfying
{

B is a 9 × 9 positive definite matrix with constant coefficients,

B has the symmetry properties Bijkl = Bjikl = Bijlk = Bklij.
(1.16)

The general form of problem (1.14) is

ϕ ∈ H1(Σ+)3 and ϕ
∣∣∣
γ0

= g
∣∣∣
γ0

, (1.17a)

∀v ∈ V (Σ+),

∫

Σ+

B e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) =

∫

Σ+

f v, (1.17b)

for g ∈ H1/2(γ0)
3 and f ∈ V ′

η(Σ
+) for an η > 0 .

We are going to prove that the solutions of these Dirichlet-Neumann problems are
the sum of a term exponentially decreasing at infinity and of a rigid displacement
associated to the strain tensor e(∂t, 0, ∂3) . It is straightforward that this space R
of rigid displacements is the space of dimension 4 :

R = {R = (Rt, Rs, R3) = (ct, cs, c3) + cn (−x3, 0, t) | ct, cs, c3, cn ∈ R}. (1.18)

Theorem 1.3 Let η > 0 . For all g ∈ H1/2(γ0)
3 and for all f ∈ V ′

η(Σ
+) there

exists a unique rigid displacement R = R(g, f) ∈ R so that the problem

ϕ ∈ H1(Σ+)3 and ϕ
∣∣∣
γ0

= g + R
∣∣∣
γ0

, (1.19a)

∀v ∈ V (Σ+),

∫

Σ+

B e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) =

∫

Σ+

f v, (1.19b)

has a (unique) solution. Moreover, there exists η0 > 0 , which only depends on the
coefficients of B , such that if η < η0 , this solution ϕ belongs to H1

η (Σ+)3 .

Remark 1.4 • The optimal value of η0 is given in (4.13) below. It is the real
part of the “first” singularities at t = −∞ of the Neumann problem on the
whole strip R × (−1, +1) .

• If we define
K1

η(Σ
+) =

⋂

η̄<η

H1
η̄ (Σ+)3 (1.20)

and
K−1

η (Σ+) =
⋂

η̄<η

V ′
η̄(Σ

+) (1.21)

Theorem 1.3 gives that if f belongs to K−1
η0

(Σ+) then the solution ϕ of
problem (1.19) belongs to K1

η0
(Σ+) .
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• As a consequence of Theorem 1.3, we will prove that the profiles ϕk solution
of (1.15) belong to C ∞(S, K1

η0
(Σ+)) , see Corollary 4.13. In fact, they even

belong to a smaller space: for each s ∈ S , they behave like the product of
e−η0t by a polynomial as t → +∞ , see (4.27).

This result can be interpreted as the solution of a Saint-Venant problem, where the
solution is exponentially decreasing far from the support of the data (which is here
the Dirichlet data). Among an abundant literature, we quote the book [22] by O.A.
Oleinik, A.S. Shamaev & G.A. Yosifian for periodic structures, the paper [19]
by A. Mielke for unbounded thin plates and the paper [25] by C. Schwab for the
simpler situation of scalar second-order operators.

The key-argument is a “Saint-Venant principle”, adapted from [22], proved in §3,
combined with arguments about operator-valued pseudo-differential operators (§4),
which are classical in the theory of corner problem: cf the reference paper by V.A.
Kondrat’ev [15]. Before doing that, we prove in §2 the corresponding results for
the Laplace operator ∆ by very simple arguments: the comparison between the
Laplacian and the elasticity system is quite interesting.

We end this work by estimates in higher order norms relying on an edge decom-
position of the boundary layer terms (there appear now edge layer terms) in §5 and
we conclude in §6 by results for the strain and stress tensors.

2 A SIMPLE EXAMPLE: THE LAPLACIAN

The study of the asymptotics of solutions of the heat equilibrium problem in the
family of thin plates Ωε (Laplace equation inside Ωε , Dirichlet condition on Γε

0

and Neumann conditions on ∂Ωε \ Γε
0 ) would lead to the canonical reduced-normal

problem on Σ+ corresponding to (1.14)






(∂tt + ∂33)w = 0, on Σ+

∂3w = 0, on x3 = −+1

w = g, on t = 0.

(2.1)

Taking advantage of the possibility of separation of variables for ∆ , we expand
the Dirichlet data g in a basis of eigenvectors of the Neumann problem on the interval
(−1, 1) :

g =
∑

ℓ≥0

g+
ℓ cos ℓπx3 +

∑

ℓ≥1

g−
ℓ sin(ℓ − 1

2
)πx3

It is easy to see that the unique temperate solution of the Dirichlet-Neumann problem
(2.1) is given by

w =
∑

ℓ≥0

g+
ℓ cos ℓπx3 e−ℓπt +

∑

ℓ≥1

g−
ℓ sin(ℓ − 1

2
)πx3 e−(ℓ−

1
2
)πt.
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Therefore, w is exponentially decaying when t → +∞ if and only if g+
0 = 0 , i.e.

∫ +1

−1

g(x3) dx3 = 0.

Relying on this result, we can solve the general problem corresponding to (1.17)






(∂tt + ∂33)w = f, on Σ+

∂3w = 0, on x3 = −+1

w = g, on t = 0,

(2.2)

with an exponentially decreasing right hand side f in H−1
η (Σ+) , by

• the solution of the problem with f = 0 ,

• the odd extension f̃ of f to the full strip Σ = R × (−1, 1) , in order to solve
(2.2) with g = 0 ,

• the expansion of f̃ in the above basis of eigenvectors of the Neumann problem
on the interval (−1, 1) which yields coefficients f+

ℓ (t) and f−
ℓ (t) ,

• a Fourier-Laplace transform on these coefficients

f̂ −
+

ℓ (τ, x3) =

∫ +∞

−∞

e−tτ f −
+

ℓ (t, x3) dt, for Re τ = −η

which yields the elementary equations

(
τ 2 − ℓ2π2

)
ŵ+

ℓ (τ) = f̂+
ℓ (τ), Re τ = −η

(
τ 2 − (ℓ − 1

2
)2π2

)
ŵ−

ℓ (τ) = f̂−
ℓ (τ), Re τ = −η,

• the inverse Fourier-Laplace transform.

The outcome is the following statement corresponding to Theorem 1.3

Theorem 2.1 Let η > 0 . For all g ∈ H1/2(γ0) and for all f ∈ H−1
η (Σ+) there

exists a unique constant c0 so that the problem






(∂tt + ∂33)w = f, on Σ+

∂3w = 0, on x3 = −+1

w = g + c0, on t = 0,

(2.3)

has a solution in H1(Σ+) . Moreover, if η < π
2
, this solution w belongs to H1

η (Σ+) .

Of course c0 = −1
2

∫ +1

−1
g(x3) dx3 .
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3 SAINT-VENANT PRINCIPLE

3.1 The main result

This section is devoted to the proof of the Saint-Venant Principle, about the behavior
of solutions of the homogeneous elasticity system on any strip Σ(0, L) = (−1, 1) ×
(0, L) :

ϕ ∈ H1(Σ(0, L))3 and ϕ
∣∣∣
t=0

= 0, (3.1a)

∀v ∈ V (Σ(0, L)),

∫

Σ(0,L)

B e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) = 0, (3.1b)

where V (Σ(0, L)) is the subspace of H1(Σ(0, L))3 of triples v with null traces on
t = 0 and t = L and B is a 9 × 9 positive definite rigidity matrix with constant
coefficients.

Moreover, we introduce the condition of zero flux against rigid displacements
through γ0 , namely:

∀R ∈ R, Φ(ϕ |R) :=

∫ +1

−1

σit(ϕ)(0, x3) Ri(0, x3) dx3 = 0, (3.2)

where σit(ϕ)
i=1,2,3

are the components of the normal stress Be(∂t, 0, ∂3)(ϕ)n at

t = 0 , and R is the set (1.18) of rigid displacements related to the strain tensor
e(∂t, 0, ∂3) .

Lemma 3.1 If the displacement ϕ is solution of (3.1), then for any rigid displace-
ment R we have the conservation of flux:

∀t ∈ [0, L], Φ(ϕ |R) =

∫ +1

−1

σit(ϕ)(t, x3) Ri(t, x3) dx3.

Proof. As ϕ satisfies (3.1b), Green’s formula yields for all t ∈ (0, L]
∫

Σ(0,t)

B e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(R) =

∫ +1

−1

σit(ϕ)(t, ·) Ri(t, ·) − σit(ϕ)(0, ·) Ri(0, ·).

Since e(∂t, 0, ∂3)(R) = 0 , the conclusion follows immediately.

The Saint-Venant Principle expresses that a solution of the homogeneous elasticity
system with zero flux on the semi-infinite strip is exponentially increasing. The
following statement and proof are inspired by the corresponding theorem in [22].

Theorem 3.2 (Saint-Venant Principle). Any solution ϕ of the problem (3.1) with
condition (3.2) satisfies the estimate:

∫

Σ(0,r)

|e(∂t, 0, ∂3)(ϕ)|2 dt dx3 ≤ e−A(L−r)

∫

Σ(0,L)

|e(∂t, 0, ∂3)(ϕ)|2 dt dx3 (3.3)

where A > 0 is a positive constant independent of the parameters r and L .
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Proof. In equation (3.1b) we use a convenient test-function. To this end, we
introduce Ψ = Ψ(t) defined by :

Ψ(t) =





eA(L−r) when 0 ≤ t ≤ r

eA(L−t) when r ≤ t ≤ L

1 when L ≤ t

(3.4)

where A is a positive constant which will be determined later on. The definition of
Ψ and the boundary condition (3.1a) yield that v = (Ψ − 1)ϕ belongs to the test
space V (Σ(0, L)) . Using this v in (3.1b), we get:

∫

Σ(0,L)

B e(∂t, 0, ∂3)(ϕ) : (Ψ − 1) e(∂t, 0, ∂3)(ϕ) = −

∫

Σ(r,L)

σit(ϕ) ∂tΨ ϕi (3.5)

as a consequence of the identity ∂tΨ = 0 when 0 ≤ t ≤ r by construction of Ψ . We
divide the interval Σ(r, L) into the truncated segments Σ1

r+s = Σ(r + s, r + s+1) of
length 1 . Then, it may be noticed that ∂tΨ = −AeA(L−t) = −AΨ in Σ1

r+s , which
yields the estimate:

∣∣∣
∫

Σ1
r+s

σit(ϕ) ∂tΨ ϕi

∣∣∣ ≤ A
∣∣∣
∫ r+s+1

r+s

Ψ

∫ +1

−1

σit(ϕ) (ϕi − Ri) dx3 dt
∣∣∣ (3.6)

for any fixed element R ∈ R because of the assumption that the flux is zero against
the rigid displacements and the conservation of flux (Lemma 3.1). It follows:

∣∣∣
∫

Σ1
r+s

σit(ϕ) ∂tΨ ϕi

∣∣∣ ≤ A eA(L−r−s)
∣∣∣
∫

Σ1
r+s

σit(ϕ) (ϕi − Ri)
∣∣∣ (3.7)

since we have the inequality

eA(L−r−s−1) ≤ Ψ ≤ eA(L−r−s) in Σ1
r+s.

Thus:
∣∣∣
∫

Σ1
r+s

σit(ϕ) ∂tΨ ϕi

∣∣∣ ≤ A eA(L−r−s) ‖e(∂t, 0, ∂3)(ϕ)‖
L2(Σ1

r+s)
‖ϕ − R‖

L2(Σ1
r+s)

. (3.8)

But as a consequence of Korn’s and Poincaré’s inequalities applied in the rectangles
Σ1

r+s whose length and width are independent of the parameters r and s , the rigid
displacement R may be chosen so as to satisfy the estimate:

‖ϕ − R‖
L2(Σ1

r+s
)
≤ C ‖e(∂t, 0, ∂3)(ϕ)‖

L2(Σ1
r+s

)
(3.9)

which yields, with (3.8):
∣∣∣
∫

Σ1
r+s

σit(ϕ) ∂tΨ ϕi

∣∣∣ ≤ C A eA(L−r−s) ‖e(∂t, 0, ∂3)(ϕ)‖
2

L2(Σ1
r+s)

= C A

∫

Σ1
r+s

eA eA(L−r−s−1) |e(∂t, 0, ∂3)(ϕ)|2

≤ C A eA

∫

Σ1
r+s

Ψ |e(∂t, 0, ∂3)(ϕ)|2.

(3.10)
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Summing over the Σ1
r+s , (s = 0, . . . , L − r − 1) we find :

∣∣∣
∫

Σ(r,L)

σit(ϕ) ∂tΨ ϕi

∣∣∣ ≤ C A eA

∫

Σ(r,L)

Ψ |e(∂t, 0, ∂3)(ϕ)|2 (3.11)

and whence, substituting this inequality into (3.5) :
∫

Σ(0,L)

(Ψ − 1) B e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(ϕ) ≤ C A eA

∫

Σ(r,L)

Ψ |e(∂t, 0, ∂3)(ϕ)|2.

But the coercivity of the operator B yields :
∫

Σ(0,L)

(Ψ − 1) |e(∂t, 0, ∂3)(ϕ)|2 ≤ C A eA

∫

Σ(r,L)

Ψ |e(∂t, 0, ∂3)(ϕ)|2, (3.12)

which gives:
∫

Σ(0,L)

(Ψ − 1) |e(∂t, 0, ∂3)(ϕ)|2 − C A eA

∫

Σ(r,L)

Ψ |e(∂t, 0, ∂3)(ϕ)|2 ≤ 0.

Keeping in mind the expression of Ψ in the set Σ(0, r) — cf (3.4), and choosing A
such that C A eA ≤ 1 , we immediately deduce (3.3).

3.2 The exponential growth

Now, we may reformulate the Saint-Venant principle in a way more convenient for
our purposes.

Corollary 3.3 Let ϕ be a solution of problem (3.1) on Σ(0, L) for any L , i.e., the
displacement ϕ is solution of the homogeneous Dirichlet-Neumann problem on the
semi-infinite strip Σ+ = Σ(0,∞) . Moreover, we assume that ϕ satisfies the flux
condition (3.2). Then, the following alternative holds for all 0 < η < A/2 :

∀η ∈ (0, A/2),





either e−ηt e(∂t, 0, ∂3)(ϕ) 6∈ L2(Σ+),

or e(∂t, 0, ∂3)(ϕ) ≡ 0.

where A > 0 is the constant appearing in Theorem 3.2.

Proof. If e(∂t, 0, ∂3)(ϕ) is not identically 0 , there exists r > 0 such that
∫

Σ(0,r)

|e(∂t, 0, ∂3)(ϕ)|2 > 0.

Then, inequality (3.3) shows that there exists a constant c > 0 such that

∀L > r, c eAL ≤

∫

Σ(0,L)

|e(∂t, 0, ∂3)(ϕ)|2.

Let 0 < η < A/2 . Since we have e−2ηL ≤ e−2ηt on Σ(0, L) , we deduce that

∀L > r, c e(A−2η)L ≤

∫

Σ(0,L)

e−2ηt |e(∂t, 0, ∂3)(ϕ)|2.

Since c e(A−2η)L is unbounded when L → +∞ , e−ηt e(∂t, 0, ∂3)(ϕ) does not belong
to L2(Σ+) .
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4 BEHAVIOR AT INFINITY OF SOLUTIONS IN THE HALF-STRIP

Let B be a matrix satisfying (1.16). The aim of this section is to determine the
behavior at infinity of the solutions of the two-dimensional problem (1.17) in the
half-strip Σ+ . We are going to prove Theorem 1.3, i.e. that such solutions are
exponentially decreasing towards rigid displacements as the distance to the clamped
face becomes “large”. The main idea is to perform a splitting of ϕ similar to the
one that occurs when one looks for the singularities of a boundary problem around a
corner, cf [15].

4.1 Fredholm operators in weighted spaces

For any η ∈ R and m = −+ 1 , we are going to use the following weighted Sobolev
space on Σ = R × (−1, 1) :

Hm
η (Σ) = {v ∈ D

′(Σ)3 | eηtv ∈ Hm(Σ)}, (4.1a)

and on Σ+ = R+ × (−1, 1) :

H1
η (Σ+) = {v ∈ D

′(Σ+)3 | eηtv ∈ H1(Σ+)}, (4.1b)

Vη(Σ
+) = {v ∈ D

′(Σ+)3 | eηtv ∈ V (Σ+)}, (4.1c)

V ′
η(Σ

+) = {v ∈ D
′(Σ+)3 | eηtv ∈ V ′(Σ+)}, (4.1d)

with V ′(Σ+) the dual space of V (Σ+) . Then V ′
η(Σ

+) is the dual space of V−η(Σ
+) .

The corresponding elasticity operators are:

Definition 4.1 Let Bη be the operator defined by

Bη : Vη(Σ
+) ∋ ϕ 7−→ Bηϕ ∈ V ′

η(Σ
+) (4.2)

where Bηϕ stands for the element of the dual space V ′
η(Σ

+) defined as:

∀v ∈ V−η(Σ
+), 〈Bηϕ, v〉

V ′
η×V−η

=

∫

Σ+

B e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v), (4.3)

and similarly we define B̃η : H1
η (Σ)3 → H−1

η (Σ)3 .

Remark 4.2 It is easily seen that the adjoint of Bη is B−η .

The Fredholm properties of the operator Bη are closely linked to those of B̃η :
we can prove that

Lemma 4.3 For any η ∈ R , if B̃η is a Fredholm operator, then Bη is a Fredholm
operator, i.e. the dimension of KerBη and the codimension of ImBη are finite.
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The Fredholm properties of B̃η depend on the invertibility of its operator-valued

symbol B̂ in the complex plane through the partial Fourier–Laplace transform with
respect to the variable t (which corresponds to the Mellin transform for corner prob-
lems):

τ 7−→ ϕ̂(τ, x3) =

∫ +∞

−∞

e−tτ ϕ(t, x3) dt. (4.4)

Any ϕ ∈ H1
η (Σ)3 has a Fourier–Laplace transform well defined in H1(−1, 1)3 for

Re τ = −η .

Definition 4.4 For every complex number τ , we define:

B̂(τ) : H1(−1, 1)3 −→ [H1(−1, 1)3]′, ϕ̂ 7−→ B̂(τ)ϕ̂ (4.5)

as follows:

〈B̂(τ)ϕ̂, v̂〉
[H1]′×H1

=

∫ +1

−1

B e(τ, 0, ∂3)ϕ̂ : e(−τ, 0, ∂3)v̂ dx3. (4.6)

We know from the general theory, cf M.S. Agranovich & M.I. Vishik [1] that
there exists a discrete subset Sp(B) of C , such that:

∀τ 6∈ Sp(B), B̂(τ) is an isomorphism. (4.7)

Moreover, τ → B̂(τ)−1 is meromorphic with its poles in Sp(B) and in every strip
of the form η1 < Re τ < η2 :

{τ ∈ C | η1 < Re τ < η2} ∩ Sp(B) is finite. (4.8)

Similarly to [15] we can show that:

Lemma 4.5 For any η ∈ R such that Re τ = −η does not intersect Sp(B) , the
operator B̃η is an isomorphism.

As a consequence of Lemmas 4.3 and 4.5

Proposition 4.6 For any η ∈ R such that Re τ = −η does not intersect Sp(B) ,
Bη is a Fredholm operator.

Here are some additional properties of the above operators.

Proposition 4.7
∀η ≥ 0, KerBη = {0}. (4.9)

Proof. It may be noticed that for all η ≥ 0 :

V−η(Σ
+) ⊃ Vη(Σ

+). (4.10)

Therefore, if w ∈ KerBη for some η ≥ 0 , then we may take as test function v = w
in (4.3). From the positivity of the matrix B , it follows that:

e(∂t, 0, ∂3)w = 0.
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Thus w belongs to the space R of rigid displacements. Since moreover w satisfies
zero Dirichlet boundary condition for t = 0 , it coincides with the null displacement.
This yields the result.

We also need extra information about the symbol B̂ .

Proposition 4.8 For all τ 6= 0 such that Re τ = 0 , B̂(τ) is an isomorphism.

Proof. We have, for every ŵ ∈ Ker B̂(τ) :
∫ +1

−1

B e(τ, 0, ∂3)ŵ : e(−τ, 0, ∂3)ŵ = 0,

If Re τ = 0 we have τ = −τ , whence:
∫ +1

−1

B e(τ, 0, ∂3)ŵ : e(τ, 0, ∂3)ŵ = 0.

As B is positive definite with all its coefficients real, it follows that e(τ, 0, ∂3)ŵ = 0 .
Therefore, ŵ = 0 as soon as τ 6= 0 and we get the result.

If τ = 0 , the kernel Ker B̂(τ) is generated by the constants ŵ = (at, as, a3) .
Thus B̂(τ)−1 has a pole in τ = 0 and the following space P is not reduced to 0 :

Definition 4.9 The space P is the space of functions defined on the whole strip
Σ = R × (−1, 1) by:

P =
{
W | W (t, x3) = Res

τ =0
etτ B̂(τ)−1 f̂(τ, x3), f̂ holomorphic

}
. (4.11)

From the general theory [1], we know that P is finite dimensional. Its elements
have clearly the form

∑Q
q=0 tq wq(x3) . Conversely, we also classically have

Lemma 4.10

P =
{
W (t, x3) =

Q∑

q=0

tq wq(x3) |

∀v ∈ D(Σ),

∫

Σ

B e(∂t, 0, ∂3)(W ) : e(∂t, 0, ∂3)(v) = 0
} (4.12)

and the elements of P are polynomial.

This last property comes from the fact that the coefficients of B are constant. One
should calculate “Jordan chains” for τ = 0 to determine P , see [19] for the compu-
tation of such a space on R

2 × (−1, 1) .

4.2 Proof of Theorem 1.3

(i) First step: Solution up to polynomials. Let η0 be the largest positive
real number such that

∀η ∈ (−η0, 0) ∪ (0, η0), SpB ∩ {Re τ = η} = ∅. (4.13)
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As a consequence of property (4.8) of SpB :

η0 > 0. (4.14)

Lemma 4.11 Let η ∈ (0, η0) and a right hand side f ∈ V ′
η(Σ

+) be given. Then
(i) there exists a displacement ϕ belonging to ∩η̄<0Vη̄(Σ

+) such that:

B−ηϕ = f, (4.15)

(ii) there exists W in the finite dimensional space P of polynomials (cf Definition 4.9
and Lemma 4.10) such that

ϕ + W ∈ H1
η (Σ+)3. (4.16)

Proof. As the right hand sides belongs to V ′
η(Σ

+) , it also belongs to any space
V ′

η̄(Σ
+) , for η̄ < η . Let us fix η̄ = −η . By Proposition 4.6 and the definition (4.13)

of η0 , B−η is Fredholm, by Proposition 4.7 KerBη is reduced to {0} and moreover
(cf Remark 4.2) B⋆

−η = Bη . Therefore, by the Fredholm alternative, B−η is onto and
we have the existence of ϕ .

From the general theory of corner problems, cf [15], we may use the Cauchy formula
to obtain:

ϕ −
1

2iπ

∫

γ

etτ B̂(τ)−1 f̂(τ, x3) dτ ∈ H1
η (Σ+)3,

where

• γ is a simple contour in the complex plane surrounding all the poles of B̂(τ)−1

contained in the strip −η < Re τ < η ,

• f̂ the Fourier-Laplace transform of B−η(ξϕ) ,

• ξ is a smooth cut-off such that ξ(0) = 0 and ξ(t) = 1 for t ≥ 1 .

By (4.13) and Proposition 4.8, this set of poles surrounded by γ is reduced to {0}
and by Remark 4.10, this residue is an element W of P . The result then follows.

(ii) Second step: the relation between the space P and the subspace
R of rigid displacements. If η ∈ (0, η0) , the operator B−η is onto — cf (4.15),
but we can expect that its kernel is not reduced to {0} . By the previous lemma
applied with the right hand side f = 0 , we deduce that there exists a subspace
T ⊂ P of polynomials such that:

∀η ∈ (0, η0), KerB−η = {T + X(T ) | T ∈ T , X(T ) ∈ H1
η (Σ+)3} (4.17)

where X is a linear map defined on T . Thus the elements of KerB−η are the sum
of a polynomial and an exponentially decreasing function. The key-argument for the
proof of Theorem 1.3 is:

Proposition 4.12 We have

dim T = dimR = 4 and P = T ⊕R. (4.18)
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Proof. Now we denote the flux through the surface t = t0 by

Φt=t0(ϕ |R) =

∫ +1

−1

σit(ϕ)(t0, x3) Ri(t0, x3) dx3.

Using the Saint-Venant Principle under the form of Corollary 3.3, we deduce

∀K ∈ KerB−η,
(
∀R ∈ R, Φt=0(K |R) = 0

)
=⇒ e(∂t, 0, ∂3)(K) ≡ 0, (4.19)

thus, if ∀R ∈ R, Φt=0(K |R) = 0 , then K is a rigid displacement. If, in addition, K
satisfies an homogeneous condition of Dirichlet type on {t = 0} , then we necessarily
have K ≡ 0 . Therefore:

∀K ∈ KerB−η\{0}, ∃R ∈ R s.t. Φt=0(K |R) 6= 0. (4.20)

The flux conservation implies, with the splitting (4.17):

∀t0 > 0, Φt=0(K |R) = Φt=t0(K |R) = Φt=t0(T |R) + Φt=t0(X(T ) |R). (4.21)

We may expect that Φt=t0(T |R) behaves as a polynomial whereas Φt=t0(X(T ) |R)
is exponentially decreasing as t0 → +∞ . So, the applications t0 7→ Φt=t0(T |R) and
t0 7→ Φt=t0(X(T ) |R) are respectively constant and reduced to zero. Thus

∀K = T + X(T ) ∈ KerB−η, Φ(K |R) = Φ(T |R). (4.22)

Let d = dim KerB−η , and T1, . . . , Td denote a basis of T . There exists a basis
R1, . . . , R4 of R such that:

Φ(Tj |Rk) = δjk, j = 1, . . . , d k = 1, . . . , 4,

which means that R1, · · · , R4 yield a sort of dual basis of T1, . . . , Td . Whence

d ≤ 4. (4.23)

Moreover, if T is a rigid displacement, for all R ∈ R, Φ(T |R) = 0 ; thus we deduce
from (4.20) and (4.22) that T ∩ R = {0} and consequently, as R ⊂ P by (4.12):

T + R = T ⊕R ⊂ P. (4.24)

It remains to show that both spaces T ⊕R and P have the same dimension. Indeed,
the splitting (4.16) allows to prove dimP = IndB−η − IndBη (cf [10]), and since
B⋆

η = B−η :
dimP = 2 IndB−η = 2 dim KerB−η = 2d. (4.25)

Taking into account (4.24), we deduce that d + 4 ≤ 2d , i.e. 4 ≤ d . The conclusion
follows by using inequality (4.23), namely d = 4 , which ends the proof.

(iii) Third step: Solution up to rigid displacements. Let η ∈ (0, η0) and
a right hand side (f, g) ∈ V ′

η(Σ
+)×H1/2(γ0)

3 for problem (1.17). Let G be a lifting
of g in H1

η (Σ+)3 . The change of unknown ϕ 7→ ϕ − G transforms the data (f, g)
into (f − BηG, 0) .

As a mere consequence of Lemma 4.11, we have the existence of ϕ1 ∈ V−η(Σ
+)

such that B−ηϕ1 = f−BηG , and the splitting of ϕ1 into ϕ0−W , with ϕ0 ∈ H1
η (Σ+)3

and W ∈ P . Proposition 4.12 yields that W = T + R , with T ∈ T and R ∈ R .
Using (4.17), we obtain that ϕ1+T +X(T ) = ϕ0+X(T )−R is a solution of problem
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(1.17) with data (f − BηG, 0) . Setting

ϕ = ϕ0 + X(T ) + G,

we obtain a solution in H1
η (Σ+)3 of problem (1.17) for (f, g + R) , i.e. a solution of

problem (1.19). Theorem 1.3 is now proved.

4.3 Existence of exponentially decreasing profiles

We return to the recursive system (1.15) which must be solved by the profiles ϕk .

Corollary 4.13 For any k ∈ N , let hk = hk(s) belong to C ∞(S, H1/2(γ0)
3) . Then

there exists for any k ∈ N , ϕk ∈ C ∞(S, H1(Σ+)3) and Rk ∈ C ∞(S,R) solving for
any ℓ ∈ N the system






ϕℓ(s)
∣∣∣
γ0

= hℓ(s) + Rℓ(s)
∣∣∣
γ0

∀v ∈ V (Σ+),

∫

Σ+

B(s) e(∂t, 0, ∂3)(ϕ
ℓ) : e(∂t, 0, ∂3)(v) = −

∫

Σ+

ℓ−1∑

j=1

Bj(ϕℓ−j, v).

(4.26)
Moreover, ϕk belongs to C ∞(S, H1

η (Σ+)3) for all η < η0 .

Proof. Let η ∈ (0, η0) be fixed. Let η0 > η1 > · · · > ηk > · · · > η be a decreasing
sequence. As a consequence of Theorem 1.3 for f = 0 and g = h0 , we obtain ϕ0 in
C ∞(S, H1

η1
(Σ+)3) solving (4.26) for ℓ = 0 .

Let us assume that ϕj are constructed in C ∞(S, H1
ηj+1

(Σ+)3) for j = 0, . . . , ℓ − 1

such that (4.26) holds for j = 0, . . . , ℓ−1 . Then, since the operators Bj are of order 2
with polynomial coefficients in t ,

∑ℓ−1
j=1 B

j(ϕℓ−j, ·) belongs to C ∞(S, V ′
ηℓ+1

(Σ+)) , and

a new application of Theorem 1.3 yields the existence of ϕℓ in C ∞(S, H1
ηℓ+1

(Σ+)3)
such that (4.26) holds for ℓ .

Thus the profiles ϕk belong to C ∞(S,∩η<η0
H1

η (Σ+)3) . A closer look at the struc-
ture of Bη0

would allow to prove that the ϕk belong to the space C ∞(S, Pη0
(Σ+)3)

where Pη0
(Σ+) is the space of the functions ϕ admitting a splitting as

ϕ −
Q∑

q=0

aq(x3) tq e−η0t ∈ H1
η0

(Σ+), (4.27)

where the functions aq are smooth functions which depend on ϕ and Q is an integer
which also depends on ϕ .

5 BOUNDARY LAYER TERMS ALONG THE EDGES OF THE PLATE

As a consequence of the previous Corollary 4.13 and of the construction algorithms
exhibited in Part I [11], we obtain that the solution u(ε) of problem (1.6) with a
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smooth right hand side f has the following asymptotics as ε → 0

u(ε)(x) ∼ u0(x) + ε
(
u1(x) − χ(r) w1(

r

ε
, s, x3)

)
+ · · ·

+εk
(
uk(x) − χ(r) wk(

r

ε
, s, x3)

)
+ · · ·

(5.1)

where the displacements uk are smooth up to the boundary of the scaled plate Ω ,
see §4.3 in [11], and the profiles wk belong to the weighted spaces C ∞(S, H1

η (Σ+)3)
for all η < η0 . The asymptotics (5.1) satisfies optimal error estimates in H1(Ω)
and L2(Ω) , in the sense that we have optimal estimates for the remainders ŪN (ε)
defined as

ŪN (ε) = u(ε) −
N∑

k=0

εk
(
uk(x) − χ(r) wk(

r

ε
, s, x3)

)
. (5.2)

For all N ∈ N , we have

‖ŪN (ε)‖
H1(Ω)3

≤ C εN+1
(
‖uN+1‖

H1(Ω)3
+ ‖wN+1(

r

ε
)‖

H1(Ω)3
+ O (ε)

)
. (5.3a)

‖ŪN (ε)‖
L2(Ω)3

≤ C εN+1
(
‖uN+1‖

L2(Ω)3
+ ‖wN+1(

r

ε
)‖

L2(Ω)3
+ O (ε)

)
. (5.3b)

We will see in this section that, in general, u(ε) does not belong to H2(Ω) and
that the singular part of u(ε) can be expanded in powers of ε as ε → 0 in a way
compatible with (5.1).

5.1 Singular exponents

The plates Ωε have two edges γε
−
+ , which are the intersections between the lateral

face Γε
0 and the upper and lower faces of the plate:

γε
−
+ = ∂ω × {−+ ε}.

The corresponding edges of the reference set Ω are

γ
−
+ = ∂ω × {−+ 1}.

These edges form the junction between two different boundary conditions: Dirichlet
on the lateral boundary and Neumann on the two horizontal surfaces. The opening
angle of the domain Ω all along the edges is constant and equal to π/2 .

Because of this change in boundary conditions, we cannot expect that the solution
u(ε) is regular, even if the right hand side is smooth up to the boundary. The
regularity and the asymptotics of u(ε) in the neighborhood of the edges is governed
by the singular exponents of the reduced-normal problems defined for each value of
the arc length s ∈ S (cf Definition 1.1):

ϕ ∈ H1(Σ+)3 and ϕ
∣∣∣
γ0

= g, (5.4a)

∀v ∈ V (Σ+),

∫

Σ+

B(s) e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) = 0. (5.4b)
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We refer to [16] and [10] for the general theory of the regularity along edges, and to
[17, 18] and [6, 7, 5, 9] for asymptotics along a curved edge.

To each value of the arc length s ∈ S , there correspond two sequences of complex

numbers ν−
+

1 (s), . . . , ν−
+

ℓ (s) with

0 < Re ν−
+

1 (s) ≤ . . . ≤ Re ν−
+

ℓ (s) ≤ . . .

that govern the regular and singular behavior of the solution of the mixed Dirichlet
Neumann problem (5.4) near the corner (t, x3) = (0, −+ 1) : let m ∈ R , m > 0 and
let ϕ be the solution of problem (5.4) with g ∈ Hm+1/2(γ0)

3 ;

if
Re ν−

+

1 (s) > m, (5.5a)

then
ϕ ∈ Hm+1(Σ+)3; (5.5b)

if
∀ℓ ≥ 1, Re ν−

+

ℓ (s) 6= m, (5.6a)

then

ϕ = ϕreg + ϕsing, with





ϕsing =
∑

+,−

χ−
+

∑

ℓ, Re ν ±

ℓ
(s) < m

c−
+

ℓ S
−
+

ℓ (s),

ϕreg ∈ Hm+1(Σ+)3,

(5.6b)

where χ−
+ is a smooth cut-off function equal to 1 in the neighborhood of the corner

(t, x3) = (0, −+ 1) of Σ+ and the functions S −
+

ℓ (s) are singular solutions of (5.4)
whose behavior in terms of

ρ
−
+(t, x3) := dist

(
(t, x3), (0, −+ 1)

)

is
(ρ

−
+)ν±

ℓ
(s) or (ρ

−
+)ν±

ℓ
(s) log ρ

−
+,

according to the multiplicity of ν−
+

ℓ (s) .

The complex numbers ν−
+

ℓ (s) are the eigenvalues of an analytic family of elasticity
operators ν 7→ B−

+(s)(ν) , i.e. the values of ν for which B−
+(s)(ν) is not invertible.

For each ν ∈ C , B−
+
(s)(ν) operates in one variable and is defined as follows. Let

B(s) be the operator governing problem (5.4) and (ρ
−
+, θ

−
+) be the polar coordinates

centered at (0, −+ 1) . The changes of coordinates (t, x3) 7→ (ρ
−
+, θ

−
+) defines for each

s ∈ S an operator B−
+
(s) such that

B−
+

(s)
(
θ

−
+; ρ

−
+ ∂ρ± , ∂θ±

)
= ρ2

−
+B(s)(∂t, ∂3).

Then
B−

+

(s)(ν) = B−
+

(s)
(
θ

−
+; ν, ∂θ±

)
.
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For an isotropic material with Lamé constants λ and µ , ν+
ℓ (s) = ν−

ℓ (s) = νℓ

for all s ∈ S , where νℓ are the singular exponents of the two-dimensional Lamé
operator with mixed Dirichlet-Neumann conditions on an angle with opening π/2 .
In the following two tables, we give the values of the first three singular exponents
computed by the method of [8] for a few pairs (λ, µ) ; note that the singular exponents
depend only on the ratio λ/µ .

In Table 1, we consider the cases where µ > 0 and λ > 0 . We note that ν1 is
always real and less than 1 . Thus, for an isotropic material, solutions u(ε) do not
belong to H2(Ω) in general.

λ µ ν1 ν2 ν3

1 0.0001 0.594637 1.671905 −+ 0.808683 i
1 0.001 0.594874 1.672056 −+ 0.807980 i
1 0.01 0.597220 1.673714 −+ 0.801032 i
1 0.1 0.619071 1.686965 −+ 0.741342 i
1 1 0.744750 1.718359 −+ 0.474498 i
1 10 0.928406 1.510215 1.885198

1 100 0.990438 1.368903 1.989911

1 1000 0.999005 1.354005 1.998999

Table 1

In Table 2, we consider the situation where λ < 0 with λ > −µ , which still
ensures the ellipticity in two dimensions. We repeat the last row of Table 1 for the
sake of comparison — note that the choice (λ, µ) = (1, 1000) is equivalent to the
choice (λ, µ) = (0.001, 1) . Now, Re ν1 > 1 , and we have the regularity H2 .

λ µ ν1 ν2 ν3

0.001 1 0.999005 1.354005 1.998999

0. 1 1.000000 1.352317 2.000000

- 0.25 1 1.109950 −+ 0.284274 i 2.231620

- 0.50 1 1.061964 −+ 0.466259 i 2.519427

- 0.75 1 1.023139 −+ 0.691068 i 3.094857 + 0.512300 i
- 0.95 1 1.001794 −+ 1.182371 i 3.005457 + 1.176263 i
- 0.99 1 1.000106 −+ 1.688153 i 3.000319 + 1.687901 i
- 0.999 1 1.000001 −+ 2.419603 i 3.000005 + 2.419601 i

Table 2
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5.2 Stable singular functions

As can be seen from these tables, branchings appear in the exponents when the
parameters of the rigidity matrix change, for instance if the Lamé coefficients depend

on (x1, x2) . So, in general, the singular functions S −
+

ℓ (s) do not depend smoothly on
the arc length s . But, relying on [5, 9], we can construct special linear combinations

of the S −
+

ℓ (s) in order to obtain stable singular functions S −
+

stab, ℓ(s)

s 7−→ S −
+

stab, ℓ(s) C
∞ with respect to s and taking values in C

∞(Σ+).

Simple eigenvalues ν−
+

ℓ (s) yield directly stable singular functions.

If ν−
+

ℓ (s0) = ν−
+

ℓ+1(s0) is a double eigenvalue at s0 and if ν−
+

ℓ (s) and ν−
+

ℓ+1(s) are
simple for s 6= s0 in a neighborhood of s0 , then stable singular functions are given
in this neighborhood by

S −
+

stab, ℓ(s) = S −
+

ℓ (s) + S −
+

ℓ+1(s) and S −
+

stab, ℓ+1(s) =
S −

+

ℓ (s) − S −
+

ℓ+1(s)

s − s0
.

Using these stable singular functions, we have (the spaces Hm
η (Σ+) are those

introduced in Definition 1.2):

Proposition 5.1 Let g = g(s) and f = f(s) be functions in C ∞(S) with values
in Hm+1/2(γ0)

3 and Hm−1
η (Σ+)3 respectively, where 0 < η < η0 . If

∀s ∈ S, ∀ℓ ≥ 1, Re ν−
+

ℓ (s) 6= m, (5.7)

and if for all s , ϕ(s) is solution of

ϕ ∈ H1(Σ+)3 and ϕ
∣∣∣
γ0

= g(s), (5.8a)

∀v ∈ V (Σ+),

∫

Σ+

B(s) e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v) =

∫

Σ+

f(s) v, (5.8b)

then

ϕ = ϕreg + ϕsing, with






ϕsing(s) =
∑

+,−

χ−
+

∑

ℓ, Re ν ±

ℓ
(s) < m

c−
+

ℓ (s)S−
+

stab, ℓ(s),

ϕreg ∈ C ∞(S, Hm+1
η (Σ+)3),

(5.9)

with smooth coefficients c−
+

ℓ ∈ C ∞(S) .

Now we consider problem (1.11) on Σ̃ := R+ × S × (−1, +1)

ϕ ∈ H1(Σ̃)3 and ϕ = g on Γ̃0, (5.10a)

∀v ∈ V (Σ̃),





∫

Σ̃

Ã(εt, s) e(∂t, 0, ∂3)(ϕ) : e(∂t, 0, ∂3)(v)

+
4∑

k=1

εk Ãk(ϕ, v) =

∫

Σ̃

f v.
(5.10b)
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We note that this problem depends on ε through its coefficients, but that this de-
pendence is now regular.

As is well-known in the edge analysis, the asymptotics near the edges is governed
by the reduced-normal part of the operator “frozen” at the edges. Since we start
with smooth data, all along the construction of the profiles wk we remain in spaces
of functions which are smooth with respect to the tangential variable (the arc length
s ) and the following statement is convenient for our purposes:

Proposition 5.2 Let g ∈ C ∞(S, Hm+1/2(γ0)
3) and f ∈ C ∞(S, Hm−1

η (Σ+)3) , for
0 < m ≤ 1 and 0 < η < η0 . If hypothesis (5.7) holds and if ϕ(ε) is solution

of problem (5.10), then expansion (5.9) still holds with smooth coefficients c−
+

ℓ (ε) ∈
C ∞(S) . Moreover, the dependence with respect to the small parameter ε is uniform:
for all n ∈ N

∃Cn(g, f),C ′
n > 0, ∀ε ∈ (0, 1),

‖c−
+

ℓ (ε)‖
Hn(S)

+ ‖χ(εt) ϕreg(ε)‖Hn(S,Hm+1(Σ+))

≤ Cn(g, f) + C ′
n‖ϕ(ε)‖

L2(S,H1(Σ+))
,

where χ is a cut-off function equal to 1 in a neighborhood of t = 0 .

The proof combines a classical analysis in the neighborhood of the edges, in the
region where t ∈ (0, 1) for instance, and uniform a priori estimates in the region
where 1 < t < ρ/ε .

Remark 5.3 The assumption m ≤ 1 serves only to avoid the dependence on ε of
the stable singular functions. To handle larger values of m , we have to introduce

the “shadows” U −
+, k
stab, ℓ(s) of the stable singular parts

U −
+, 0
stab, ℓ(s) := c−

+

ℓ (s)S −
+

stab, ℓ(s)

which are defined by induction as solutions of (compare with (1.15))




U−
+, k
stab, ℓ(s)

∣∣∣
γ0

= 0 and ∀v ∈ V (Σ+),
∫

Σ+

B(s) e(∂t, 0, ∂3)(U
−
+, k
stab, ℓ) : e(∂t, 0, ∂3)(v) = −

∫

Σ+

k−1∑

j=1

Bj(U−
+, k−j
stab, ℓ , v).

(5.11)

With these new functions, the expansion of the solution ϕ of problem (5.10) can be
written as

ϕsing(s) =
∑

+,−

χ−
+

∑

ℓ, Re ν±

ℓ
(s) < m

[m−1]∑

k=0

εk U −
+, k
stab, ℓ(s).

More precisely, there are functions S −
+, k, d
stab, ℓ(s) which do not depend on ϕ , such that

ϕsing =
∑

+,−

χ−
+

∑

ℓ, Re ν±

ℓ
(s) < m



c−
+

ℓ S −
+

stab, ℓ +
[m−1]∑

k = 1

εk
[m−1]∑

d =0

∂d
s c

−
+

ℓ S −
+, k, d
stab, ℓ



 . (5.12)
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5.3 Expansion of u(ε) near the edges

Let us recall that problem (1.6) is equivalent to problem (5.10) with g = 0 , as far
as the behavior in an annulus neighborhood r < ρ of the clamped part Γ0 of the
boundary is concerned, cf §1.3. Thus we can deduce from Proposition 5.2:

Theorem 5.4 Let u(ε) be the solution of problem (1.6) and let 0 < m ≤ 1 . Then
u(ε) admits the splitting

u(ε) = ureg(ε) + using(ε), (5.13a)

with





using(ε)(r, s, x3) =
∑

+,−

∑

ℓ, Re ν ±

ℓ
(s)≤m

c−
+

ℓ (ε)(s) χ−
+

(
r

ε
, x3)S

−
+

stab, ℓ(
r

ε
, s, x3),

ureg(ε) ∈ C ∞(S, Hm+1(Ω)3).

(5.13b)

Remark 5.5 We can drop the assumption (5.7) because of the smoothness of the
right hand side f(ε) .

As already hinted, in the expansion (5.1) of u(ε) , the only singular terms are the
boundary layer terms wk . Proposition 5.1 applied to wk yield (by induction over
k ) that

Lemma 5.6 The boundary layer terms wk admit the splitting

wk = wk
reg+wk

sing, with





wk
sing(s) =

∑

+,−

∑

ℓ, Re ν ±

ℓ
(s)≤m

c−
+, k
ℓ (s) χ−

+

S−
+

stab, ℓ(s),

wk
reg ∈ C ∞(S, Hm+1

η (Σ+)3),

(5.14)

for all 0 < m ≤ 1 and for all η < η0 .

Applying once more the result of Proposition 5.2 to the remainder ŪN (ε) defined
in (5.2) and using the technique of pushing forward the asymptotics in order to obtain
sharp estimates of the error, we can prove our final result:

Theorem 5.7 The splitting (5.13) of u(ε) admits the following asymptotic expan-
sion in powers of ε : For all N ∈ N

c−
+

ℓ (ε) =
N∑

k = 1

εk c−
+, k
ℓ + O(εN+1) (5.15)

where O(εN+1) is in the sense of C ∞(S) and the coefficients c−
+, k
ℓ are those of

(5.14), and

‖ureg(ε) −
N∑

k = 0

εk uk + χ(r)
N∑

k =1

εk wk
reg(

r

ε
, s, x3)‖Hm+1(Ω)3

≤ C εN−m+1/2 (5.16)

where wk
reg is defined in (5.14).

Of course we could extend this result to larger values of m by making use of the

shadow singular functions S −
+, k, d
stab, ℓ .
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6 ESTIMATES FOR THE DISPLACEMENT AND THE STRAIN AND STRESS

TENSORS

Without further development, we can deduce from all our results reliable estimates
for the displacement field u(ε) itself in various Sobolev spaces, but also for objects
depending linearly from u(ε) , namely the scaled strain tensor κ(ε)(u(ε)) and the
scaled stress tensor σ(ε) .

More interesting than estimates relative to the remainder ŪN defined in (5.2) are
estimates relative to the possibility of approximation of u(ε) by polynomials of ε
with coefficients depending on x only. So we introduce

ǓN (ε) = u(ε) −
N∑

k=0

εk uk(x). (6.1)

Another question is the approximation of u(ε) by hierarchical models, i.e. where
the “discrete spaces” are displacements with a polynomial behavior in x3 . Since the
boundary layer terms are not polynomial in the variable x3 in general, this question
is closely linked to the estimates of ǓN .

6.1 Error estimates for the displacement field

We deduce from the results of the previous section that for any Sobolev norm ‖·‖
N (Ω)

such that ‖u(ε)‖
N (Ω)

is finite for all smooth data f , we have — compare with (5.3a)

and (5.3b):

‖ǓN (ε)‖
N (Ω)

≤ C
(
εN+1 + εK ‖wK(

r

ε
)‖

N (Ω)

)
, (6.2)

where wK is the first non-zero boundary layer term (in general, K = 1 for the
in-plane components and K = 2 for the third component). As ‖w( r

ε
)‖

Hµ(Ω)
is

O(ε−µ+1/2) for any µ < µ0 , with — cf (5.5a)-(5.5b):

µ0 = sup
s∈S

sup
+,−

Re ν−
+

1 (s) + 1, (6.3)

we obtain that, for the in-plane components

‖ǓN
∗ (ε)‖

Hµ(Ω)2
≤ C(εN+1 + ε

3

2
−µ), (6.4a)

and for the transverse component

‖ǓN
3 (ε)‖

Hµ(Ω)
≤ C(εN+1 + ε

5

2
−µ). (6.4b)

The smaller is µ , the better is the estimate.

Similarly, for the L∞ norm, we obtain

‖ǓN
∗ (ε)‖

L∞(Ω)2
≤ C(εN+1 + ε) = O(ε), (6.5a)

and
‖ǓN

3 (ε)‖
Hµ(Ω)

≤ C(εN+1 + ε2). (6.5b)

Thus the estimate of ǓN
∗ (ε) , resp. ǓN

3 (ε) , does not improve if N > 0 , resp. N > 1 .
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6.2 Error estimates for the scaled strain tensor

The scaled strain tensor is defined in (1.4a). We are interested by its L2 norm. We
have to consider the behavior of the first terms in the asymptotics. As w1

3 is zero,
we obtain that

‖κ(ε)(ε w1)‖
L2(Ω)6

= O(ε1/2) (6.6)

and
‖κ(ε)(ε2 w2)‖

L2(Ω)6
= O(ε1/2). (6.7)

We recall from [11] that u0 and u1 are Kirchhoff-Love displacements, i.e. cancel e33

and eα3 . Thus
‖κ(ε)(ε u1)‖

L2(Ω)6
= O(ε). (6.8)

Finally for k ≥ 2 , uk is the sum of a Kirchhoff-Love displacement and of a term vk

which does not cancel e33 in general, thus

‖κ(ε)(εk vk)‖
L2(Ω)6

= O(εk−2). (6.9)

Whence, κ(ε)(Ǔ0) and κ(ε)(Ǔ1) do not tend to 0 in general as ε → 0 , but

‖κ(ε)(Ǔ2)‖
L2(Ω)6

= O(ε1/2). (6.10)

6.3 Error estimates for the scaled stress tensor

Following [4], we define the scaled stress tensor σ(ε) = (σkl(ε))1≤k,l≤3
by

σαβ = Aαβijκij(ε)(u(ε)), σα3 = ε−1 Aα3ijκij(ε)(u(ε)), σ33 = ε−2 A33ijκij(ε)(u(ε)).

Thus, the equation (1.6b) is equivalent to ∂kσkl(ε) = fl in Ω and nkσkl(ε) = 0 on
ω × {−+ 1} . We have

σαβ(ε) = ε−2 Aαβ33 e33(u(ε)) + Aαβγδ eγδ(u(ε)), (6.11a)

σα3(ε) = 2ε−2 Aα3γ3 eγ3(u(ε)), (6.11b)

σ33(ε) = ε−4 A3333 e33(u(ε)) + ε−2 Aγδ33 eγδ(u(ε)). (6.11c)

Inserting the asymptotic expansion (1.8) into each term of (6.11), we obtain

σαβ(ε) =
∑

k≥ 0

εk σk
αβ + χ(r)

∑

k≥ 0

εk Ξk
αβ(

r

ε
, s, x3), (6.12a)

σα3(ε) =
∑

k≥ 0

εk σk
α3 + χ(r)

∑

k≥−1

εk Ξk
α3(

r

ε
, s, x3), (6.12b)

σ33(ε) =
∑

k≥ 0

εk σk
33 + χ(r)

∑

k≥−2

εk Ξk
33(

r

ε
, s, x3), (6.12c)

where the σk
ij are smooth tensors and the Ξk

ij are exponentially decreasing tensors.
The expression of the first terms σ0

ij is similar to that given in [4, Ch.3]. We note
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the strong influence of boundary layer terms which arise at the degree 0 for σαβ ,
the degree −1 for σα3 , and the degree −2 for σ33 .

Combining (6.12) with the structure of the boundary layer terms in the neigh-
borhood of the edges of the plate, we arrive to the (generically optimal) estimates

‖σαβ(ε) − σ0
αβ‖L2(Ω)

≤ C ε1/2 (6.13a)

‖σα3(ε) − σ0
α3‖H1((−1,+1), H−1(ω)) ≤ C ε1/2 (6.13b)

‖σ33(ε) − σ0
33‖H2((−1,+1), H−2(ω)) ≤ C ε1/2. (6.13c)

We can also see that, in a generic way:

‖σα3(ε)‖L2(Ω)
≥ Cε−1/2 and ‖σ33(ε)‖L2(Ω)

≥ Cε−3/2. (6.14)

All these estimates are in accordance with the results quoted in [4, Ch.3].
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