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ASYMPTOTICS OF ONE-DIMENSIONAL FOREST FIRE
PROCESSES

BY XAVIER BRESSAUD AND NICOLAS FOURNIER1

Université Paul Sabatier and Université Paris-Est

We consider the so-called one-dimensional forest fire process. At each
site of Z, a tree appears at rate 1. At each site of Z, a fire starts at rate λ > 0,
immediately destroying the whole corresponding connected component of
trees. We show that when λ is made to tend to 0 with an appropriate nor-
malization, the forest fire process tends to a uniquely defined process, the
dynamics of which we precisely describe. The normalization consists of ac-
celerating time by a factor log(1/λ) and of compressing space by a factor
λ log(1/λ). The limit process is quite simple: it can be built using a graphical
construction and can be perfectly simulated. Finally, we derive some asymp-
totic estimates (when λ → 0) for the cluster-size distribution of the forest fire
process.

1. Introduction and main results.

1.1. The model. Consider two independent families of independent Poisson
processes, N = (Nt(i))t≥0,i∈Z and Mλ = (Mλ

t (i))t≥0,i∈Z, with respective rates 1

and λ > 0. Define F N,Mλ

t := σ(Ns(i),M
λ
s (i), s ≤ t, i ∈ Z). For a, b ∈ Z with

a ≤ b, we set [[a, b]] = {a, . . . , b}.

DEFINITION 1. Consider a {0,1}Z-valued (F N,Mλ

t )t≥0-adapted process
(ηλ

t )t≥0 such that (ηλ
t (i))t≥0 is a.s. càdlàg for all i ∈ Z.

We say that (ηλ
t )t≥0 is a λ-FFP (forest fire process) if a.s., for all t ≥ 0 and all

i ∈ Z,

ηλ
t (i) =

∫ t

0
1{ηλ

s−(i)=0} dNs(i) − ∑
k∈Z

∫ t

0
1{k∈Cλ

s−(i)} dMλ
s (k),

where Cλ
s (i) = ∅ if ηλ

t (i) = 0, while Cλ
s (i) = [[lλs (i), rλ

s (i)]] if ηλ
s (i) = 1, with

lλs (i) = sup{k < i;ηλ
s (k) = 0} + 1 and rλ

s (i) = inf{k > i;ηλ
s (k) = 0} − 1.
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Formally, we say that ηλ
t (i) = 0 if there is no tree at site i at time t and ηλ

t (i) = 1
otherwise. Cλ

t (i) stands for the connected component of occupied sites around i at
time t . Thus, the forest fire process starts from an empty initial configuration, trees
appear on vacant sites at rate 1 (according to N ) and a fire starts on each site at
rate λ > 0 (according to Mλ), immediately burning the corresponding connected
component of occupied sites.

This process can be shown to exist and to be unique (for almost every realization
of N,Mλ) by using a graphical construction. Indeed, to build the process until a
given time T > 0, it suffices to work between sites i which are vacant until time
T [because NT (i) = 0]. Interaction cannot cross such sites. Since such sites are
a.s. infinitely many, this allows us to handle a graphical construction. We refer to
Van den Berg and Jarai [16] (see also Liggett [13]) for many examples of graph-
ical constructions. It should be pointed out that this construction only works in
dimension 1.

1.2. Motivation and references. The study of self-organized critical (SOC)
systems has become rather popular in physics since the end of the 1980s. SOC
systems are simple models which are supposed to shed light on temporal and spa-
tial randomness observed in a variety of natural phenomena showing long-range
correlations, like sand piles, avalanches, earthquakes, stock market crashes, forest
fires, shapes of mountains, clouds, etc. Roughly, the idea, which appears in Bak,
Tang and Wiesenfeld [1] with regard to sand piles, is that of systems growing to-
ward a critical state and relaxing through catastrophic events (avalanches, crashes,
fires, etc.). The most classical model is the sand pile model introduced in 1987
in [1], but many variants or related models have been proposed and studied more
or less rigorously, describing earthquakes (Olami, Feder and Christensen [14]) or
forest fires (Henley [11], Drossel and Schwabl [6]). For surveys on the subject, see
Bak, Tang and Wiesenfeld [1, 2], Jensen [12] and the references therein.

From the point of view of SOC systems, the forest fire model is interesting
in the asymptotic regime λ → 0. Indeed, fires are less frequent, but when they
occur, destroyed clusters may be huge. This model has been the subject of many
numerical and heuristic studies; see Drossel, Clar and Schwabl [7] and Grassberger
[10] for references. However, there are few rigorous results. Even existence of
the (time-dependent) process for a multidimensional lattice and given λ > 0 has
been proven only recently [8, 9] and uniqueness is known to hold only for λ large
enough. The existence and uniqueness of an invariant distribution (as well as other
qualitative properties), even in dimension 1, have been proven only recently in [3]
for λ = 1. These last results can probably be extended to the case where λ ≥ 1, but
the method in [3] completely breaks down for small values of λ.

The asymptotic behavior of the λ-FFP as λ → 0 has been studied numerically
and heuristically [5–7, 10]. To our knowledge, the only mathematically rigorous
results are the following.
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(a) Van den Berg and Jarai [16] have proven that for t ≥ 3, P[ηλ
t log(1/λ)(0) =

0] � 1/ log(1/λ), thus giving some idea of the density of vacant sites. This result
was conjectured by Drossel, Clar and Schwabl [7].

(b) Van den Berg and Brouwer [15] have obtained some results in the two-
dimensional case concerning the behavior of clusters near the critical time.
However, these results are not completely rigorous since they are based on a
percolation-like assumption, which is not rigorously proved.

(c) Brouwer and Pennanen [4] have proven the existence of an invariant dis-
tribution for each fixed λ > 0, as well as a precise version of the following
estimate which extends (a): for λ ∈ (0,1), at equilibrium, P[#(Cλ(0)) = x] �
c/[x log(1/λ)] for x ∈ {1, . . . , (1/λ)1/3}. It was conjectured in [7] that this actually
holds for x ∈ {1, . . . ,1/(λ log(1/λ))}, but this was rejected in [16].

In this paper, we rigorously derive a limit theorem which shows that the λ-FFP
converges, under rescaling, to some limit forest fire process (LFFP). We precisely
describe the dynamics of the LFFP and show that it is quite simple: in particu-
lar, it is unique, can be built by using a graphical construction and can thus be
perfectly simulated. Our result allows us to prove a very weak version of (c) for
x ∈ {1, . . . , (1/λ)1−ε}, for any ε > 0; see Corollary 6 below.

1.3. Notation. We denote by #(I ) the number of elements of a set I .
For a, b ∈ Z, with a ≤ b, we set [[a, b]] = {a, . . . , b} ⊂ Z.
For I = [[a, b]] ⊂ Z and α > 0, we will set αI := [αa,αb] ⊂ R. For α > 0, we

naturally adopt the convention that α∅ = ∅.
For J = [a, b], an interval of R, |J | = b − a stands for the length of J and for

α > 0, we set αJ = [αa,αb].
For x ∈ R, �x	 stands for the integer part of x.

1.4. Heuristic scales and relevant quantities. Our aim is to find some time
scale for which tree clusters experience approximately one fire per unit of time.
However, for λ very small, clusters will be very large immediately before they
burn. We must thus also rescale space, in order that, immediately before burning,
clusters have a size of order 1.

Time scale. Consider the cluster Cλ
t (x) around some site x at time t . It is quite

clear that for λ > 0 very small and t not too large, one can neglect fires so that,
roughly, each site is occupied with probability 1 − e−t and, thus, Cλ

t (x) � [[x −
X,x + Y ]], where X,Y are geometric random variables with parameter 1 − e−t .
As a consequence, #(Cλ

t (x)) � et for t not too large. On the other hand, the cluster
Cλ

t (x) burns at rate λ#(Cλ
t (x)) (at time t) so that we decide to accelerate time by

a factor log(1/λ). In this way, λ#(Cλ
log(1/λ)(x)) � 1.

Space scale. We now rescale space in such a way that during a time interval
of order log(1/λ), something like one fire starts per unit of (space) length. Since
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fires occur at rate λ, our space scale has to be of order λ log(1/λ): this means that
we will identify [[0, �1/(λ log(1/λ))	]] ⊂ Z with [0,1] ⊂ R.

Rescaled clusters. We thus set, for λ ∈ (0,1), t ≥ 0 and x ∈ R, recalling Sec-
tion 1.3,

Dλ
t (x) := λ log(1/λ)Cλ

t log(1/λ)

(⌊
x/

(
λ log(1/λ)

)⌋) ⊂ R.(1)

However, this creates an immediate difficulty: recalling that #(Cλ
t (x)) � et

for t not too large, we see that for each site x, |Dλ
t (x)| � λ log(1/λ)et log(1/λ) =

λ1−t log(1/λ), of which the limit as λ → 0 is 0 for t < 1 and +∞ for t ≥ 1.
For t ≥ 1, there might be fires in effect and one hopes that this will make the

possible limit of |Dλ
t (x)| finite. However, fires can only reduce the size of clusters

so that for t < 1, the limit of |Dλ
t (x)| will really be 0. Thus, for a possible limit

|D(x)| of |Dλ(x)|, we should observe some paths of the following form: |Dt(x)| =
0 for t < 1, |Dt(x)| > 0 for some times t ∈ (1, τ ), after which it might be killed by
a fire and thus come back to 0, at which time it remains at 0 for a time interval of
length 1, and so on.

This cannot be a Markov process because |D(x)| always remains at 0 during a
time interval of length exactly 1. We thus need to keep track of more information
in order to control when it exits from 0.

Degree of smallness. As was stated previously, we hope that for t < 1,
|Dλ

t (x)| � λ1−t log(1/λ) � λ1−t . Thus, we will try to keep in mind the degree
of smallness. We will define, for λ ∈ (0,1), x ∈ R and t > 0,

Zλ
t (x) := log[1 + #(Cλ

t log(1/λ)(�x/(λ log(1/λ))	))]
log(1/λ)

∈ [0,∞).(2)

Final description. We will study the λ-FFP via (Dλ
t (x),Zλ

t (x))x∈R,t≥0. The
main idea is that for λ > 0 very small:

(i) if Zλ
t (x) = z ∈ (0,1), then |Dλ

t (x)| � 0 and the (rescaled) cluster contain-
ing x is microscopic, but we control its smallness, in the sense that |Dλ

t (x)| � λ1−z

(in a very unprecise way);
(ii) if Zλ

t (x) = 1 [we will show below that Zλ
t (x) will never exceed 1 in the

limit λ → 0], then the (rescaled) cluster containing x is automatically macroscopic
and has a length equal to |Dλ

t (x)| ∈ (0,∞).

1.5. The limit process. We now describe the limit process. We want this
process to be Markov and this forces us to add some variables.

We consider a Poisson measure M(dt, dx) on [0,∞) × R with intensity mea-
sure dt dx. Again, we define F M

t = σ(M(A),A ∈ B([0, t] × R)). We also define
I := {[a, b], a ≤ b}, the set of all closed finite intervals of R.
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DEFINITION 2. A (F M
t )t≥0-adapted process (Zt (x),Dt(x),Ht(x))t≥0,x∈R

with values in R+ × I × R+ is a limit forest fire process (LFFP) if a.s., for all
t ≥ 0 and all x ∈ R,⎧⎪⎪⎨

⎪⎪⎩
Zt(x) =

∫ t

0
1{Zs(x)<1} ds −

∫ t

0

∫
R

1{Zs−(x)=1,y∈Ds−(x)}M(ds, dy),

Ht(x) =
∫ t

0
Zs−(x)1{Zs−(x)<1}M(ds × {x}) −

∫ t

0
1{Hs(x)>0} ds,

(3)

where Dt(x) = [Lt(x),Rt (x)] with

Lt(x) = sup{y ≤ x;Zt(y) < 1 or Ht(y) > 0},
Rt (x) = inf{y ≥ x;Zt(y) < 1 or Ht(y) > 0}.

A typical path of the finite box version of the LFFP (see Section 2) is drawn and
commented on in Figure 2 and a simulation algorithm is explained in the proof of
Proposition 8.

Let us explain the dynamics of this process. We consider T > 0 fixed and set
BT = {x ∈ R;M([0, T ] × {x}) > 0}. For each t ≥ 0 and x ∈ R, Dt(x) stands for
the occupied cluster containing x. We call this cluster microscopic if Dt(x) = {x}.
We also have Dt(x) = Dt(y) for all y in the interior of Dt(x): if Dt(x) = [a, b],
then Dt(y) = [a, b] for all y ∈ (a, b).

1. Initial condition. We have Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ R.
2. Occupation of vacant zones. Here, we consider x ∈ R \ BT . We then have

Ht(x) = 0 for all t ∈ [0, T ]. If Zt(x) < 1, then Dt(x) = {x} and Zt(x) stands for
the degree of smallness of the cluster containing x. Then Zt(x) grows linearly
until it reaches 1, as described by the first term on the right-hand side of the first
equation in (3). If Zt(x) = 1, then the cluster containing x is macroscopic and is
described by Dt(x).

3. Microscopic fires. Here, we assume that x ∈ BT and that the corresponding
mark of M happens at some time t where z := Zt−(x) < 1. In such a case, the
cluster containing x is microscopic. We then set Ht(x) = Zt−(x), as described by
the first term on the right-hand side of the second equation of (3), and we leave the
value of Zt(x) unchanged. We then let Hs(x) decrease linearly until it reaches 0;
see the second term on the right-hand side of the second equation in (3). At all
times where Hs(x) > 0, that is, during [t, t + z), the site x acts like a barrier (see
point 5 below).

4. Macroscopic fires. Here, we assume that x ∈ BT and that the correspond-
ing mark of M happens at some time t where Zt−(x) = 1. This means that the
cluster containing x is macroscopic and thus this mark destroys the whole compo-
nent Dt−(x). That is, for all y ∈ Dt−(x), we set Dt(y) = {y}, Zt(y) = 0. This is
described by the second term on the right-hand side of the first equation in (3).

5. Clusters. Finally, the definition of the clusters (Dt(x))x∈R becomes more
clear: these clusters are delimited by zones with microscopic sites [i.e., Zt(y) < 1]
or by sites where there has (recently) been a microscopic fire [i.e., Ht(y) > 0].
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1.6. Main results. First, we must note that it is not entirely clear that the limit
process exists.

THEOREM 3. For any Poisson measure M , there a.s. exists a unique LFFP;
recall Definition 2. Furthermore, it can be constructed graphically and thus its
restriction to any finite box [0, T ] × [−n,n] can be perfectly simulated.

To describe the convergence of the λ-FFP to the LFFP, we will need some more
notation. Let D([0, T ],E) denote the space of right-continuous and left-limited
functions from the interval [0, T ] to a topological space E.

NOTATION 4. (i) For two intervals [a, b] and [c, d], we set δ([a, b], [c, d]) =
|a − c| + |b − d|. We also set, by convention, δ([a, b],∅) = |b − a|.

(ii) For (x, I ), (y, J ) in D([0, T ],R × I ∪ {∅}), let

δT ((x, I ), (y, J )) = sup
[0,T ]

|x(t) − y(t)| +
∫ T

0
δ(I (t), J (t)) dt.

We are finally in a position to state our main result.

THEOREM 5. Consider, for all λ > 0, the processes (Zλ
t (x),Dλ

t (x))t≥0,x∈R

associated with the λ-FFP; see Definition 1 and (1), (2). Let (Zt (x),Dt(x),
Ht(x))t≥0,x∈R be an LFFP, as in Definition 2.

(a) For any T > 0 and any finite subset {x1, . . . , xp} ⊂ R, (Zλ
t (xi),

Dλ
t (xi))t∈[0,T ],i=1,...,p goes in law to (Zt (xi),Dt(xi))t∈[0,T ],i=1,...,p in D([0, T ],

R × I)p as λ tends to 0. Here, D([0,∞), R × I) is endowed with the distance δT ;
see Notation 4.

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⊂ R+ × R, (Zλ
ti
(xi),

Dλ
ti
(xi))i=1,...,p goes in law to (Zti (xi),Dti (xi))i=1,...,p in (R × I)p .

Observe that the process H does not appear in the limit since for each x ∈ R,
a.s., for all t ≥ 0, Ht(x) = 0. [Of course, it is not the case that a.s., for all x ∈ R, all
t ≥ 0, Ht(x) = 0.] We obtain the convergence of Dλ to D only when integrating in
time. We cannot hope for a Skorokhod convergence since the limit process D(x)

jumps instantaneously from {x} to some interval with positive length, while Dλ(x)

needs many small jumps (in a very short time interval) to become macroscopic.
As a matter of fact, we will obtain a convergence in probability, using a cou-

pling argument. Essentially, we will consider a Poisson measure M(dt, dx), as in
Section 1.5, and set, for λ ∈ (0,1) and i ∈ Z,

Mλ
t (i) = M

([0, t/ log(1/λ)] × [
iλ log(1/λ), (i + 1)λ log(1/λ)

))
.

Then (Mλ
t (i))t≥0,i∈Z is an i.i.d. family of Poisson processes with rate λ.

The i.i.d. family of Poisson processes (Nt(i))t≥0,i∈Z with rate 1 can be chosen
arbitrarily, but we will decide to choose the same family for all values of λ ∈ (0,1).
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1.7. Heuristic arguments. We now explain roughly the reasons why Theo-
rem 5 holds. We consider a λ-FFP (ηλ

t )t≥0 and the associated process (Zλ
t (x),

Dλ
t (x))t≥0,x∈R. We assume below that λ is very small.
0. Scales. With our scales, there are 1/(λ log(1/λ)) sites per unit of length.

Approximately one fire starts per unit of time per unit of length. A vacant site
becomes occupied at rate log(1/λ).

1. Initial condition. We have, for all x ∈ R, (Zλ
0 (x),Dλ

0 (x)) = (0,∅) � (0, {x}).
2. Occupation of vacant zones. Assume that a zone [a, b] (which corresponds

to the zone [[�a/(λ log(1/λ))	, b/(λ log(1/λ))	]] before rescaling) becomes com-
pletely vacant at some time t [or t log(1/λ) before rescaling] because it has been
destroyed by a fire.

(i) For s ∈ [0,1), and if no fire starts on [a, b] during [t, t + s], we have
Dλ

t+s(x) � [x ± λ1−s] and thus Zλ
t+s(x) � s for all x ∈ [a, b].

Indeed, Dλ
t+s(x) � [x − λ log(1/λ)X,x + λ log(1/λ)Y ], where X and Y are

geometric random variables with parameter 1 − e−s log(1/λ) = 1 − λs . This comes
from the fact that each site of [a, b] is vacant at time t and becomes occupied at
rate log(1/λ).

(ii) If no fire starts on [a, b] during [t, t + 1], then Zλ
t+1(x) � 1 and all the

sites in [a, b] are occupied (with very high probability) at time t + 1. Indeed, we
have (b − a)/(λ log(1/λ)) sites and each of them is occupied at time t + 1 with
probability 1 − e− log(1/λ) = 1 −λ so that all of them are occupied with probability
(1 − λ)(b−a)/(λ log(1/λ)) � e−(b−a)/ log(1/λ), which goes to 1 as λ → 0.

3. Microscopic fires. Assume that a fire starts at some location x (i.e.,
�x/(λ log(1/λ))	 before rescaling) at some time t [or t log(1/λ) before rescaling]
with Zλ

t−(x) = z ∈ (0,1). The possible clusters on the left and right of x cannot
then be connected during (approximately) [t, t + z], but they can be connected
after (approximately) t + z. In other words, x acts like a barrier during [t, t + z].

Indeed, the fire makes vacant a zone A of approximate length λ1−z around x,
which thus contains approximately λ1−z/(λ log(1/λ)) � λ−z sites. The probability
that a fire starts again in A after t is very small. Thus, using the same computation
as in point 2(ii), we observe that P[A is completely occupied at time t + s] � (1 −
λs)λ

−z � e−λs−z
. When λ → 0, this quantity tends to 0 if s < z and to 1 if s > z.

4. Macroscopic fires. Assume, now, that a fire starts at some place x (i.e.,
�x/(λ log(1/λ))	 before rescaling) at some time t [or t log(1/λ) before rescal-
ing] and that Zλ

t (x) � 1. Thus, Dλ
t (x) is macroscopic (i.e., its length is of order 1

in our scales). This will thus make vacant the zone Dλ
t (x). Such a (macroscopic)

zone needs a time of order 1 to be completely occupied, as explained in point 2(ii).
5. Clusters. For t ≥ 0, x ∈ R, the cluster Dλ

t (x) resembles [x ± λ1−z] � {x} if
Zλ

t (x) = z ∈ (0,1). We then say that x is microscopic. Now, macroscopic clus-
ters are delimited either by microscopic zones or by sites where there has been a
microscopic fire (see point 3).

Comparing the arguments above to the rough description of the LFFP (see Sec-
tion 1.5), our hope is that the λ-FFP resembles the LFFP for λ > 0 very small.
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1.8. Decay of correlations. A byproduct of our result is an estimate on the
decay of correlations in the LFFP for finite times. We refer to Proposition 11 below
for a precise statement. The main idea is that for all T > 0, there are constants
CT > 0, αT > 0 such that for all λ ∈ (0,1) and all A > 0, the values of the λ-FFP
inside [−A/(λ log(1/λ)),A/(λ log(1/λ))] are independent of the values outside
[−2A/(λ log(1/λ)),2A/(λ log(1/λ))] during the time interval [0, T log(1/λ)], up
to a probability smaller that CT e−αT A. In other words, for times of order log(1/λ),
the range of correlations is at most of order 1/(λ log(1/λ)).

1.9. Cluster size distribution. Finally, we give results on the cluster size dis-
tribution, which are to be compared with [4, 16]; see Section 1.2 above.

COROLLARY 6. For each λ > 0, consider a λ-FFP process (ηλ
t )t≥0.

(i) For some 0 < c < C, all t ≥ 5/2 and all 0 ≤ a < b < 1,

c(b − a) ≤ lim
λ→0

P
(
#
(
Cλ

t log(1/λ)(0)
) ∈ [λ−a, λ−b]) ≤ C(b − a).

(ii) For some 0 < c < C, some 0 < κ1 < κ2, all t ≥ 3/2 and all B > 0,

ce−κ2B ≤ lim
λ→0

P
(
#
(
Cλ

t log(1/λ)(0)
) ≥ B/

(
λ log(1/λ)

)) ≤ Ce−κ1B.

Point (i) says, roughly, that for t large enough (say at equilibrium) and for
x << 1/λ [say for x ≤ (1/λ)1−ε], choosing a = log(x)/ log(1/λ) and b = log(x +
1)/ log(1/λ), we have

P
(
#(Cλ(0)) = x

) � P
(
#(Cλ(0)) ∈ [x, x + 1]) � P

(
#(Cλ(0)) ∈ [λ−a, λ−b])

� (b − a) � 1

x log(1/λ)
.

It is thus a very weak form of the result of [4], but it holds for a much wider class
of x: here, we allow x ≤ 1/λ1−ε , while x ≤ 1/λ1/3 was imposed in [4]. Another
advantage of our result is that we can prove that the limit exists in (i).

Point (ii) roughly describes the cluster size distribution of macroscopic compo-
nents, that is, of components of which the size is of order 1/(λ log(1/λ)). Here,
again, rough computations show that for x > ε/(λ log(1/λ)) and for t large enough
(say at equilibrium),

P
(
#(Cλ(0)) = x

) � λ log(1/λ)e−κxλ log(1/λ).

Thus, there is clearly a phase transition near the critical size 1/(λ log(1/λ)); see
Figure 1 for an illustration.

1.10. Organization of the paper. The paper is organized as follows. In Sec-
tion 2, we give the proof of Theorem 3. In Section 3, we show that, in some sense,
the λ-FFP can be localized in a finite box, uniformly for λ > 0. Section 4 is devoted
to the proof of Theorem 5. Finally, we prove Corollary 6 in Section 5.
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FIG. 1. Shape of the cluster size distribution. Here, λ = 0.0001 and the critical size is thus
1/(λ log(1/λ)) � 1085. We have drawn the approximate value (computed roughly just after Corol-
lary 6) of log(P(#(Cλ(0)) = x)) as a function of log(x) for x = 1, . . . ,54,250. We have made the
curve continuous around x = 1085 (without justification). The curve is linear for x = 1, . . . ,1085
and nonlinear for x ≥ 1085.

2. Existence and uniqueness of the limit process. The goal of this section is
to show that the LFFP is well defined, unique and can be obtained from a graphical
construction. First, we show that when working on a finite space interval, the LFPP
is somewhat discrete.

We consider a Poisson measure M(dt, dx) on [0,∞) × R with intensity mea-
sure dt dx. We define F M,A

t = σ(M(B),B ∈ B([0, t] × [−A,A])).
DEFINITION 7. A (F M,A

t )t≥0-adapted process

(ZA
t (x),DA

t (x),HA
t (x))t≥0,x∈[−A,A]

with values in R+ × I × R+ is called an A-LFFP if a.s., for all t ≥ 0 and all
x ∈ [−A,A],⎧⎪⎪⎨

⎪⎪⎩
ZA

t (x) =
∫ t

0
1{ZA

s (x)<1} ds −
∫ t

0

∫
[−A,A]

1{ZA
s−(x)=1,y∈DA

s−(x)}M(ds, dy),

HA
t (x) =

∫ t

0
ZA

s−(x)1{ZA
s−(x)<1}M(ds × {x}) −

∫ t

0
1{HA

s (x)>0} ds,

where DA
t (x) = [LA

t (x),RA
t (x)] with{

LA
t (x) = (−A) ∨ sup{y ∈ [−A,x];ZA

t (y) < 1 or HA
t (y) > 0},

RA
t (x) = A ∧ inf{y ∈ [x,A];ZA

t (y) < 1 or HA
t (y) > 0}.(4)

A typical path of (ZA
t (x),DA

t (x),HA
t (x))t≥0,x∈[−A,A] is drawn in Figure 2.
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FIG. 2. Limit forest fire process in a finite box. The filled zones represent zones in which ZA
t (x) = 1

and HA
t (x) = 0, that is, macroscopic clusters. The plain vertical segments represent the sites where

HA
t (x) > 0. In the rest of the space, we always have ZA

t (x) < 1. Until time 1, all of the parti-
cles are microscopic. The first eight marks of the Poisson measure fall in that zone. As a conse-
quence, at each of these marks, the process HA starts. Their lifetime is equal to the instant where
they have started (e.g., the segment above t1, x1 ends at time 2t1). At time 1, all of the clusters
where there has been no mark become macroscopic and merge together. However, this is limited
by vertical segments. Here, at time 1, we have the clusters [−A,x6], [x6, x4], [x4, x8], [x8, x5],
[x5, x7] and [x7,A]. The segment above (t4, x4) ends at time 2t4 and thus, at this time, the clusters
[x6, x4] and [x4, x8] merge into [x6, x8]. The ninth mark falls in the (macroscopic) zone [x6, x8]
and thus destroys it immediately. This zone [x6, x8] will become macroscopic again only at time
t9 + 1. A process HA then starts at x12 at time t12. Since ZA

t12−(x12) = t12 − t9 [because ZA
t9

(x12)

has been set to 0], the segment above (t12, x12) will end at time 2t12 − t9. On the other hand, the
segment [x8, x7] has been destroyed at time t10 and will thus remain microscopic until t10 + 1. As
a consequence, the only macroscopic clusters at time t9 + 1 are [−A,x12], [x12, x8] and [x7,A].
The zone [x8, x7] then becomes macroscopic (but there have been marks at x13, x14) so that at
time t10 + 1, we get the macroscopic clusters [−A,x12], [x12, x14], [x14, x13] and [x13,A]. These
clusters merge by pairs, at times 2t12 − t9, 2t13 − t10 and 2t14 − t10, so that we have a unique
cluster [−A,A] just before time t15, where a mark falls and destroys the whole cluster [−A,A].

With this realization, we have 0 ∈ (x11, x15) and, thus, ZA
t (0) = t for t ∈ [0,1], then ZA

t (0) = 1
for t ∈ [1, t10), then ZA

t (0) = t − t10 for t ∈ [t10, t10 + 1), then ZA
t (0) = 1 for t ∈ [t10 + 1, t15),

etc. We also see that DA
t (0) = {0} for t ∈ [0,1), DA

t (0) = [x8, x5] for t ∈ [1,2t5), DA
t (0) = [x8, x7]

for t ∈ [2t5, t10), DA
t (0) = {0} for t ∈ [t10, t10 + 1), DA

t (0) = [x12, x14] for t ∈ [t10 + 1,2t12 − t9),
DA

t (0) = [−A,x14] for t ∈ [2t12 − t9,2t14 − t10), etc. Of course, HA
t (0) = 0 for all t ≥ 0, but, for

example, HA
t (x11) = 0 for t ∈ [0, t11), HA

t (x11) = 2t11 − t10 − t for t ∈ [t11,2t11 − t10) and then
HA

t (x11) = 0 for t ∈ [2t11 − t10,∞).
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Although the following proposition is almost obvious, its proof shows the con-
struction of the A-LFFP in an algorithmic way.

PROPOSITION 8. Consider a Poisson measure M(dt, dx) on [0,∞)×R with
intensity measure dt dx. For any A > 0, there a.s. exists a unique A-LFFP which
can be perfectly simulated.

PROOF. We omit the superscript A in this proof. We consider the marks
(Ti,Xi)i≥1 of M|[0,∞)×[−A,A], where 0 < T1 < T2 < · · · . We set T0 = 0 for conve-
nience. We describe the construction via an algorithm, which also shows unique-
ness, in the sense that there is no choice in the construction.

Step 0. First, we set Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ [−A,A].
Step n + 1. Assume that the process has been built until Tn for some n ≥ 0, that

is, we know the values of (Zt (x),Dt(x),Ht(x))t∈[0,Tn],x∈[−A,A].
We build (Zt (x),Dt(x),Ht(x))t∈(Tn,Tn+1),x∈[−A,A] in the following way: for t ∈

(Tn, Tn+1) and x ∈ [−A,A], we set Zt(x) = min(1,ZTn(x) + t − Tn), Ht(x) =
max(0,HTn(x) − (t − Tn)) and define Dt(x) = [Lt(x),Rt (x)], as in (4).

Next, we build (ZTn+1(x),DTn+1(x),HTn+1(x))x∈[−A,A].
(i) If ZTn+1−(Xn+1) = 1, then we set HTn+1(x) = HTn+1−(x) for all x ∈

[−A,A] and consider [a, b] := DTn+1−(Xn+1). Set ZTn+1(x) = 0 for all x ∈ (a, b)

and ZTn+1(x) = ZTn+1−(x) for all x ∈ [−A,A] \ [a, b]. Finally, set: ZTn+1(a) =
0 if ZTn+1−(a) = 1; ZTn+1(a) = ZTn+1−(a) if ZTn+1−(a) < 1; ZTn+1(b) = 0 if
ZTn+1−(b) = 1; ZTn+1(b) = ZTn+1−(b) if ZTn+1−(b) < 1.

(ii) If ZTn+1−(Xn+1) < 1, then we set HTn+1(Xn+1) = ZTn+1−(Xn+1),
ZTn+1(Xn+1) = ZTn+1−(Xn+1) and (ZTn+1(x),HTn+1(x)) = (ZTn+1−(x),
HTn+1−(x)) for all x ∈ [−A,A] \ {Xn+1}.

(iii) Using the values of (ZTn+1(x),HTn+1(x))x∈[−A,A], we finally compute the
values of (DTn+1(x))x∈[−A,A]. �

In case (i) above, we explained precisely what is done at the boundary of
burning macroscopic components. This is not so important: it does not affect the
uniqueness statement, but corresponds to using a slightly different definition of the
process; we could have made other choices for this.

We now prove a refined version of Theorem 3.

PROPOSITION 9. Consider a Poisson measure M(dt, dx) on [0,∞) × R

with intensity measure dt dx. For A > 0, consider the A-LFFP (ZA
t (x),DA

t (x),
HA

t (x))t≥0,x∈[−A,A] constructed in Proposition 8 (using M).
There a.s. exists a unique LFFP (Zt (x),Dt(x),Ht(x))t≥0,x∈R (corresponding

to M) and, furthermore, it is such that for all T > 0, there are constants αT > 0
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and CT > 0 such that for all A ≥ 2,

P
[
(Zt (x),Dt(x),Ht(x))t∈[0,T ],x∈[−A/2,A/2]

(5)
= (ZA

t (x),DA
t (x),HA

t (x))t∈[0,T ],x∈[−A/2,A/2]
] ≥ 1 − CT e−αT A.

PROOF. We divide the proof into several steps. We fix T > 0 and work on
[0, T ].

Step 1. For a ∈ Z, we define the event 
a in the following way (see Figure 3 for
an illustration). The Poisson measure M has exactly 3n marks in [0, T ]×[a, a+1]
for some n ≥ 1 and it is possible to call them (Tk,Xk)k=1,...,n, (T̃k, X̃k)k=1,...,n

and (Sk, Yk)k=1,...,n in such a way that we have the following properties for all
k = 1, . . . , n (we set T0 = T̃0 = S0 = 0 and X0 = a, X̃0 = a + 1 for convenience):

(i) Tk and T̃k belong to (Sk−1 +1/2, Sk−1 +1) and Xk−1 < Xk < X̃k < X̃k−1;

FIG. 3. The event 
a (proof of Theorem 3). In hatched zones, we cannot state the val-
ues of the LFFP because one would need to know what happens outside [a, a + 1].

Microscopic fires start at (T1,X1) and (T̃1, X̃1). Hence, at time S1, the connected com-
ponent [X1, X̃1] is macroscopic because S1 ≥ 1 and because during [1, S1), this com-
ponent has not been subject to fires starting outside [a, a + 1]: it is protected by X1
and X̃1 until time 2 min(T1, T̃1) ≥ S1. As a consequence, the component [X1, X̃1] is en-
tirely killed by (S1, Y1). We then iterate the arguments until we reach the final time T .

With such a configuration, there are always microscopic sites in [a, a + 1] during [0, T ]. Indeed,
during [0,1), all of the sites are microscopic, during [1, S1), the sites X1 and X̃1 are microscopic,
during [S1, S1 + 1), all the sites in [X1, X̃1] are microscopic, etc.
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(ii) Sk ∈ (Sk−1 + 1, Sk−1 + 2(Tk ∧ T̃k − Sk−1)) and Yk ∈ (Xk, X̃k);
(iii) Sn > T − 1.

Step 2. We next observe that if the LFFP exists, then, necessarily,


a ⊂ {∀t ∈ [0, T ],∃x ∈ (a, a + 1),Ht(x) > 0 or Zt(x) < 1}.
Indeed, Zt(x) = t < 1 for all t ∈ [0,1) and x ∈ R. Then HT1(X1) = ZT1(X1) = T1,
whence Ht(X1) > 0 on [T1,2T1] and Ht(X̃1) > 0 on [T̃1,2T̃1]. As a consequence,
we know that for all x ∈ (X1, X̃1) and t ∈ [1, S1), we have Dt(x) = [X1, X̃1].
Since, now, 1 < S1 < 2(T1 ∧ T̃1) and since Y1 ∈ (X1, X̃1), we deduce that
ZS1(x) = 0 for all x ∈ (X1, X̃1) and, as a consequence, Zt(x) = t − S1 < 1 for
all t ∈ [S1, S1 + 1). However, we now have Ht(X2) > 0 on [T2, T2 + (T2 − S1))

and Ht(X̃2) > 0 on [T̃2, T̃2 + (T̃2 − S1)). As a consequence, we know for all
x ∈ (X2, X̃2) and t ∈ [S1 + 1, S2) that Dt(x) = [X2, X̃2]. Since, now, S1 + 1 <

S2 < S1 + 2(T1 ∧ T̃1 − S1) and Y2 ∈ (X2, X̃2), we deduce that ZS2(x) = 0 for all
x ∈ (X2, X̃2) and thus Zt(x) = t − S2 < 1 for all t ∈ [S2, S2 + 1), etc.

Step 3. We deduce that for all a ∈ Z, conditionally on 
a , clusters to the left of
a are never connected (during [0, T ]) to clusters to the right of a + 1. Thus, on 
a ,
fires starting to the left of a do not affect the zone [a + 1,∞) and fires starting to
the right of a + 1 do not affect the zone (−∞, a]. Since, further, 
a concerns the
Poisson measure M only in [0, T ]×[a, a+1], we deduce that on 
a , the processes
(Zt (x),Dt(x),Ht(x))t≥0,x∈[a+1,∞) and (Zt (x),Dt(x),Ht(x))t≥0,x∈(−∞,a] can be
constructed separately.

Step 4. Clearly, qT = P[
a] does not depend on a, by translation invariance (of
the law of M), and obviously qT > 0. Thus, a.s. there are infinitely many a ∈ Z

such that 
a is realized. This allows a graphical construction: it suffices to work
between such a’s (i.e., in finite boxes), as in Proposition 8.

Step 5. Using the same arguments, we easily deduce that for A ≥ 2, the LFFP
and the A-LFFP coincide on [−A/2,A/2] during [0, T ], provided that there are
a1 ∈ [−A,−A/2 − 1] and a2 ∈ [A/2,A − 1] with 
a1 ∩ 
a2 realized. Further-
more, since M is a Poisson measure, 
a is independent of 
b for all a �= b (with
a, b ∈ Z). Thus, the probability on the left-hand side of (5) is bounded below, for
A ≥ 2, by

1 − P

[ ⋂
a∈Z∩[−A,−A/2−1]


c
a

]
− P

[ ⋂
a∈Z∩[A/2,A−1]


c
a

]
≥ 1 − 2(1 − qT )A/2−2,

hence we have (5) with αT = − log(1 − qT )/2 > 0 and CT = 2/(1 − qT )2. �
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3. Localization of the FFP. We first introduce the (λ,A)-FFP. We consider
two independent families of i.i.d. Poisson processes N = (Nt(i))t≥0,i∈Z and Mλ =
(Mλ

t (i))t≥0,i∈Z, with respective rates 1 and λ > 0. For A > 0 and λ > 0, we define

Aλ := ⌊
A/

(
λ log(1/λ)

)⌋
and Iλ

A := [[−Aλ,Aλ]],(6)

and we set F N,Mλ,A
t := σ(Ns(i),M

λ
s (i), s ≤ t, i ∈ Iλ

A).

DEFINITION 10. Consider an (F N,Mλ,A
t )t≥0-adapted process (η

λ,A
t )t≥0 with

values in {0,1}Iλ
A , such that (η

λ,A
t (i))t≥0 is a.s. càdlàg for all i ∈ Iλ

A.
We say that (η

λ,A
t )t≥0 is a (λ,A)-FFP if a.s., for all t ≥ 0 and i ∈ Iλ

A,

η
λ,A
t (i) =

∫ t

0
1{ηλ,A

s− (i)=0} dNs(i) − ∑
k∈Iλ

A

∫ t

0
1{k∈C

λ,A
s− (i)} dMλ

s (k),

where Cλ,A
s (i) = ∅ if η

λ,A
t (i) = 0, while Cλ,A

s (i) = [[lλ,A
s (i), rλ,A

s (i)]] if ηλ,A
s (i) =

1, where

lλ,A
s (i) = (−Aλ) ∨ (

sup{k < i;ηλ,A
s (k) = 0} + 1

)
,

rλ,A
s (i) = Aλ ∧ (

inf{k > i;ηλ,A
s (k) = 0} − 1

)
.

For x ∈ [−A,A] and t ≥ 0, we introduce

D
λ,A
t (x) = λ log(1/λ)C

λ,A
t

(⌊
x/

(
λ log(1/λ)

)⌋) ⊂ [−A,A],(7)

Z
λ,A
t (x) = log[1 + #(C

λ,A
t (�x/(λ log(1/λ))	))]

log(1/λ)
≥ 0.(8)

We now prove the following result, which is similar to Proposition 9 for the
λ-FFP.

PROPOSITION 11. Let T > 0 and λ ∈ (0,1). Consider two families of Pois-
son processes N = (Nt (i))t≥0,i∈Z and Mλ = (Mλ

t (i))t≥0,i∈Z with respective rates
1 and λ > 0. Let (ηλ

t )t≥0 be the corresponding λ-FFP and, for each A > 0, let
(η

λ,A
t )t≥0 be the corresponding (λ,A)-FFP. Recall (1), (2) and (7), (8). There are

constants αT > 0 and CT > 0, not depending on λ ∈ (0,1), A ≥ 2, such that [re-
calling (6)]

P
[
(ηλ

t (i))t∈[0,T log(1/λ)],i∈Iλ
A/2

= (η
λ,A
t (i))t∈[0,T log(1/λ)],i∈Iλ

A/2

]
≥ 1 − CT e−αT A,

P
[
(Zλ

t (x),Dλ
t (x))t∈[0,T ],x∈[−A/2,A/2] = (Z

λ,A
t (x),D

λ,A
t (x))t∈[0,T ],x∈[−A/2,A/2]

]
≥ 1 − CT e−αT A.
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PROOF. The proof is similar (but more complicated) to that of Proposition 9.
Consider the true λ-FFP (ηλ

t (i))t≥0,i∈Z. Temporarily assume that for a ∈ R, there
is an event 
λ

a , depending only on the Poisson processes Nt(i) and Mλ
t (i) for t ∈

[0, T log(1/λ)] and i ∈ Jλ
a := [[�a/(λ log(1/λ))	, �(a + 1)/(λ log(1/λ))	]], such

that:
(i) on 
λ

a , a.s., for all t ∈ [0, T log(1/λ)], there is some i ∈ Jλ
a such that

ηλ
t (i) = 0;

(ii) there exists qT > 0 such that for all a ∈ R and λ ∈ (0,1), we have P(
λ
a) ≥

qT .
The proof is then concluded using arguments similar to Steps 3, 4, 5 of the proof

of Proposition 9.
Fix some α > 0 and some εT > 0 small enough, say α = 0.01 and εT =

1/(32T ). Let λT > 0 be such that for λ ∈ (0, λT ), we have 1 < λα−1 < εT /

(λ log(1/λ)).
For λ ∈ [λT ,1) and a ∈ R, we set 
λ

a = {NT log(1/λ)(�a/(λ log(1/λ))	) = 0}, on
which, of course, ηλ

t (i) = 0 for all t ∈ [0, T log(1/λ)] with i = �a/(λ log(1/λ))	 ∈
J λ

a . We then observe that q ′
T = infλ∈[λT ,1) P (
λ

a) = infλ∈[λT ,1) e
−T log(1/λ) =

(λT )T > 0.
For λ ∈ (0, λT ) and a ∈ R, we define the event 
λ

a on which points 1, 2 and 3
below are satisfied.

1. The family of Poisson processes (Mλ
t (i))t∈[0,T log(1/λ)],i∈Jλ

a
has exactly 3n

marks for some 1 ≤ n ≤ �T 	 and it is possible to call them (T λ
k ,Xλ

k )k=1,...,n,
(T̃ λ

k , X̃λ
k )k=1,...,n and (Sλ

k , Y λ
k )k=1,...,n in such a way that we have the follow-

ing properties for all k = 1, . . . , n (we set T λ
0 = T̃ λ

0 = Sλ
0 = 0 and Xλ

0 = �a/

(λ log(1/λ))	, X̃λ
0 = �(a + 1)/(λ log(1/λ))	):

(1a) Xλ
k−1 < Xλ

k < Yλ
k < X̃λ

k < X̃λ
k−1 with min{Xλ

k − Xλ
k−1, Y

λ
k − Xλ

k , X̃λ
k −

Yλ
k , X̃λ

k−1 − X̃λ
k } ≥ 4εT /(λ log(1/λ));

(1b) T λ
k and T̃ λ

k belong to [Sλ
k−1 + (1

2 + α) log(1/λ), Sλ
k−1 + (1 − α) log(1/λ)];

(1c) Sλ
k ∈ [Sλ

k−1 + (1 + α) log(1/λ), Sλ
k−1 + 2(T λ

k ∧ T̃ λ
k − Sλ

k−1) − α log(1/λ)];
(1d) Sλ

n ≥ (T − 1 + α) log(1/λ).
2. For k = 1, . . . , n, we now set τλ

k = (Sλ
k − Sλ

k−1)/(2 log(1/λ)), which belongs
to [(1 + α)/2,1 − α], due to 1. We consider the intervals

Iλ
k = [[Xλ

k − �λ−τλ
k 	,Xλ

k + �λ−τλ
k 	]],

I λ
k,− = [[Xλ

k − �λ−τλ
k 	 − �εT /λ log(1/λ)	,Xλ

k − �λ−τλ
k 	 − 1]],

I λ
k,+ = [[Xλ

k + �λ−τλ
k 	 + 1,Xλ

k + �λ−τλ
k 	 + �εT /λ log(1/λ)	]],

Lλ
k = [[Xλ

k + �λ−τλ
k 	 + �εT /λ log(1/λ)	 + 1,

X̃λ
k − �λ−τλ

k 	 − �εT /λ log(1/λ)	 − 1]]
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and similar intervals Ĩ λ
k , Ĩ λ

k,−, Ĩ λ
k,+, around X̃λ

k . For all k = 1, . . . , n, the family of
Poisson processes (Nt (i))t≥0,i∈Jλ

a
satisfies:

(2a) ∀i ∈ Iλ
k ,NT λ

k
(i) − NSλ

k−1
(i) > 0 and ∀i ∈ Ĩ λ

k ,N
T̃ λ

k
(i) − NSλ

k−1
(i) > 0;

(2b) ∃i ∈ Iλ
k,− such that NT λ

k
(i) − NSλ

k−1
(i) = 0, ∃i ∈ Iλ

k,+ such that NT λ
k
(i) −

NSλ
k−1

(i) = 0, ∃i ∈ Ĩ λ
k,− such that N

T̃ λ
k
(i) − NSλ

k−1
(i) = 0 and ∃i ∈ Ĩ λ

k,+ such that
N

T̃ λ
k
(i) − NSλ

k−1
(i) = 0;

(2c) ∃i ∈ Iλ
k such that NSλ

k
(i) − NT λ

k
(i) = 0 and ∃i ∈ Ĩ λ

k such that NSλ
k
(i) −

N
T̃ λ

k
(i) = 0;

(2d) ∀i ∈ Lλ
k,NSλ

k
(i) − NSλ

k−1
(i) > 0.

3. We finally assume that ∃i ∈ Lλ
n such that NT log(1/λ)(i) − NSλ

n
(i) = 0.

To show that on 
λ
a , a.s., for all t ∈ [0, T log(1/λ)], there is some i ∈ Jλ

a such
that ηλ

t (i) = 0, we proceed recursively. At time 0, all sites are vacant. Fix k ∈
{1, . . . , n}. Assume that for t ≤ Sλ

k−1, there is some i ∈ Jλ
a such that ηλ

t (i) = 0 and
that at time Sλ

k−1, all sites in the interval Lλ
k−1 are vacant.

Then, for Sλ
k−1 ≤ t < T λ

k (resp., Sλ
k−1 ≤ t < T̃ λ

k ), (2b) shows that there are

vacant sites in both Iλ
k,+ and Iλ

k,− (resp., in both Ĩ λ
k,+ and Ĩ λ

k,−). This, together

with (2a), shows that at time T λ
k − (resp., T̃ λ

k −), all of the sites in the intervals
Iλ
k and Ĩ λ

k are occupied (no fire may burn those sites because they are protected
by the vacant sites in Iλ

k,+, I λ
k,−, Ĩ λ

k,+, Ĩ λ
k,−). Hence, the interval Iλ

k (resp., Ĩ λ
k ) be-

comes completely vacant at time T λ
k (resp., T̃ λ

k ). Between time T λ
k (resp., T̃ λ

k ) and
time Sλ

k , since Iλ
k (resp., Ĩ λ

k ) is completely vacant at time T λ
k (resp., T̃ λ

k ), (2c) shows
that there is a vacant site in Iλ

k (resp., Ĩ λ
k ).

At time Sλ
k −, the interval Lλ

k is completely occupied, by virtue of (2d) and the
fact that it cannot be burnt because it is protected by vacant sites in Iλ

k,+ (resp.,

Ĩ λ
k,−) between Sλ

k−1 and T λ
k (resp., T̃ λ

k ), and in Iλ
k (resp., Ĩ λ

k ) between T λ
k (resp.,

T̃ λ
k ) and Sλ

k . As a consequence, since Yλ
k ∈ Lλ

k , the interval Lλ
k becomes completely

vacant at time Sλ
k −.

All of this shows that on 
λ
a , there are vacant sites in Jλ

a for all t ∈ [0, Sλ
n ] and

that Lλ
n is completely vacant at time Sλ

n . Finally, 3 implies that there are vacant
sites in Lλ

n ⊂ Jλ
a during [Sλ

n, T log(1/λ)].
It remains to prove that there exists q ′′

T > 0 such that for all a ∈ R and λ ∈
(0, λT ), we have P(
λ

a) ≥ q ′′
T . We separately treat the conditions 1 on Mλ and 2

on N (conditionally on Mλ) and use independence of these two families of Poisson
processes to complete the proof.

First, for λ ∈ (0, λT ), we observe that we can construct Mλ using a Poisson
measure M on [0,∞) × R with intensity dt dx by setting, for all i ∈ Z,

Mλ
t (i) = M

([0, t/ log(1/λ)] × [
iλ log(1/λ), (i + 1)λ log(1/λ)

))
.
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Hence [since εT /(λ log(1/λ)) > 1], the event on which Mλ satisfies 1 contains the
event 
′

a on which M has exactly 3n marks in [0, T ]×[a, a+1], for some 1 ≤ n ≤
�T 	, which can be called (Tk,Xk)k=1,...,n, (T̃k, X̃k)k=1,...,n and (Sk, Yk)k=1,...,n in
such a way that we have the following properties (we set T0 = T̃0 = S0 = 0 and
X0 = a, X̃0 = a + 1 for convenience) for all k = 1, . . . , n:

• min({Xk − Xk−1, Yk − Xk, X̃k − Yk, X̃k−1 − X̃k}) > 5εT ;
• Tk and T̃k belong to (Sk−1 + 1/2 + α,Sk−1 + 1 − α);
• Sk ∈ (Sk−1 + 1 + α,Sk−1 + 2(Tk ∧ T̃k − Sk−1) − α);
• Sn ≥ (T − 1) + α.
We then have P(
′

a) > 0 (as in the proof of Proposition 9 and since εT and α

are sufficiently small) and this probability does not depend on a (by translation
invariance of the law of M) nor on λ ∈ (0, λT ) (since it concerns only M).

We then use basic computations on i.i.d. Poisson processes with rate 1 to show
that there is a (deterministic) constant c > 0 such that for all k = 1, . . . , n, all
λ ∈ (0, λT ), conditionally on Mλ (we write PM for the conditional probability
w.r.t. Mλ):

• since T λ
k − Sλ

k−1 ≥ (τλ
k + α/2) log(1/λ), due to (1c), and since #(Iλ

k ) =
2�λ−τλ

k 	 + 1, we have

PM

(∀i ∈ Iλ
k ,NT λ

k
(i) − NSλ

k−1
(i) > 0

) = (
1 − e−(T λ

k −Sλ
k−1)

)2�λ−τλ
k 	+1

≥ (1 − λτλ
k +α/2)2�λ−τλ

k 	+1 ≥ c

(it tends to 1 as λ → 0) and the same computation works for Ĩ λ
k ;

• since T λ
k − Sλ

k−1 ≤ (1 − α) log(1/λ), by (1b), and since #(Iλ
k,+) = �εT /(λ ×

log(1/λ))	, we have

PM

(∃i ∈ Iλ
k,+,NT λ

k
(i) − NSλ

k−1
(i) = 0

) = 1 − (
1 − e−(T λ

k −Sλ
k−1)

)�εT /λ log(1/λ)	

≥ 1 − (1 − λ1−α)�εT /(λ log(1/λ))	 ≥ c

and the same computation works for Iλ
k,−, Ĩ λ

k,+, Ĩ λ
k,−;

• since Sλ
k − T λ

k ≤ (τλ
k − α/2) log(1/λ), due to (1c) [we use the fact that Sλ

k ≤
2T λ

k −Sλ
k−1 −α log(1/λ), whence 2Sλ

k ≤ 2T λ
k +Sλ

k −Sλ
k−1 −α log(1/λ) = 2T λ

k +
2(τλ

k − α/2) log(1/λ)], and since #(Iλ
k ) = 2�λ−τλ

k 	 + 1, we have

PM

(∃i ∈ Iλ
k ,NSλ

k
(i) − NT λ

k
(i) = 0

) = 1 − (
1 − e−(Sλ

k −T λ
k ))2�λ−τλ

k 	+1

≥ 1 − (1 − λτλ
k −α/2)2�λ−τλ

k 	+1 ≥ c

and this also holds for Ĩ λ
k ;
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• since Sλ
k − Sλ

k−1 ≥ (1 + α) log(1/λ), thanks to (1c), and since #(Lλ
k) ≤

�(1/λ log(1/λ))	, we have

PM

(∀i ∈ Lλ
k,NSλ

k
(i) − NSλ

k−1
(i) > 0

) = (
1 − e−(Sλ

k −Sλ
k−1)

)#(Lλ
k )

≥ (1 − λ1+α)�1/λ log(1/λ)	 ≥ c;
• since T log(1/λ)−Sλ

n ≤ (1−α) log(1/λ), by (1d), and #(Lλ
n) ≥ 4εT /(λ log(1/

λ)), by (1a), we have

PM

(∃i ∈ Lλ
n,NT log(1/λ)(i) − NSλ

n
(i) = 0

) = 1 − (
1 − e−(T log(1/λ)−Sλ

n))#(Lλ
n)

≥ 1 − (1 − λ1−α)4εT /(λ log(1/λ)) ≥ c.

We observe that the domains Iλ
k × (Sλ

k−1, T
λ
k ], Ĩ λ

k × (Sλ
k−1, T̃

λ
k ], Iλ

k,+ × (Sλ
k−1,

T λ
k ], Iλ

k,− × (Sλ
k−1, T

λ
k ], Ĩ λ

k,+ × (Sλ
k−1, T̃

λ
k ], Ĩ λ

k,− × (Sλ
k−1, T̃

λ
k ], Iλ

k × (T λ
k , Sλ

k ],
Ĩ λ
k × (T̃ λ

k , Sλ
k ], Lλ

k × (Sλ
k−1, S

λ
k ], for k = 1, . . . , n, and Lλ

n × (Sλ
n, T log(1/λ)]

are pairwise disjoint, thanks to 1 and to the smallness of εT and λT : we have
�λ−τλ

k 	 ≤ λα−1 ≤ εT /(λ log(1/λ)).
Since n ≤ T , we deduce from all of the previous estimates the existence of a

q ′′
T > 0 such that for all a ∈ R and λ ∈ (0, λT ), we have P(
λ

a) ≥ q ′′
T . We complete

the proof by choosing qT = min(q ′
T , q ′′

T ). �

4. Convergence proof. The goal of this section is to prove Theorem 5.

4.1. Coupling. We introduce a coupling between the λ-FFP, the LFFP and
their localized versions.

NOTATION 12. We consider a Poisson measure M(dt, dx) on [0,∞)×R with
intensity measure dt dx. We consider an independent family of Poisson processes
(Nt(i))t≥0,i∈Z with rate 1. For λ ∈ (0,1) and i ∈ Z, we set

Mλ
t (i) = M

([0, t/ log(1/λ)] × [
iλ log(1/λ), (i + 1)λ log(1/λ)

))
.

Then (Mλ
t (i))t≥0,i∈Z is a family of independent Poisson processes with rate λ.

For all λ ∈ (0,1), we consider the λ-FFP (ηλ
t )t≥0 (see Definition 1) and for all

A > 0, we consider the (λ,A)-FFP (η
λ,A
t )t≥0 (see Definition 10) constructed with

N,Mλ. We also introduce the processes (Zλ
t (x),Dλ

t (x))t≥0,x∈R, as in (1), (2), and
(Z

λ,A
t (x),D

λ,A
t (x))t≥0,x∈[−A,A], as in (7), (8).

We denote by (Zt (x),Dt(x),Ht(x))t≥0,x∈R the LFFP constructed with M (see
Definition 2) and by (ZA

t (x),DA
t (x),HA

t (x))t≥0,x∈[−A,A] the A-LFFP constructed
with M (see Definition 7).
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4.2. Localization. Temporarily assume that the following result holds.

PROPOSITION 13. Adopt Notation 12 as well as Notation 4.
(a) For any T > 0, A > 0 and x0 ∈ (−A,A), in probability, as λ → 0,

δT ((Zλ,A(x0),D
λ,A(x0)), (Z

A(x0),D
A(x0))) tends to 0.

(b) For any t ∈ [0,∞), A > 0 and x0 ∈ (−A,A), in probability, as λ → 0,

|Zλ,A
t (x0) − ZA

t (x0)| + δ(D
λ,A
t (x0)),D

A
t (x0)) tends to 0.

We are now in a position to give the following proof.

PROOF OF THEOREM 5. We only prove point (a), (b) being similarly checked.
Let T > 0 and {x1, . . . , xn} ⊂ [−B,B] ⊂ R be fixed. Consider the coupling intro-
duced in Notation 12. Proposition 13 ensures us that for any ε > 0 and A > B , we
have

lim
λ→0

P

[
n∑
1

δT ((Zλ,A(xi),D
λ,A(xi)), (Z

A(xi),D
A(xi))) > ε

]
= 0.

Now, let


λ
A,T := {∀i = 1, . . . , n,∀t ∈ [0, T ],

(Zλ
t (xi),D

λ
t (xi)) = (Z

λ,A
t (xi),D

λ,A
t (xi))

and (Zt (xi),Dt(xi)) = (ZA
t (xi),D

A
t (xi))}.

For all A > 2B , we now have


λ
A,T ⊂ {

(Zλ
t (x),Dλ

t (x))t∈[0,T ],x∈[−A/2,A/2]

= (Z
λ,A
t (x),D

λ,A
t (x))t∈[0,T ],x∈[−A/2,A/2]

and (Zt (x),Dt(x))t∈[0,T ],x∈[−A/2,A/2]
= (ZA

t (x),DA
t (x))t∈[0,T ],x∈[−A/2,A/2]

}
.

However, Propositions 9 and 11 yield that P[(
λ
A,T )c] ≤ 2CT e−αT A. Thus, for any

A > 2B ,

lim sup
λ→0

P

[
n∑
1

δT ((Zλ(xi),D
λ(xi)), (D(xi),Z(xi))) > ε

]
≤ 0 + 2CT e−αT A.

Letting A tend to infinity, we deduce that
∑n

i=1 δT ((Zλ(xi),D
λ(xi)), (D(xi),

Z(xi))) tends to 0 in probability as λ → 0, hence the result. �
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4.3. Core of the proof. The aim of this subsection is to prove Proposition 13.
We fix T > 0 and A > 0. We consider the (λ,A)-FFP and the A-LFFP coupled, as
in Notation 12, and use the notation introduced in (6). Throughout this proof, we
will omit the superscript A and we do not take into account the possible dependen-
cies in A and T .

For J = (a, b) [an open interval of (−A,A)], λ ∈ (0,1) and μ ∈ (0,1], we
consider

Jλ,μ =
[[⌊

a

λ log(1/λ)
+ μ

λ log2(1/λ)

⌋
,

⌊
b

λ log(1/λ)
− μ

λ log2(1/λ)

⌋]]
⊂ Z,(9)

Z̃
λ,μ
t (J ) = 1 − log(1 + #{k ∈ Jλ,μ, ηλ

t log(1/λ)(k) = 0})
log(1 + #(Jλ,μ))

.

Observe that Z̃
λ,μ
t (J ) = 1 if and only if all the sites of Jλ,μ are occupied at time

t log(1/λ). The quantity Z̃
λ,μ
t (J ) is a function of the density of vacant clusters in

the (rescaled) zone J . Under some exchangeability properties, it should be closely
related to the size of occupied clusters in that zone, that is, to Zλ

t (x) for x ∈ J .
For x ∈ (−A,A), λ ∈ (0,1) and μ ∈ (0,1], we introduce

xλ,μ =
[[⌊

x

λ log(1/λ)
− μ

λ log2(1/λ)

⌋
+ 1,

⌊
x

λ log(1/λ)
+ μ

λ log2(1/λ)

⌋
− 1

]]
⊂ Z,(10)

H̃
λ,μ
t (x) = log(1 + #{k ∈ xλ,μ, ηλ

t log(1/λ)(k) = 0})
log(1 + #(xλ,μ))

.

Here, again, H̃
λ,μ
t (x) = 0 if and only if all the sites of xλ,μ are occupied at time

t log(1/λ). Assume that a microscopic fire starts at some x. The process H̃
λ,μ
t (x)

will then allow us to quantify the duration for which this fire will be in effect.
Observe that we always have log(1 + #(xλ,μ)) ∼ log(1 + #(Jλ,μ)) ∼ log(1/λ)

as λ → 0. Also, observe that if Z̃
λ,μ
t (J ) = z, then there are (1+#(Jλ,μ))1−z −1 �

λz−1 vacant sites in Jλ,μ at time t log(1/λ). In the same way, H̃
λ,μ
t (x) = h says

that there are (1 + #(xλ,μ))h − 1 � λ−h vacant sites in xλ,μ at time t log(1/λ).
We work conditionally on M . We denote by PM the conditional probability

given M . We recall that, conditionally on M , (Zt (x),Dt(x),Ht(x))t∈[0,T ],x∈[−A,A]
is deterministic. We set n = M([0, T ] × [−A;A]), which is a.s. finite. We set
T0 = 0 and consider the marks (Xq,Tq)1≤q≤n of M , ordered in such a way that
T0 < T1 < · · · < Tn < T .
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We set B0 = ∅ and for q = 1, . . . , n, we consider Bq = {X1, . . . ,Xq}, as well
as the set Cq of connected components of (−A,A) \ Bq (sometimes referred to as
cells).

Observe that, by construction, we have, for c ∈ Cq and x, y ∈ c, Zt(x) = Zt(y)

for all t ∈ [0, Tq+1). Thus, we can introduce Zt(c).
We consider λμ > 0 (which depends on M) such that for all λ ∈ (0, λμ), we

have (Xi)λ,μ �= ∅ and (Xi)λ,μ ∩ (Xj )λ,μ = ∅ for all i �= j with i, j ∈ {1, . . . , n}.
We then observe that for λ ∈ (0, λμ) and for each q = 0, . . . , n, {xλ,μ, x ∈ Bq}∪

{cλ,μ, c ∈ Cq} is a partition of [[−Ãλ,μ, Ãλ,μ]], where Ãλ,μ = �A/(λ log(1/λ)) −
μ/(λ log2(1/λ))	.

With our coupling, for the (λ,A)-FFP (ηλ
t )t≥0, for each i = 1, . . . , n, a fire starts

at the site �Xi/(λ log(1/λ))	 at time Ti log(1/λ) and this describes all of the fires
during [0, T log(1/λ)].

The lemma below shows some exchangeability properties inside cells [con-
nected components of (−A,A) \ Bq ]. This will allow us to prove that for c a cell
and x ∈ c, the size of the occupied cluster around x [described by Zλ(x)] is closely
related to the global density of occupied clusters in c [described by Z̃λ,μ(c)].

LEMMA 14. For λ ∈ (0,1) and μ ∈ (0,1], set E λ,μ
0 = 
, and for q = 1, . . . , n,

consider the event [recalling Definition 10 and (9)]

E λ,μ
q = {∀i = 1, . . . , q,∀c ∈ Ci , either cλ,μ ⊂ Cλ

Ti log(1/λ)−(Xi)

or ηλ
Ti log(1/λ)−(k) = 0 for some max cλ,μ < k < minCλ

Ti log(1/λ)−(Xi)

or ηλ
Ti log(1/λ)−(k) = 0 for some maxCλ

Ti log(1/λ)−(Xi) < k < min cλ,μ

}
.

Conditionally on M and E λ,μ
q , for all c ∈ Cq , the random variables

(ηλ
Tq log(1/λ)(k))k∈cλ,μ are exchangeable.

PROOF. Let c ∈ Cq , let σ be a permutation of cλ,μ and set, for simplicity,
σ(i) = i for i ∈ Iλ

A \ cλ,μ [recall (6)].
Consider the (λ,A)-FFP process (ηλ

t )t≥0 constructed with M and the family
of Poisson processes (N(i))i∈Iλ

A
. Also, consider the (λ,A)-FFP process (η̃λ

t )t≥0

constructed with M and the family of Poisson processes (Ñ(i))i∈Iλ
A

defined by

Ñ(i) = N(σ(i)).
Observe that E λ,μ

k+1 ⊂ E λ,μ
k . For all k = 0, . . . , q , c ⊂ ck for some ck ∈ Ck . We

will prove the following claims by induction on k = 0, . . . , q:
(i) if Ẽ λ,μ

k is the same event as E λ,μ
k corresponding to (η̃λ

t )t≥0, then Ẽ λ,μ
k =

E λ,μ
k ;

(ii) on E λ,μ
k , for all t ∈ [0, Tk log(1/λ)], η̃λ

t (i) = ηλ
t (σ (i)) for all i ∈ Iλ

A [in
particular, η̃λ

t (i) = ηλ
t (i) for all i /∈ cλ,μ].
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Of course, (i) and (ii) with k = q imply the lemma. Indeed, let ϕ : {0,1}#(cλ,μ) �→
R. We have

EM

[
1E λ,μ

q
ϕ

((
ηλ

Tq log(1/λ)(i)
)
i∈cλ,μ

)] = EM

[
1Ẽ λ,μ

q
ϕ

((
η̃λ

Tq log(1/λ)(i)
)
i∈cλ,μ

)]
.

Using (i) and (ii), we then deduce that

EM

[
1E λ,μ

q
ϕ

((
ηλ

Tq log(1/λ)(i)
)
i∈cλ,μ

)] = EM

[
1E λ,μ

q
ϕ

((
ηλ

Tq log(1/λ)(σ (i))
)
i∈cλ,μ

)]
,

which proves the lemma.
First, (i) and (ii) with k = 0 are obviously satisfied. Assume, now, that for

some k ∈ {0, . . . , q − 1}, we have (i) and (ii). Then, on E λ,μ
k , for all t ∈

[0, Tk+1 log(1/λ)), η̃λ
t (i) = ηλ

t (σ (i)) for all i ∈ Iλ
A. Indeed, they are equal on

[0, Tk log(1/λ)], by assumption, and they use the same Poisson process Ñ(i) =
N(σ(i)) on the time interval [Tk log(1/λ), Tk+1 log(1/λ))).

We now check that E λ,μ
k+1 = Ẽ λ,μ

k+1. We know that E λ,μ
k = Ẽ λ,μ

k and the additional
condition [at time Tk+1 log(1/λ)−] concerns:

• sites outside cλ,μ, for which the values of ηλ and η̃λ at time Tk+1 log(1/λ)−
are the same;

• the event cλ,μ ⊂ Cλ
Tk+1 log(1/λ)−, which is the same for ηλ and η̃λ (it can be re-

alized only if there are no vacant sites in cλ,μ, which occurs, or not, simultaneously
for ηλ and η̃λ).

We now conclude that (ii) remains true at time Tk+1 log(1/λ) since the zone
subject to fire either:

• is disjoint with cλ,μ so that the values of ηλ, η̃λ are left invariant in cλ,μ, while
they are modified in the same way outside cλ,μ; or

• contains the whole zone cλ,μ, which is thus destroyed simultaneously for ηλ

and η̃λ, and the values of ηλ, η̃λ are modified in the same way outside cλ,μ. �

The next lemma shows, in some sense, that if a cell is almost completely oc-
cupied at time t , then it will be really completely occupied at time t+; and, if the
effect of a microscopic fire is almost ended at time t , then it will be really ended
at time t+.

LEMMA 15. Let μ ∈ (0,1]. Consider k ∈ {0, . . . , n}, c ∈ Ck , x ∈ Bk and t ∈
[Tk, Tk+1).

(i) Assume that for all ε > 0, limλ→0 PM(Z̃
λ,μ
t (c) < 1 − ε) = 0. Then, for all

s ∈ (t, Tk+1), limλ→0 PM(Z̃
λ,μ
s (c) = 1) = 1.

(ii) Assume that for all ε > 0, limλ→0 PM(H̃
λ,μ
t (x) > ε) = 0. Then, for all

s ∈ (t, Tk+1), limλ→0 PM(H̃
λ,μ
s (x) = 0) = 1.

PROOF. The proofs of (i) and (ii) are similar. Let us, for example, prove (i).
Thus, let Tk ≤ t < t + ε = s < Tk+1. We start with

PM

(
Z̃

λ,μ
t+ε(c) = 1

) ≥ PM

(
Z̃

λ,μ
t+ε(c) = 1|Z̃λ,μ

t (c) > 1−ε/2
)
PM

(
Z̃

λ,μ
t (c) > 1−ε/2

)
,
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so that it suffices to check that limλ→0 PM(Z̃
λ,μ
t+ε(c) = 1|Z̃λ,μ

t (c) > 1 − ε/2) = 1.

Let v
λ,μ
t denote the number of vacant sites in cλ,μ (for ηλ

t log(1/λ)). Then Z̃
λ,μ
t+ε(c) =

1 is equivalent to v
λ,μ
t+ε = 0 and one can easily check that Z̃

λ,μ
t (c) > 1−ε/2 implies

that v
λ,μ
t ≤ (1 + #(cλ,μ))ε/2 ≤ (1 + 2A/(λ log(1/λ)))ε/2.

Since M((t, s] × [−A,A]) = 0 by assumption, we deduce that Mλ
s log(1/λ)(i) =

Mλ
t log(1/λ)(i) for all i ∈ Iλ

A: no fire starts during (t log(1/λ), s log(1/λ)]. Hence,
each occupied site at time t log(1/λ) remains occupied at time s log(1/λ) and each
vacant site at time t log(1/λ) becomes occupied at time s log(1/λ) with probability
1 − e(t−s) log(1/λ) = 1 − λε . Thus,

PM

(
Z̃

λ,μ
t+ε(c) = 1|Z̃λ,μ

t (c) > 1 − ε/2
) ≥ (1 − λε)(1+2A/(λ log(1/λ)))ε/2

,

which tends to 1 as λ → 0. �

We end our preliminaries with a last lemma, which deals with estimates con-
cerning the time needed to occupy vacant zones.

LEMMA 16. Let μ ∈ (0,1]. Let (ζ λ
0 (i))i∈Iλ

A
∈ {0,1}Iλ

A and consider a family

of i.i.d. Poisson processes (P λ
t (i))t≥0,i∈Iλ

A
, with rate log(1/λ), independent of ζ λ

0 .

Set ζ λ
t (i) = min(ζ λ

0 (i) + P λ
t (i),1).

1. Let J = (a, b) ⊂ (−A,A) and h ∈ [0,1]. Set v
λ,μ
t = #{i ∈ Jλ,μ, ζ λ

t (i) = 0}.
Assume that

∀ε > 0 P

(∣∣∣∣ log(1 + v
λ,μ
0 )

log(1 + #(Jλ,μ))
− h

∣∣∣∣ ≥ ε

)
= 0.

(a) Then, for all T > 0 and ε > 0,

lim
λ→0

P

(
sup
[0,T ]

∣∣∣∣ log(1 + v
λ,μ
t )

log(1 + #(Jλ,μ))
− (h − t)+

∣∣∣∣ ≥ ε

)
= 0.

(b) If the family (ζ λ
0 (i))i∈Jλ,μ is exchangeable, then, for all x ∈ J , T > 0 and

ε > 0,

lim
λ→0

P

(
sup
[0,T ]

∣∣∣∣ log(1 + #(Gλ
t (x)))

log(1/λ)
− (

1 − (h − t)+
)∣∣∣∣ ≥ ε

)
= 0,

where Gλ
t (x) is the connected component of occupied sites around

�x/λ log(1/λ)	 in ζ λ
t .

2. Let x ∈ (−A,A) and h ∈ [0,1]. Set v
λ,μ
t = #{i ∈ xλ,μ, ζ λ

t (i) = 0}. Assume that

∀ε > 0 P

(∣∣∣∣ log(1 + v
λ,μ
0 )

log(1 + #(xλ,μ))
− h

∣∣∣∣ ≥ ε

)
= 0.
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Then, for all T > 0 and ε > 0,

lim
λ→0

P

(
sup
[0,T ]

∣∣∣∣ log(1 + v
λ,μ
t )

log(1 + #(xλ,μ))
− (h − t)+

∣∣∣∣ ≥ ε

)
= 0.

PROOF. The proof of part 2 is the same as that of 1(a) because log(1 +
#(Jλ,μ)) ∼ log(1 + #(xλ,μ)) ∼ log(1/λ) as λ → 0. Thus, we only prove 1 and
everywhere replace log(1 + #(xλ,μ)) by log(1/λ) without difficulty. By assump-

tion, for all ε > 0, we have limλ→0 P(v
λ,μ
0 ∈ (λε−h − 1, λ−ε−h)) = 1. We de-

fine ht = (h − t)+, V
λ,μ
t = log(1 + v

λ,μ
t )/ log(1/λ) and, finally, �λ

t = log(1 +
#(Gλ

t (x)))/ log(1/λ).

Step 1. Let t ≥ 0 be fixed. We first show that for all ε > 0, limλ→0 P(|V λ,μ
t −

ht | ≥ ε) = 0. Conditionally on v
λ,μ
0 , the random variable v

λ,μ
t follows a binomial

distribution B(v
λ,μ
0 , λt ) because each vacant site at time 0 remains vacant with

probability e−t log(1/λ) = λt .

Case ht > 0. Let ε ∈ (0, ht ). We have to prove that P(v
λ,μ
t ∈ (λε−ht ,

λ−ε−ht )) → 1. We know that limλ→0 P(v
λ,μ
0 ∈ (λε/2−h, λ−ε/2−h)) = 1. The

Bienaymé–Chebyshev inequality implies that

P [|vλ,μ
t − vλ

0λt | ≤ (v
λ,μ
0 λt )2/3|vλ,μ

0 ∈ (λε/2−h, λ−ε/2−h)]
≥ 1 − E[vλ,μ

0 λt (1 − λt )(v
λ,μ
0 λt )−4/3|vλ,μ

0 ∈ (λε/2−h, λ−ε/2−h)]
≥ 1 − E[(vλ,μ

0 λt )−1/3|vλ,μ
0 ∈ (λε/2−h, λ−ε/2−h)]

≥ 1 − (λε/2−h+t )−1/3,

which tends to 1 since ht = h − t > ε.
However, the events

|vλ,μ
t − v

λ,μ
0 λt | ≤ (v

λ,μ
0 λt )2/3 and v

λ,μ
0 ∈ (λε/2−h, λ−ε/2−h)

imply that v
λ,μ
t ∈ (λε/2−ht − (λ−ε/2−ht )2/3, λ−ε/2−ht + (λ−ε/2−ht )2/3) ⊂ (λε−ht ,

λ−ε−ht ) for λ small enough, hence the result.

Case ht = 0. We have to show that for all ε > 0, limλ→0 P(v
λ,μ
t > λ−ε) = 0,

and it suffices to check that limλ→0 P(v
λ,μ
t > λ−ε|vλ,μ

0 < λ−ε/2−h) = 0. However,

P(v
λ,μ
t > λ−ε|vλ,μ

0 < λ−ε/2−h)

≤ λε
E[vλ,μ

t |vλ,μ
0 < λ−ε/2−h] = λε

E[vλ,μ
0 λt |vλ,μ

0 < λ−ε/2−h]
≤ λε+tλ−ε/2−h = λε/2+t−h,
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which tends to 0 since, by assumption, t − h ≥ 0.

Step 2. We now prove that for all ε > 0, limλ→0 P(|�λ
t − (1 − ht )| ≥ ε) = 0. It

suffices to check that limλ→0 P(#(Gλ
t (x)) ∈ (λε+ht−1 − 1, λ−ε+ht−1)) = 1. How-

ever, we know from Step 1 that there are approximately (1/λ)ht vacant sites in
Jλ,μ, and #(Jλ,μ) � (1/λ log(1/λ)). We also know that the family (ζ λ

t (i))i∈Jλ,μ is
exchangeable so that the vacant sites are uniformly distributed in Jλ,μ (this state-
ment is slightly misleading: there cannot be two vacant sites at the same place).
We conclude that #(Gλ

t (x)) � (1/λ log(1/λ))/(1/λ)ht � λht−1. This can be done
rigorously without difficulty.

Step 3. We now prove 1(a), which relies on Step 1 and an ad hoc version of
Dini’s theorem. Let ε > 0. Consider a subdivision 0 = t0 < t1 < · · · < tl = T with
ti+1 − ti < ε/2. Using Step 1, we have limλ→0 P[maxi=0,...,l |V λ,μ

ti
− (h − ti)+| >

ε/2] = 0.
Now, observe that t �→ V

λ,μ
t and t �→ (h − t)+ are a.s. nonincreasing and that

t �→ (h − t)+ is Lipschitz continuous with Lipschitz constant 1.
We deduce that sup[0,T ]|V λ,μ

t − (h − t)+| ≤ ε/2 + maxi=0,...,l{|V λ,μ
ti

− (h −
ti)+|}. Thus, P(sup[0,T ]|V λ,μ

t −(h− t)+| > ε) ≤ P[maxi=0,...,l|V λ,μ
ti

−(h− ti)+| >
ε/2], which completes the proof of 1(a).

Step 4. Point 1(b) is deduced from Step 2 exactly as point 1(a) was deduced
from Step 1, using the fact that t �→ �λ

t and t �→ 1 −ht are a.s. nondecreasing. �

We may now finally tackle the following proof.

PROOF OF PROPOSITION 13. For x ∈ (−A,A) and t ≥ 0, we introduce
Zt(x−) = limy→x,y<x Zt (y) and Zt(x+) = limy→x,y>x Zt (y), which represent
the values of Zt in the cells on the left and right of x. If x ∈ Bn, it is at the bound-
ary of two cells c−, c+ ∈ Cn, and then Zt(x−) = Zt(c−) and Zt(x+) = Zt(c+).

For x ∈ Bn and t ≥ 0, we set H̃t (x) = max(Ht(x),1 − Zt(x),1 − Zt(x−),1 −
Zt(x+)). Observe that for the LFFP, x is microscopic (or acts like a barrier) if
and only if H̃t (x) > 0 and, if so, it will remain microscopic during exactly [t, t +
H̃t (x)). Note that, in fact, Zt(x) always equals either Zt(x−) or Zt(x+).

We consider the set of times K := {t ∈ {0, T }: there exists x ∈ (−A,A) such that
H̃t (x) = 0 but H̃t−ε(x) > 0 for all ε > 0 small enough}. By construction, we see
that K ⊂ {1, Ti + 1, Ti + ZTi−(Xi), i = 1, . . . , n} ⊂ {1, Ti + 1, Ti + (Ti − Tj ),0 ≤
j < i ≤ n}.

We work conditionally on M , by induction on q = 0, . . . , n. Consider the fol-
lowing assumption.

(Hq): (i) For all 0 < μ ≤ 1, c ∈ Cq and ε > 0, limλ→0 PM(|Z̃λ,μ
Tq

(c) −
ZTq (c)| > ε) = 0.
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(ii) For all x ∈ Bq , 0 < μ ≤ 1 and ε > 0, limλ→0 PM(|H̃ λ,μ
Tq

(x) − H̃Tq (x)| >

ε) = 0.
(iii) For all 0 < μ ≤ 1, limλ→0 PM(E λ,μ

q ) = 1 (recall Lemma 14).

First, (H0) is obviously satisfied because T0 = 0, C0 = (−A,A), Z̃
λ,μ
0 ((−A,

A)) = 0 = Z0((−A,A)), B0 = ∅ and E λ,μ
0 = 
.

The proposition will essentially be proven if we check that for q = 0, . . . , n−1,
(Hq) implies:

(a) for c ∈ Cq , 0 < μ ≤ 1 and ε > 0, limλ→0 PM(sup[Tq,Tq+1)
|Z̃λ,μ

t (c) −
Zt(c)| > ε) = 0;

(b) for x ∈ (−A,A)\ Bq , ε > 0, limλ→0 PM(sup[Tq,Tq+1)
|Zλ

t (x)−Zt(x)| > ε) =
0;

(c) for x ∈ Bq , t ∈ [Tq, Tq+1), 0 < μ ≤ 1 and ε > 0, limλ→0 PM(|H̃ λ,μ
t (x) −

H̃t (x)| > ε);
(d) for x ∈ (−A,A) \ Bq , t ∈ (Tq, Tq+1) \ K and ε > 0, limλ→0 PM(δ(Dλ

t (x),
Dt(x)) > ε) = 0;

(e) for x ∈ (−A,A) \ Bq , ε > 0, limλ→0 PM(
∫ Tq+1
Tq

δ(Dλ
t (x),Dt(x)) dt > ε) =

0;
(f) (Hq+1) holds.
We thus assume (Hq) for some fixed q ∈ {0, . . . , n − 1} and prove points

(a)–(f). Below, we repeatedly use the fact that on the time interval [Tq, Tq+1),
there are no fires at all in (−A,A) for the LFFP and no fires at all during
[Tq log(1/λ), Tq+1 log(1/λ)) for the λ-FFP.

Set ζ λ
0 (i) = ηλ

Tq log(1/λ)(i) and consider the i.i.d. Poisson processes P λ
t (i) =

N(Tq+t) log(1/λ)(i) − NTq log(1/λ)(i) with rate log(1/λ). Then, for t ∈ [Tq, Tq+1),
ηλ

t log(1/λ)(i) = min(ζ0(i) + P λ
t−Tq

(i),1).

Point (a). Let 0 < μ ≤ 1. Let c ∈ Cq . Observe that (Hq)(i) says precisely that
with h = 1 − ZTq (c) ∈ [0,1], log(1 + #{k ∈ cλ,μ, ζ λ

0 (k) = 0})/ log(1 + #(cλ,μ))

tends to h in probability (for PM ). Applying part 1(a) of Lemma 16 (with J = c),
we get that sup[Tq,Tq+1)

|1−Z̃
λ,μ
t (c)−(h−(t −Tq))+| tends to 0 in probability (for

PM ). However, for t ∈ [Tq, Tq+1), we have Zt(c) = min(ZTq (c) + (t − Tq),1) =
min(1 − h + (t − Tq),1) = 1 − (h − (t − Tq))+. Point (a) then follows.

Point (b). Now, let x ∈ (−A,A) \ Bq . Then x ∈ c, for some c ∈ Cq . Due to
Lemma 14, we know that (ζ λ

0 (i))i∈cλ,μ are exchangeable on E λ,1
q . The previous

reasoning, using part 1(b) of part 1(a) of Lemma 16, shows that for all ε > 0,
limλ→0 PM(E λ,1

q ∩ {sup[Tq,Tq+1)
|Zλ

t (x) − Zt(x)| > ε}) = 0. Using (Hq)(iii) for
μ = 1, we are done.

Point (c). Let 0 < μ ≤ 1. Let x ∈ Bq and set h = H̃Tq (x). We know by (Hq)(ii)

that H̃
λ,μ
Tq

(x) tends to H̃Tq (x) = h in probability (for PM ). Now, using part 2(a)
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of Lemma 16, we deduce that sup[Tq,Tq+1)
|H̃ λ,μ

t (x) − (h − (t − Tq))+| tends to 0

in probability (for PM ). We conclude by observing that, by construction, H̃t (x) =
(h − (t − Tq))+ for t ∈ [Tq, Tq+1).

Point (d). Let x ∈ (−A,A) \ Bq and t ∈ (Tq, Tq+1) \ K be fixed.

Case Zt(x) < 1. In this case, Dt(x) = {x} so that δ(Dt(x),Dλ
t (x)) = |Dλ

t (x)|.
However, from (1), (2), we get that |Dλ

t (x)| ≤ λ1−Zλ
t (x) log(1/λ). Since we know

from (b) that Zλ
t (x) goes to Zt(x) < 1 in probability (for PM ), we easily deduce

that |Dλ
t (x)| goes to 0 in probability (for PM ).

Case Zt(x) = 1. In this case, Dt(x) = [a, b] for some a, b ∈ Bq ∪ {−A,A}.
We assume that −A < a < b < A for simplicity, the other cases being treated in a
similar way. We thus have Zt(c) = 1 for all c ∈ Cq with c ⊂ (a, b), H̃t (y) = 0 for
all y ∈ Bq ∩ (a, b) and H̃t (a)H̃t (b) > 0.

On the one hand, we prove that for any ε > 0, limλ→0 PM(Dλ
t (x) ⊂ [a −

ε, b + ε]) = 1. Let us consider, for example, the left boundary a and prove that
limλ→0 PM(Dλ

t (x) ⊂ [a − ε,A]) = 1.
We have H̃t (a) = ha > 0. We deduce from (c) that limλ→0 PM(H̃

λ,1
t (a) ≥

ha/2) = 1, which implies that there are vacant sites in aλ,1, that is, limλ→0 PM(∃i ∈
aλ,1, ηt log(1/λ)(i) = 0) = 1. Recalling the definition of aλ,1 [see (10)], we see
that this implies that limλ→0 PM(Dλ

t (x) ⊂ [a − 1/ log(1/λ),A]) = 1, hence
limλ→0 PM(Dλ

t (x) ⊂ [a − ε,A]) = 1 for any ε > 0.
On the other hand, we prove that limλ→0 PM((a + 1/ log(1/λ), b − 1/ log(1/

λ)) ⊂ Dλ
t (x)) = 1. Since t /∈ K, we deduce that there exists s ∈ (Tq, t) such that

Zs(c) = 1 for all c ∈ Cq with c ⊂ (a, b) and H̃s(y) = 0 for all y ∈ Bq ∩ (a, b).
We deduce from (a) that for all c ∈ Cq with c ⊂ (a, b), limλ→0 PM(Z̃λ,1

s (c) >

1 − ε) = 0, whence, by Lemma 15(i), limλ→0 PM(Z̃
λ,1
t (c) = 1) = 1. Similarly, we

deduce from (c) that for all y ∈ Bq with y ∈ (a, b), limλ→0 PM(H̃λ,1
s (y) > ε) = 0,

whence, by Lemma 15(ii), limλ→0 PM(H̃
λ,1
t (y) = 0) = 1. As a consequence,

limλ→0 PM((a + 1/ log(1/λ), b − 1/ log(1/λ)) ⊂ Dλ
t (x)) = 1.

This completes the proof of point (d).

Point (e). Point (e) follows from (d). Indeed, observe that δ(I, J ) ≤ 2A

for any intervals I, J ⊂ (−A,A). Thus, for x ∈ (−A,A) \ Bq , (d) implies
that for t ∈ [Tq, Tq+1) \ K, limλ→0 EM(δ(Dλ

t (x),Dt(x))) = 0. Since K is
now finite, we deduce from Lebesgue’s dominated convergence theorem that

limλ→0
∫ Tq+1
Tq

EM(δ(Dλ
t (x),Dt(x))) dt = 0, from which (e) follows.

Point (f). Here, we show that (Hq+1) holds. We set z := ZTq+1−(Xq+1) and
separately treat the cases z ∈ (0,1) and z = 1. We a.s. never have z = 0 be-
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cause ZTq+1−(Xq+1) = min(ZTq (Xq+1) + (Tq+1 − Tq),1) with ZTq (Xq+1) ≥ 0
and Tq+1 > Tq .

Case z ∈ (0,1). We fix μ ∈ (0,1]. In that case, DTq+1−(Xq+1) = {Xq+1} and
for all c ∈ Cq+1 (thus c ⊂ c̃ for some c̃ ∈ Cq ), ZTq+1(c) = ZTq+1−(c). We have

H̃Tq+1(Xq+1) = max(z,1−z) and for all x ∈ Bq , H̃Tq+1(x) = H̃Tq+1−(x). Consider
the event 
λ

α = {Zλ
Tq+1−(Xq+1) ≤ z+α} for some α ∈ (0,1 − z). Point (b) implies

that limλ→0 PM(
λ
α) = 1 (because Xq+1 /∈ Bq ).

• On 
λ
α , we have #(Cλ

Tq+1 log(1/λ)−(Xq+1)) ≤ (1/λ)z+α [see (2)]. Since z+α < 1,

we deduce that on 
λ
α , we have #(Cλ

Tq+1 log(1/λ)−(Xq+1)) < μ/(2λ log2(1/λ))

(for all μ, provided that λ > 0 is small enough). Thus, on 
λ
α , for all c ∈ Cq+1,

there is a vacant site (strictly) between cλ,μ and Cλ
Tq+1 log(1/λ)−(Xq+1). Hence,

E λ,μ
q ∩ 
λ

α ⊂ E λ,μ
q+1. Using (Hq)(iii), we deduce that limλ→0 PM(E λ,μ

q+1) = 1.

• This also implies that on 
λ
α , for all c ∈ Cq+1, we have Z̃

λ,μ
Tq+1

(c) = Z̃
λ,μ
Tq+1−(c)

and thus point (a) and limλ→0 PM(
λ
α) = 1 imply that limλ→0 PM(|Z̃λ,μ

Tq+1
(c) −

ZTq+1(c)| ≥ ε) = 0 for all ε > 0.

• For x ∈ Bq+1 \ {Xq+1} = Bq , still on 
λ
α , we also have H̃

λ,μ
Tq+1

(x) = H̃
λ,μ
Tq+1−(x),

thus point (c) allows us to conclude that (Hq+1)(ii) holds for those points x.

We now show that limλ→0 PM(|H̃ λ,μ
Tq+1

(Xq+1) − H̃Tq+1(Xq+1)| ≥ ε) = 0 for
all ε > 0, which implies that (Hq+1)(ii) holds for x = Xq+1. Recall that
H̃Tq+1(Xq+1) = max(z,1 − z). Consider c ∈ Cq such that Xq+1 ∈ c and de-

note by v
λ,μ
t the number of vacant sites in xλ,μ at time t log(1/λ). Point (a)

implies that at time Tq+1 log(1/λ)−, there are around (1/λ)1−z vacant sites
in cλ,μ. Thus, by exchangeability of the family (ηλ

Tq+1 log(1/λ)−(i))i∈cλ,μ (on

the event E λ,μ
q , see Lemma 14), since xλ,μ ⊂ cλ,μ and #(xλ,μ)/#(cλ,μ) �

1/ log(1/λ), we deduce that v
λ,μ
Tq+1− � (1/λ)1−z/ log(1/λ) � (1/λ)1−z on E λ,μ

q .

On the other hand, recalling (2), we have #(Cλ
Tq+1 log(1/λ)−(Xq+1)) � (1/λ)z. At

time Tq+1 log(1/λ), this component is destroyed. Thus, still on E λ,μ
q , v

λ,μ
Tq+1

=
v

λ,μ
Tq+1− + #(Cλ

Tq+1 log(1/λ)(Xq+1)) � (1/λ)1−z + (1/λ)z � (1/λ)max(z,1−z). We

conclude that H̃
λ,μ
Tq+1

(Xq+1) = log(1 + v
λ,μ
Tq+1

)/ log(#((Xq+1)λ,μ)) � max(z,1 −
z) = H̃Tq+1(Xq+1). All of this can be done rigorously without difficulty and

we deduce that for ε > 0 and all μ ∈ (0,1], limλ→0 PM(|H̃ λ,μ
Tq+1

(Xq+1) −
H̃Tq+1(Xq+1)| ≥ ε) = 0.

Case z = 1. Let a, b ∈ Bq ∪ {−A,A} be such that DTq+1−(Xq+1) = [a, b]. We
assume that a, b ∈ Bq , the other cases being treated in a similar way. We thus have
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ha := H̃Tq+1−(a) > 0, hb := H̃Tq+1−(b) > 0. We also have H̃Tq+1(x) = H̃Tq+1−(x)

for all x ∈ Bq \ [a, b], H̃Tq+1(x) = 1 for all x ∈ Bq ∩ (a, b), ZTq+1(c) = ZTq+1−(c)

for all c ∈ Cq+1 with c ∩ (a, b) = ∅ and ZTq+1(c) = 0 for all c ∈ Cq+1 with c ⊂
(a, b).

Let μ ∈ (0,1]. Now, consider 
̃λ,μ, the event that for all c ∈ Cq such that c ⊂
(a, b), we have Z̃

λ,μ
Tq+1−(c) = 1, that H̃

λ,μ
Tq+1−(a) > 0, that H̃

λ,μ
Tq+1−(b) > 0 and that

for all x ∈ Bq ∩ (a, b), H̃
λ,μ
Tq+1−(x) = 0. Then (a), (c) and Lemma 15 collectively

imply that limλ→0 PM(
̃λ,μ) = 1 for all μ ∈ (0,1].
• We can easily check that E λ,μ

q ∩ 
̃λ,μ ⊂ E λ,μ
q+1 (because for c ∈ Cq+1 with c ⊂ [a,

b], we have cλ,μ ⊂ Cλ
Tq+1 log(1/λ)−(Xq+1), while for c ∈ Cq+1 with c ∩ [a, b] =

∅, the vacant sites in aλ,μ and bλ,μ separate cλ,μ from Cλ
Tq+1 log(1/λ)−(Xq+1)).

As a consequence, (Hq+1)(iii) holds for all μ ∈ (0,1].
• On 
̃λ,μ, we have Z̃

λ,μ
Tq+1

(c) = 0 = ZTq+1(c) for all c ∈ Cq+1 with c ⊂ [a, b], and

Z̃
λ,μ
Tq+1

(c) = Z̃
λ,μ
Tq+1−(c) for c ∈ Cq+1 with c ∩ (a, b) = ∅, from which (Hq+1)(i)

easily follows [using (a)].
• We also have, still on 
̃λ,μ, that H̃

λ,μ
Tq+1

(x) = 1 = H̃Tq+1(x) for all x ∈ Bq+1 with
x ∈ (a, b), and (Hq+1)(ii) follows for those x. For x ∈ Bq+1 with x /∈ [a, b], we

have H̃
λ,μ
Tq+1

(x) = H̃
λ,μ
Tq+1−(x), hence (Hq+1)(ii) follows by point (c).

Finally, we have to check that (Hq+1)(ii) holds for x = a and x = b.
Consider, for example, the case of a. Here, we are in the situation where
ZTq+1(a+) = 0 so that, of course, H̃Tq+1(a) = 1. Let c be the cell contain-

ing a+. We know that Z̃
λ,μ/2
Tq+1−(c) = 1 which, on 
̃λ,μ/2, implies that all sites

between a + μ
2 log(1/λ)

and a + μ
log(1/λ)

, that is, on an interval of length μ
2 log(1/λ)

,
are empty at time Tq+1, showing that a fixed proportion of aλ,μ is empty.
Recalling that limλ→0 PM(
̃λ,μ/2) = 1, it readily follows that for all ε > 0,
limλ→0 PM(H̃

λ,μ
Tq+1

(a) > 1 − ε) = 1. Recalling that H̃
λ,μ
Tq+1

(a) ≤ 1, we conclude
that (Hq+1)(ii) holds for x = a.

Conclusion. Using points (b) and (e) above (with q = 0, . . . , n), plus very sim-
ilar arguments on the time interval (Tn, T ] (during which there are no fires), we
deduce that for all x0 ∈ (−A,A) \ Bn and ε > 0,

lim
λ→0

PM

(
sup
[0,T ]

|Zλ
t (x0) − Zt(x0)| +

∫ T

0
δ(Dλ

t (x0),Dt(x0)) dt ≥ ε

)
= 0.

But, of course, for x0 ∈ (−A,A), we have P(x0 ∈ Bn) = 0 so that

lim
λ→0

P

(
sup
[0,T ]

|Zλ
t (x0) − Zt(x0)| +

∫ T

0
δ(Dλ

t (x0),Dt(x0)) dt ≥ ε

)
= 0.
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It remains to prove that for t ∈ [0, T ] and x0 ∈ (−A,A), we have

lim
λ→0

P(δ(Dλ
t (x0),Dt(x0))) = 0.

Case t �= 1. We deduce from point (d) above that if x0 /∈ Bn and t /∈ K, then we
have limλ→0 PM(δ(Dλ

t (x0),Dt(x0))) = 0. Since P(x0 ∈ Bn) = 0 and P(t ∈ K) =
0 (because t �= 1, recalling the definition of K), we easily arrive at the desired
conclusion.

Case t = 1. In this case, t ∈ K, but the result still holds. Observe that
Z1(x0) = 1, by construction. Consider q ∈ {0, . . . , n} such that Tq < 1 < Tq+1
(with the convention that T0 = 0, Tn+1 = T ) and consider a, b ∈ Bq ∪ {−A,A}
such that D1(x0) = [a, b]. Using the same arguments as in the proof of (d) (see
Step 1), we then easily check that limλ→0 PM(Dλ

1 (x0) ⊂ [a − ε, b + ε]) = 1 for
all ε > 0 (the set K was not considered there). We also check, as in the proof of
(d) (see Step 2), that for all y ∈ Bq with y ∈ (a, b), limλ→0 PM(H

λ,1
1 (y) = 0) = 1

[the set under consideration there was K, but the time 1 was not useful since 1
is a.s. not a time where some H(x) reaches 0 for the first time]. Finally, we just
have to prove that for all c ∈ Cq with c ⊂ (a, b), limλ→0 PM(Z̃

λ,1
1 (c) = 1) = 1.

Thus, let c ∈ Cq with c ⊂ (a, b) and recall that limλ→0 PM(E λ,1
q ) = 1. However,

on E λ,1
q , there are no death events in cλ during the time interval [0, log(1/λ)],

so each site of cλ,1 is occupied at time log(1/λ) with probability 1 − λ and,
hence, all the sites of cλ,1 are occupied with probability (1 − λ)#(cλ,1). Since
#(cλ,1) ≤ 2A/(λ log(1/λ)), we get PM(Z̃

λ,1
1 (c) = 1|E λ,1

q ) ≥ (1 − λ)2A/(λ log(1/λ)),
which tends to 1 as λ tends to 0. Since we know that limλ→0 PM(E λ,1

q ) = 1, we
deduce that limλ→0 PM([a + 1/ log(1/λ), b − 1/ log(1/λ)] ⊂ Dλ

1 (x0)) = 1.
Finally, limλ→0 PM(δ(Dλ

1 (x0),D1(x0)) ≥ ε) = 0 for all ε > 0, which was our
goal. �

5. Cluster size distribution. The aim of this section is to prove Corollary 6.
We will use Theorem 5, which asserts that the λ-FFP behaves like the LFFP for
λ > 0 small enough. We start with preliminary results.

LEMMA 17. Consider an LFFP (Zt (x),Dt(x),Ht(x))t≥0,x∈R. We then have
the following:

(i) for any t ∈ (1,∞), x ∈ R and z ∈ [0,1), P[Zt(x) = z] = 0;
(ii) for any t ∈ [0,∞), B > 0 and x ∈ R, P [|Dt(x)| = B] = 0;

(iii) there are constants C > 0 and κ1 > 0 such that for all t ∈ [0,∞), x ∈ R

and B > 0, P[|Dt(x)| ≥ B] ≤ Ce−κ1B ;
(iv) there are constants c > 0 and κ2 > 0 such that for all t ∈ [3/2,∞), x ∈ R

and B > 0, P[|Dt(x)| ≥ B] ≥ ce−κ2B ;
(v) there exist constants 0 < c < C such that for all t ≥ 5/2, 0 ≤ a < b < 1

and x ∈ R, c(b − a) ≤ P(Zt (x) ∈ [a, b]) ≤ C(b − a).
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PROOF. By translation invariance, it suffices to treat the case x = 0.

Point (i). By Definition 2, we see that for t ∈ [0,1], we have a.s. Zt(0) = t .
However, for t > 1 and z ∈ [0,1), Zt(0) = z implies that the cluster containing 0
has been killed at time t − z, so, necessarily, M({t − z} × R) > 0. This happens
with probability 0 since t − z is deterministic.

Point (ii). Recalling Definition 2, we see that for any t ∈ [0, T ], |Dt(0)| is either
0 or of the form |Xi − Xj | (with i �= j ), where (Ti,Xi)i≥1 are the marks of the
Poisson measure M . As before, we easily conclude that for B > 0, P(|Dt(0)| =
B) = 0.

Point (iii). First, if t ∈ [0,1), then we have a.s. |Dt(0)| = 0 and the result
is obvious. Next, consider t ≥ 1. Recalling Definition 2, we see that |Dt(0)| =
|Lt(0)|+Rt(0). Clearly, |Lt(0)| and Rt(0) have the same law. For B > 0, {Rt(0) >

B} ⊂ {M([t − 1/4, t] × [0,B]) = 0}. Indeed, on {M([t − 1/4, t] × [0,B]) > 0},
denote by (τ,X) ∈ [t − 1/4, t] × [0,B] a mark of M . Then, either:

• Zτ−(X) = 1, in which case this mark starts a macroscopic fire so that
Zτ (X) = 0 and Zs(X) = s − τ < 1 for all s ∈ [τ, τ + 1) (since τ ∈ [t − 1/4, t], we
clearly have t ∈ [τ, τ + 1) so that Zt(X) < 1 and, as a consequence, Rt(0) ≤ X ≤
B); or

• Zτ−(X) ∈ (1/4,1] so that Hτ(X) = Zτ−(X) and thus Hs(X) = Zτ−(X) −
(s − τ) > 0 for all s ∈ [τ, τ + Zτ−(X)) (since τ ∈ [t − 1/4, t] and Zτ−(X) > 1/4,
we have t ∈ [τ, τ + Zτ−(X)), so Ht(X) > 0 and, hence, Rt(0) ≤ X ≤ B); or,
finally,

• Zτ−(X) ≤ 1/4, in which case Zs(X) = Zτ−(X) + (s − τ) < 1 for all s ∈
(τ, τ + 1 − Zτ−(X)) and, in particular, Zt(X) < 1, hence Rt(0) ≤ X ≤ B .

As a conclusion, for all t ≥ 1, P[Rt(0) > B] ≤ P[M([t − 1/4, t] × [0,B]) =
0] = e−B/4, so P[|Dt(0)| > B] ≤ P[|Lt(0)| > B/2] + P[Rt(0) > B/2] ≤ 2e−B/8.

Point (iv). We first observe that for all (t0, x0) such that M({t0, x0}) = 1, we
have max(1 − Zt(x0),Ht(x0)) > 0 for all t ∈ [t0, t0 + 1/2).

Indeed, if Zt0−(x0) = 1, then Zt0+s(x0) ≤ s < 1 for all s ∈ [0,1). If, now, z =
Zt0−(x0) < 1, then Zt0+s(x0) = s + z < 1 for s ∈ [0,1 − z) and Ht0+s(x0) = z −
s > 0 for s ∈ [0, z) so that max(1 − Zt0+s(x0),Ht0+s(x0)) > 0 for all s ∈ [0,1/2).

Once this is seen, fix t ≥ 3/2. Consider the event 
̃t,B = 
̃1
t,B ∩ 
̃2

t ∩ 
̃3
t,B ,

where:
• 
̃1

t,B = {M([t − 3/2, t] × [0,B]) = 0};
• 
̃2

t is the event that in the box [t −3/2, t]×[−1,0], M has exactly four marks,
(Si, Yi)i=1,...,4, with Y4 < Y3 < Y2 < Y1, t −3/2 < S1 < t −1, S1 < S2 < S1 +1/2,
S2 < S3 < S2 + 1/2, S3 < S4 < S3 + 1/2 and S4 + 1/2 > t .

• 
̃3
t,B is the event that in the box [t − 3/2, t] × [B,B + 1], M has exactly four

marks, (S̃i, Ỹi)i=1,...,4, with Ỹ1 < Ỹ2 < Ỹ3 < Ỹ4, t − 3/2 < S̃1 < t − 1, S̃1 < S̃2 <

S̃1 + 1/2, S̃2 < S̃3 < S2 + 1/2, S̃3 < S̃4 < S̃3 + 1/2 and S̃4 + 1/2 > t .
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Of course, we have p := P(
̃2
t ) = P(
̃3

t,B) > 0 and this probability does not

depend on t ≥ 3/2 or on B > 0. Furthermore, P(
̃1
t,B) = e−3B/2. These three

events being independent, we conclude that P(
̃t,B) ≥ p2e−3B/2. To conclude the
proof of (iv), it thus suffices to check that 
̃t,B ⊂ {[0,B] ⊂ Dt(0)}. However, on

̃t,B , using the arguments described at the beginning of the proof of point (iv), we
observe that:

• the fire starting at (S2, Y2) cannot affect [0,B] because at time S2 ∈ [S1, S1 +
1/2), HS2(Y1) > 0 or ZS2(Y1) > 0, with Y2 < Y1 < 0;

• then the fire starting at (S3, Y3) cannot affect [0,B] because at time S3 ∈
[S2, S2 + 1/2), HS3(Y2) > 0 or ZS3(Y2) > 0, with Y3 < Y2 < 0;

• then the fire starting at (S4, Y4) cannot affect [0,B] because at time S4 ∈
[S3, S3 + 1/2), HS4(Y3) > 0 or ZS4(Y3) > 0, with Y4 < Y3 < 0;

• furthermore, the fires starting to the left of −1 during (S1, t] cannot affect
[0,B] because for all t ∈ (S1, t], there is always a site xt ∈ {Y1, Y2, Y3, Y4} ⊂
[−1,0] with Ht(xt ) > 0 or Zt(xt ) < 1;

• the same arguments apply on the right of B .
As a conclusion, the zone [0,B] is not affected by any fire during (S1 ∨ S̃1, t].

Since the length of this time interval is greater than 1, we deduce that for all
x ∈ [0,B], Zt(x) = min(Z

S1∨S̃1
+ t − S1 ∨ S̃1,1) ≥ min(t − S1 ∨ S̃1,1) = 1 and

Ht(x) = max(H
S1∨S̃1

− (t − S1 ∨ S̃1),0) ≤ max(1 − (t − S1 ∨ S̃1),0) = 0, hence
that [0,B] ⊂ Dt(0).

Point (v). We observe, recalling Definition 2, that for 0 ≤ a < b < 1 and t ≥ 1,
we have Zt(0) ∈ [a, b] if and only there exists τ ∈ [t − b, t − a] such that Zτ (0) =
0. This happens if and only if Xt,a,b := ∫ t−a

t−b

∫
R

1{y∈Ds−(0)}M(ds, dy) ≥ 1. We
deduce that

P
(
Zt(0) ∈ [a, b]) = P(Xt,a,b ≥ 1) ≤ E[Xt,a,b] =

∫ t−a

t−b
E[|Ds(0)|]ds ≤ C(b − a),

where we have used point (iii) for the last inequality.
Next, we have {M([t − b, t − a] × Dt−b(0)) ≥ 1} ⊂ {Xt,a,b ≥ 1}: it suffices to

note that a.s. {Xt,a,b = 0} ⊂ {Xt,a,b = 0,Dt−b(0) ⊂ Ds(0) for all s ∈ [t − b, t −
a]} ⊂ {M([t −b, t −a]×Dt−b(0)) = 0}. Now, since Dt−b(0) is F M

t−b-measurable,
we deduce that for t ≥ 5/2,

P
(
Zt(0) ∈ [a, b]) ≥ P

[
M

(
(t − b, t − a] × Dt−b(0)

)
> 0

]
≥ P[|Dt−b(0)| ≥ 1](1 − e−(b−a)) ≥ c

(
1 − e−(b−a)),

where we have used point (iv) (here, t − b ≥ 3/2) to get the last inequality. This
completes the proof since 1 − e−x ≥ x/2 for all x ∈ [0,1]. �

We now may tackle the following proof.
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PROOF OF COROLLARY 6. We thus consider, for each λ > 0, a λ-FFP
(ηλ

t )t≥0. Also, let (Zt (x),Dt(x),Ht(x))t≥0,x∈R be an LFFP.

Point (i). Using Lemma 17(v), we only need to prove that for all 0 ≤ a < b < 1
and all t ≥ 5/2,

lim
λ→0

P
(
#
(
Cλ

t log(1/λ)(0)
) ∈ [λ−a, λ−b]) = P

(
Zt(0) ∈ [a, b]).

Recalling (2), we observe that

P
(
#
(
Cλ

t log(1/λ)(0)
) ∈ [λ−a, λ−b]) = P

(
Zλ

t (0) ∈ [a + ε(a,λ), b + ε(b,λ)]),
where ε(z, λ) = log(1 + λz)/ log(1/λ) → 0 as λ → 0 (if z ≥ 0).

We arrive at the desired conclusion by using Theorem 5 [which asserts that
Zλ

t (0) goes in law to Zt(0)] and Lemma 17(i) [from which P(Zt (0) = a) =
P(Zt (0) = b) = 0].

Point (ii). Using part (iv) of Lemma 17(iii) and recalling (1), it suffices to check
that for all t ≥ 3/2 and all B > 0, we have

lim
λ→0

P[|Dλ
t (0)| ≥ B] = P[|Dt(0)| ≥ B].

This follows from Theorem 5 and the fact that P(|Dt(0)| = B) = 0, thanks to
Lemma 17(ii). �
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