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ASYMPTOTICS OF PLANCHEREL MEASURES
FOR SYMMETRIC GROUPS

ALEXEI BORODIN, ANDREI OKOUNKOV, AND GRIGORI OLSHANSKI

1. Introduction

1.1. Plancherel measures. Given a finite group G, by the corresponding Plan-
cherel measure we mean the probability measure on the set G∧ of irreducible repre-
sentations of G which assigns to a representation π ∈ G∧ the weight (dim π)2/|G|.
For the symmetric group S(n), the set S(n)∧ is the set of partitions λ of the num-
ber n, which we shall identify with Young diagrams with n squares throughout this
paper. The Plancherel measure on partitions λ arises naturally in representation–
theoretic, combinatorial, and probabilistic problems. For example, the Plancherel
distribution of the first part of a partition coincides with the distribution of the
longest increasing subsequence of a uniformly distributed random permutation [31].

We denote the Plancherel measure on partitions of n by Mn,

Mn(λ) =
(dimλ)2

n!
, |λ| = n ,(1.1)

where dimλ is the dimension of the corresponding representation of S(n). The as-
ymptotic properties of these measures as n→∞ have been studied very intensively;
see the References and below.

In the seventies, Logan and Shepp [23] and, independently, Vershik and Kerov
[40, 42] discovered the following measure concentration phenomenon for Mn as
n → ∞. Let λ be a partition of n and let i and j be the usual coordinates on
the diagrams, namely, the row number and the column number. Introduce new
coordinates u and v by

u =
j − i√
n
, v =

i+ j√
n
,

that is, we flip the diagram, rotate it 135◦ as in Figure 1, and scale it by the factor
of n−1/2 in both directions.

After this scaling, the Plancherel measures Mn converge as n→∞ (see [23, 40,
42] for precise statements) to the delta measure supported on the following shape:

{|u| ≤ 2, |u| ≤ v ≤ Ω(u)} ,
where the function Ω(u) is defined by

Ω(u) =

{
2
π

(
u arcsin(u/2) +

√
4− u2

)
, |u| ≤ 2 ,

|u| , |u| > 2 .
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Figure 1. The limit shape of a typical diagram.

The function Ω is plotted in Figure 1. As explained in detail in [22], this limit shape
Ω is closely connected to Wigner’s semicircle law for distribution of eigenvalues of
random matrices; see also [19, 20, 21].

From a different point of view, the connection with random matrices was ob-
served in [3, 4], and also in earlier papers [16, 28, 29]. In [3], Baik, Deift, and
Johansson made the following conjecture. They conjectured that in the n → ∞
limit and after proper scaling the joint distribution of λi, i = 1, 2, . . . , becomes
identical to the joint distribution of properly scaled largest eigenvalues of a Gauss-
ian random Hermitian matrix (which form the so-called Airy ensemble; see Section
1.4). They proved this for the individual distribution of λ1 and λ2 in [3] and [4],
respectively. A combinatorial proof of the full conjecture was given by one of us in
[25]. It was based on an interplay between maps on surfaces and ramified coverings
of the sphere.

In this paper we study the local structure of a typical Plancherel diagram both
in the bulk of the limit shape Ω and on its edge, where by the study of the edge we
mean the study of the behavior of λ1, λ2, and so on.

We employ an analytic approach based on an exact formula in terms of Bessel
functions for the correlation functions of the so-called poissonization of the Plan-
cherel measures Mn (see Theorem 1 in the following subsection), and the so-called
depoissonization techniques (see Section 1.4).

The exact formula in Theorem 1 is a limit case of a formula from [8]; see also
the recent papers [26, 27] for more general results. The use of poissonization and
depoissonization is very much in the spirit of [3, 16, 39] and represents a well–known
statistical mechanics principle of the equivalence of canonical and grand canonical
ensembles.

Our main results are the following two. In the bulk of the limit shape Ω, we
prove that the local structure of a Plancherel typical partition converges to a de-
terminantal point process with the discrete sine kernel; see Theorem 3. This result
is parallel to the corresponding result for random matrices. On the edge of the
limit shape, we give an analytic proof of the Baik-Deift-Johansson conjecture; see
Theorem 4. These results will be stated in Sections 1.3 and 1.4 of the present
Introduction, respectively.
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Simultaneously and independently, results equivalent to our Theorems 2 and 4
were obtained by K. Johansson [17].

1.2. Poissonization and correlation functions. For θ > 0, consider the pois-
sonization Mθ of the measures Mn:

M θ(λ) = e−θ
∑
n

θn

n!
Mn(λ) = e−θθ|λ|

(
dimλ

|λ|!

)2

.

This is a probability measure on the set of all partitions. Our first result is the
computation of the correlation functions of the measures Mθ.

By correlation functions we mean the following. By definition, set

D(λ) = {λi − i} ⊂ Z .
Also, following [41], define the modified Frobenius coordinates Fr(λ) of a partition
λ by

Fr(λ) =
(
D(λ) + 1

2

)
4
(
Z≤0 − 1

2

)
=
{
p1 + 1

2 , . . . , pd + 1
2 ,−q1 − 1

2 , . . . ,−qd −
1
2

}
⊂ Z+ 1

2 ,
(1.2)

where 4 stands for the symmetric difference of two sets, d is the number of squares
on the diagonal of λ, and pi’s and qi’s are the usual Frobenius coordinates of λ.
Recall that pi is the number of squares in the ith row to the right of the diagonal,
and qi is number of squares in the ith column below the diagonal. The equality
(1.2) is a well–known combinatorial fact discovered by Frobenius; see Ex. I.1.15(a)
in [24]. Note that, in contrast to Fr(λ), the set D(λ) is infinite and, moreover, it
contains all but finitely many negative integers.

The sets D(λ) and Fr(λ) have the following nice geometric interpretation. Let
the diagram λ be flipped and rotated 135◦ as in Figure 1, but not scaled. Denote
by ωλ a piecewise linear function with ω′λ = ±1 whose graph is given by the upper
boundary of λ completed by the lines

v = |u| , u /∈ [−λ′1, λ1] .

Then

k ∈ D(λ)⇔ ω′λ

∣∣∣
[k,k+1]

= −1 .

In other words, if we consider ωλ as a history of a walk on Z, then D(λ) are those
moments when a step is made in the negative direction. It is therefore natural to
call D(λ) the descent set of λ. As we shall see, the correspondence λ 7→ D(λ) is a
very convenient way to encode the local structure of the boundary of λ.

The halves in the definition of Fr(λ) have the following interpretation: one splits
the diagonal squares in half and gives half to the rows and half to the columns.

Definition 1.1. The correlation functions of Mθ are the probabilities that the sets
Fr(λ) or, similarly, D(λ) contain a fixed subset X . More precisely, we set

ρθ(X) = Mθ ({λ |X ⊂ Fr(λ)}) , X ⊂ Z+ 1
2 ,(1.3)

%θ(X) = Mθ ({λ |X ⊂ D(λ)}) , X ⊂ Z .(1.4)

Theorem 1. For any X = {x1, . . . , xs} ⊂ Z+ 1
2 we have

ρθ(X) = det
[
K(xi, xj)

]
1≤i,j≤s

,
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where the kernel K is given by the following formula:

K(x, y) =


√
θ

k+(|x|, |y|)
|x| − |y| , xy > 0 ,

√
θ

k−(|x|, |y|)
x− y , xy < 0 .

(1.5)

The functions k± are defined by

k+(x, y) = Jx− 1
2
Jy+ 1

2
− Jx+ 1

2
Jy− 1

2
,(1.6)

k−(x, y) = Jx− 1
2
Jy− 1

2
+ Jx+ 1

2
Jy+ 1

2
,(1.7)

where Jx = Jx(2
√
θ) is the Bessel function of order x and argument 2

√
θ. The

diagonal values K(x, x) are determined by the l’Hospital rule.

This theorem is established in Section 2.1; see also Remark 1.2 below. By the
complementation principle (see Sections A.3 and 2.2), Theorem 1 is equivalent to
the following

Theorem 2. For any X = {x1, . . . , xs} ⊂ Z we have

%θ(X) = det
[
J(xi, xj)

]
1≤i,j≤s

.(1.8)

Here the kernel J is given by the following formula:

J(x, y) = J(x, y; θ) =
√
θ
Jx Jy+1 − Jx+1 Jy

x− y ,(1.9)

where Jx = Jx(2
√
θ). The diagonal values J(x, x) are determined by the l’Hospital

rule.

Remark 1.2. Theorem 1 is a limit case of Theorem 3.3 of [8]. For the reader’s
convenience a direct proof of it is given in Section 2. Various limit cases of the
results of [8] are discussed in [9]. By different methods, the formula (1.8) was
obtained by K. Johansson [17].

A representation–theoretic proof of a more general formula than Theorem 3.3 of
[8] has been subsequently given in [27, 26]; see also [7].

Remark 1.3. Observe that all Bessel functions involved in the above formulas are
of integer order. Also note that the ratios like J(x, y) are entire functions of x and
y because Jx is an entire function of x. In particular, the values J(x, x) are well
defined. Various denominator–free formulas for the kernel J are given in Section
2.1.

1.3. Asymptotics in the bulk of the spectrum. Given a sequence of subsets

X(n) = {x1(n) < · · · < xs(n)} ⊂ Z ,

where s = |X(n)| is some fixed integer, we call this sequence regular if the limits

ai = lim
n→∞

xi(n)√
n

,(1.10)

dij = lim
n→∞

(xi(n)− xj(n))(1.11)

exist, finite or infinite. Here i, j = 1, . . . , s. Observe that if dij is finite, then
dij = xi(n)− xj(n) for n� 0.
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In the case when X(n) can be represented as X(n) = X ′(n) ∪ X ′′(n) and the
distance between X ′(n) and X ′′(n) goes to ∞ as n → ∞ we shall say that the
sequence splits; otherwise, we call it nonsplit. Obviously, X(n) is nonsplit if and
only if all xi(n) stay at a finite distance from each other.

Define the correlation functions %(n, · ) of the measures Mn by the same rule as
in (1.4):

%(n,X) = Mn ({λ |X ⊂ D(λ)}) .

We are interested in the limit of %(n,X(n)) as n→∞. This limit will be computed
in Theorem 3 below. As we shall see, if X(n) splits, then the limit correlations factor
accordingly.

Introduce the following discrete sine kernel which is a translation invariant kernel
on the lattice Z,

S(k, l; a) = S(k − l, a) , k, l ∈ Z ,

depending on a real parameter a:

S(k, a) =
sin(arccos(a/2) · k)

πk
, k ∈ Z .

Note that S(k, a) = S(−k, a) and for k ≥ 1 we have

S(k, a) =
√

4− a2

2π
Uk−1(a/2)

k
,

where Uk is the Tchebyshev polynomials of the second kind. We agree that

S(0, a) =
arccos(a/2)

π
, S(∞, a) = 0

and also that

S(k, a) =

{
0 , a ≥ 2 or a ≤ −2 and k 6= 0 ,
1 , a ≤ −2 and k = 0 .

The following result describes the local structure of a Plancherel typical partition.

Theorem 3. Let X(n) ⊂ Z be a regular sequence and let the numbers ai, dij be
defined by (1.10), (1.11). If X(n) splits, that is, if X(n) = X ′(n) ∪X ′′(n) and the
distance between X ′(n) and X ′′(n) goes to ∞ as n→∞, then

lim
n→∞

%(n,X(n)) = lim
n→∞

%(n,X ′(n)) · lim
n→∞

%(n,X ′′(n)) .(1.12)

If X(n) is nonsplit, then

lim
n→∞

% (n,X(n)) = det
[

S(dij , a)
]

1≤i,j≤s
,(1.13)

where S is the discrete sine kernel and a = a1 = a2 = . . . .

We prove this theorem in Section 3.

Remark 1.4. Notice that, in particular, Theorem 3 implies that, as n → ∞, the
shape of a typical partition λ near any point of the limit curve Ω is described by
a stationary random process. For distinct points on the curve Ω these random
processes are independent.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



486 A. BORODIN, A. OKOUNKOV, AND G. OLSHANSKI

Remark 1.5. By complementation (see Sections A.3 and 3.2), one obtains from The-
orem 3 an equivalent statement about the asymptotics of the following correlation
functions:

ρ(n,X) = Mn ({λ |X ⊂ Fr(λ)}) .

Remark 1.6. The discrete sine kernel was studied before (see [44, 45]), mainly as a
model case for the continuous sine kernel. In particular, the asymptotics of Toeplitz
determinants built from the discrete sine kernel was obtained by H. Widom [45]
who was answering a question of F. Dyson. We thank S. Kerov for pointing out
this reference.

Remark 1.7. Note that, in particular, Theorem 3 implies that the limit density (the
1-point correlation function) is given by

%(∞, a) =


1
π arccos(a/2) , |a| ≤ 2 ,
0 , a > 2 ,
1 , a < −2 .

(1.14)

This is in agreement with the Logan-Shepp-Vershik-Kerov result about the limit
shape Ω. More concretely, the function Ω is related to the density (1.14) by

%(∞, u) =
1− Ω′(u)

2
,

which can be interpreted as follows. Approximately, we have

#
{
i

∣∣∣∣ λi − i√
n
∈ [u, u+ ∆u]

}
≈
√
n%(∞, u) ∆u .

Set w =
i√
n

. Then the above relation reads ∆w ≈ %(∞, u) ∆u and it should be

satisfied on the boundary v = Ω(u) of the limit shape. Since v = u + 2w, we
conclude that

%(∞, u) ≈ dw

du
=

1− Ω′

2
,

as was to be shown.

Remark 1.8. The discrete sine kernel S becomes especially nice near the diagonal,
that is, where a = 0. Indeed,

S(x, 0) =


1/2 , x = 0 ,

(−1)(x−1)/2
/

(πx) , x = ±1,±3, . . . ,

0 , x = ±2,±4, . . . .

1.4. Behavior near the edge of the spectrum and the Airy ensemble. The
discrete sine kernel S(k, a) vanishes if a ≥ 2. Therefore, it follows from Theorem 3
that the limit correlations lim%(n,X(n)) vanish if ai ≥ 2 for some i. However, as
will be shown below in Proposition 4.1, after a suitable scaling near the edge a = 2,
the correlation functions %θ converge to the correlation functions given by the Airy
kernel [12, 36]

A(x, y) =
A(x)A′(y)−A′(x)A(y)

x− y .
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Here A(x) is the Airy function:

A(x) =
1
π

∫ ∞
0

cos
(
u3

3
+ xu

)
du.(1.15)

In fact, the following more precise statement is true about the behavior of the
Plancherel measure near the edge a = 2. By symmetry, everything we say about
the edge a = 2 applies to the opposite edge a = −2.

Consider the random point process on R whose correlation functions are given
by the determinants

ρAiry
k (x1, . . . , xk) = det

[
A(xi, xj)

]
1≤i,j≤k

,

and let

ζ = (ζ1 > ζ2 > ζ3 > . . . ) ∈ R∞

be its random configuration. We call the random variables ζi’s the Airy ensemble.
It is known [12, 36] that the Airy ensemble describes the behavior of the (properly
scaled) 1st, 2nd, and so on largest eigenvalues of a Gaussian random Hermitian
matrix. The distribution of individual eigenvalues was obtained by Tracy and
Widom in [36] in terms of certain Painlevé transcendents.

It has been conjectured by Baik, Deift, and Johansson that the random variables

λ̃ =
(
λ̃1 ≥ λ̃2 ≥ . . .

)
, λ̃i = n1/3

(
λi
n1/2

− 2
)
,

converge, in distribution and together with all moments, to the Airy ensemble.
They verified this conjecture for individual distribution of λ1 and λ2 in [3] and [4],
respectively. In particular, in the case of λ1, this generalizes the result of [40, 42]
that λ1√

n
→ 2 in probability as n → ∞. The computation of lim λ1√

n
was known as

the Ulam problem; different solutions to this problem were given in [1, 16, 32]; see
also the survey [2].

Convergence of all expectations of the form〈
r∏

k=1

∞∑
i=1

etkλ̃i

〉
, t1, . . . , tr > 0 , r = 1, 2, . . . ,(1.16)

to the corresponding quantities for the Airy ensemble was established in [25]. The
proof in [25] was based on a combinatorial interpretation of (1.16) as the asymp-
totics in a certain enumeration problem for random surfaces.

In the present paper we use different ideas to prove the following

Theorem 4. As n → ∞, the random variables λ̃ converge, in joint distribution,
to the Airy ensemble.

This is done in Section 4 using methods described in the next subsection. The
result stated in Theorem 4 was independently obtained by K. Johansson in [17].
See, for example, [13] for an application of Theorem 4.

1.5. Poissonization and depoissonization. We obtain Theorems 3 and 4 from
Theorem 1 using the so-called depoissonization techniques. We recall that the
fundamental idea of depoissonization is the following.
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Given a sequence b1, b2, b3, . . . its poissonization is, by definition, the function

B(θ) = e−θ
∞∑
k=1

θk

k!
bk .(1.17)

Provided the bk’s grow not too rapidly this is an entire function of θ. In com-
binatorics, it is usually called the exponential generating function of the sequence
{bk}. Various methods of extracting asymptotics of sequences from their generating
functions are classically known and widely used (see for example [39] where such
methods are used to obtain the limit shape of a typical partition under various
measures on the set of partitions).

A probabilistic way to look at the generating function (1.17) is the following.
If θ ≥ 0, then B(θ) is the expectation of bη where η ∈ {0, 1, 2, . . .} is a Poisson
random variable with parameter θ. Because η has mean θ and standard deviation√
θ, one expects that

B(n) ≈ bn , n→∞ ,(1.18)

provided the variations of bk for |k − n| ≤ const
√
n are small. One possible regu-

larity condition on bn which implies (1.18) is monotonicity. In a very general and
very convenient form, a depoissonization lemma for nonincreasing nonnegative bn
was established by K. Johansson in [16]. We use this lemma in Section 4 to prove
Theorem 4.

Another approach to depoissonization is to use a contour integral

bn =
n!

2πi

∫
C

B(z) ez

zn
dz

z
,(1.19)

where C is any contour around z = 0. Suppose, for a moment, that bn is constant,
b = bn = B(z). The function ez/zn = ez−n ln z has a unique critical point z = n.
If we choose |z| = n as the contour C, then only neighborhoods of size |z − n| ≤
const

√
n contribute to the asymptotics of (1.19). Therefore, for general {bn},

we still expect that provided the overall growth of B(z) is under control and the
variations of B(z) for |z − n| ≤ const

√
n are small, the asymptotically significant

contribution to (1.19) will come from z = n. That is, we still expect (1.18) to
be valid. See, for example, [15] for a comprehensive discussion and survey of this
approach.

We use this approach to prove Theorem 3 in Section 3. The growth conditions
on B(z) which are suitable in our situation are spelled out in Lemma 3.1.

In our case, the functions B(θ) are combinations of the Bessel functions. Their
asymptotic behavior as θ ≈ n → ∞ can be obtained directly from the classical
results on asymptotics of Bessel functions which are discussed, for example, in the
fundamental Watson’s treatise [43]. These asymptotic formulas for Bessel functions
are derived using the integral representations of Bessel functions and the steepest
descent method. The different behavior of the asymptotics in the bulk (−2, 2) of
the spectrum, near the edges ±2 of the spectrum, and outside of [−2, 2] is produced
by the different location of the saddle point in these three cases.

1.6. Organization of the paper. Section 2 contains the proof of Theorems 1 and
2 and also various formulas for the kernels K and J. We also discuss a difference
operator which commutes with J and its possible applications.
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Section 3 deals with the behavior of the Plancherel measure in the bulk of the
spectrum; there we prove Theorem 3. Theorem 4 and a similar result (Theorem 5)
for the poissonized measure Mθ are established in Section 4.

At the end of the paper there is an Appendix, where we collected some necessary
results about Fredholm determinants, point processes, and convergence of trace
class operators.

2. Correlation functions of the measures Mθ

2.1. Proof of Theorem 1. As noted above, Theorem 1 is a limit case of Theorem
3.3 of [8]. That theorem concerns a family {M (n)

zz′ } of probability measures on
partitions of n, where z, z′ are certain parameters. When the parameters go to
infinity, M (n)

zz′ tends to the Plancherel measure Mn. Theorem 3.3 in [8] gives a
determinantal formula for the correlation functions of the measure

M ξ
zz′ = (1− ξ)t

∞∑
n=1

(t)n
n!

ξnM
(n)
zz′(2.1)

in terms of a certain hypergeometric kernel. Here t = zz′ > 0 and ξ ∈ (0, 1) is
an additional parameter. As z, z′ → ∞ and ξ = θ

t → 0, the negative binomial
distribution in (2.1) tends to the Poisson distribution with parameter θ. In the
same limit, the hypergeometric kernel becomes the kernel K of Theorem 1. The
Bessel functions appear as a suitable degeneration of hypergeometric functions.

Recently, these results of [8] were considerably generalized in [26], where it was
shown how this type of correlation functions can be computed using simple com-
mutation relations in the infinite wedge space.

For the reader’s convenience, we present here a direct and elementary proof of
Theorem 1 which uses the same ideas as in [8] plus an additional technical trick,
namely, differentiation with respect to θ which kills denominators. This trick yields
a denominator–free integral formula for the kernel K; see Proposition 2.7. Our proof
here is a verification, not a derivation. For more conceptual approaches the reader
is referred to [26, 27, 7].

Let x, y ∈ Z+ 1
2 . Introduce the following kernel L:

L(x, y; θ) =


0 , xy > 0 ,

1
x− y

θ(|x|+|y|)/2

Γ(|x|+ 1
2 ) Γ(|y|+ 1

2 )
, xy < 0 .

We shall consider the kernels K and L as operators in the `2 space on Z+ 1
2 .

We recall that simple multiplicative formulas (for example, the hook formula) are
known for the number dimλ in (1.1). For our purposes, it is convenient to rewrite
the hook formula in the following determinantal form. Let λ=(p1, . . . , pd | q1, . . . , qd)
be the Frobenius coordinates of λ; see Section 1.2. We have

dimλ

|λ|! = det
[

1
(pi + qj + 1) pi! qi!

]
1≤i,j≤d

.(2.2)

The following proposition is a straightforward computation using (2.2).

Proposition 2.1. Let λ be a partition. Then

M θ(λ) = e−θ det
[
L(xi, xj ; θ)

]
1≤i,j≤s

,(2.3)
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where Fr(λ) = {x1, . . . , xs} ⊂ Z + 1
2 are the modified Frobenius coordinates of λ

defined in (1.2).

Let Fr∗
(
Mθ
)

be the push-forward of Mθ under the map Fr. Note that the
image of Fr consists of sets X ⊂ Z + 1

2 having equally many positive and negative
elements. For other X ⊂ Z + 1

2 , the right-hand side of (2.3) can be easily seen to
vanish. Therefore Fr∗

(
Mθ
)

is a determinantal point process (see the Appendix)
corresponding to L, that is, its configuration probabilities are determinants of the
form (2.3).

Corollary 2.2. det(1 + L) = eθ.

This follows from the fact that Mθ is a probability measure. This is explained
in Propositions A.1 and A.4 in the Appendix. Note that, in general, one needs to
check that L is a trace class operator.1 However, because of the special form of L,
it suffices to check a weaker claim – that L is a Hilbert–Schmidt operator, which is
immediate.

Theorem 1 now follows from general properties of determinantal point processes
(see Proposition A.6 in the Appendix) and the following

Proposition 2.3. K = L (1 + L)−1.

We shall need three identities for Bessel functions which are degenerations of the
identities (3.13–15) in [8] for the hypergeometric function. The first identity is due
to Lommel (see [43], Section 3.2, or [14], 7.2.(60)):

Jν(2z)J1−ν(2z) + J−ν(2z)Jν−1(2z) =
sinπν
π z

.(2.4)

The other two identities are the following.

Lemma 2.4. For any ν 6= 0,−1,−2, . . . and any z 6= 0 we have
∞∑
m=0

1
m+ ν

zm

m!
Jm(2z) =

Γ(ν)Jν(2z)
zν

,(2.5)

∞∑
m=0

1
m+ ν

zm

m!
Jm+1(2z) =

1
z
− Γ(ν)Jν−1(2z)

zν
.(2.6)

Proof. Another identity due to Lommel (see [43], Section 5.23, or [14], 7.15.(10))
reads

∞∑
m=0

Γ(ν − s+ m)
Γ(ν +m+ 1)

zm

m!
Jm+s(2z) =

Γ(ν − s)
Γ(s+ 1)

Jν(2z)
zν−s

.

Substituting s = 0 we get (2.5). Substituting s = 1 yields
∞∑
m=0

1
(m+ ν)(m+ ν − 1)

zm

m!
Jm+1(2z) =

Γ(ν − 1)Jν(2z)
zν−1

.(2.7)

Let r(ν, z) be the difference of the left-hand side and the right-hand side in (2.6).
Using (2.7) and the recurrence relation

Jν+1(2z)− ν

z
Jν(2z) + Jν−1(2z) = 0(2.8)

1 Actually, L is of trace class because the sum of the absolute values of its matrix elements is
finite. We are grateful to P. Deift for this remark.
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we find that r(ν + 1, z) = r(ν, z). Hence for any z it is a periodic function of ν and
it suffices to show that limν→∞ r(ν, z) = 0. Clearly, the left-hand side in (2.6) goes
to 0 as ν →∞. From the defining series for Jν it is clear that

Jν(2z) ∼ zν

Γ(ν + 1)
, ν →∞ ,(2.9)

which implies that the right-hand side of (2.6) also goes to 0 as ν → ∞. This
concludes the proof.

Proof of Proposition 2.3. It is convenient to set z =
√
θ. Since the operator 1 + L

is invertible we have to check that

K + K L− L = 0 .

This is clearly true for z = 0; therefore, it suffices to check that

K̇ + K̇ L + KL̇− L̇ = 0 ,(2.10)

where K̇ = ∂K
∂z and L̇ = ∂L

∂z . Using the formulas

d

dz
Jx(2z) = −2Jx+1(2z) +

x

z
Jx(2z)(2.11)

= 2Jx−1(2z)− x

z
Jx(2z)

one computes

K̇(x, y) =

{
J|x|− 1

2
J|y|+ 1

2
+ J|x|+ 1

2
J|y|− 1

2
, xy > 0 ,

sgn(x)
(
J|x|− 1

2
J|y|− 1

2
− J|x|+ 1

2
J|y|+ 1

2

)
, xy < 0 ,

where Jx = Jx(2z). Similarly,

L̇(x, y) =


0 , xy > 0 ,

sgn(x)
z|x|+|y|−1

Γ(|x|+ 1
2 ) Γ(|y|+ 1

2 )
, xy < 0 .

Now the verification of (2.10) becomes a straightforward application of the formulas
(2.5) and (2.6), except for the occurrence of the singularity ν ∈ Z≤0 in those
formulas. This singularity is resolved using (2.4). This concludes the proof of
Proposition 2.3 and Theorem 1.

2.2. Proof of Theorem 2. Recall that by construction

Fr(λ) =
(
D(λ) + 1

2

)
4
(
Z≤0 − 1

2

)
.

Let us check that this and Proposition A.8 imply Theorem 2. In Proposition A.8
we substitute

X = Z+ 1
2 , Z = Z≤0 − 1

2 , K = K .

By definition, set

ε(x) = sgn(x)x+1/2 , x ∈ Z+ 1
2 .

We have the following

Lemma 2.5. K4(x, y) = ε(x) ε(y) J(x − 1
2 , y −

1
2 ).

It is clear that since the ε-factors cancel out of all determinantal formulas, this
lemma and Proposition A.8 establish the equivalence of Theorems 1 and 2.
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Proof. Using the relation

J−n = (−1)nJn

and the definition of K one computes

K(x, y) = sgn(x) ε(x) ε(y) J(x − 1
2 , y −

1
2 ) , x 6= y .(2.12)

Clearly, the relation (2.12) remains valid for x = y > 0. It remains to consider the
case x = y < 0. In this case we have to show that

1− K(x, x) = J(x − 1
2 , y −

1
2 ) , x ∈ Z≤0 − 1

2 .

Rewrite it as

1− J(k, k) = J(−k − 1,−k − 1) , k = −x− 1
2 ∈ Z≥0 .(2.13)

By (2.14) this is equivalent to

1−
∞∑
m=0

(−1)m
(2k +m+ 2)m

Γ(k +m+ 2)Γ(k +m+ 2)
θk+m+1

m!

=
∞∑
n=0

(−1)n
(−2k + n)n

Γ(−k + n+ 1)Γ(−k + n+ 1)
θ−k+n

n!
.

Examine the right-hand side. The terms with n = 0, . . . , k− 1 vanish because then
1/Γ(−k + n + 1) = 0. The term with n = k is equal to 1, which corresponds to
1 in the left-hand side. Next, the terms with n = k + 1, . . . , 2k vanish because for
these values of n, the expression (−2k + n)n vanishes. Finally, for n ≥ 2k + 1, set
n = 2k + 1 + m. Then the nth term in the second sum is equal to minus the mth
term in the first sum. Indeed, this follows from the trivial relation

−(−1)m
(2k +m+ 2)m

m!
= (−1)n

(−2k + n)n
n!

, n = 2k + 1 +m.

This concludes the proof.

2.3. Various formulas for the kernel J. Recall that since Jx is an entire func-
tion of x, the function J(x, y) is entire in x and y. We shall now obtain several
denominator–free formulas for the kernel J.

Proposition 2.6.

J(x, y; θ) =
∞∑
m=0

(−1)m
(x+ y +m+ 2)m

Γ(x+m+ 2)Γ(y +m+ 2)
θ
x+y

2 +m+1

m!
.(2.14)

Proof. Straightforward computation using a formula due to Nielsen (see Section
5.41 of [43] or [14], formula 7.2.(48)).

Proposition 2.7. Suppose x+ y > −2. Then

J(x, y; θ) =
1
2

∫ 2
√
θ

0

(Jx(z)Jy+1(z) + Jx+1(z)Jy(z)) dz.

Proof. Follows from a computation done in the proof of Proposition 2.3,

∂

∂θ
J(x, y; θ) =

1
2
√
θ

(Jx Jy+1 + Jx+1 Jy) , Jx = Jx(2
√
θ) ,
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and the following corollary of (2.14):

J(x, y; 0) = 0 , x+ y > −2 .

Remark 2.8. Observe that by Proposition 2.7 the operator ∂J
∂θ is a sum of two

operators of rank 1.

Proposition 2.9.

J(x, y; θ) =
∞∑
s=1

Jx+s Jy+s , Jx = Jx(2
√
θ).(2.15)

Proof. Our argument is similar to an argument due to Tracy and Widom; see the
proof of the formula (4.6) in [36]. The recurrence relation (2.8) implies that

J(x+ 1, y + 1)− J(x, y) = −Jx+1 Jy+1 .(2.16)

Consequently, the difference between the left-hand side and the right-hand side of
(2.15) is a function which depends only on x − y. Let x and y go to infinity in
such a way that x − y remains fixed. Because of the asymptotics (2.9) both sides
in (2.15) tend to zero and, hence, the difference actually is 0.

In the same way as in [36] this results in the following

Corollary 2.10. For any a ∈ Z, the restriction of the kernel J to the subset {a, a+
1, a+ 2, . . . } ⊂ Z defines a nonnegative trace class operator in the `2 space on that
subset.

Proof. By Proposition 2.9, the restriction of J on {a, a+1, a+2, . . .} is the square of
the kernel (x, y) 7→ Jx+y+1−a(2

√
θ). Since the latter kernel is real and symmetric,

the kernel J is nonnegative. Hence, it remains to prove that its trace is finite.
Again, by Proposition 2.9, this trace is equal to

∞∑
s=1

s (Ja+s+1(2
√
θ))2.

This sum is clearly finite by (2.9).

Remark 2.11. The kernel J resembles a Christoffel–Darboux kernel and, in fact,
the operator in `2(Z) defined by the kernel J is an Hermitian projection operator.
Recall that K = L(1 + L)−1, where L is of the form

L =
[

0 A
−A∗ 0

]
.

One can prove that this together with Lemma 2.5 imply that J is an Hermitian
projection kernel. However, in contrast to a Christoffel–Darboux kernel, it projects
to an infinite–dimensional subspace.

Note that in [17] the restriction of the kernel J to Z+ was obtained as a limit of
Christoffel–Darboux kernels for Charlier polynomials.
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2.4. Commuting difference operator. Consider the difference operators ∆ and
∇ on the lattice Z,

(∆f)(k) = f(k + 1)− f(k) , (∇f)(k) = f(k)− f(k − 1) .

Note that ∇ = −∆∗ as operators on `2(Z). Consider the following second order
difference Sturm–Liouville operator:

D = ∆ ◦ α ◦ ∇+ β ,(2.17)

where α and β are operators of multiplication by certain functions α(k), β(k). The
operator (2.17) is self–adjoint in `2(Z). A straightforward computation shows that

(2.18)
[
Df
]
(k) = (−α(k + 1)− α(k) + β(k))f(k)

+ α(k)f(k − 1) + α(k + 1)f(k + 1) .

It follows that if α(s) = 0 for a certain s ∈ Z, then the space of functions f(k)
vanishing for k < s is invariant under D.

Proposition 2.12. Let [J]s denote the operator in `2({s, s+1, . . .}) obtained by re-
stricting the kernel J to {s, s+1, . . .}. Then the difference Sturm–Liouville operator
(2.17) commutes with [J]s provided

α(k) = k − s, β(k) = − k(k + 1− s− 2
√
θ)√

θ
+ const .

Proof. Since [J]s is the square of the operator with the kernel Jk+l+1−s, it suffices
to check that the latter operator commutes with D, with the above choice of α and
β. But this is readily checked using (2.18).

This proposition is a counterpart of a known fact about the Airy kernel; see [36].
Moreover, in the scaling limit when θ →∞ and

k = 2
√
θ + x θ1/6, s = 2

√
θ + ς θ1/6,

the difference operator D becomes, for a suitable choice of the constant, the differ-
ential operator

d

dx
◦ (x− ς) ◦ d

dx
− x(x− ς),

which commutes with the Airy operator restricted to (ς,+∞). The above differen-
tial operator is exactly that of Tracy and Widom [36].

Remark 2.13. Presumably, this commuting difference operator can be used to ob-
tain, as was done in [36] for the Airy kernel, asymptotic formulas for the eigenvalues
of [J]s, where s = 2

√
θ + ς θ1/6 and ς � 0. Such asymptotic formulas may be very

useful if one wishes to refine Theorem 4 and to establish convergence of moments
in addition to convergence of distribution functions. For individual distributions of
λ1 and λ2 the convergence of moments was obtained, by other methods, in [3, 4].

3. Correlation functions in the bulk of the spectrum

3.1. Proof of Theorem 3. We refer the reader to Section 1.3 of the Introduction
for the definition of a regular sequence X(n) ⊂ Z and the statement of Theorem 3.
Also, in this section, we shall be working in the bulk of the spectrum, that is, we
shall assume that all numbers ai defined in (1.10) lie inside (−2, 2). The edges ±2
of the spectrum and its exterior will be treated in the next section.
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In our proof, we shall follow the strategy explained in Section 1.5. Namely, in
order to compute the limit of %(n,X(n)) we shall use the contour integral

%(n,X(n)) =
n!
2πi

∫
|θ|=n

%θ(X(n))
eθ

θn+1
dθ ,

compute the asymptotics of %θ for θ ≈ n, and estimate |%θ| away from θ = n. Both
tasks will be accomplished using classical results about the Bessel functions.

We start our proof with the following lemma which formalizes the above informal
depoissonization argument. The hypothesis of this lemma is very far from optimal,
but it is sufficient for our purposes. For the rest of this section, we fix a number
0 < α < 1/4 which shall play an auxiliary role.

Lemma 3.1. Let {fn} be a sequence of entire functions

fn(z) = e−z
∑
k≥0

fnk
k!

zk , n = 1, 2, . . . ,

and suppose that there exist constants f∞ and γ such that

max
|z|=n

|fn(z)| = O
(
eγ
√
n
)
,(3.1)

max
|z/n−1|≤n−α

|fn(z)− f∞| e−γ|z−n|/
√
n = o(1) ,(3.2)

as n→∞. Then

lim
n→∞

fnn = f∞ .

Proof. By replacing fn(z) by fn(z)− f∞, we may assume that f∞ = 0. By Cauchy
and Stirling formulas, we have

fnn = (1 + o(1))
√

n

2π

∫
|ζ|=1

fn(nζ) en(ζ−1)

ζn
dζ

iζ
.

Choose some large C > 0 and split the circle |ζ| = 1 into two parts as follows:

S1 =
{

C

n1/4
≤ |ζ − 1|

}
, S2 =

{
C

n1/4
≥ |ζ − 1|

}
.

The inequality (3.1) and the equality∣∣∣en(ζ−1)
∣∣∣ = e−n|ζ−1|2/2

imply that the integral
∫
S1

decays exponentially provided C is large enough. On
S2, the inequality (3.2) applies for sufficiently large n and gives

max
z∈S2

|fn(nζ)| e−γ
√
n|ζ−1| = o(1) .

Therefore, the integral
∫
S2

is o( ) of the following integral:

√
n

∫
|ζ|=1

dζ

iζ
exp

(
−n |ζ − 1|2

2
+ γ
√
n|ζ − 1|

)
∼
∫ ∞
−∞

e−s
2/2+γ|s| ds .

Hence,
∫
S2

= o(1) and the lemma follows.
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Definition 3.2. Denote by F the algebra (with respect to term-wise addition and
multiplication) of sequences {fn(z)} which satisfy the properties (3.1) and (3.2) for
some, depending on the sequence, constants f∞ and γ. Introduce the map

Lim : F → C , {fn(z)} 7→ f∞ ,

which is clearly a homomorphism.

Remark 3.3. Note that we do not require fn(z) to be entire. Indeed, the kernel J
may have a square root branching; see the formula (2.14).

By Theorem 2, the correlation functions %θ belong to the algebra generated by
sequences of the form

{fn(z)} = {J(xn, yn; z)} ,
where the sequence X = X(n) = {xn, yn} ⊂ Z is regular which, we recall, means
that the limits

a = lim
n→∞

xn√
n
, d = lim

n→∞
(xn − yn)

exist, finite or infinite. Therefore, we first consider such sequences.

Proposition 3.4. If X = {xn, yn} ⊂ Z is regular, then

{J(xn, yn; z)} ∈ F , Lim ({J(xn, yn; z)}) = S(d, a) .

In the proof of this proposition it will be convenient to allowX ⊂ C. For complex
sequences X we shall require a ∈ R; the number d ∈ C may be arbitrary.

Lemma 3.5. Suppose that a sequence X ⊂ C is as above and, additionally, suppose
that =xn, =yn are bounded and d 6= 0. Then the sequence {J(xn, yn; z)} satisfies
(3.2) with f∞ = S(d, a) and certain γ.

Proof of Lemma 3.5. We shall use Debye’s asymptotic formulas for Bessel functions
of complex order and large complex argument; see, for example, Section 8.6 in [43].
Introduce the function

F (x, z) = z1/4 Jx(2
√
z) .

The formula (1.9) can be rewritten as

J(x, y; z) =
F (x, z)F (y + 1, z)− F (x+ 1, z)F (y, z)

x− y .(3.3)

The asymptotic formulas for Bessel functions imply that

F (x, z) =
cos
(√
z G(u) + π

4

)
H(u)1/2

(
1 +O

(
z−1/2

))
, u =

x√
z
,(3.4)

where

G(u) =
π

2
(u− Ω(u)) , H(u) =

π

2

√
4− u2 ,

provided that z →∞ in such a way that u stays in some neighborhood of (−2, 2);
the precise form of this neighborhood can be seen in Figure 22 in Section 8.61 of
[43]. Because we assume that

lim
n→∞

xn√
n
, lim
n→∞

yn√
n
∈ (−2, 2) ,
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and because |z/n− 1| < n−α, the ratios xn/
√
z, yn/

√
z stay close to (−2, 2). For

future reference, we also point out that the constant in O
(
z−1/2

)
in (3.4) is uniform

in u provided u is bounded away from the endpoints ±2.
First we estimate = (

√
z G(u)). The function G clearly takes real values on the

real line. From the obvious estimate∣∣= (√z G(u)
)∣∣ ≤ ∣∣= (√nG(x/

√
n)
)∣∣+

∣∣√z G(x/
√
z)−

√
nG(x/

√
n)
∣∣

and the boundedness of G, G′, and |=x| we obtain an estimate of the form

max
|z/n−1|≤n−α

|F (x; z)|e− const |z−n|/
√
n = O(1) .(3.5)

If d = ∞, then because of the denominator in (3.3) the estimate (3.5) implies
that

J(xn, yn; z) = o
(
econst |z−n|/√n

)
.

Since S(∞, a) = 0, it follows that in this case the lemma is established.
Assume, therefore, that d is finite. Observe that for any bounded increment ∆x

we have

(3.6) F (x+ ∆x, z) =
cos
(√
z G(u) +G′(u) ∆x+ π

4

)
H(u)1/2

+O

(
(∆x)2

√
z

econst |z−n|/
√
n

)
,

and, in particular, the last term is o
(
econst |z−n|/√n

)
. Using the trigonometric

identity

cos (A) cos (B + C)− cos (A+ C) cos (B) = sin (C) sin (A−B) ,

and observing that

G′(u) = arccos(u/2) , sin(G′(u)) =
√

4− u2

2
=
H(u)
π

,

we compute

F (xn; z)F (yn + 1; z)− F (xn + 1; z)F (yn; z)

=
1
π

sin
(

arccos
(
xn

2
√
z

)
(xn − yn)

)
+ o

(
econst |z−n|/√n

)
.

Since, by hypothesis,
xn√
z
→ a , (xn − yn)→ d ,

and d 6= 0, the lemma follows.

Remark 3.6. Below we shall need this lemma for a variable sequence X = {xn, yn}.
Therefore, let us spell out explicitly under what conditions on X the estimates
in Lemma 3.5 remain uniform. We need the sequences xn√

n
and yn√

n
to converge

uniformly; then, in particular, the ratios xn√
n

and yn√
n

are uniformly bounded away
from ±2. Also, we need =xn and =yn to be uniformly bounded. Finally, we need
|d| to be uniformly bounded from below.
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Proof of Proposition 3.4. First, we check the condition (3.2). In the case d 6= 0
this was done in the previous lemma. Suppose, therefore, that {xn} is a regular
sequence in Z≥0 and consider the asymptotics of J(xn, xn; z).

Because the function J(x, y; z) is an entire function of x and y we have

J(x, x; z) =
1

2π

∫ 2π

0

J
(
x, x+ reit; z

)
dt ,(3.7)

where r is arbitrary; we shall take r to be some small but fixed number. From the
previous lemma we know that

J
(
x, x + reit; z

)
=

1
πreit

sin
(
ω

(
x√
z

)
reit
)

+ o
(
econst |z−n|/√n

)
.

From the above remark it follows that this estimate is uniform in t. This implies
the property (3.2) for J(xn, xn; z).

To prove the estimate (3.1) we use Schläfli’s integral representation (see Section
6.21 in [43])

Jx(2
√
z) =

1
π

∫ π

0

cos
(
xt− 2

√
z sin t

)
dt− sinπx

π

∫ ∞
0

e−xt−2
√
z sinh t dt ,(3.8)

which is valid for | arg z| < π and even for arg z = ±π provided <x > 0 or x ∈ Z.
If x ∈ Z, then the second summand in (3.8) vanishes and the first summand is

O
(
econst |z|1/2

)
uniformly in x ∈ Z. This implies the estimate (3.1) provided d 6= 0.

It remains, therefore, to check (3.1) for J(xn, xn; z) where {xn} ∈ Z is a regular
sequence. Again, we use (3.7). Observe that since <

√
z ≥ 0, the second summand

in (3.8) is uniformly small provided =x is bounded from above and <x is bounded
from below. Therefore, (3.7) produces the (3.1) estimate for xn ≥ 1. For xn ≤ 0
we use the relation (2.13) and the reccurence (2.16) to obtain the estimate.

Proof of Theorem 3. Let X(n) be a regular sequence and let the numbers ai and
dij be defined by (1.10), (1.11). We shall assume that |ai| < 2 for all i. The validity
of the theorem in the case when |ai| ≥ 2 for some i will be obvious from the results
of the next section.

We have

%θ(X(n)) = e−θ
∞∑
k=0

%(k,X(n))
θk

k!
(3.9)

= det
[
J(xi(n), xj(n))

]
1≤i,j≤s

,(3.10)

where the first line is the definition of %θ and the second is Theorem 2. From
(3.9) it is obvious that %θ is entire. Therefore, we can apply Lemma 3.1 to it. It
is clear that Lemma 3.1, together with Proposition 3.4, implies Theorem 3. The
factorization (1.12) follows from the vanishing S(∞, a) = 0.

3.2. Asymptotics of ρ(n,X). Recall that the correlation functions ρ(n,X) were
defined by

ρ(n,X) = Mn ({λ |X ⊂ Fr(λ)}) , X ⊂ Z+ 1
2 .

The asymptotics of these correlation functions can be easily obtained from Theorem
3 by complementation (see Sections A.3 and 2.2), and the result is the following.
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Let X(n) ⊂ Z + 1
2 be a regular sequence. If it splits, then limn→∞ ρ(n,X(n))

factors as in (1.12). Suppose therefore, that X(n) is nonsplit. Here one has to
distinguish two cases. If X(n) ⊂ Z≥0 + 1

2 or X(n) ⊂ Z≤0 − 1
2 , then we shall say

that this sequence is off-diagonal. Geometrically, it means that X(n) corresponds to
modified Frobenius coordinates of only one kind: either the row ones or the column
ones. For off-diagonal sequences we obtain from Theorem 3 by complementation
that

lim
n→∞

ρ (n,X(n)) = det
[

S(dij , |a|)
]

1≤i,j≤s
,

where S is the discrete sine kernel and a = a1 = a2 = . . . .
IfX(n) is nonsplit and diagonal, that is, if it is nonsplit and includes both positive

and negative numbers, then one has to assume additionally that the number of
positive and negative elements of X(n) stabilizes for sufficiently large n. In this
case the limit correlations are given by the kernel

D(x, y) =


S (x− y, 0) , xy > 0 ,
cos
(
π
2 (x+ y)

)
π(x− y)

, xy < 0 .
(3.11)

Remark that this kernel is not translation invariant. Note, however, that

D(x+ 1, y + 1) = sgn(xy) D(x, y) ,

provided x and x + 1 have the same sign and similarly for y. Therefore, if the
subsets X ⊂ Z + 1

2 and X + m, m ∈ Z, have the same number of positive and
negative elements, then

det
[
D(xi, xj)

]
xi∈X

= det
[
D(xi +m,xj +m)

]
xi∈X

.

4. Edge of the spectrum: Convergence to the Airy ensemble

4.1. Results and strategy of proof. In this section we prove Theorem 4 which
was stated in Section 1.4 of the Introduction. We refer the reader to Section 1.4 for
a discussion of the relation between Theorem 4 and the results obtained in [3, 4, 25].

Recall that the Airy kernel was defined as

A(x, y) =
A(x)A′(y)−A′(x)A(y)

x− y ,

where A(x) is the Airy function (1.15). The Airy ensemble is, by definition, a
random point process on R, whose correlation functions are given by

ρAiry
k (x1, . . . , xk) = det

[
A(xi, xj)

]
1≤i,j≤k

.

This ensemble was studied in [36]. We denote by ζ1 > ζ2 > . . . a random con-
figuration of the Airy ensemble. Theorem 4 says that after a proper scaling and
normalization, the rows λ1, λ2, . . . of a Plancherel random partition λ converge in
joint distribution to the Airy ensemble. Namely, the random variables λ̃,

λ̃ =
(
λ̃1 ≥ λ̃2 ≥ . . .

)
, λ̃i = n1/3

(
λi
n1/2

− 2
)
,

converge, in joint distribution, to the Airy ensemble as n→∞.
In the proof of Theorem 4, we shall follow the strategy explained in Section 1.5

of the Introduction. First, we shall prove that under the poissonized measure Mθ
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on the set of partitions λ, the random variables λ̃ converge, in joint distribution, to
the Airy ensemble as θ ≈ n→∞. This result is stated below as Theorem 5. From
this, using certain monotonicity and Lemma 4.7 which is due to K. Johansson, we
shall conclude that the same is true for the measures Mn as n→∞.

The proof of Theorem 5 will be based on the analysis of the behavior of the
correlation functions of M θ, θ ≈ n→∞, near the point 2

√
n. From the expression

for correlation functions of M θ given in Theorem 1 it is clear that this amounts to
the study of the asymptotics of J2

√
n(2
√
θ) when θ ≈ n→∞. This asymptotics is

classically known and from it we shall derive the following

Proposition 4.1. Set r =
√
θ. We have

r
1
3 J
(

2r + xr
1
3 , 2r + yr

1
3 , r2

)
→ A(x, y), r → +∞ ,

uniformly in x and y on compact sets of R.

The prefactor r
1
3 corresponds to the fact that we change the local scale near 2r

to get nonvanishing limit correlations.
Using this and verifying certain tail estimates we obtain the following

Theorem 5. For any fixed m = 1, 2, . . . and any a1, . . . , am ∈ R we have

(4.1) lim
θ→+∞

Mθ

({
λ

∣∣∣∣∣ λi − 2
√
θ

θ
1
6

< ai , 1 ≤ i ≤ m
})

= Prob{ζi < ai , 1 ≤ i ≤ m} ,

where ζ1 > ζ2 > . . . is the Airy ensemble.

Observe that the limit behavior of λ̃ is, obviously, identical with the limit be-
havior of similarly scaled 1st, 2nd, and so on maximal Frobenius coordinates.

Proofs of Proposition 4.1 and Theorem 5 are given Section 4.2. In Section 4.3,
using a depoissonization argument based on Lemma 4.7 we deduce Theorem 4.

Remark 4.2. We consider the behavior of any number of first rows of λ, where λ is
a Plancherel random partition. By symmetry, same results describe the behavior
of any number of first columns of λ.

4.2. Proof of Theorem 5. Suppose we have a point process on R with determi-
nantal correlation functions

ρk(x1, . . . , xk) = det[K(xi, xj)]1≤i,j≤k ,

for some kernel K(x, y). Let I be a possibly infinite interval I ⊂ R. By [K]I we
denote the operator in L2(I, dx) obtained by restricting the kernel on I×I. Assume
[K]I is a trace class operator. Then the intersection of the random configuration
X with I is finite almost surely and

Prob{|X ∩ I| = N} =
(−1)N

N !
dN

dzN
det
(

1− z[K]I
)∣∣∣∣
z=1

.

In particular, the probability that X ∩ I is empty is equal to

Prob{X ∩ I = ∅} = det
(

1− [K]I
)
.
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More generally, if I1, . . . , Im is a finite family of pairwise nonintersecting intervals
such that the operators [K]I1 , . . . , [K]Im are trace class, then

(4.2) Prob{|X ∩ I1| = N1, . . . , |X ∩ Im| = Nm}

=
(−1)

∑
Ni∏

Ni!
∂N1+···+Nm

∂zN1
1 . . . ∂zNmm

det
(

1− z1[K]I1 − · · · − zm[K]Im
)∣∣∣∣
z1=···=zm=1

.

Here operators {[K]Ii} are considered to be acting in the same Hilbert space, for
example, in L2(I1 t I2 t · · · t Im, dx).

In the case of intersecting intervals I1, . . . , Im, the probabilities

Prob{|X ∩ I1| = N1, . . . , |X ∩ Im| = Nm}
are finite linear combinations of expressions of the form (4.2). Therefore, in order
to show the convergence in distribution of point processes with determinantal cor-
relation functions, it suffices to show the convergence of expressions of the form
(4.2).

The formula (4.2) is discussed, for example, in [37]. See also Theorem 2 in [35].
It remains valid for processes on a lattice such as Z in which case the kernel K
should be an operator in `2(Z).

As verified, for example, in Proposition A.11 in the Appendix, the right-hand side
of (4.2) is continuous in each [K]Ii with respect to the trace norm. We shall show
that after a suitable embedding of `2(Z) into L2(R) the kernel J(x, y; θ) converges
to the Airy kernel A(x, y) as θ →∞.

Namely, we shall consider a family of embeddings `2(Z)→ L2(R), indexed by a
positive number r > 0, which are defined by

`2(Z) 3 χk 7→ r1/6 χ[ k−2r
r1/3 ,

k+1−2r
r1/3

] ∈ L2(R) , k ∈ Z ,(4.3)

where χk ∈ `2(Z) is the characteristic function of the point k ∈ Z and, similarly,
the function on the right is the characteristic function of a segment of length r−1/3.
Observe that this embedding is isometric. Let Jr denote the kernel on R×R that is
obtained from the kernel J( · , · , r2) on Z× Z using the embedding (4.3). We shall
establish the following

Proposition 4.3. We have

[Jr][a,∞) → [A][a,∞) , r→∞ ,

in the trace norm for all a ∈ R uniformly on compact sets in a.

This proposition immediately implies Theorem 5 as follows.

Proof of Theorem 5. Consider the left-hand side of (4.1) and choose for each ai a
pair of functions k−i (r), k+

i (r) ∈ Z such that

k−i (r) − 2r
r1/3

= a−i (r) ≤ ai ≤ a+
i (r) =

k+
i (r) − 2r
r1/3

and a−i (r), a+
i (r) → ai as r → ∞. Then, on the one hand, the probability in the

left-hand side of (4.1) lies between the corresponding probabilities for a−i (r) and
a+
i (r). On the other hand, the probabilities for a−i (r) and a+

i (r) can be expressed
in the form (4.2) for the kernel Jr and by Proposition 4.3 and continuity of the Airy
kernel they converge to the corresponding probabilities given by the Airy kernel as
r→∞.
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Now we get to the proofs of Propositions 4.1 and 4.3 which will require some
computations. Recall that the Airy function can be expressed in terms of Bessel
functions as follows:

A(x) =


1
π

√
x
3K 1

3

(
2
3x

3
2

)
, x ≥ 0 ,

√
|x|
3

[
J 1

3

(
2
3 |x|

3
2

)
+ J− 1

3

(
2
3 |x|

3
2

)]
, x ≤ 0

(4.4)

(see Section 6.4 in [43]). Also recall that

A(x) ∼ 1
2x1/4

√
π
e−

2
3x

3/2
, x→ +∞(4.5)

(see, for example, the formula 7.23 (1) in [43]).

Lemma 4.4. For any x ∈ R we have∣∣∣r 1
3J

2r+xr
1
3
(2r) −A(x)

∣∣∣ = O(r−
1
3 ) , r →∞ ,(4.6)

moreover, the constant in O(r−
1
3 ) is uniform in x on compact subsets of R.

Proof. Assume first that x ≥ 0. We denote

ν = 2r + xr
1
3 , α = arccosh

(
1 + xr−

2
3 /2
)
≥ 0.

It will be convenient to use the following notation:

P = ν(tanhα− α), Q =
ν

3
tanh3 α.

The formula 8.43(4) in [43] reads

Jν(2r) =
tanhα
π
√

3
eP+QK 1

3
(Q) +

3γ1

ν
eP(4.7)

where |γ1| < 1. We have the following estimates as r → +∞:

α = x
1
2 r−

1
3 +O(r−1),

tanhα = α+O(α3) = x
1
2 r−

1
3 +O(r−1),

P +Q = ν ·O(α5) = O(r−
2
3 ), eP+Q = 1 +O(r−

2
3 ),

Q =
1
3

(
2r + xr

1
3

)(
x

3
2 r−1 +O(r−

4
3 )
)

=
2x

3
2

3
+O(r−

1
3 ),

K 1
3

(Q) = K 1
3

(
2x

3
2

3

)
+O(r−

1
3 ),

P ≤ 0,
3γ1

ν
eP = O(r−1).

Substituting this into (4.7), we obtain the claim (4.6) for x ≥ 0.
Assume now that x ≤ 0. Denote

ν = 2r + xr
1
3 , β = arccos

(
1 + xr−

2
3 /2
)
≥ 0, y = |x|.

Introduce the notation

P̃ = ν(tanβ − β), Q̃ =
ν

3
tan3 β .
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The formula 8.43 (5) in [43] reads

(4.8) Jν(r) =
1
3

tanβ cos
(
P̃ − Q̃

) [
J− 1

3

(
Q̃
)

+ J 1
3

(
Q̃
)]

+
1√
3

tanβ sin
(
P̃ − Q̃

) [
J− 1

3

(
Q̃
)
− J 1

3

(
Q̃
)]

+
24γ2

ν

where |γ2| < 1. Again we have the estimates as r → +∞

β = y
1
2 r−

1
3 +O(r−1),

tanβ = β +O(β3) = y
1
2 r−

1
3 +O(r−1),

P̃ − Q̃ = ν ·O(β5) = O(r−
2
3 ),

cos
(
P̃ − Q̃

)
= 1 +O(r−

4
3 ), sin

(
P̃ − Q̃

)
= O(r−

2
3 ),

Q̃ =
1
3

(
2r − yr 1

3

)(
y

3
2 r−1 +O(r−

4
3 )
)

=
2y

3
2

3
+O(r−

1
3 ),

J± 1
3

(
Q̃
)

= J± 1
3

(
2y

3
2

3

)
+O(r−

1
3 ).

These estimates after substituting into (4.8) produce (4.6) for x ≤ 0.

Lemma 4.5. There exist C1, C2, C3, ε > 0 such that for any A > 0 and s > 0 we
have ∣∣∣J

r+Ar
1
3 +s

(r)
∣∣∣ ≤ C1 r

− 1
3 exp

(
−C2

(
A

3
2 + sA

1
2 r−

1
3

))
, s ≤ εr ,(4.9) ∣∣∣J

r+Ar
1
3 +s

(r)
∣∣∣ ≤ exp (−C3(r + s)) , s ≥ εr ,(4.10)

for all r � 0.

Proof. First suppose that s ≤ εr. Set ν = r + Ar
1
3 + s. We shall use (4.7) with

α = arccosh(ν/r). Provided ε is chosen small enough and r is sufficiently large, α
will be close to 0 and we will be able to use Taylor expansions. For r � 0 we have

α = arccosh(1 + Ar−
2
3 + sr−1) ≥ const (Ar−

2
3 + sr−1)

1
2 ,

and, similarly,

−P = ν(α − tanhα) ≥ const (A+ sr−
1
3 )

3
2 .

Since the function x
3
2 is concave, we have

−P ≥ const (A
3
2 + sA

1
2 r−

1
3 ) .

The constant here is strictly positive.
Since K 1

3
(x) ≤ const x−

1
2 e−x (see, for example, the formula 7.23 (1) in [43]) we

obtain

tanhα eP+QK 1
3

(Q) ≤ const
eP√

ν tanhα

≤ const
r

1
3

exp
(
− const

(
A

3
2 + sA

1
2 r−

1
3

))
,
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where we used that tanhα ≥ const r−
1
3 . Finally, we note that

eP

ν
≤ 1
r

exp
(
− const

(
A

3
2 + sA

1
2 r−

1
3

))
,

and this completes the proof of (4.9).
The estimate (4.10) follows directly from the formulas 8.5 (9), (4), (5) in [43].

Lemma 4.6. For any δ > 0 there exists M > 0 such that for all x, y > M and
large enough r ∣∣∣J(2r + xr

1
3 , 2r + yr

1
3 , r2

)∣∣∣ < δr−
1
3 .

Proof. From (2.15) we have

J
(

2r + xr
1
3 , 2r + yr

1
3 , r2

)
=
∞∑
s=1

J
2r+xr

1
3 +s

(2r)J
2r+yr

1
3 +s

(2r).(4.11)

Let us split the sum in (4.11) into two parts,∑
1

=
∑
l≤εr

,
∑

2
=
∑
l>εr

,

that is, one sum for l ≤ εr and the other for l > εr, and apply Lemma 4.5 to these
two sums. Note that 2r here corresponds to r in Lemma 4.5; this produces factors
of 2

1
3 and does not affect the estimate.

Let the ci’s stand for some positive constants not depending on M . From (4.9)
we obtain the following estimate for the first sum:

∑
1
≤ c1 r−

2
3 exp

(
−c2M

3
2

) [εr]∑
s=1

qs

where

q = exp
(
−c2M

1
2 r−

1
3

)
, 0 < q < 1 .

Therefore,

∑
1
≤
c1 r
− 2

3 exp
(
−c2M

3
2

)
1− q ≤ r− 1

3 · c3 exp(−c2M
3
2 )M−

1
2 .

We can choose M so that c3 exp(−c2M
3
2 )M−

1
2 < δ/2.

For the second sum we use (4.10) and obtain∑
2
≤
∑
s≥εr

exp(−c4(r + s)) ≤ c5 exp(−c4r).

Clearly, this is less than δr−
1
3 /2 for r � 0.

Proof of Proposition 4.1. As shown in [10, 36], the Airy kernel has the following
integral representation:

A(x, y) =
∫ ∞

0

A(x+ t)A(y + t)dt.(4.12)
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The formula (4.11) implies that for any integer N > 0

(4.13) J
(

2r + xr
1
3 , 2r + yr

1
3 , r2

)
=

N∑
s=1

J
2r+xr

1
3 +s

(2r)J
2r+yr

1
3 +s

(2r)

+ J
(

2r + xr
1
3 +N, 2r + yr

1
3 +N, r2

)
.

Let us fix δ > 0 and pick M > 0 according to Lemma 4.6. Since, by assumption, x
and y lie in a compact set of R, we can fix m such that x, y ≥ m. Set

N = [(M −m+ 1) r
1
3 ] .

Then the inequalities

x+Nr−
1
3 > M, y +Nr−

1
3 > M

are satisfied for all x, y in our compact set and Lemma 4.4 applies to the sum in
(4.13). We obtain

∣∣∣∣∣r 2
3

N∑
s=1

J
2r+xr

1
3 +s

(2r)J
2r+yr

1
3 +s

(2r)−
N∑
s=1

A(x+ sr−
1
3 )A(y + sr−

1
3 )

∣∣∣∣∣ = O(1)

because the number of summands is N = O(r
1
3 ) and A(x) is bounded on subsets

of R which are bounded from below. Note that

r−
1
3

N∑
s=1

A(x + sr−
1
3 )A(x + sr−

1
3 )

is a Riemann integral sum for the integral

M−m+1∫
0

A(x + t)A(y + t) dt,

and it converges to this integral as r→ +∞. Since the absolute value of the second
term in the right-hand side of (4.13) does not exceed δr−

1
3 by the choice of N , we

get ∣∣∣∣∣∣r 1
3 J
(

2r + xr
1
3 , 2r + yr

1
3 , r2

)
−

M−m+1∫
0

A(x + t)A(y + t)dt

∣∣∣∣∣∣ ≤ δ + o(1)

as r → +∞, and this estimate is uniform on compact sets. Now let δ → 0 and
M → +∞. By (4.5) the integral (4.12) converges uniformly in x and y on compact
sets and we obtain the claim of the proposition.

Proof of Proposition 4.3. It is clear that Proposition 4.1 implies the convergence
of [Jr]a to [A]a in the weak operator topology. Therefore, by Proposition A.9, it
remains to prove that tr[Jr]a → tr[A]a as r → +∞. We have

tr[Jr]a =
∞∑

k=[2r+ar
1
3 ]

J(k, k; r2) + o(1) ,
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where the o(1) correction comes from the fact that a may not be a number of the
form k−2r

r1/3 , k ∈ Z. By (4.11) we have

∞∑
k=[2r+ar

1
3 ]

J(k, k; r2) =
∞∑
l=1

l
(
J

[2r+ar
1
3 ]+l

(2r)
)2

.(4.14)

Similarly,

tr[A]a =
∫ ∞
a

A(s, s)ds =
∫ ∞

0

t(A(a + t))2dt .(4.15)

Since we already established the uniform convergence of kernels on compact sets,
it is enough to show that both (4.14) and (4.15) go to zero as a→ +∞ and r → +∞.
For the Airy kernel this is clear from (4.5). For the kernel Jr it is equivalent to the
following statement: for any δ > 0 there exists M0 > 0 such that for all M > M0

and large enough r we have ∣∣∣∣∣
∞∑
l=1

l J2

2r+Mr
1
3 +l

(2r)

∣∣∣∣∣ < δ .(4.16)

We shall employ Lemma 4.5 for A = M . Again, we split the sum in (4.16) into two
parts: ∑

1
=
∑
l≤εr

,
∑

2
=
∑
l>εr

.

For the first sum Lemma 4.5 gives∑
1
≤ c1r−

2
3 exp

(
−c2M

3
2

) ∑
l≤[εr]

l ql ,

where

q = exp
(
−c2M

1
2 r−

1
3

)
, 0 < q < 1 ,

and the ci’s are some positive constants that do not depend on M . Since
∑
l ql =

q(1− q)−2 we obtain

∑
1
≤ c1r−

2
3 exp

(
−c2M

3
2

) q

(1 − q)2
≤ c3

exp
(
−c2M

3
2

)
M

.

This can be made arbitrarily small by taking M sufficiently large.
For the other part of the sum we have the estimate∑

2
≤
∑
l>εr

l exp(−c4(r + l))

which, evidently, goes to zero as r → +∞.

4.3. Depoissonization and proof of Theorem 4. Fix some m = 1, 2, . . . and
denote by Fn the distribution function of λ1, . . . , λm under the Plancherel measure
Mn,

Fn(x1, . . . , xm) = Mn ({λ |λi < xi , 1 ≤ i ≤ m}) .
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Also, set

F (θ, x) = e−θ
∞∑
k=0

θk

k!
Fk(x).

This is the distribution function corresponding to the measure Mθ.
The measures Mn can be obtained as distribution at time n of a certain random

growth process of a Young diagram; see e.g. [42]. This implies that

Fn+1(x) ≤ Fn(x) , x ∈ Rm .
Also, by construction, Fn is monotone in x and similarly

F (θ, x) ≤ F (θ, y) , xi ≤ yi , i = 1, . . . ,m .(4.17)

We shall use these monotonicity properties together with the following lemma.

Lemma 4.7 (Johansson, [16]). There exist constants C > 0 and n0 > 0 such that
for any nonincreasing sequence {bn}∞n=0 ⊂ [0, 1],

1 ≥ b0 ≥ b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0,

and its exponential generating function

B(θ) = e−θ
∞∑
k=0

θk

k!
· bk

we have for all n > n0 the following inequalities:

B(n+ 4
√
n lnn)− C

n2
≤ bn ≤ B(n− 4

√
n lnn) +

C

n2
.

This lemma implies that for all x ∈ Rm

F (n+ 4
√
n lnn, x)− C

n2
≤ Fn(x) ≤ F (n− 4

√
n lnn, x) +

C

n2
.(4.18)

Set

1̄ = (1, . . . , 1) .

Theorem 5 asserts that

F
(
θ, 2θ

1
2 1̄ + θ

1
6 x
)
→ F (x), θ → +∞, x ∈ Rm,(4.19)

where F (x) is the corresponding distribution function for the Airy ensemble. Note
that F (x) is continuous.

Denote n± = n± 4
√
n lnn. Then for i = 1, . . . ,m

2n
1
2
± + n

1
6
± xi = 2n

1
2 + n

1
6 xi +O((lnn)1/2) .

Hence, for any ε > 0 and all sufficiently large n we have

2n
1
2
+ + n

1
6
+ (xi − ε) ≤ 2n

1
2 + n

1
6 xi ≤ 2n

1
2
− + n

1
6
− (xi + ε) ,

for i = 1, . . . ,m. By (4.17) this implies that

F
(
n+, 2n

1
2 1̄ + n

1
6 x
)
≥ F

(
n+, 2n

1
2
+ 1̄ + n

1
6
+ (x− ε 1̄)

)
,

F
(
n−, 2n

1
2 1̄ + n

1
6 x
)
≤ F

(
n−, 2n

1
2
− 1̄ + n

1
6
− (x+ ε 1̄)

)
.
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From this and (4.18) we obtain

F
(
n+, 2n

1
2
+ 1̄ + n

1
6
+ (x− ε 1̄)

)
− C

n2

≤ Fn
(

2n
1
2 1̄ + n

1
6 x
)

≤ F
(
n−, 2n

1
2
− 1̄ + n

1
6
− (x+ ε 1̄)

)
+
C

n2
.

From this and (4.19) we conclude that

F (x− ε 1̄) + o(1) ≤ Fn
(

2n
1
2 1̄ + n

1
6 x
)
≤ F (x+ ε 1̄) + o(1)

as n→∞. Since ε > 0 is arbitrary and F (x) is continuous we obtain

Fn

(
2n

1
2 1̄ + n

1
6 x
)
→ F (x), n→∞, x ∈ Rm,

which is the statement of Theorem 4.

Appendix A. General properties of determinantal point processes

In this Appendix, we collect some necessary facts about determinantal point
processes, their correlation functions, Fredholm determinants, and convergence of
trace class operators.

Let X be a countable set, let Conf(X) = 2X be the set of subsets of X and denote
by Conf(X)0 ⊂ Conf(X) the set of finite subsets of X. We call elements of Conf(X)
configurations. Let L be a kernel on X, that is, a function on X×X also viewed as
a matrix of an operator in H = `2(X).

By a determinantal point process on X we mean a probability measure on
Conf(X)0 such that

Prob(X) =
det
[
L(xi, xj)

]
xi∈X

det(1 + L)
, X ∈ Conf(X)0 .

Here the determinant in the numerator is the usual determinant of linear algebra,
whereas the determinant in the denominator is, in general, a Fredholm determinant.
Some sufficient conditions under which det(1 +L) makes sense are described in the
following subsection.

A.1. Fredholm determinants and determinantal processes. LetH be a com-
plex Hilbert space, L(H) the algebra of bounded operators in H , and L1(H), L2(H)
the ideals of trace class and Hilbert–Schmidt operators, respectively.

Assume we are given a splitting H = H+ ⊕ H−. According to this splitting,

write operators A ∈ L(H) in block form, A =
[
A++ A+−
A−+ A−−

]
, where

A++ : H+ → H+, A+− : H− → H+,

A−+ : H+ → H−, A−− : H− → H− .

The algebra L(H) is equipped with a natural Z2-grading. Specifically, given A, its
even part Aeven and odd part Aodd are defined as follows:

Aeven =
[
A++ 0

0 A−−

]
, Aodd =

[
0 A+−

A−+ 0

]
.

Denote by L1|2(H) the set of operators A ∈ L(H) such that Aeven is in the trace
class L1(H) while Aodd is in the Hilbert–Schmidt class L2(H). It is readily seen
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that L1|2(H) is an algebra. We endow it with the topology induced by the trace
norm on the even part and the Hilbert–Schmidt norm on the odd part.

It is well known that the determinant det(1 + A) makes sense if A ∈ L1(H). It
can be characterized as the only function which is continuous in A with respect to
the trace norm ‖A‖1 = tr

√
AA∗ and which coincides with the usual determinant

when A is a finite–dimensional operator. See, e.g., [33].

Proposition A.1. The function A 7→ det(1 + A) admits a unique extension to
L1|2(H), which is continuous in the topology of that algebra.

Proof. For A ∈ L1|2(H), set

det(1 +A) = det((1 +A)e−A) · etrAeven .(A.1)

As is well known (e.g., [33]),

A 7→ (1 +A)e−A − 1

is a continuous map from L2(H) to L1(H). Next, A 7→ trAeven evidently is a
continuous function on L1|2(H). Consequently, (A.1) is well defined and is a con-
tinuous function on L1|2(H). When A ∈ L1(H), (A.1) agrees with the conventional
definition, because then

det((1 +A)e−A) · etrAeven = det(1 +A)e− trA+trAeven = det(1 + A).

This concludes the proof.

Corollary A.2. If {Pn} is an ascending sequence of even projection operators in
H such that Pn → 1 strongly, then

det(1 +A) = lim
n→∞

det(1 + PnAPn).

Proof. Indeed, PnAPn approximates A in the topology of L1|2(H).

Corollary A.3. If A,B ∈ L1|2(H), then

det(1 +A) det(1 +B) = det((1 +A)(1 +B)).

Proof. Indeed, this is true for finite–dimensional A,B, and then we use the conti-
nuity argument.

In our particular case, the splitting of H = `2(X) will come from a splitting of
X = X+ t X− into two complementary subsets as follows:

H± = `2(X±) .

An operator L in H will be viewed as an infinite matrix whose rows and columns
are indexed by elements of X. Given X ⊂ X, we denote by LX the corresponding
finite submatrix in L.

Proposition A.4. If L ∈ L1|2(H), then∑
X

detLX = det(1 + L),(A.2)

where summation is taken over all finite subsets X ⊂ X including the empty set
with the understanding that detL∅ = 1.

The exact meaning of the sum in the left-hand side is explained in the proof.
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Proof. Given a finite subset Y ⊂ X, we assign to it, in the natural way, a projection
operator PY . Note that PY is even. By elementary linear algebra, we have∑

X⊆Y
detLX = det(1 + PY LPY ).

Assume Y becomes larger and larger, so that in the limit it covers the whole X.
Then the left-hand side tends to the left-hand side of (A.2). More precisely, this is
evident if all the minors detLX are nonnegative. In general, instead of proving that
the sum in the left-hand side of (A.2) is absolutely convergent we simply define it
as ∑

X

detLX = lim
{Y }

∑
X⊆Y

detLX .

On the other hand, the right-hand side tends to det(1 + L) by Corollary A.2.

Remark A.5. Suppose that L =
[

0 A
−A∗ 0

]
, where A is of Hilbert–Schmidt class.

Then L ∈ L1|2(H). It is readily seen that detLX ≥ 0 for all X , and it is worth
noting that detLX = 0 unless |X+| = |X−|. By Proposition A.4, we can define a
probability measure on finite subsets X of X by

Prob(X) =
detLX

det(1 + L)
, X ∈ Conf(X)0 .

A.2. Correlation functions of determinantal processes. GivenX∈Conf(X)0,
let ρ(X) be the probability that a random configuration contains X , that is,

ρ(X) = Prob ({Y ∈ Conf(X)0, X ⊂ Y }) .

We call ρ(X) the correlation functions. The fundamental fact about determinantal
point processes is that their correlation functions again have a determinantal form.

Proposition A.6. Let L be as above and set K = L(1 + L)−1. Then ρ(X) =
detKX.

Proof. We follow the argument in [11], Exercise 5.4.7. Let f(x) be an arbitrary
function on X such that f(x) = 1 for all but a finite number of x’s. Form the
probability generating functional:

Φ(f) =
∑
X

∏
x∈X

f(x) · Prob(X).

Then, viewing f as a diagonal matrix, we get

Φ(f) =
∑

X det(fL)
det(1 + L)

=
det(1 + fL)
det(1 + L)

,

where the last equality is justified by Proposition A.4 applied to the operator fL.
Now, set g(x) = f(x) − 1, so that g(x) = 0 for all but finitely many x’s. Then

we can rewrite this relation as

Φ(f) =
det(1 + fL)
det(1 + L)

=
det(1 + L+ gL)

det(1 + L)
= det(1 + gK),

where the last equality follows by Corollary A.3.
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Next, as gK is in L1|2(H) (it is even finite–dimensional), this can be rewritten
as

Φ(f) =
∑
X

det((gK)X) =
∑
X

∏
x∈X

g(x) · detKX .

On the other hand, by the very definition of Φ(f),

Φ(f) =
∑
X

∏
x∈X

g(x) · ρ(X).

This implies ρ(X) = detKX , as desired.

Remark A.7. If L =
[

0 A
−A∗ 0

]
, then

K =
[
AA∗(1 +AA∗)−1 (1 +AA∗)−1A
−(1 +A∗A)−1A∗ A∗A(1 +A∗A)−1

]
.

In the recent survey [35], the determinantal formula ρ(X) = detKX for the
correlation functions is taken as a definition. The paper [35] contains a more general
and detailed discussion of the basics of the theory of determinantal processes which
in [35] are called determinantal random point fields.

A.3. Complementation principle. In this section we discuss a simple but useful
observation which was communicated to us by S. Kerov. Consider an arbitrary
probability measure on Conf(X) such that its correlation functions

ρ(X) = Prob ({Y ∈ Conf(X), X ⊂ Y }) , X ∈ Conf(X)0 ,

have a determinantal form

ρ(X) = det
[
K(xi, xj)

]
xi∈X

for some kernel K.
Let Z ⊂ X be an arbitrary subset of X. Consider the symmetric difference

mapping

4Z : Conf(X)→ Conf(X) , Y 7→ Y4Z ,

which is an involution in Conf(X). Let Prob4 = (4Z)∗ Prob be the image of
our probability measure under 4Z and let ρ4(X) be the correlation functions of
the measure Prob4. Define a new kernel K4 as follows. Let Z ′ = X \ Z be
the complement of Z and write the matrix K in block form with respect to the
decomposition X = Z ′ t Z:

KZ′tZ =
[
A B
C D

]
.

By definition, set

K4Z′tZ =
[
A B
−C 1−D

]
.

We have the following

Proposition A.8. ρ4(X) = det
[
K4(xi, xj)

]
xi∈X

.
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Proof. Set X1 = X \ Z, X2 = Z \X . By the inclusion-exclusion principle we have

ρ4(X) = Prob ({Y ∈ Conf(X), X1 ⊂ Y,X2 ∩ Y = ∅})

=
∑
S⊂X2

(−1)|S|ρ(X1 ∪ S) .

This alternating sum is easily seen to be identical by linearity to the expansion of
det
[
K4(xi, xj)

]
xi∈X

using[
A B
−C 1−D

]
=
[
A B
−C −D

]
+
[
0 0
0 1

]
.

A.4. Convergence of trace class operators. Let K1,K2, . . . and K be Hermit-
ian nonnegative operators in L1(H). The following proposition is a special case of
Theorem 2.20 in the book [34] (we are grateful to P. Deift for this reference). For
the reader’s convenience we give a proof here.

Proposition A.9. The following conditions are equivalent:
(i) ‖Kn −K‖1 → 0;
(ii) trKn → trK and Kn → K in the weak operator topology.

First, we prove a lemma:

Lemma A.10. Let X =
[
A B
B∗ D

]
be a nonnegative operator 2 × 2 matrix. Then

‖B‖1 ≤
√

trA · trD.

Proof of Lemma A.10. Without loss of generality one can assume that the block B
is a nonnegative diagonal matrix, B = diag(b1, b2, . . . ). Write the blocks A and D
as matrices, too, and let ai and di be their diagonal entries. Since X ≥ 0, we have
b2i ≤ aidi and therefore

‖B‖1 =
∑

bi ≤
∑√

aidi ≤
√∑

ai ·
∑

di ≤
√

trA · trD.

Proof of Proposition A.9. Clearly, (i) implies (ii). To check the converse claim,
write K in block form,

K =
[
A B
B∗ D

]
,

where A is of finite size and trD is small. Write all the Kn’s in block form with
respect to the same decomposition of the Hilbert space,

Kn =
[
An Bn
B∗n Dn

]
.

Since Kn → K weakly, we have convergence of finite blocks, An → A, which implies
trAn → trA. Since trKn → trK, we get trDn → trD, so that all the traces trDn

are small together with trD provided that n is large enough.
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Write

K ′ =
[
A 0
0 0

]
and similarly for Kn. Then

‖Kn −K‖1 ≤ ‖Kn −K ′n‖1 + ‖K ′n −K ′‖1 + ‖K ′ −K‖1.

In the right-hand side, the first and the third summands are small because of the
lemma, while the second summand is small because it is equal to ‖An −A‖1.

Proposition A.11. The map (A1, . . . , An) 7→ det(I + λ1A1 + · · ·+ λnAn) defines
a continuous map from (L1(H))n to the algebra of entire functions in n variables
with the topology of uniform convergence on compact sets.

Proof. The fact that det(I + λ1A1 + · · · + λnAn) is holomorphic in {λi} for any
trace class operators A1, . . . , An is proved in [33]. The continuity of the map follows
from the inequality

| det(I +B)− det(I + C)| ≤ ‖B − C‖1 exp(‖B‖1 + ‖C‖1 + 1)

which holds for any B,C ∈ L1(H); see [30, 34].
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