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ASYMPTOTICS OF ORTHONORMAL POLYNOMIALS
IN THE PRESENCE OF A DENUMERABLE SET

OF MASS POINTS

FRANZ PEHERSTORFER AND PETER YUDITSKII

(Communicated by Juha M. Heinonen)

Abstract. Let σ be a positive measure whose support is an interval E plus
a denumerable set of mass points which accumulate at the boundary points of
E only. Under the assumptions that the mass points satisfy Blaschke’s condi-
tion and that the absolutely continuous part of σ satisfies Szegö’s condition,
asymptotics for the orthonormal polynomials on and off the support are given.
So far asymptotics were only available if the set of mass points is finite.

1. Introduction

Henceforth in this paper let E = [−2, 2] and let σ be a measure which has a
decomposition of the form

σ = µ+ ν = µa.c. + µs. + ν,(1.1)

where µ is a measure with supp(µa.c.) = [−2, 2] and supp(µs.) ⊂ [−2, 2] and ν is a
point measure supported on X = {xk} ⊂ R\ [−2, 2], where the accumulation points
of X are boundary points of E. As usual, µa.c. denotes the absolutely continuous
part of µ and µs. the singular part. By Pn(x) = Pn(x, σ) we denote the polynomial
of degree n orthonormal with respect to σ, i.e.:∫

Pn(x)Pm(x) dσ(x) = δn,m.(1.2)

It is well known that {Pn} satisfies a three–term recurrence relation

zPn(z) = pnPn−1(z) + qnPn(z) + pn+1Pn+1(z), n = 1, 2, . . . ,(1.3)

with initial data

p0P0(z) = 1, zP0(z) = q0P0(z) + p1P1(z).

One of the main problems is to find an explicit or at least an asymptotic represen-
tation of the orthonormal polynomials, of the minimum deviation

∏n
j=0 pj =: 1/rn

and the recurrence coefficients. For the special case that σ = µa.c. and that∫ 2

−2

| logµ′a.c.(x)| dx√
4− x2

<∞,(1.4)
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condition (1.4) is nowadays called Szegö’s condition; Szegö has given such as-
ymptotic representations. In the forties Kolmogorov and Krein have shown that
Szegö’s asymptotic formulas hold true if an arbitrary singular measure µs with
supp (µs.) ⊂ E is added (see e.g. [7], [2]). Another extension of Szegö’s results has

been given by Gonchar [3], Nevai [4] and Nikishin [6], who found asymptotics for
the case that supp (ν) ⊂ R \ E is a finite set and µa.c. satisfies Szegö’s condition.
In this paper we derive asymptotics for measures σ of the form (1.1) under the
assumptions that µa.c. satisfies Szegö’s condition and that the mass points {xk}
satisfy Blaschke’s condition, i.e.,∑

xk∈X

√
x2
k − 4 <∞.(1.5)

As an easy consequence of our results we obtain that lim pn = 1 and lim qn = 0. In
this connection it might be worth mentioning that lim pn = 1 and lim qn = 0 imply,
by Weyl’s Theorem on compact perturbations, that supp(σ) = E ∪X , where X is
a finite or countable set of points outside E which can accumulate at the boundary
points of this interval only; σ denotes the orthogonality measure associated with
the recurrence coefficients {pn} and {qn}. If

∞∑
n=0

n(|pn − 1|+ |qn|) <∞,

then X is finite (see [1]).
As usual it is convenient to transform the problem to the unit circle T. Therefore

let us put z = ζ + 1/ζ, ζ ∈ D

B(ζ) =
∏
ζk∈Z

ζk − ζ
1− ζkζ

|ζk|
ζk

, Z =

{
ζk ∈ D, ζk =

xk −
√
x2
k − 4

2

}
.(1.6)

Then condition (1.5) becomes the standard Blaschke condition∑
ζk∈Z

(1− |ζk|2) <∞.

Further let the transformed measure µ̃ be given by∫ 2

−2

F (x) dµ(x) =
∫
T
F (z(t)) dµ̃(t).(1.7)

Since µa.c. satisfies Szegö’s condition it follows that µ̃′a.c. has a representation of
the form

µ̃′a.c. = µ′a.c.(2 cosφ)π|2 sin φ| = |D(t)|2 for a.e. t = eiφ ∈ T,

where

logD(ζ) =
1
2

∫
T

t+ ζ

t− ζ log{µ̃′a.c.(t)} dm(t)(1.8)

and dm denotes the Lebesgue measure on T. Note that (1.7) becomes∫ 2

−2

F (x) dµ(x) =
∫
T
F (z(t))|D(t)|2 dm(t) +

∫
T
F (z(t)) dµ̃s.(t).
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2. The result

Theorem. Let a measure σ = µ + ν satisfy (1.4) and (1.5). Associate with the
measure σ the functions B(ζ) and D(ζ) by (1.6), (1.8). Then the minimum devia-
tion and the orthonormal polynomials Pn(z, σ) = rn(σ)zn + . . . have the following
asymptotic behavior (n→∞):

rnD(0)
B(0)

→ 1√
2
,(2.1)

D(t)Pn(z(t)) =
t−nB(t) + tnB(t̄)D(t)/D(t̄)√

2
+ o(1) in L2,(2.2)

‖Pn‖L2
dσs.

=

{ ∑
xk∈X

|Pn(xk)|2νk +
∫ 2

−2

|Pn(x)|2 dµs.(x)

}1/2

→ 0,(2.3)

and

Pn(z(ζ))ζn =
B(ζ)√
2D(ζ)

+ o(1)(2.4)

uniformly on compact subsets of D.

The proof of the theorem will be divided into several steps. The main part deals
with the statement (2.1). First we show an upper estimate.

Lemma. Under the assumptions of the previous Theorem, we have

lim
n→∞

rnD(0)
B(0)

≤ 1√
2
.(2.5)

Furthermore, (2.1) implies (2.2) and (2.3).

Proof. Put s(t) = D(t)/D(t̄) and consider the norm of the following function:

∥∥∥∥D(t)Pn(z(t))− t−nB(t) + tns(t)B(t̄)√
2

∥∥∥∥2

L2

+
∫
|Pn(x)|2 dσs.(x)

=
∫
T
|Pn(z(t))|2|D(t)|2 dm(t) +

∑
xk∈X

|Pn(xk)|2νk +
∫ 2

−2

|Pn(x)|2 dµs.(x)

+
1
2

∥∥t−nB(t) + tns(t)B(t̄)
∥∥2

L2 − 2Re
〈
D(t)Pn(z(t)),

t−nB(t) + tns(t)B(t̄)√
2

〉
.

(2.6)

To prove (2.5) we only use the fact that this norm is non–negative. From the
estimate we get it follows immediately that (2.1) implies (2.2) and (2.3).

First of all

(2.7)
∫
T
|Pn(z(t))|2|D(t)|2 dm(t) +

∫ 2

−2

|Pn(x)|2 dµs.(x)

+
∑
xk∈X

|Pn(xk)|2νk = ‖Pn‖2L2
dσ

= 1.

Since 〈
t−nB(t), tns(t)B(t̄)

〉
→ 0 n→∞,
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we have

1
2

∥∥t−nB(t) + tns(t)B(t̄)
∥∥2

L2 = 1 + o(1), n→∞.(2.8)

Now we note that D(t)Pn(z(t)) possesses the following symmetry property:

s(t)D(t̄)Pn(z(t̄)) = D(t)Pn(z(t)).

Therefore, it is orthogonal to any function of the form g(t)− s(t)g(t̄). Thus,〈
D(t)Pn(z(t)),

t−nB(t) + tns(t)B(t̄)√
2

〉
=
√

2
〈
D(t)Pn(z(t)), t−nB(t)

〉
.

Let {ZN}N be an exhaustion of Z by finite subsets and let BN be the finite Blaschke
product with zeros ZN . Then

(2.9)
〈
D(t)Pn(z(t)), t−nB(t)

〉
=
〈
D(t)Pn(z(t)), t−n(B(t) −BN (t))

〉
+
〈
D(t)Pn(z(t)), t−nBN (t)

〉
and

|
〈
D(t)Pn(z(t)), t−n(B(t) −BN (t))

〉
|

≤ ‖D(t)Pn(z(t))‖‖B(t)−BN (t)‖ ≤ ‖B(t)−BN (t)‖.
To evaluate the second term in (2.9) we apply the Cauchy Theorem:

〈D(t)Pn(z(t)), t−nBN (t)〉 =
∫
T

D(t)Pn(z(t))
BN (t)

tn
dt

2πit

=
D(0)
BN (0)

rn +
∑ D(ζk)

B′N (ζk)
Pn(xk)ζn−1

k .

For the last term we have an estimate

∣∣∣∣∑ D(ζk)
B′N (ζk)

Pn(xk)ζn−1
k

∣∣∣∣2 ≤
 ∑
ζk∈ZN

∣∣∣∣ D(ζk)
B′N(ζk)

∣∣∣∣2 |ζn−1
k |2
νk


{ ∑
xk∈X

|Pn(xk)|2νk

}
.

So, first choosing N big enough and then n we conclude that〈
D(t)Pn(z(t)),

t−nB(t) + tns(t)B(t̄)√
2

〉
=
√

2
D(0)
B(0)

rn + o(1).(2.10)

Substituting (2.7), (2.8), (2.10) in (2.6) we obtain the final result

1 + 1− 2
√

2
D(0)
B(0)

rn + o(1) =
∥∥∥∥D(t)Pn(z(t))− t−nB(t) + tns(t)B(t̄)√

2

∥∥∥∥2

L2

+
∫ 2

−2

|Pn(x)|2 dµs.(x) +
∑
xk∈X

|Pn(xk)|2νk ≥ 0.

Remark. The proof of the Lemma shows that rn → 0 as n→∞ if∑
xk∈X

√
x2
k − 4 =∞

and if (1.4) is satisfied.
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Proof of (2.1) and (2.4). As usual, first we assume that the weight function |D| is
bounded from below. To simplify notation, assume |D| ≥ 2. Let |Dε| be a smooth
function such that |Dε| ≥ 1 and∫

T
||D|2 − |Dε|2| dm < ε (ε > 0).(2.11)

Now, for η > 0 with max |Dε(t)| ≤ 1/η, we choose a finite system of intervals
Es. ⊂ T such that ∫

T\Es.
dµ̃s. ≤ η, |Es.| =

∫
Es.

dm ≤ η.(2.12)

Let Ẽs. with |Ẽs.| ≤ 2η be another system of intervals which arises by proper
extension of each interval of Es.. We also fix vicinities of ±1 of the form

E± = {t ∈ T, |t± 1|2 ≤ η/2}, Ẽ± = {t ∈ T, |t± 1|2 ≤ η}.
Let us define a smooth function |Fε,η(t)| in the following way. It coincides with

1/|Dε(t)| on T \ (Ẽs. ∪ Ẽ+ ∪ Ẽ−) and equals to η on Es. \ (Ẽ+ ∪ Ẽ−). Further, it
coincides with |t± 1|2, when t ∈ E±, and is such that

|t± 1|2 ≤ |Fε,η(t)| ≤ 1
|Dε(t)|

for t ∈ Ẽ± \ E±,

η ≤ |Fε,η(t)| ≤ 1
|Dε(t)|

for t ∈ Ẽs. \ (Es. ∪ Ẽ+ ∪ Ẽ−).

Hence, by the above settings

0 ≤ log
1

Fε,η(0)
− logDε(0) ≤

∫
(Ẽs.∪Ẽ+∪Ẽ−)

log
∣∣∣∣ 1
Fε(t)Dε(t)

∣∣∣∣ dm
≤
∫
Ẽ+

log
1

|t− 1|2 dm+
∫
Ẽ−

log
1

|t+ 1|2 dm+
∫
Ẽs.

log
1
η
dm

=o(1), η → 0.

So, taking into account (2.11),

Fε,η(0) = 1/D(0) + o(1), η → 0, ε→ 0.(2.13)

Further, we note that the Blaschke product oscillates only in vicinities of the
points ±1, moreover,

sup{|B′(t)||t2 − 1|2, t ∈ T} <∞.
Therefore, (BFε,η)′ = B′Fε,η + BF ′ε,η ∈ L∞, and the Fourier series of BFε,η con-
verges to this function uniformly on T. Let

(BFε,η)(t) = Qn,ε,η(t) + tn+1gn,ε,η(t), gn,ε,η(t) ∈ H∞,
where

Qn,ε,η(t) = q0,ε,η + · · ·+ qn,ε,ηt
n.

We claim that the polynomial

Pn,ε,η(z) =
ζ−nQn,ε,η(ζ) + ζnQn,ε,η(1/ζ)√

2
is a suitable approximation to the extremal one, when η and ε are small and n is
big.
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Let us estimate the norm of the given polynomial. For the absolutely continuous
part of the measure we have

‖Dε(t)Pn,ε,η(z(t))‖L2

≤
∥∥∥∥Dε(t)

Fε,η(t)B(t)t−n + Fε,η(t̄)B(t̄)tn√
2

∥∥∥∥+
∥∥∥∥Dε(t)

tgn,ε,η(t) + t̄gn,ε,η(t̄)√
2

∥∥∥∥ .
Since

‖gn,ε,η‖L∞ → 0, 〈Dε(t)Fε,η(t)B(t)t−n, Dε(t)Fε,η(t̄)B(t̄)tn〉 → 0 (n→∞),

and |Dε(t)Fε,η(t)| ≤ 1, we have ‖Dε(t)Pn,ε,η(z(t))‖L2 ≤ 1 + o(1). Since Pn,ε,η is
uniformly bounded, using (2.11), we get

‖D(t)Pn,ε,η(z(t))‖L2 ≤ 1 + Cε+ o(1).(2.14)

For the singular measure µs. we have

‖Pn,ε,η‖L2
µ̃

= ‖Pn,ε,η(z(t))‖L2
µ̃s.

≤
∥∥∥∥Fε,η(t)B(t)t−n + Fε,η(t̄)B(t̄)tn√

2

∥∥∥∥
L2
µ̃s.

+
∥∥∥∥ tgn,ε,η(t) + t̄gn,ε,η(t̄)√

2

∥∥∥∥
L2
µ̃s.

≤
√

2 ‖Fε,η(t)‖L2
µ̃s.

+
√

2 ‖gn,ε,η(t)‖L2
µ̃s.

.

Due to (2.12),∫
T
|Fε,η(t)|2 dµs. ≤

∫
Es.

|Fε,η(t)|2 dµs. +
∫
T\Es.

|Fε,η(t)|2 dµs.

≤ η2

∫
T
dµs. + η.

Again using ‖gn,ε,η‖L∞ → 0, n→∞, we get

‖Pn,ε,η(z(t))‖L2
µ̃s.

= C
√
η + o(1), n→∞.(2.15)

At last, for the discrete measure ν we have
√

2‖Pn,ε,η(z)‖L2
dν
≤
{∑

|ζ−nk Qn,ε,η(ζk)|2νk
}1/2

+
{∑

|ζnkQn,ε,η(1/ζk)|2νk
}1/2

.

Since B(ζk) = 0, we are able to rewrite the first term in the form{∑
|ζ−nk (Qn,ε,η(ζk)−B(ζk)Fε,η(ζk))|2νk

}1/2

≤
{∑

|ζkgn,ε,η(ζk)|2νk
}1/2

→ 0.

To show that the second term also tends to 0, we note that the sequence of poly-
nomials

ζnQn,ε,η(1/ζ) = q0,ε,ηζ
n + · · ·+ qn,ε,η

is bounded uniformly on D̄, since |Qn,ε,η(t)| = |tnQn,ε,η(1/t)| is bounded uniformly
on T. So it is enough to show that ζnkQn,ε,η(1/ζk) tends to 0 when k is fixed. Let
δ > 0, choose n0 such that |ζk|n0 ≤ δ and m0 such that{ ∞∑

m0+1

|qj,ε,η|2
}1/2

≤ δ.
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Then, for n ≥ n0 +m0 we have

|q0,ε,ηζ
n
k + · · ·+ qn−n0,ε,ηζ

n0
k | ≤

|ζn0
k |√

1− |ζk|2

{ ∞∑
0

|qj,ε,η|2
}1/2

≤ C(ζk)δ

and

|qn−n0+1,ε,ηζ
n0−1
k + · · ·+ qn,ε,η| ≤

{ ∞∑
m0+1

|qj,ε,η|2
}1/2

1√
1− |ζk|2

≤ C(ζk)δ.

Thus ζnkQn,ε,η(1/ζk) indeed tends to 0 as n→∞.
Using the extremal property of the orthonormal polynomial and the fact that

Pn,ε,η(z) =
(BFε,η)(0)√

2
zn + . . . ,

we get with the help of (2.14), (2.15)

rn ≥
B(0)Fε,η(0)/

√
2

‖Pn,ε,η‖L2
dσ

≥ B(0)Fε,η(0)/
√

2
1 + Cε+ C

√
η + o(1)

, n→∞.

Therefore, recall (2.13),

lim
n→∞

rn ≥
B(0)√
2D(0)

.

To get rid of the assumption that |D| is bounded from below we use the following
standard trick. For given D(t) define |Dε(t)|2 = |D(t)|2 + ε2, t ∈ T (ε > 0) and∫

|P (x)|2 dσε(x) =
∫
T
|P (z(t))|2|Dε(t)|2 dm+

∫
|P (x)|2 dσs.(x).

Note that |Dε(t)| is bounded from below. Since ‖P‖L2
dσ
≤ ‖P‖L2

dσε
, we have

rn(σ) ≥ rn(σε)
‖Pn(x, σε)‖L2

dσ

≥ rn(σε)
‖Pn(x, σε)‖L2

dσε

≥ rn(σε).

Therefore,

lim
n→∞

rn(σ) ≥ B(0)√
2Dε(0)

.

Since Dε(0)→ D(0), ε→ 0, using (2.5) we get

B(0)√
2D(0)

≥ lim
n→∞

rn(σ) ≥ lim
n→∞

rn(σ) ≥ B(0)√
2D(0)

,

and (2.1) is proved.

We derive (2.4) from (2.2) in a standard way. First of all,∣∣∣∣〈D(t)Pn(z(t))− t−nB(t) + tns(t)B(t̄)√
2

,
t−n

1− tζ̄

〉∣∣∣∣
≤
∥∥∥∥D(t)Pn(z(t))− t−nB(t) + tns(t)B(t̄)√

2

∥∥∥∥
L2

1√
1− |ζ|2

.
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Since 〈
D(t)Pn(z(t))− t−nB(t)√

2
,
t−n

1− tζ̄

〉
= ζnD(ζ)Pn(z(ζ))− B(ζ)√

2
and 〈

s(t)t2nB(t̄)√
2

,
1

1− tζ̄

〉
→ 0, n→∞,

uniformly on compact subsets in D, assertion (2.4) is also proved.

Remark. In this paper we were interested in an analogue of Szegö’s Theorem, that
is, in asymptotics for the orthonormal polynomials on and off the interval [−2, 2],
when infinitely many mass points appear outside the interval. We have been in-
formed by the referee that there is an interesting conjecture by P. Nevai [4, Conjec-
ture 2.7] related to the problem considered in this paper. He conjectured, without
any rate at which the masspoints are allowed to converge to −2 or 2, that for mea-
sures of the type (1.1) with µa.c. > 0 a.e. on [−2, 2] the associated Jacobi matrix is
a compact perturbation of a constant Jacobi matrix. Thus a positive answer would
give a generalization of Rakmanov’s Theorem.
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