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ASYMPTOTICS OF EMPIRICAL BAYES RISK
IN THE CLASSIFICATION OF A MIXTURE OF TWO
COMPONENTS WITH VARYING CONCENTRATIONS

UDC 519.21

YU. O. IVAN’KO

Abstract. We consider the problem of classification for a sample from a mixture of
several components. For the problem of classification of a two-component mixture
with the space of characteristics � = [a, b] ⊂ R and smooth distribution densities, we
find the precise rate of convergence for the error LN of the empirical Bayes classifier
gN to the error L∗ of the Bayes classifier, namely we prove that

N4/5(LN − L∗) ⇒ [A + Bς]2

where ς is a standard normal random variable, and the empirical Bayes classifier gN

is constructed from the kernel estimator of the density of a mixture with varying
concentrations. We prove that the kernel estimator with the Epanechnikov kernel is
optimal for the empirical Bayes classifier.

1. Introduction

Classification is a quite common procedure when analyzing various data. An example
of classification appears in psychology where the behavior of people or their abilities
are studied. Other examples are encountered in biological and medical investigations
when studying specific features of an illness, or testing new medicines, or determining
the influence of environmental factors (such as irradiation or electromagnetic waves). We
also mention an example from sociology where a popular approach is to classify people
according to their electoral preferences.

Extensive literature is devoted to various problems of classification. The Bayes ap-
proach is considered in [3] where the empirical Bayes classifier is studied for a sample
whose members are classified. The problem of classification for a mixture with varying
concentrations is considered in [4].

In this paper we consider a classification method for which the learning sample is
obtained from a sample with varying concentrations. It turns out that the classification
problem can be solved in this case under minimal a priori assumptions. We construct
the empirical Bayes classifier gN from the learning sample, and consider the asymptotic
properties of its Bayes error LN . We find the precise rate of convergence of the error LN

to the error L∗ of the Bayes classifier in the case of the problem of classification for a two-
component mixture with smooth distribution densities, namely we prove that N4/5(LN −
L∗) ⇒ η2 where η ∼ N(A, B2) and A and B are defined by (8).

Our proof is based on results on the asymptotic behavior of estimators of the density
of a mixture with varying concentrations obtained in [1], and on results on the behavior
of nonhomogeneous empirical functions and measures obtained in [6] and [2].
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2. The setting of the problem

In classification problems, each member of a sample may belong to one of M different
classes. Based on observations of some specific characteristics of the members of the
sample, the problem is to decide for each member to which class it belongs.

If the distributions of the characteristics are known for all classes of the sample, then
the Bayes classifier

(1) g∗(X) = arg max
k

wkfk(X)

is the optimal solution of the above problem where the random vector X assumes values
in the space � = Rd.

The random variable Y assumes values in the set {1, . . . , M} and is treated as the
number of a class containing a member whose characteristics are X;

Hk(x) = P{x/Y = k}

is the conditional distribution of characteristics in a class k and, by assumption, it has
the density fk(x); wk = P{Y = k} is the concentration of the class k in the sample.

The classifier g∗(X) minimizes the probability of the error L∗,

(2) L∗ = P{g∗(X) �= Y } = min
g

P{g(X) �= Y }

(see [3]).
If the distributions (densities) of characteristics and concentrations of components

are unknown, then they are estimated from the learning sample, and the estimators are
substituted to the Bayes classifier.

Substituting the estimators into (1) we obtain the classifier

(3) gN (X) = arg max
k

ŵk
N f̂k

N (X),

called the empirical Bayes estimator. We denote by

(4) LN = P{gN (X) �= Y/DN}

the conditional probability of the wrong classification for such a classifier if the learning
sample {

ξN
j , j = 1, . . . , N

}
is fixed and DN = σ{ξN

j , j = 1, N}.
Note that LN is a Borel function of the sample, and hence it is a random variable.

Example 2.1. If the classification of members of a learning sample {ξN
j , j = 1, N} is

known, that is, if the number Yj of a class containing the member j of the learning sample
is known, and if the concentrations of the classes in the sample are constant, then the
relative frequence

ŵk
N =

1
N

N∑
j=1

I{Yj = k}

can serve as an estimator of the concentration of the class k. The densities of character-
istics of components can be estimated with the help of the kernel estimator

f̂k
N (x) =

1
Nhd

N

N∑
j=1

K

(
x − ξN

j

hN

)
I{Yj = k}.
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A natural question arises on how large is the difference between the probability of the
wrong classification of the empirical Bayes classifier and that of the Bayes classifier.

It is proved in [3], under certain assumptions, that given ε > 0 there is n0 such that

P{LN − L∗ > ε} ≤ exp(−AεN)

for N > n0, where Aε is a constant depending on ε and independent of N .
Below we consider the case where the learning sample {ξN

j , j = 1, . . . , N} is taken from
a mixture with varying concentrations. The classification is unknown for such samples.
On the other hand, the probability that a given member belongs to a certain class is
known. The concentration of components is different for different samples. Denote by
ind(j) the number of a class containing the member j. The true value of ind(j) is
unknown; instead the concentration wk

j,N = P{ind(j) = k} of the component k in a
mixture for the member j is known.

The distribution of characteristics of a member is then given by

(5) P
{
ξN
j ∈ A

}
= µ(A) =

M∑
k=1

wk
j,NHk(A), A ∈ � = Rd,

where Hk(A) = P{ξN
j ∈ A/ ind(j) = k} is the conditional distribution of characteristics

in the class k. Based on this information, our goal is to classify new observations, that
is, to decide which of M classes contains a given member if the characteristics of the
member are known.

In order to construct the empirical Bayes classifier (3) we estimate the densities of
components from a learning sample taken from a mixture with varying concentrations.
As an estimator in this case we consider the kernel estimator of the density constructed
in [1], namely

(6) f̂k
N (x) =

1
Nhd

N

N∑
j=1

ak
j,NK

(
x − ξN

j

hN

)

where K(x) is a kernel, that is, a density of some probability distribution on �;

ak
j,N =

1
det ΓN

M∑
i=1

(−1)k+iγkiw
k
j,N

are weight coefficients defined for det ΓN �= 0; ΓN =
(〈

wk
· , wl

·
〉)M

k,l=1
is the Gram matrix;〈

wk
· , wl

·
〉

= N−1
∑M

i=1 wk
j,Nwl

j,N ; γki is the principal minor of ΓN .
Assume that
a1) Hk(x) possesses the density fk(x), 1 ≤ k ≤ M ;
a2) f̂k

N (x) are estimators of the form (6) such that a = supk,j,N ak
j,N < ∞;

a3) hN → 0 and Nhd
N → ∞ as N → ∞.

Theorem 2.1 ([4]). If assumptions a1)–a3) hold for all ε > 0, then there is n0 such that

(7) P{LN − L∗ > ε} ≤ exp(−AεN), N > n0,

where the constant Aε depends on ε and does not depend on N .

3. Main result

Below we find the rate of convergence of the error LN of the empirical Bayes classifier
to the error L∗ of the Bayes classifier in the case of two-component mixtures (M = 2)
and if ξj ∈ [a, b] where a and b are finite numbers.
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Let a sample {ξN
j , j = 1, N} be taken from a two-component mixture. Assume that

the concentrations {wk
j,N}N

j=1
2
k=1 of the components are different for different members

of the sample. Let a random variable X be the characteristic of the members of the
sample and let X assume values in � = [a, b] ⊂ R where a < b are real numbers. Denote
by λ1 and λ2 = 1 − λ1 the concentrations of components.

Assume that

b1) the Bayes classifier splits the space of characteristics � = [a, b] ⊂ R into two
connected sets, that is, there is only one point x0 where the graphs of λ1f1(x)
and λ2f2(x) intersect;

b2) fk(x) are continuous and for some c < ∞

fk(x) < c, 1 ≤ k ≤ M ;

b3) there exist the derivatives f ′
k(x) and f ′′

k (x) and they are bounded in a neighbor-
hood of x0;

b4) the tangents of functions λ1f1(x) and λ2f2(x) at the point x0 have different
slopes, that is, λ1f

′
1(x0) �= λ2f

′
2(x0);

b5) the limits

σ2
k(x) = lim

N→∞

M∑
r=1

〈
(ak

· )2, (wr
· )

〉
N
· fr(x) < ∞, 1 ≤ k ≤ M,

exist;
b6) a kernel K is such that

sup
x∈�

|K(x)| ≤ K < ∞, sup
x∈�

|K ′(x)| ≤ K < ∞,

Var
x∈�

K(x) ≤ K < ∞, Var
x∈�

K ′(x) ≤ K < ∞.

b7)
∫ ∞
−∞ zK(z) dz = 0, D2 =

∫ ∞
−∞ z2K(z) dz < ∞, d2 =

∫ ∞
−∞ K2(z) dz < ∞;

b8) hN → 0 and NhN → ∞ as N → ∞;
b9) supk,j,N ak

j,N < ∞ and supk,N Varj ak
j,N < ∞.

Put

σ2(x) = lim
N→∞

M∑
r=1

〈( M∑
l=1

λla
l
·

)2

, (wr
· )

〉
N

· fr(x),

φs(x0) = λ2f
(s)
2 (x0) − λ1f

(s)
1 (x0).

Theorem 3.1. It follows from assumptions b1)–b9) for hN = c/N1/5 that

(8) N4/5(LN − L∗) ⇒ [A + Bς]2

where ς is a standard normal random variable,

A = D2c2/5 φ2(x0)
2
√

2φ1(x0)
, B =

d

c1/10

σ(x0)√
2φ1(x0)

.

Remark 3.1. Assumptions b5) and b3) imply that σ2(x) and φs(x0) are finite for 1 ≤
s ≤ 2 and x ∈ �.

Remark 3.2. We seek the unknown parameter c such that

c = B
d2

D
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where B is some constant. Relation (8) is of the form

(9) N4/5(LN − L∗) ⇒ (d2D)4/5

[
B2/5 φ2(x0)

2
√

2φ1(x0)
+

1
B1/10

σ(x0)√
2φ1(x0)

ς

]2

in this case.
Relation (9) allows one to choose the optimal kernel K as a function minimizing d2D.

An optimal solution of this problem is found by Epanechnikov:

K(z) =
3
4

(
1 − |z|2

)
, |z| ≤ 1,

(see [3, Lemma 18]). Note that the optimal kernel does not depend on the distribution
of characteristics of members of the sample.

4. Nonhomogeneous empirical measures and functions

Let µ̂k
N (A, ak

·,·) = N−1
∑N

j=1 ak
j,NI{ξN

j ∈ A}, A ∈ � = Rd. The estimator µ̂k
N (A, ak

·,·)
is proposed in [2] as the estimator of the conditional distribution of characteristics
Hk(A) = P{ξN

j ∈ A/ ind(j) = k} in the class k. It can be found as a function that

minimizes the functional J(ak
·,·) = sup EA,Hk

∣∣µ̂k
N (A, ak

·,·) − Hk(A)
∣∣2 in the class of all

weight vectors ak
·,· for which µ̂k

N (A, ak
·,·) is an unbiased estimator of Hk(A).

Theorem 4.1. Let K(x) be a measurable function on � = Rd such that

sup
x∈�

|K(x)| ≤ K < ∞.

Consider the collection 
K of sets A of the form A = {x : K(x) < c} for all possible c.
Then

sup
x∈�

∣∣∣f̂k
N (x) − fk(x)

∣∣∣ ≤ 2K sup
A∈FK

∣∣µ̂k
N (A, ak

·,·) − Hk(A)
∣∣ .

Proof. It follows from the definition of Lebesgue integral that

fk(x) = lim
n→∞

n∑
j=−n

jK

n
Hk

(
An

j /An
j−1

)
where An

j =
{
x : K(x) < (j/n)K

}
. Similarly

f̂k
N (x) = lim

n→∞

n∑
j=−n

jK

n
µ̂k

N

(
An

j /An
j−1, a

k
·,·

)
.

Then∣∣∣f̂k
N (x) − fk(x)

∣∣∣
≤ lim

n→∞

n∑
j=−n

jK

n

(∣∣µ̂k
N

(
An

j , ak
·,·

)
− Hk

(
An

j

)∣∣ +
∣∣µ̂k

N

(
An

j−1, a
k
·,·

)
− Hk

(
An

j−1

)∣∣)
≤ 2K sup

A∈FK

∣∣µ̂k
N

(
A, ak

·,·
)
− Hk(A)

∣∣ . �

Corollary 4.1. If the assumptions of Theorem 4.1 hold, 
K is a Vapnik–Chervonenkis
class, and condition b9) is satisfied, then

sup
x∈�

∣∣∣f̂k
N (x) − fk(x)

∣∣∣ ≤ Λ

√
ln N

N

where Λ is a random variable such that Λ < ∞ almost surely.
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Proof. This is a straightforward corollary of Theorem 4.1 and Theorem 2.4.1 in [6]. �

Corollary 4.2. If the assumptions of Theorem 4.1 hold, � = [a, b], the kernel K(x) is
a function of bounded variation, and condition b9) is satisfied, then Corollary 4.1 holds.

Proof. Since K(x) is a function of bounded variation, we get K(x) = K1(x)−K2(x) where
K1(x) and K2(x) are increasing functions such that |Kj(x)| ≤ 2K. Thus it is necessary
to consider the case of an increasing kernel K(x). The assumptions of Corollary 4.1 hold
in this case, since the collection of intervals [a, c) is a Vapnik–Chervonenkis class and the
sets of the collection 
K are intervals [a, c) if K1 and K2 are monotone. �

Theorem 4.2. Assume that conditions b1)–b4), b6), and b9) hold. Then there is a
number N0 such that for all N > N0 the equation λ1f̂

1
N (x) = λ2f̂

2
N (x) almost surely has

a unique solution xN , and moreover xN → x0 as N → ∞.

Proof. First we prove that any sequence of elements xN of the sets of solutions of the
equations λ1f̂

1
N (x) = λ2f̂

2
N (x) almost surely converges to x0 as N → ∞.

Let v(x) := |λ1f1(x) − λ2f2(x)|. Condition b1) implies that there exists a unique x0

such that v(x0) = 0, and moreover x0 = minx v(x).
Let vN (x) :=

∣∣λ1f̂
1
N (x) − λ2f̂

2
N (x)

∣∣. Note that {vN (x)} is a sequence of random
functions.

We apply Theorem 4.3 to v(x) and {vN (x)}. Conditions b6) and b9) imply Corol-
lary 4.2, whence condition c1) follows. Condition c2) follows explicitly from b1). �

Theorem 4.3. Assume that
c1) there exists a nonrandom function v(x), x ∈ � = [a, b] ⊂ R, such that

sup
x∈�

|vN (x) − v(x)| → 0

as N → ∞;
c2) there is a unique point x0 ∈ � such that v(x0) < v(x) for x �= x0.

Put AN = {x : vN (x) = minz vN (z)}. Then any sequence {xN} such that xN ∈ AN

for all N ≥ 1 converges almost surely to x0 as N → ∞.

Proof. Assume that there is a sequence x′
N ∈ {xN} that does not converge to x0. Then

there is a subsequence {Nk} such that the limit x′ = limN→∞ x′
Nk

exists and x′ �= x0.
By construction

(10) vN (x′
Nk

) ≤ vN (x), x ∈ �.

Since v(x) is continuous, we obtain from c1) that

sup
x∈�

∣∣vN (x′
Nk

) − v(x′)
∣∣ → 0

as N → ∞. Passing to the limit in (10) as N → ∞ we obtain

v(x′) ≤ v(x0)

contradicting condition c2).
It follows from Theorem 4.2 that all the solutions of the equation λ1f̂

1
N (x) = λ2f̂

2
N (x)

approach x0 as N → ∞. Now we prove that the solution is unique, indeed. Condition b4)
implies that there exists R > 0 such that

v′(x) �= 0

for all x ∈ B(x0, R). Consider an arbitrary number ε such that 0 < ε < R. Assume that,
in the ε-neighborhood of x0 and for all N , there exist solutions x′

N and x′′
N of the equation

vN (x) = 0. Then, by the Rolle theorem there is c ∈ B(x0, ε) such that v′N (c) = 0. It
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follows from conditions b6) and b9) and Corollary 4.2 that supx∈� |v′N (x) − v′(x)| → 0
as N → ∞. This contradiction proves the theorem. �

5. Proof of the main result

It follows from Theorem 4.2 that, starting from some N , the equation

λ1f̂
1
N (x) = λ2f̂

2
N (x)

almost surely has a unique solution xN . Condition b1) implies that the errors of classi-
fiers (1) and (3) can be represented as follows:

L∗ = λ2

∫ x0

−∞
f2(x) dx + λ1

∫ ∞

x0

f1(x) dx, LN = λ2

∫ xN

−∞
f2(x) dx + λ1

∫ ∞

xN

f1(x) dx.

This implies

LN − L∗ = λ1

∫ x0

xN

f1(x) dx−λ2

∫ x0

xN

f2(x) dx =
∫ x0

xN

[λ1f1(x)−λ2f2(x)] dx.

Put ∆N = x0 − xN . Then

LN − L∗ =
∫ x0

x0−∆N

[λ1f1(x)−λ2f2(x)] dx |t = x − x0|

=
∫ 0

−∆N

[λ1f1(x0 + t)−λ2f2(x0 + t)] dt.

Now we expand the function g(x) := λ1f1(x) − λ2f2(x) into the Taylor series and let
N → ∞. According to Theorem 4.2, ∆N → 0 as N → ∞. Thus∫ 0

−∆N

(
λ1f1(x0) − λ2f2(x0) + t(λ1f

′
1(x0) − λ2f

′
2(x0)) + o(t)

)
dt

=
∫ 0

−∆N

t(λ1f
′
1(x0) − λ2f

′
2(x0)) dt + o(∆2

N )

=
∆2

N

2
|λ2f

′
2(x0) − λ1f

′
1(x0)| + o(∆2

N ).

(11)

Therefore the problem on the rate of convergence of LN − L∗ is reduced to the same
problem for ∆N as N → ∞.

Let gN (x) := λ1f̂
1
N (x) − λ2f̂

2
N (x) and gN (xN ) = 0. Since xN = x0 − ∆N , we get

0 = gN (x0 − ∆N ) = gN (x0) − ∆Ng′N (x0), ∆N → 0,

∆N =
gN (x0)
g′N (x0)

=
λ2f̂

2
N (x0) − λ1f̂

1
N (x0)

[λ2f̂2
N (x0) − λ1f̂1

N (x0)]′x

=
λ2(f̂2

N (x0) − f2(x0)) − λ1(f̂1
N (x0) − f1(x0))

φ1(x0)
.

We used condition b1) in the latter equality.
Lemma 2 of [5] implies for hN = c/N1/5 that

N2/5
[
λ2

(
f̂2

N (x0) − f2(x0)
)
− λ1

(
f̂1

N (x0) − f1(x0)
)]

⇒
[
D2c2/5

2
φ2(x0) +

d

c1/10
σ(x0)ς

]
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where ς is a standard random variable,

σ2(x) = lim
N→∞

M∑
r=1

〈( M∑
l=1

λla
l
·

)2

, (wr
· )

〉
N

· fr(x).

This implies that N2/5∆N ⇒ [D2c2/5 φ2(x0)
2φ1(x0)

+ d
c1/10

σ(x0)
φ1(x0)

ς] and

N4/5(LN − L∗) ⇒
[
D2c2/5 φ2(x0)

2
√

2φ1(x0)
+

d

c1/10

σ(x0)√
2φ1(x0)

ς

]2

.
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