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Let (X1, ξ1), (X2, ξ2), . . . be i.i.d. copies of a pair (X, ξ) where X is a random process with paths in the

Skorokhod space D[0,∞) and ξ is a positive random variable. Define Sk := ξ1 + · · · + ξk , k ∈ N0 and

Y (t) :=
∑

k≥0 Xk+1(t − Sk)1{Sk≤t}, t ≥ 0. We call the process (Y (t))t≥0 random process with immigra-

tion at the epochs of a renewal process. We investigate weak convergence of the finite-dimensional distri-

butions of (Y (ut))u>0 as t → ∞. Under the assumptions that the covariance function of X is regularly

varying in (0,∞) × (0,∞) in a uniform way, the class of limiting processes is rather rich and includes

Gaussian processes with explicitly given covariance functions, fractionally integrated stable Lévy motions

and their sums when the law of ξ belongs to the domain of attraction of a stable law with finite mean,

and conditionally Gaussian processes with explicitly given (conditional) covariance functions, fractionally

integrated inverse stable subordinators and their sums when the law of ξ belongs to the domain of attraction

of a stable law with infinite mean.

Keywords: random process with immigration; renewal theory; shot noise processes; weak convergence of

finite-dimensional distributions

1. Introduction

1.1. Random processes with immigration at the epochs of a renewal

process

Denote by D[0,∞) and D(0,∞) the Skorokhod spaces of right-continuous real-valued func-

tions which are defined on [0,∞) and (0,∞), respectively, and have finite limits from the

left at each point of the domain. Throughout the paper, we abbreviate D[0,∞) by D. Let

X := (X(t))t∈R be a random process with paths in D satisfying X(t) = 0 for all t < 0, and let

ξ be a positive random variable. Arbitrary dependence between X and ξ is allowed. It is worth

stating explicitly that we do not exclude the possibility X = h a.s. for a deterministic function h.

Further, let (X1, ξ1), (X2, ξ2), . . . be i.i.d. copies of the pair (X, ξ) and denote by (Sk)k∈N0
the

zero-delayed random walk with increments ξj , that is,

S0 := 0, Sk := ξ1 + · · · + ξk, k ∈N.
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We write (ν(t))t∈R for the corresponding first-passage time process, that is,

ν(t) := inf{k ∈N0 : Sk > t} = #{k ∈N0 : Sk ≤ t}, t ∈R,

where the last equality holds a.s. The process Y := (Y (t))t∈R defined by

Y(t) :=
∑

k≥0

Xk+1(t − Sk) =
ν(t)−1∑

k=0

Xk+1(t − Sk), t ∈R (1)

will be called random process with immigration at the epochs of a renewal process or, for short,

random process with immigration. The interpretation is as follows: at time S0 = 0 the immigrant

1 starts running a random process X1, for k ∈ N, at time Sk the immigrant k + 1 starts running

a random process Xk+1, Y(t) being the sum of all processes run by the immigrants up to and

including time t . We advocate using this term for two reasons. First, we believe that it is more in-

formative than the more familiar term renewal shot noise process with random response functions

Xk ; in particular, the random process Y defined by (1) has little in common with the originally

defined shot noise processes [45] intended to model the real shot noise in vacuum tubes which

were based on Poisson inputs and deterministic response functions. Second, the new term was

inspired by the fact that if X is a continuous-time branching process, then Y is known in the

literature as a branching process with immigration.

Random processes with immigration have been used to model various phenomena. An incom-

plete list of possible areas of applications includes anomalous diffusion in physics [37], earth-

quakes occurrences in geology [47], rainfall modeling in meteorology [43,49], network traffic in

computer sciences [33,38,41,42] as well as insurance [30,31] and finance [29,44]. Further refer-

ences concerning mainly renewal shot noise processes can be found in [2,17,22,48]. Although

we do not have any particular application in mind, our results are potentially useful for either of

the aforementioned fields.

1.2. Weak convergence of random processes with immigration

The paper at hand is part of a series of papers that further contains the references [21–23] in which

we investigate the asymptotic distribution of Y . When μ := Eξ < ∞ and X(t) tends to 0 quickly

as t → ∞ (more precisely, if t �→ E[|X(t)| ∧ 1] is a directly Riemann integrable function),

then, under mild technical assumptions, (Y (u + t))u≥0 converges to a stationary version of the

process. This convergence is investigated in [23]. In the present paper, we focus on the case

where the law of ξ is in the domain of attraction of a stable law of index α 	= 1 and, if μ < ∞
(equivalently, α > 1), either E[X(t)] or Var[X(t)] is too large for convergence to stationarity.

In this situation, we investigate the weak convergence of the finite-dimensional distributions of

Yt (u) := a(t)−1(Y (ut) − b(ut)) with suitable norming constants a(t) > 0 and shifts b(t) ∈ R.

This convergence is mainly regulated by two factors: the tail behavior of ξ and the asymptotics

of the finite-dimensional distributions of X(t) as t → ∞. The various combinations of these give

rise to a broad spectrum of possible limit results. In this paper, assuming that h(t) := E[X(t)] is



Asymptotics of random processes with immigration I 1235

finite for all t ≥ 0, we start with the decomposition

Y(t) − b(t) =
(

Y(t) −
∑

k≥0

h(t − Sk)1{Sk≤t}

)
+
(∑

k≥0

h(t − Sk)1{Sk≤t} − b(t)

)
(2)

and observe that Yt (u) may converge if at least one summand in (2), properly normalized, con-

verges weakly.

The asymptotic behavior of the second summand, properly normalized, is driven by the func-

tional limit theorems for the first-passage time process (ν(t))t≥0 as well as the behavior of the

function h at infinity.

The asymptotics of the first summand, properly normalized, is accessible via martingale cen-

tral limit theory or convergence results for triangular arrays. When Eξ is finite, the normalizing

constants and limiting processes for the first summand are completely determined by properties

of X, the influence of the law of ξ is small. This phenomenon can easily be understood: the

randomness induced by the ξk’s is governed by the law of large numbers for ν(t) and is thus

degenerate in the limit. When Eξ is infinite and P{ξ > t} is regularly varying with index larger

than −1, ν(t), properly normalized, weakly converges to a non-degenerate law. Hence, unlike

the finite-mean case, the randomness induced by ξ persists in the limit.

It turns out that there are situations in which one of the summands in (2) dominates (cases

p = 0 and p = 1 of Theorem 2.4; cases q = 0 and q = 1 of Theorem 2.5; the case where h ≡ 0),

and those in which the contributions of the summands are comparable (case p ∈ (0,1) of Theo-

rem 2.4 and case q ∈ (0,1) of Theorem 2.5). A nice feature of the former situation is that possible

dependence of X and ξ gets neutralized by normalization (provided limt→∞ a(t) = +∞) so that

the limit results are only governed by individual contributions of X and ξ . Suppose, for the time

being, that the latter situation prevails, that is, the two summands in (2) are of the same order,

and that X and ξ are independent. From the discussion above it should be clear that whenever

Eξ is finite, the two limit random processes corresponding to the summands in (2) are indepen-

dent, whereas this is not the case, otherwise. Still, we are able to show that the summands in (2)

converge jointly.

When X and ξ are dependent, proving such a joint convergence remains an open problem.

In the particular case where X(t) = 1{| log(1−W)|>t} and ξ = | logW | for some random variable

W ∈ (0,1) a.s., this problem, already reported in Section 1 of [24], turned out to be the major

obstacle on the way towards obtaining the description of all possible modes of weak convergence

of the number of empty boxes in the Bernoulli sieve.

Adequacy of the aforementioned approach was realized by the authors some time ago, and as

a preparation for its implementation the articles [21,22] were written. In the first of these papers,

functional limit theorems for the second summand have been established in the case where h is

eventually increasing,1 while in the second convergence of the finite-dimensional distributions

of the second summand has been proved in the case where h is eventually decreasing.2

1We call a function h increasing (decreasing) if s < t implies h(s) ≤ h(t) (resp., h(s) ≥ h(t)) and strictly increasing

(decreasing) if s < t implies h(s) < h(t) (resp., h(s) > h(t)).
2The present paper does not offer new results about weak convergence of the second summand in (2) alone. However,

the joint convergence of the summands in (2) is treated here for the first time.
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1.3. Bibliographic comments and known results

In the case where ξ has an exponential law, the process Y (or its stationary version) is a Poisson

shot noise process. Weak convergence of Poisson shot noise processes has received considerable

attention. In some papers of more applied nature weak convergence of Yt (u) for X having a

specific form is investigated. In the list to be given next η denotes a random variable independent

of ξ and f a deterministic function which satisfies certain restrictions which are specified in the

cited papers:

• X(t) = 1{η>t} and X(t) = t ∧ η, functional convergence, see [41];

• X(t) = ηf (t), stationary version of Y , functional convergence, see [29];

• X(t) = f (t ∧ η), convergence of finite-dimensional distributions, see [33]; functional con-

vergence, see [42];

• X(t) = η1/η2f (tη2), stationary version, convergence of finite-dimensional distributions,

see [11,12].

The articles [16,27,30,32,35] are of more theoretical nature, and study weak convergence of

Yt (u) for general (not explicitly specified) X. The work [27] contains further pointers to relevant

literature which could have extended our list of particular cases given above.

In the case where the law of ξ is exponential, the variables Yt (u) have infinitely divisible laws

with characteristic functions of a rather simple form. Furthermore, the convergence, as t → ∞,

of these characteristic functions to a characteristic function of a limiting infinitely divisible law

follows from the general theory. Also, in this context Poisson random measures arise naturally

and working with them considerably simplifies the analysis. In the cases where the law of ξ

is not exponential, the aforementioned approaches are not applicable. We are aware of several

papers in which weak convergence of processes Y , properly normalized, centered and rescaled, is

investigated in the case where ξ has distribution other than exponential. Iglehart [18] has proved

weak convergence of

1
√

n

(∑

k≥0

Xk+1

(
u − n−1Sk

)
1{Sk≤nu} −

n

Eξ

∫ u

0

E
[
X(y)
]

dy

)

in D[0,1] to a Gaussian process, as n → ∞, under rather restrictive assumptions (in particular,

concerning the existence of moments of order four). See also Theorem 1 on page 103 of [8] for

a similar result with X(t) = 1{η>t} in a more general setting. For X(t) =
∫ t

0 f (s, η)ds, weak

convergence of (Yt (u))0≤u≤1 on D[0,1] as t → ∞ was established in [19] under the assump-

tions that ξ and η are independent, that
∫∞

0 |f (s, x)|ds < ∞ for every x ∈ R and some other

conditions. For X(t) = 1{η>t}, weak convergence of finite-dimensional distributions of (Yt (u))u,

as t → ∞, has been settled in [38] under the assumption that ξ and η are independent and some

moment-type conditions.

Last but not least, weak convergence of Yt (1) has been much investigated, especially in the

case where X is a branching process (see, for instance, [3,26,40]).
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1.4. Additional definitions

Throughout the paper, we assume that h(t) := E[X(t)] is finite for all t ≥ 0 and that the covari-

ance

f (s, t) := Cov
[
X(s),X(t)

]
= E
[
X(s)X(t)

]
−E
[
X(s)
]
E
[
X(t)
]

is finite for all s, t ≥ 0. The variance of X will be denoted by v, that is, v(t) := f (t, t) =
Var[X(t)]. In what follows we assume that h,v ∈ D. By Lebesgue’s dominated convergence

theorem, local uniform integrability of X2 is sufficient for this to be true since the paths of X be-

long to D. h,v ∈ D implies that h and v are a.e. continuous and locally bounded. Consequently,∫ t

0 h(y)dy and
∫ t

0 v(y)dy are well-defined as Riemann integrals.

Regular variation in R2

Recall that a positive measurable function ℓ, defined on some neighborhood of ∞, is called

slowly varying at ∞ if limt→∞
ℓ(ut)
ℓ(t)

= 1 for all u > 0, see [7], page 6.

Definition 1.1. A function r : [0,∞) × [0,∞) → R is regularly varying3 in R2
+ := (0,∞) ×

(0,∞) if there exists a function C :R2
+ → (0,∞), called limit function, such that

lim
t→∞

r(ut,wt)

r(t, t)
= C(u,w), u,w > 0.

The definition implies that r(t, t) is regularly varying at ∞, that is, r(t, t) ∼ tβℓ(t) as t → ∞
for some ℓ slowly varying at ∞ and some β ∈ R which is called the index of regular variation.

In particular, C(a, a) = aβ for all a > 0 and further

C(au,aw) = C(a, a)C(u,w) = aβC(u,w)

for all a,u,w > 0.

Definition 1.2. A function r : [0,∞) × [0,∞) → R will be called fictitious regularly varying of

index β in R2
+ if

lim
t→∞

r(ut,wt)

r(t, t)
= C(u,w), u,w > 0,

where C(u,u) := uβ for u > 0 and C(u,w) := 0 for u,w > 0, u 	= w. A function r will be

called wide-sense regularly varying of index β in R2
+ if it is either regularly varying or fictitious

regularly varying of index β in R2
+.

The function C corresponding to a fictitious regularly varying function will also be called limit

function.

3The canonical definition of the regular variation in R2
+ (see, for instance, [9]) requires nonnegativity of r .
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Definition 1.3. A function r : [0,∞) × [0,∞) → R is uniformly regularly varying of index β in

strips in R2
+ if it is regularly varying of index β in R2

+ and

lim
t→∞

sup
a≤u≤b

∣∣∣∣
r(ut, (u + w)t)

r(t, t)
− C(u,u + w)

∣∣∣∣= 0 (3)

for every w > 0 and all 0 < a < b < ∞.

Limit processes for Yt (u)

The processes introduced in Definition 1.4 arise as weak limits of the first summand in (2) in the

case Eξ < ∞. We shall check that they are well-defined at the beginning of Section 4.1.

Definition 1.4. Let C be the limit function for a wide-sense regularly varying function (see Def-

inition 1.2) in R2
+ of index β for some β ∈ (−1,∞). We shall denote by Vβ := (Vβ(u))u>0 a

centered Gaussian process with covariance function

E
[
Vβ(u)Vβ(w)

]
=
∫ u

0

C(u − y,w − y)dy, 0 < u ≤ w,

when C(s, t) 	= 0 for some s, t > 0, s 	= t , and a centered Gaussian process with independent

values and variance E[V 2
β (u)] = (1 + β)−1u1+β , otherwise.

Definition 1.5 reminds the notion of an inverse subordinator.

Definition 1.5. For α ∈ (0,1), let Wα := (Wα(t))t≥0 be an α-stable subordinator (nondecreas-

ing Lévy process) with Laplace exponent − logE[exp(−zWα(t))] = Ŵ(1 − α)tzα , z ≥ 0, where

Ŵ(·) is the gamma function. The inverse α-stable subordinator W←
α := (W←

α (s))s≥0 is defined

by

W←
α (s) := inf

{
t ≥ 0 : Wα(t) > s

}
, s ≥ 0.

The processes introduced in Definition 1.6 arise as weak limits of the first summand in (2) in

the case Eξ = ∞. We shall check that these are well-defined in Lemma 5.7.

Definition 1.6. Let W←
α be an inverse α-stable subordinator and C the limit function for a wide-

sense regularly varying function (see Definition 1.2) in R2
+ of index β for some β ∈ [−α,∞). We

shall denote by Zα,β := (Zα,β(u))u>0 a process which, given W←
α , is centered Gaussian with

(conditional) covariance

E
[
Zα,β(u)Zα,β(w)|W←

α

]
=
∫

[0,u]
C(u − y,w − y)dW←

α (y), 0 < u ≤ w,

when C(s, t) 	= 0 for some s, t > 0, s 	= t , and a process which, given Wα , is centered Gaussian

with independent values and (conditional) variance E[Zα,β(u)2|W←
α ] =

∫
[0,u](u−y)β dW←

α (y),

otherwise.
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Throughout the paper, we use
d→,

P→ and ⇒ to denote weak convergence of one-dimensional

distributions, convergence in probability and convergence in distribution in a function space,

respectively. Additionally, we write Zt (u)
f.d.⇒ Z(u), t → ∞ to denote weak convergence of finite-

dimensional distributions, that is, for any n ∈N and any 0 < u1 < u2 < · · · < un < ∞,

(
Zt (u1), . . . ,Zt (un)

) d→
(
Z(u1), . . . ,Z(un)

)
, t → ∞.

We stipulate hereafter that ℓ, ℓ̂ and ℓ∗ denote functions slowly varying at ∞ and that all unspec-

ified limit relations hold as t → ∞.

2. Main results

2.1. Asymptotic distribution of the first summand in (2)

Proposition 2.1 (case Eξ < ∞) and Proposition 2.2 (case Eξ = ∞) deal with the asymptotics of

the first summand in (2).

Proposition 2.1. Assume that:

• μ := Eξ ∈ (0,∞);

• f (u,w) = Cov[X(u),X(w)] is either uniformly regularly varying in strips in R2
+ or ficti-

tious regularly varying in R2
+, in either of the cases, of index β for some β ∈ (−1,∞) and

with limit function C; when β = 0, there exists a positive monotone function u satisfying

v(t) = Var[X(t)] ∼ u(t) as t → ∞;

• for all y > 0

vy(t) := E
[(

X(t) − h(t)
)2

1{|X(t)−h(t)|>y
√

tv(t)}
]
= o
(
v(t)
)
, t → ∞. (4)

Then

Y(ut) −
∑

k≥0 h(ut − Sk)1{Sk≤ut}√
μ−1tv(t)

f .d.⇒ Vβ(u), t → ∞, (5)

where Vβ is a centered Gaussian process as introduced in Definition 1.4.

Proposition 2.2. Assume that:

• X is independent of ξ ;

• for some α ∈ (0,1) and some ℓ∗

P{ξ > t} ∼ t−αℓ∗(t), t → ∞; (6)

• f (u,w) = Cov[X(u),X(w)] is either uniformly regularly varying in strips in R2
+ or fic-

titious regularly varying in R2
+, in either of cases, of index β for some β ∈ [−α,∞) and

with limit function C; when β = −α, there exists a positive increasing function u with

limt→∞
v(t)

P{ξ>t}u(t)
= 1;
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• for all y > 0

vy(t) := E
[(

X(t) − h(t)
)2

1{|X(t)−h(t)|>y
√

v(t)/P{ξ>t}}
]
= o
(
v(t)
)
, t → ∞. (7)

Then
√
P{ξ > t}

v(t)

(
Y(ut) −

∑

k≥0

h(ut − Sk)1{Sk≤ut}

)
f .d.⇒ Zα,β(u), t → ∞,

where Zα,β is a conditionally Gaussian process as introduced in Definition 1.6.

Remark 2.3. There is an interesting special case of Proposition 2.2 in which the finite-

dimensional distributions of Y converge weakly, that is, without normalization and centering.

Namely, if h(t) ≡ 0, limt→∞ v(t)/P{ξ > t} = c for some c > 0, and the assumptions of Proposi-

tion 2.2 hold (note that β = −α and one may take u(t) ≡ c), then

Y(ut)
f.d.⇒

√
cZα,−α(u).

When h(t) = E[X(t)] is not identically zero, the centerings used in Propositions 2.1 and 2.2

are random which is undesirable. Theorem 2.4 (case Eξ < ∞) and Theorem 2.5 (case Eξ = ∞)

stated below give limit results with non-random centerings. These are obtained by combining

the results concerning weak convergence of the second summand in (2) with Proposition 2.1 and

Proposition 2.2, respectively.

2.2. Domains of attraction

To fix notation for our main results, we recall here that the law of ξ belongs to the domain of

attraction of a 2-stable (normal) law if, and only if, either σ 2 := Var ξ < ∞, or Var ξ = ∞ and

E
[
ξ2

1{ξ≤t}
]
∼ ℓ∗(t) (8)

for some ℓ∗. Further, the law of ξ belongs to the domain of attraction of an α-stable law, α ∈ (0,2)

if, and only if,

P{ξ > t} ∼ t−αℓ∗(t) (9)

for some ℓ∗. In the present paper, we do not treat the case α = 1, for it is technically more

complicated than the others and does not shed any new light on weak convergence of random

processes with immigration.

If μ = Eξ = ∞, then necessarily α ∈ (0,1) (because we excluded the case α = 1) and accord-

ing to Corollary 3.4 in [36] we have

P{ξ > t}ν(ut) ⇒ W←
α (u) (10)

in the J1-topology on D.
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If μ < ∞, then necessarily α ∈ (1,2] (where α = 2 corresponds to the case of attraction to a

normal law) and according to Theorem 5.3.1 and Theorem 5.3.2 in [14] or Section 7.3.1 in [50]

we have

ν(ut) − μ−1ut

μ−1−1/αc(t)
⇒ Sα(u), (11)

where:

• if σ 2 < ∞, then S2 := (S2(u))u≥0 is a Brownian motion; c(t) = σ
√

t and the convergence

takes place in the J1-topology on D;

• if σ 2 = ∞ and (8) holds, then c(t) is some positive continuous function such that

lim
t→∞

tℓ∗(c(t)
)
/c(t)2 = 1,

and the convergence takes place in the J1-topology on D;

• if in (9) α ∈ (1,2), then Sα := (Sα(u))u≥0 is a spectrally negative α-stable Lévy process

such that Sα(1) has the characteristic function

E
[
exp
(
izSα(1)

)]
= exp
{
−|z|αŴ(1 − α)

(
cos(πα/2) + i sign(z) sin(πα/2)

)}
, z ∈ R,

where Ŵ(·) denotes Euler’s gamma function; c(t) is some positive continuous function sat-

isfying

lim
t→∞

tℓ∗(c(t)
)
/c(t)α = 1,

and the convergence takes place in the M1-topology on D.

In any case, c(t) is regularly varying at ∞ of index 1/α, see Lemma 5.3. We refer to [50] for

extensive information concerning both the J1- and M1-convergence on D.

2.3. Scaling limits of random processes with immigration

Theorem 2.4. Assume that the law of ξ belongs to the domain of attraction of an α-stable law,

α ∈ (1,2], that c is as in (11), that h is eventually monotone and not identically zero, and that

the following limit

p := lim
t→∞

c(t)2h(t)2

∫ t

0 v(y)dy + c(t)2h(t)2
∈ [0,1],

exists. Assume further that:

• if p < 1, then the assumptions of Proposition 2.1 hold;

• if p > 0, then h(t) ∼ tρ ℓ̂(t) as t → ∞ for some ρ > −1/α and some ℓ̂;

• if p = 1, then limt→∞
∫ t

0 v(y)dy = ∞ and there exists a positive monotone function u such

that v(t) ∼ u(t), t → ∞, or v is directly Riemann integrable on [0,∞);

• if p ∈ (0,1), then X is independent of ξ .
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Then, as t → ∞,

Y(ut) − (1/μ)
∫ ut

0 h(y)dy√∫ t

0 v(y)dy + c(t)2h(t)2

f .d.⇒

√
(1 − p)(1 + β)

μ
Vβ(u)

(12)

+
√

pμ−(α+1)/α

∫ u

0

(u − y)ρ dSα(y),

where Vβ is as in Definition 1.4, and Sα is assumed independent of Vβ .

Theorem 2.5. Suppose that (9) holds for α ∈ (0,1) and that h is not identically zero. Assume

further that the following limit

q := lim
t→∞

h(t)2

v(t)P{ξ > t} + h(t)2
∈ [0,1]

exists and that:

• if q < 1, then the assumptions of Proposition 2.2 hold (with the same α as above);

• if q = 1, then h(t) ∼ tρ ℓ̂(t), t → ∞ for some ρ ≥ −α and some ℓ̂; if ρ = −α,

then there exists a positive increasing function w such that limt→∞ w(t) = ∞ and

limt→∞
h(t)

P{ξ>t}w(t)
= 1.

Then, setting ρ := (β − α)/2 when q ∈ (0,1),

P{ξ > t}Y(ut)√
v(t)P{ξ > t} + h(t)2

f .d.⇒
√

1 − qZα,β(u) +
√

q

∫

[0,u]
(u − y)ρ dW←

α (y), t → ∞,

where Zα,β is as in Definition 1.6, and W←
α under the integral sign is the same as in the definition

of Zα,β . In particular, the summands defining the limit process are dependent.

There is a simple situation where the weak convergence of finite-dimensional distributions

obtained in Theorem 2.5 implies the J1-convergence on D. Of course, the case where the limit

process in Proposition 2.2 is a conditional white noise (equivalently, C(u,w) = 0 for u 	= w)

must be eliminated as no version of such a process belongs to D.

Corollary 2.6. Let X(t) be almost surely increasing with limt→∞ X(t) ∈ (0,∞] almost surely.

Assume that the assumptions of Theorem 2.5 are in force with the exception that in the case

q < 1 the conditions on the function f (u,w) are replaced by the condition that the function

(u,w) �→ E[X(u)X(w)] is regularly varying in R2
+ of index β with limit function C. Then the

limit relations of Theorem 2.5 hold in the sense of weak convergence in the J1-topology on D,

where Zα,β(0) = 0 is defined as the limit in probability of Zα,β(u) as u ↓ 0.

We close the section with a negative result which implies that weak convergence of the

finite-dimensional distributions in Theorem 2.5 cannot be strengthened to weak convergence

on D(0,∞) whenever Zα,−α arises in the limit.
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Proposition 2.7. Any version of the process Zα,−α has paths in the Skorokhod space D(0,∞)

with probability strictly less than 1. If further C(u,w) = 0 for all u 	= w, u,w > 0, then any

version has paths in D(0,∞) with probability 0.

3. Applications

Unless the contrary is stated, the random variable η appearing in this section may be arbitrarily

dependent on ξ , and (ξk, ηk), k ∈ N denote i.i.d. copies of (ξ, η).

Example 3.1. Let X(t) = 1{η>t}, σ 2 < ∞ and suppose that P{η > t} ∼ tβℓ(t) for some

β ∈ (−1,0]. Since h(t) = E[X(t)] = P{η > t} and v(t) = P{η > t}P{η ≤ t} we infer

limt→∞ v(t)/h(t)2 = ∞. Further

f (ut,wt)

v(t)
=

P{η > (u ∨ w)t}P{η ≤ (u ∧ w)t}
P{η > t}P{η ≤ t}

→ (u ∨ w)β , u,w > 0,

and this convergence is locally uniform in R2
+ as it is the case for limt→∞ P{η > (u∨w)t}/P{η >

t} = (u ∨ w)β by Lemma 5.2(a). In particular, condition (3) holds with C(u,w) = (u ∨ w)β .

Finally, condition (4) holds because |1{η>t} −P{η > t}| ≤ 1 a.s. Now we conclude that, according

to the case p = 0 of Theorem 2.4,

∑
k≥0 1{Sk≤ut<Sk+ηk+1} − (1/μ)

∫ ut

0 P{η > y}dy
√

μ−1tP{η > t}
f.d.⇒ Vβ(u),

where Vβ is a centered Gaussian process with covariance

E
[
Vβ(u)Vβ(w)

]
= (1 + β)−1

(
w1+β − (w − u)1+β

)
, 0 ≤ u ≤ w.

Assuming that ξ and η are independent, a counterpart of this result with a random centering

(i.e. a result that follows from Proposition 2.1) was obtained in Proposition 3.2 of [38].

Example 3.2. Let X(t) = 1{η≤t}. Since h(t) = P{η ≤ t} and v(t) = P{η ≤ t}P{η > t} ∼ P{η >

t}, we infer limt→∞ th(t)2/
∫ t

0 v(y)dy = ∞. Further, if Eη < ∞, then v is dRi on [0,∞) because

it is nonnegative, bounded, a.e. continuous and dominated by the decreasing and integrable func-

tion P{η > t}. If Eη = ∞, that is, limt→∞
∫ t

0 v(y)dy = ∞, v is equivalent to the monotone

function u(t) = P{η > t}. If σ 2 < ∞ then, according to the case p = 1 of Theorem 2.4,

∑
k≥0 1{Sk+ηk+1≤ut} − (1/μ)

∫ ut

0
P{η ≤ y}dy

√
σ 2μ−3t

f.d.⇒ S2(u),

where S2 is a Brownian motion, because h is regularly varying at ∞ of index ρ = 0. If P{ξ > t}
is regularly varying at ∞ of index −α, α ∈ (0,1), then, by Corollary 2.6,

P{ξ > t}
∑

k≥0

1{Sk+ηk+1≤ut} ⇒ W←
α (u)
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in the J1-topology on D.

Example 3.3. Let X(t) = ηg(t) with Varη < ∞ and let g : R+ → R be regularly varying at ∞
of index β/2 for some β > −1. Then h(t) = g(t)Eη and v(t) = g(t)2 Varη. While f (u,w) =
g(u)g(w)Varη is clearly regularly varying in R2

+ of index β with limit function C(u,w) =
(uw)β/2, (3) holds by virtue of Lemma 5.2(a). Further observe that limt→∞

√
tv(t)/|g(t)| = ∞

implies

E
[(

X(t) − h(t)
)2

1{|X(t)−h(t)|>y
√

tv(t)}
]

= g(t)2E
[
(η −Eη)2

1{|η−Eη|>y
√

tv(t)/|g(t)|}
]
= o
(
v(t)
)

and thereupon (4). Also, as a consequence of limt→∞
√

v(t)/P{ξ > t}/|g(t)| = ∞, which holds

whatever the law of ξ is, we have

E
[(

X(t) − h(t)
)2

1{|X(t)−h(t)|>y
√

v(t)/P{ξ>t}}
]

= g(t)2E
[
(η −Eη)2

1{|η−Eη|>y
√

v(t)/P{ξ>t}/|g(t)|}
]
= o
(
v(t)
)

which means that condition (7) holds.

If Eη = 0 and μ ∈ (0,∞), then, according to Proposition 2.1,

∑
k≥0 ηk+1g(ut − Sk)1{Sk≤ut}√

μ−1tE[η2]g(t)

f.d.⇒ Vβ(u),

where Vβ is a centered Gaussian process with covariance

E
[
Vβ(u)Vβ(w)

]
=
∫ u

0

(u − y)β/2(w − y)β/2 dy, 0 < u ≤ w.

Furthermore, the limit process can be represented as a stochastic integral

Vβ(u) =
∫

[0,u]
(u − y)β/2 dS2(y), u > 0.

Throughout the rest of this example, we assume that η is independent of ξ .

If Eη = 0 and P{ξ > t} is regularly varying at ∞ of index −α, α ∈ (0,1) and β > −α then,

according to Proposition 2.2,

√
P{ξ > t}
g(t)

∑

k≥0

ηk+1g(ut − Sk)1{Sk≤ut}
f.d.⇒
√
E
[
η2
]
Zα,β(u).

Furthermore, the limit process can be represented as a stochastic integral

Zα,β(u) =
∫

[0,u]
(u − y)β/2 dS2

(
W←

α (y)
)
, u > 0,
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where S2 is a Brownian motion independent of W←
α , which can be seen by calculating the con-

ditional covariance of the last integral.

If Eη 	= 0, σ 2 < ∞ and g is eventually monotone, then, according to Theorem 2.4,

∑
k≥0 ηk+1g(ut − Sk)1{Sk≤ut} − μ−1Eη

∫ ut

0 g(y)dy

Eη
√

tg(t)

f.d.⇒
(

σ 2

μ3

)2 ∫

[0,u]
(u − y)β/2 dS2(u) +

(
Varη

(Eη)2μ

)1/2

Vβ(u).

If Eη 	= 0, P{ξ > t} is regularly varying at ∞ of index −α, α ∈ (0,1), and β > −2α, then,

since limt→∞ v(t)P{ξ > t}/h(t)2 = 0, an application of Theorem 2.5 with q = 1 gives

P{ξ > t}
g(t)

∑

k≥0

ηk+1g(ut − Sk)1{Sk≤ut}
f.d.⇒ Eη

∫

[0,u]
(u − y)β/2 dW←

α (y).

If further η ≥ 0 a.s. and g is increasing (which implies β ≥ 0), then, according to Corollary 2.6,

the limit relation takes place in the J1-topology on D.

Example 3.4. Let Z := (Z(t))t≥0 be a stationary Ornstein–Uhlenbeck process defined by

Z(t) = e−tθ +
∫

[0,t]
e−(t−y) dS2(y), t ≥ 0,

where θ is a normal random variable with mean zero and variance 1/2 independent of a Brownian

motion S2. Z and ξ may be arbitrarily dependent. Put X(t) = (t + 1)β/2Z(t) for β ∈ (−1,0).

Then E[X(t)] = 0 and f (u,w) = E[X(u)X(w)] = 2−1(u+1)β/2(w+1)β/2e−|u−w| from which

we conclude that f is fictitious regularly varying in R2
+ of index β . By stationarity, for each t > 0,

Z(t) has the same law as θ . Hence

E
[
X(t)2

1{|X(t)|>y}
]
= (t + 1)βE

[
θ2

1{|θ |>y(t+1)−β/2}
]
= o
(
tβ
)
,

that is, condition (4) holds. If μ < ∞ an application of Proposition 2.1 yields

∑
k≥0 Xk+1(ut − Sk)1{Sk≤ut}√

(2μ)−1tβ+1

f.d.⇒ Vβ(u),

the limiting process being a centered Gaussian process with independent values (white noise).

Example 3.5. Let X(t) = S2((t + 1)−α), P{ξ > t} ∼ t−α and assume that X and ξ are indepen-

dent. Then f (u,w) = E[X(u)X(w)] is uniformly regularly varying of index −α in strips in R2
+

with limit function C(u,w) = (u ∨ w)−α . (7) follows from

E
[
X(t)2

1{|X(t)|>y}
]
= (t + 1)−αE

[
S2(1)2

1{|S2(1)|>y(t+1)α/2}
]
= o
(
t−α
)

for all y > 0. Thus, Proposition 2.2 (in which we take u(t) ≡ 1) applies and yields
∑

k≥0 Xk+1(ut − Sk)1{Sk≤ut}
f.d.⇒ Zα,−α(u).
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4. Proofs of main results

4.1. Proofs of Propositions 2.1 and 2.2

For a σ -algebra G we shall write EG[·] for E[·|G]. Recalling that ν(t) = inf{k ∈ N0 : Sk > t},
t ≥ 0, we define the renewal function U(t) := E[ν(t)] =

∑
k≥0 P{Sk ≤ t}, t ≥ 0.

Proof of Proposition 2.1. We only investigate the case where C(u,w) > 0 for some u,w > 0,

u 	= w. Modifications needed in the case where C(u,w) = 0 for all u,w > 0, u 	= w should be

clear from the subsequent presentation.

Note that relation (3) ensures continuity of the function u �→ C(u,u + w) on (0,∞) for each

w > 0 (an accurate proof of a similar fact is given in [51], pages 2–3). From the Cauchy–Schwarz

inequality, we deduce that

∣∣f (u,w)
∣∣≤ 2−1

(
v(u) + v(w)

)
, u,w ≥ 0, (13)

and hence

C(u − y,w − y) ≤ 2−1
(
(u − y)β + (w − y)β

)
. (14)

Consequently, as β > −1,

∫ u

0

C(u − y,w − y)dy < ∞, 0 < u ≤ w.

Since (u,w) �→ C(u,w) is positive semidefinite, so is (u,w) �→
∫ u

0 C(u− y,w − y)dy, 0 < u ≤
w. Hence the process Vβ does exist.

Without loss of generality we can and do assume that X is centered, for it is the case for

X(t)−h(t). According to the Cramér–Wold device (see Theorem 29.4 in [5]) it suffices to prove

that
∑m

j=1 αj

∑
k≥0 Xk+1(uj t − Sk)1{Sk≤uj t}√

μ−1tv(t)

d→
m∑

j=1

αjVβ(uj ) (15)

for all m ∈N, all α1, . . . , αm ∈R and all 0 < u1 < · · · < um < ∞. Note that the random variable∑m
j=1 αjVβ(uj ) has a normal law with mean 0 and variance

(1 + β)−1
m∑

j=1

α2
ju

1+β
j + 2

∑

1≤i<j≤m

αiαj

∫ ui

0

C(ui − y,uj − y)dy =: D(u1, . . . , um). (16)

Define the σ -algebras F0 := {∅,} and Fk := σ((X1, ξ1), . . . , (Xk, ξk)), k ∈ N and observe

that

EFk

[
m∑

j=1

αj1{Sk≤uj t}Xk+1(uj t − Sk)

]
= 0.
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Thus, in order to prove (15), one may use the martingale central limit theorem (Corollary 3.1

in [15]), whence it suffices to verify

∑

k≥0

EFk

[
Z2

k+1,t

] P→ D(u1, . . . , um), (17)

and
∑

k≥0

EFk

[
Z2

k+1,t1{|Zk+1,t |>y}
] P→ 0 (18)

for all y > 0, where

Zk+1,t :=
∑m

j=1 αj1{Sk≤uj t}Xk+1(uj t − Sk)√
μ−1tv(t)

, k ∈N0, t > 0.

Proof of (18). In view of the inequality

(a1 + · · · + am)2
1{|a1+···+am|>y} ≤

(
|a1| + · · · + |am|

)2
1{|a1|+···+|am|>y}

≤ m2
(
|a1| ∨ · · · ∨ |am|

)2
1{m(|a1|∨···∨|am|)>y} (19)

≤ m2
(
a2

11{|a1|>y/m} + · · · + a2
m1{|am|>y/m}

)

which holds for a1, . . . , am ∈ R, it is sufficient to show that

∑

k≥0

1{Sk≤t}EFk

[
Xk+1(t − Sk)

2

μ−1tv(t)
1{|Xk+1(t−Sk)|>y

√
μ−1tv(t)}

]
P→ 0 (20)

for all y > 0. We can take t instead of uj t here because v is regularly varying and y > 0 is

arbitrary.

Without loss of generality we assume that the function t �→ tv(t) is increasing, for we could

otherwise work with (β + 1)
∫ t

0 v(y)dy (see Lemma 5.2(c)). By Markov’s inequality and the

aforementioned monotonicity relation (20), follows if we can prove that

lim
t→∞

1

tv(t)

∫

[0,t]
vy(t − x)dU(x) = 0 (21)

for all y > 0, where the definition of vy is given in (4). Recalling that μ < ∞ and that v is locally

bounded, measurable and regularly varying at infinity of index β ∈ (−1,∞) an application of

Lemma 5.11 with r1 = 0 and r2 = 1 yields

∫

[0,t]
v(t − x)dU(x) ∼ const tv(t).

Since, according to (4), vy(t) = o(v(t)), (21) follows from Lemma 5.10(b).
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Proof of (17). It can be checked that

∑

k≥0

EFk

[
Z2

k+1,t

]
=
∑m

j=1 α2
j

∑
k≥0 1{Sk≤uj t}v(uj t − Sk)

μ−1tv(t)

+
2
∑

1≤i<j≤m αiαj

∑
k≥0 1{Sk≤ui t}f (ui t − Sk, uj t − Sk)

μ−1tv(t)
.

We shall prove that

∑
k≥0 1{Sk≤ui t}v(ui t − Sk)

μ−1tv(t)
=
∫
[0,ui ] v((ui − y)t)dν(ty)

μ−1tv(t)

P→
u

1+β
i

1 + β
(22)

and

∑
k≥0 1{Sk≤ui t}f (ui t − Sk, uj t − Sk)

μ−1tv(t)
=
∫
[0,ui ] f ((ui − y)t, (uj − y)t)dν(ty)

μ−1tv(t)
(23)

P→
∫ ui

0

C(ui − y,uj − y)dy

for all 1 ≤ i < j ≤ m.

Fix any ui < uj and pick ε ∈ (0, ui). By the functional strong law of large numbers (Theorem 4

in [13])

lim
t→∞

sup
y∈[0,ui ]

∣∣∣∣
ν(ty)

μ−1t
− y

∣∣∣∣= 0 a.s.

Also,

lim
t→∞

v((ui − y)t)

v(t)
= (ui − y)β

uniformly in y ∈ [0, ui − ε] by Lemma 5.2(a), and

lim
t→∞

f ((ui − y)t, (uj − y)t)

v(t)
= C(ui − y,uj − y)

uniformly in y ∈ [0, ui − ε], by virtue of (3). Two applications of Lemma 5.4(a) (with Xt (y) =
ν(ty)/(μ−1t)) yield

∫

[0,ui−ε]

v((ui − y)t)

v(t)
d
ν(ty)

μ−1t

P→
∫ ui−ε

0

(ui − y)β dy =
u

1+β
i − ε1+β

1 + β

and
∫

[0,ui−ε]

f ((ui − y)t, (uj − y)t)

v(t)
d
ν(ty)

μ−1t

P→
∫ ui−ε

0

C(ui − y,uj − y)dy.
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Observe that since ν(y) is a.s. increasing, so is Xt (y).

As ε ↓ 0, the right-hand sides of the last two equalities converge to (1 + β)−1u
1+β
i and∫ u1

0 C(ui − y,uj − y)dy, respectively. Therefore, for (22) and (23) to hold it is sufficient (see

Lemma 5.1) that

lim
ε↓0

lim sup
t→∞

P

{∫
(ui−ε,ui ] v(t (ui − y))dν(ty)

tv(t)
> δ

}
= 0

and

lim
ε↓0

lim sup
t→∞

P

{ |
∫
(ui−ε,ui ] f (t (ui − y), t (uj − y))dν(ty)|

tv(t)
> δ

}
= 0

for all δ > 0. By Markov’s inequality, it thus suffices to check that

lim
ε↓0

lim sup
t→∞

∫
(ui−ε,ui ] v((ui − y)t)dU(ty)

tv(t)
= 0 (24)

and

lim
ε↓0

lim sup
t→∞

∫
(ui−ε,ui ] |f ((ui − y)t, (uj − y)t)|dU(ty)

tv(t)
= 0, (25)

respectively. Changing the variable s = ui t and recalling that v is regularly varying of index

β ∈ (−1,∞), we apply Lemma 5.11 with r1 = 1 − εu−1
i and r2 = 1 to infer

∫

((ui−ε)t,ui t]
v(ui t − y)dU(y) =

∫

((1−εu−1
i )s,s]

v(s − y)dU(y)

∼
(

ε

ui

)1+β
sv(s)

(1 + β)μ
∼

ε1+β tv(t)

(1 + β)μ
.

Using (13), we further obtain

∫

((ui−ε)t,ui t]

∣∣f (ui t − y,uj t − y)
∣∣dU(y)

≤
1

2

∫

((ui−ε)t,ui t]
v(ui t − y)dU(y) +

1

2

∫

((ui−ε)t,ui t]
v(uj t − y)dU(y)

∼
1

2μ(1 + β)

(
ε1+β + (uj − ui + ε)1+β − (uj − ui)

1+β
)
tv(t),

where for the second integral we have changed the variable s = uj t , invoked Lemma 5.11 with

r1 = (ui − ε)u−1
j and r2 = uiu

−1
j and then got back to the original variable t . These relations

entail both, (24) and (25). The proof of Proposition 2.1 is complete. �

In what follows, F denotes the σ -algebra generated by (Sn)n∈N0
.
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Proof of Proposition 2.2. As in the previous proof, we can and do assume that X is centered. Put

r(t) := v(t)/P{ξ > t}. The process Zα,β is well-defined by Lemma 5.7. In view of the Cramér–

Wold device, it suffices to check that

1
√

r(t)

m∑

j=1

γjY(uj t)
d→

m∑

j=1

γjZα,β(uj ) (26)

for all γ1, . . . , γm ∈ R. Since C(y, y) = yβ , then, given W←
α , the random variable∑m

j=1 γjZα,β(uj ) is centered normal with variance

Dα,β(u1, . . . , um) :=
m∑

j=1

γ 2
j

∫

[0,uj ]
(uj − y)β dW←

α (y)

(27)

+ 2
∑

1≤i<j≤m

γiγj

∫

[0,ui ]
C(ui − y,uj − y)dW←

α (y).

Equivalently,

E

[
exp

(
iz

m∑

j=1

γjZα,β(uj )

)]
= E
[
exp
(
−Dα,β(u1, . . . , um)z2/2

)]
, z ∈R,

where here and throughout the paper, i denotes the imaginary unit. Hence, according to

Lemma 5.6, (26) is a consequence of

∑

k≥0

EF

[
Z2

k+1,t

] d→ Dα,β(u1, . . . , um), (28)

where Zk+1,t := (r(t))−1/2
∑m

j=1 γjXk+1(uj t − Sk)1{Sk≤uj t}, and

∑

k≥0

EF

[
Z2

k+1,t1{|Zk+1,t |>y}
] P→ 0 (29)

for all y > 0. Since r(t) is regularly varying at ∞ of index β + α we have

lim sup
t→∞

1

r(t)

∫

(ρz,z]
v
(
t (z − y)

)
dU(ty)

≤ lim
t→∞

r(tz)

r(t)
lim sup
t→∞

1

r(tz)

∫

(ρtz,tz]
v(tz − y)dU(y)

= zβ+α lim sup
t→∞

1

r(t)

∫

(ρt,t]
v(t − y)dU(y)
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for all z > 0. Hence, the relation

lim
ρ↑1

lim sup
t→∞

1

r(t)

∫

(ρz,z]
v
(
t (z − y)

)
dU(ty) = 0 (30)

for all z > 0 is an immediate consequence of Lemma 5.12(a). Using the representation

∑

k≥0

EF

[
Z2

k+1,t

]
=

1

r(t)

∫

[0,um]

(
m∑

j=1

γ 2
j v
(
(uj − y)t

)
1[0,uj ](y)

+ 2
∑

1≤i<j≤m

γiγjf
(
(ui − y)t, (uj − y)t

)
1[0,ui ](y)

)
dν(ty)

we further conclude that (28) follows from Lemma 5.8 with λ1 = 0 (observe that conditions (67)

and (68) are then not needed and (65) coincides with (30)). In view of (19), (29) is a consequence

of

1

r(t)

∑

k≥0

1{Sk≤t}EF

[(
Xk+1(t − Sk)

)2
1{|Xk+1(t−Sk)|>y

√
r(t)}
] P→ 0 (31)

for all y > 0. To prove (31) we assume, without loss of generality, that the function r is in-

creasing, for in the case β = −α it is asymptotically equivalent to an increasing function u(t)

by assumption, while in the case β > −α the existence of such a function is guaranteed by

Lemma 5.2(b) because r is then regularly varying of positive index. Using this monotonicity

and recalling that we are assuming that h ≡ 0, whence vy(t) = E[(X(t))2
1{|X(t)|>y

√
r(t)}], we

conclude that it is sufficient to check that

E

[∑

k≥0

1{Sk≤t}EF

[(
Xk+1(t − Sk)

)2
1{|Xk+1(t−Sk)|>y

√
r(t−Sk)}

]]

=
∫

[0,t]
vy(t − x)dU(x) = o

(
r(t)
)

for all y > 0, by Markov’s inequality. In view of (7) the latter is an immediate consequence of

Lemma 5.12(b) with φ1(t) = vy(t), φ(t) = v(t), q(t) = u(t) and γ = β . The proof of Proposi-

tion 2.2 is complete. �

4.2. Proofs of Theorems 2.4 and 2.5

For the proof of Theorem 2.4, we need two auxiliary results, Lemma 4.1 and Lemma 4.2. Re-

placing the denominator in (5) by a function which grows faster leads to weak convergence of

finite-dimensional distributions to zero. However, this result holds without the regular variation

assumptions of Proposition 2.1.

Lemma 4.1. Assume that:

• μ = Eξ < ∞;
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• either

lim
t→∞

∫ t

0

v(y)dy = ∞ and lim
t→∞

v(t)∫ t

0 v(y)dy
= 0

and there exists a monotone function u such that v(t) ∼ u(t) as t → ∞, or v is directly

Riemann integrable (dRi) on [0,∞).

Then

Y(ut) −
∑

k≥0 h(ut − Sk)1{Sk≤ut}

s(t)

f .d.⇒ 0, t → ∞ (32)

for any positive function s(t) regularly varying at ∞ which satisfies

lim
t→∞

s(t)2
/∫ t

0

v(y)dy = ∞.

Proof. By Chebyshev’s inequality and the Cramér–Wold device, it suffices to prove that

s(t)−2E

[(
Y(t) −

∑

k≥0

h(t − Sk)1{Sk≤t}

)2]
→ 0.

The expectation above equals
∫
[0,t] v(t − y)dU(y). If v is dRi, the latter integral is bounded (this

is clear from the key renewal theorem when the law of ξ is nonlattice while in the lattice case, it

follows from Lemma 8.2 in [24]). If v is non-integrable and u is a monotone function such that

v(t) ∼ u(t), Lemma 5.10(a) with r1 = 0 and r2 = 1 yields

∫

[0,t]
v(t − y)dU(y) ∼

∫

[0,t]
u(t − y)dU(y).

Modifying u if needed in the right vicinity of zero we can assume that u is monotone and locally

integrable. Since u ∼ v, we have limt→∞(u(t)/
∫ t

0 u(y)dy) = 0 as the corresponding relation

holds for v, and an application of Lemma 5.9 applied to φ = u with r1 = 0 and r2 = 1 gives

∫

[0,t]
u(t − y)dU(y) ∼

1

μ

∫ t

0

u(y)dy

and again using u ∼ v we obtain

∫ t

0

u(y)dy ∼
∫ t

0

v(y)dy = o
(
s(t)2
)
,

where the last equality follows from the assumption on s. The proof of Lemma 4.1 is complete. �

Lemma 4.2. Assume that h is eventually monotone and eventually nonnegative and that the law

of ξ belongs to the domain of attraction of an α-stable law, α ∈ (1,2] (i.e., relation (11) holds).
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Then
∑

k≥0 h(ut − Sk)1{Sk≤ut} − (1/μ)
∫ ut

0 h(y)dy

r(t)

f .d.⇒ 0, t → ∞

for any positive function r(t) regularly varying at ∞ of positive index satisfying

lim
t→∞

r(t)

c(t)h(t)
= ∞,

where c is the same as in (11).

Proof. Using the Cramér–Wold device and taking into account the regular variation of r , it

suffices to prove that

∫
[0,t] h(t − y)d(ν(y) − y/μ)

r(t)
=
∑

k≥0 h(t − Sk)1{Sk≤t} − (1/μ)
∫ t

0 h(y)dy

r(t)

P→ 0. (33)

By assumption, there exists a t0 > 0 such that h is monotone and nonnegative on [t0,∞). Let

h∗ ∈ D be an arbitrary function which coincides with h on [t0,∞). Then, for t > t0,
∣∣∣∣
∫

[0,t]

(
h(t − y) − h∗(t − y)

)
dν(y)

∣∣∣∣ =
∣∣∣∣
∫

(t−t0,t]

(
h(t − y) − h∗(t − y)

)
dν(y)

∣∣∣∣

≤ sup
0≤y≤t0

∣∣h(y) − h∗(y)
∣∣(ν(t) − ν(t − t0)

)

d
≤ sup

0≤y≤t0

∣∣h(y) − h∗(y)
∣∣ν(t0),

where Z1

d
≤ Z2 means that P{Z1 > x} ≤ P{Z2 > x} for all x ∈ R, and the last inequality in the

displayed formula follows from the distributional subadditivity of ν. Analogously,
∣∣∣∣
∫

[0,t]

(
h(t − y) − h∗(t − y)

)
dy

∣∣∣∣≤ sup
0≤y≤t0

∣∣h(y) − h∗(y)
∣∣t0.

Hence while proving (33), we can replace h with h∗. Choosing t0 large enough we make h∗

monotone and nonnegative on [0,∞). Furthermore, if h∗ is increasing on [t0,∞), we set h∗(t) =
0 for t ∈ [0, t0) thereby ensuring that h∗(0) = 0.

Case where h∗ is increasing. Integration by parts reveals that it is enough to prove

1

r(t)

∫

[0,1]

(
ν(t) − ν

(
t (1 − y)−

)
− μ−1ty

)
d
(
−h∗(t (1 − y)

)) P→ 0. (34)

By monotonicity, h∗(t (1 − y))/h∗(t) ≤ 1 for all y ∈ [0,1]. Hence, limt→∞
h∗(t (1−y))
r(t)/c(t)

= 0. For

sufficiently large t , define finite measures ρt on [0,1] by

ρt

(
[0, a]
)
=

r(t)/c(t) − h∗(t (1 − a))

r(t)/c(t)
, a ∈ [0,1].
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Then the ρt converge weakly to δ0 as t → ∞. Applying the continuous mapping V : D →
D[0,1] with V(f (·)) = f (1) − f ((1 − ·)−) to (11) we obtain

ν(t) − ν(t (1 − y)−) − μ−1ty

μ−1−1/αc(t)
⇒ Sα(1) − Sα

(
(1 − y)−

)

in the J1- or M1-topology on D[0,1]. Invoking Lemma 5.4(b) yields (34), since (Sα(1) −
Sα((1 − y)−))y∈[0,1] is a.s. continuous at zero and Sα(1) − Sα(1−) = 0 a.s.

Case where h∗ is decreasing. Integration by parts reveals that we have to prove

ν(t) − μ−1t

r(t)
h∗(t)

P→ 0 and

(35)
1

r(t)

∫

[0,t]

(
ν(t) − ν

(
(t − y)−

)
−

y

μ

)
d
(
−h∗(y)

) P→ 0.

The first of these is a consequence of the assumption limt→∞ r(t)/(c(t)h(t)) = ∞ and (11).

Arguing as in the proof of Theorem 2.7 on pages 2160–2161 in [22] (note that g(t) in [22]

corresponds to μ−1−1/αc(t) in this paper), we observe that the second relation in (35) follows

once we can check that

lim
t→∞

∫
[t0,t] y

1/α−δ d(−h∗(y))

t1/α−δr(t)/c(t)
= 0

for some δ ∈ (0,1/α) and t0 = t0(δ) > 0 specified in Lemma 3.2 of [22] (recall that α = 2

corresponds to the case where the limit process in (11) is a Brownian motion). Pick δ to further

satisfy δ < γ , where γ is the index of regular variation of r . By Lemma 5.3, c(t) is regularly

varying at ∞ of index 1/α. Hence, the function t �→ t1/α−δr(t)/c(t) is regularly varying at ∞
of the positive index γ − δ which particularly implies limt→∞ t1/α−δr(t)/c(t) = ∞. Integration

by parts yields

∫
[t0,t] y

1/α−δ d(−h∗(y))

t1/α−δr(t)/c(t)
=

−t1/α−δh∗(t)

t1/α−δr(t)/c(t)

+
t
1/α−δ

0 h∗(t0)

t1/α−δr(t)/c(t)
+
(

1

α
− δ

)∫ t

t0
y1/α−δ−1h∗(y)dy

t1/α−δr(t)/c(t)
.

As t → ∞, the first two terms converge to zero. As for the third, observe that for any d > 0 there

exists t (d) such that h∗(t) ≤ d−1r(t)/c(t) = d−1tγ−1/αℓ(t) for all t ≥ t (d). With this at hand,

we infer

∫ t

t0
y1/α−δ−1h∗(y)dy

t1/α−δr(t)/c(t)
=
∫ t (d)

t0
y1/α−δ−1h∗(y)dy

t1/α−δr(t)/c(t)
+
∫ t

t (d)
y1/α−δ−1h∗(y)dy

t1/α−δr(t)/c(t)

≤ o(1) + d−1

∫ t

t (d)

yγ−δ−1ℓ(y)dy/tγ−δℓ(t) → d−1(γ − δ + 1)−1
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by Lemma 5.2(c). Letting d → ∞ completes the proof of Lemma 4.2. �

Proof of Theorem 2.4.

Case p = 0: According to Proposition 2.1, (5) holds which is equivalent to

Y(ut) −
∑

k≥0 h(ut − Sk)1{Sk≤ut}√∫ t

0 v(y)dy

f.d.⇒

√
1 + β

μ
Vβ(u) (36)

because v is regularly varying at ∞ of index β ∈ (−1,∞).

Since (
∫ t

0 v(y)dy)1/2 is regularly varying at ∞ of positive index 1
2
(1 + β) and

lim
t→∞

√∫ t

0 v(y)dy

c(t)|h(t)|
= +∞,

Lemma 4.24 (with r(t) =
√∫ t

0 v(y)dy) applies and yields

∑
k≥0 h(ut − Sk)1{Sk≤ut} − μ−1

∫ ut

0 h(y)dy
√∫ t

0
v(y)dy

f.d.⇒ 0.

Summing the last relation and (36) finishes the proof for this case because

∫ t

0

v(y)dy ∼
∫ t

0

v(y)dy + c(t)2h(t)2.

Case p > 0: Using Theorem 1.1 in [21] when h(t) is eventually nondecreasing and Theo-

rem 2.7 in [22] when h(t) is eventually nonincreasing, we infer

∑
k≥0 h(ut − Sk)1{Sk≤ut} − μ−1

∫ ut

0 h(y)dy

c(t)h(t)

f.d.⇒ μ−(α+1)/α

∫

[0,u]
(u − y)ρ dSα(y). (37)

Subcase p = 1: By Lemma 5.3, c(t) is regularly varying at ∞ of index 1/α. Hence, c(t)h(t)

is regularly varying of positive index. If v is dRi, an application of Lemma 4.1 (with s(t) =
c(t)h(t)) yields

Y(ut) −
∑

k≥0 h(ut − Sk)1{Sk≤ut}

c(t)h(t)

f.d.⇒ 0. (38)

If limt→∞
∫ t

0 v(y)dy = ∞, then the assumption limt→∞(c(t)2h(t)2/
∫ t

0 v(y)dy) = ∞ implies

that limt→∞(v(t)/
∫ t

0 v(y)dy) = 0. To see this, we can assume without loss of generality that v is

4Lemma 4.2 requires that h be eventually monotone and eventually nonnegative. If h is eventually nonpositive we simply

replace it with −h.
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monotone. If v is decreasing, then the claimed convergence follows immediately. Hence, consider

the case where v is increasing. Since c(t)2h(t)2 is regularly varying and
∫ t

0 v(y)dy ≥ v(t/2)t/2,

we conclude that there exists an a > 0 such that limt→∞ ta/v(t) = ∞. Let a∗ denote the infi-

mum of these a. Then, there exists ε > 0 such that ta∗+ε/v(t) → ∞ whereas ta∗+ε−1/v(t) → 0.

Consequently,

v(t)∫ t

0 v(y)dy
≤

v(t)∫ t

t/2 v(y)dy
≤

2v(t)

tv(t/2)
= 2a∗+ε v(t)

ta∗+ε

(t/2)a∗+ε−1

v(t/2)
→ 0

because both factors tend to zero by our choice of ε. Invoking Lemma 4.1 again allows us to

conclude that (38) holds in this case, too. Summing (37) and (38) finishes the proof for this

subcase because

c(t)2h(t)2 ∼
∫ t

0

v(y)dy + c(t)2h(t)2.

Subcase p ∈ (0,1): We only give a proof in the case σ 2 < ∞, the other cases being similar.

Relation (12) then reads

Y(ut) − μ−1
∫ ut

0 h(y)dy

σ
√

th(t)

f.d.⇒ c1Vβ(u) + c2

∫ u

0

(u − y)ρ dSα(y), (39)

where c1 :=
√

(1−p)(1+β)
pμ

and c2 := μ−(α+1)/α . Write

Y(ut) − μ−1
∫ ut

0 h(y)dy

σ
√

th(t)
=

Y(ut) −
∑

k≥0 h(ut − Sk)1{Sk≤ut}

σ
√

th(t)

+
∑

k≥0 h(ut − Sk)1{Sk≤ut} − μ−1
∫ ut

0 h(y)dy

σ
√

th(t)

=: At (u) + Bt (u).

According to Proposition 2.1, (36) holds which is equivalent to

At (u)
f.d.⇒ c1Vβ(u).

From (37), we already know that

Bt (u)
f.d.⇒ c2

∫

[0,u]
(u − y)ρ dS2(y). (40)

By the Cramér–Wold device and Lévy’s continuity theorem, in order to prove (39) it suffices to

check that, for any m ∈ N, any real numbers α1, . . . , αm, β1, . . . , βm, any 0 < u1 < . . . < um < ∞
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and any w,z ∈R,

lim
t→∞

E

[
exp

(
iw

m∑

j=1

αjAt (uj ) + iz

m∑

r=1

βrBt (ur)

)]

= E

[
exp

(
iwc1

m∑

j=1

αjVβ(uj )

)]
E

[
exp

(
izc2

m∑

r=1

βr

∫

[0,ur ]
(ur − y)ρ dS2(y)

)]
(41)

= exp
(
−D(u1, . . . , um)c2

1w
2/2
)
E

[
exp

(
izc2

m∑

r=1

βr

∫

[0,ur ]
(ur − y)ρ dS2(y)

)]

with D(u1, . . . , um) defined in (16).

The idea behind the subsequent proof is that while the Bt is F -measurable, the finite-

dimensional distributions of the At converge weakly conditionally on F . To make this precise,

we write

EF

[
exp

(
iw

m∑

j=1

αjAt (uj ) + iz

m∑

r=1

βrBt (ur)

)]

= exp

(
iz

m∑

r=1

βrBt (ur )

)
EF

[
exp

(
iw

m∑

j=1

αjAt (uj )

)]
.

In view of (40)

exp

(
iz

m∑

r=1

βrBt (ur )

)
d→ exp

(
izc2

m∑

r=1

βr

∫

[0,ur ]
(ur − y)ρ dS2(y)

)
.

Since X and ξ are assumed independent, relations (17) and (18) read

∑

k≥0

EF

[
Z2

k+1,t

] P→ D(u1, . . . , um)

and

∑

k≥0

EF

[
Z2

k+1,t1{|Zk+1,t |>y}
] P→ 0

for all y > 0, respectively. With these at hand and noting that

y(t) :=
√

μ−1tv(t)

σ
√

th(t)
→ c1,
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we infer

EF

[
exp

(
iw

m∑

j=1

αjAt (uj )

)]
= EF

[
exp

(
iwy(t)

∑

k≥0

Zk+1,t

)]

d→ exp
(
−D(u1, . . . , um)c2

1w
2/2
)

by formula (55) of Lemma 5.6. Since the right-hand side of the last expression is non-random,

Slutsky’s lemma implies

exp

(
iz

m∑

r=1

βrBt (ur)

)
EF

[
exp

(
iw

m∑

j=1

αjAt (uj )

)]

d→ exp

(
izc2

m∑

r=1

βr

∫

[0,ur ]
(ur − y)ρ dS2(y)

)
exp
(
−D(u1, . . . , um)c2

1w
2/2
)
.

Invoking the Lebesgue dominated convergence theorem completes the proof of (41). �

Proof of Theorem 2.5.

Case q = 0: According to Proposition 2.2

√
P{ξ > t}

v(t)

(
Y(ut) −

∑

k≥0

h(ut − Sk)1{Sk≤ut}

)
f.d.⇒ Zα,β(u). (42)

It remains to show that
√
P{ξ > t}

v(t)

∑

k≥0

h(ut − Sk)1{Sk≤ut}
f.d.⇒ 0.

Invoking the Cramér–Wold device, Markov’s inequality and the regular variation of the normal-

ization factor, we conclude that it is enough to prove that

√
P{ξ > t}

v(t)
E

[∑

k≥0

∣∣h(t − Sk)
∣∣1{Sk≤t}

]
=

√
P{ξ > t}

v(t)

∫

[0,t]

∣∣h(t − x)
∣∣dU(x) → 0. (43)

This follows immediately from Lemma 5.12(b) with φ1(t) = |h(t)|, φ(t) =
√

v(t)P{ξ > t}, γ =
(β − α)/2 and q(t) =

√
u(t) for u(t) defined in Proposition 2.2. Note that φ1 = o(φ) in view of

the assumption q = 0. The proof for this case is complete because

P{ξ > t}√
v(t)P{ξ > t} + h(t)2

∼

√
P{ξ > t}

v(t)
.
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Case q = 1: Using Theorem 1.1 in [21] when ρ > 05 and Theorem 2.9 in [22] when ρ ∈
[−α,0], we infer

P{ξ > t}
h(t)

∑

k≥0

h(ut − Sk)1{Sk≤ut}
f.d.⇒
∫

[0,u]
(u − y)ρ dW←

α (y).

It remains to show that

P{ξ > t}
h(t)

(
Y(ut) −

∑

k≥0

h(ut − Sk)1{Sk≤ut}

)
f.d.⇒ 0.

Appealing to Markov’s inequality and the Cramér–Wold device we conclude that it suffices to

prove

(
P{ξ > t}

h(t)

)2

E

[(
Y(ut) −

∑

k≥0

h(ut − Sk)1{Sk≤ut}

)2]

=
(
P{ξ > t}

h(t)

)2 ∫

[0,t]
v(t − y)dU(y) → 0.

This immediately follows from Lemma 5.12(b) with φ1(t) = v(t), φ(t) = h(t)2/P{ξ > t}, γ =
2ρ + α and q(t) = w(t)2. Note that φ1 = o(φ) in view of the assumption q = 1. The proof for

this case is complete because (trivially)

P{ξ > t}√
v(t)P{ξ > t} + h(t)2

∼
P{ξ > t}

h(t)
.

Case q ∈ (0,1): Put

Āt (u) :=

√
P{ξ > t}

v(t)

∑

k≥0

(
Xk+1(ut − Sk) − h(ut − Sk)

)
1{Sk≤ut},

B̄t (u) :=

√
P{ξ > t}

v(t)

∑

k≥0

h(ut − Sk)1{Sk≤ut}

and

Aα,β(u) := q1/2(1 − q)−1/2

∫

[0,u]
(u − y)(β−α)/2 dW←

α (y).

5In Theorem 1.1 of [21] functional limit theorems were proved under the assumption that h is eventually nondecreasing.

The latter assumption is not needed for weak convergence of finite-dimensional distributions which can be seen by

mimicking the proof of Theorem 2.9 in [22].
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We shall prove that

m∑

j=1

γj

(
Āt (uj ) + B̄t (uj )

) d→
m∑

j=1

γj

(
Zα,β(uj ) + Aα,β(uj )

)

for any m ∈ N, any γ1, . . . , γm ∈ R and any 0 < u1 < · · · < um < ∞.

Set

Z̄k+1,t :=
√
P{ξ > t}/v(t)

m∑

j=1

γj

(
Xk+1(uj t − Sk) − h(uj t − Sk)

)
1{Sk≤uj t}, k ∈N0, t > 0.

Then
∑m

j=1 γj Āt (uj ) =
∑

k≥0 Z̄k+1,t and

∑

k≥0

EF

[
Z̄2

k+1,t

]
=

P{ξ > t}
v(t)

∫

[0,um]

(
m∑

j=1

γ 2
j v
(
t (uj − y)

)
1[0,uj ](y)

+ 2
∑

1≤r<l≤m

γrγlf
(
t (ur − y), t (ul − y)

)
1[0,ur ](y)

)
dν(ty).

With this at hand, we write

EF

[
exp

(
iz

m∑

j=1

γj

(
Āt (uj ) + B̄t (uj )

)
)]

= exp

(
iz

m∑

j=1

γj B̄t (uj )

)
EF

[
exp

(
iz
∑

k≥0

Z̄k+1,t

)]

(44)

= exp

(
iz

m∑

j=1

γj B̄t (uj )

)(
EF

[
exp

(
iz
∑

k≥0

Z̄k+1,t

)]
− exp

(
−
∑

k≥0

EF

[
Z̄2

k+1,t

]
z2/2

))

+ exp

(
iz

m∑

j=1

γj B̄t (uj ) −
∑

k≥0

EF

[
Z̄2

k+1,t

]
z2/2

)

for z ∈R.

By formula (66) of Lemma 5.8 (with b = q−1(1 − q))

λ1

m∑

j=1

γj B̄t (uj ) + λ2

∑

k≥0

EF

[
Z̄2

k+1,t

]

= λ1

√
P{ξ > t}

v(t)

∫

[0,um]

m∑

j=1

γjh
(
t (uj − y)

)
1[0,uj ](y)dν(ty)
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+ λ2
P{ξ > t}

v(t)

∫

[0,um]

(
m∑

j=1

γ 2
j v
(
t (uj − y)

)
1[0,uj ](y) (45)

+ 2
∑

1≤r<l≤m

γrγlf
(
t (ur − y), t (ul − y)

)
1[0,ur ](y)

)
dν(ty)

d→ λ1

m∑

j=1

γjAα,β(uj ) + λ2Dα,β(u1, . . . , um)

for any real λ1 and λ2 with Dα,β(u1, . . . , um) defined in (27). Hence,

exp

(
iz

m∑

j=1

γj B̄t (uj ) −
∑

k≥0

EF [Z̄2
k+1,t |z

2/2

)

d→ exp

(
iz

m∑

j=1

γjAα,β(uj ) − Dα,β(u1, . . . , um)z2/2

)

for each z ∈ R, and thereupon

lim
t→∞

E

[
exp

(
iz

m∑

j=1

γj B̄t (uj ) −
∑

k≥0

EF

[
Z̄2

k+1,t

]
z2/2

)]

= E

[
exp

(
iz

m∑

j=1

γjAα,β(uj ) − Dα,β(u1, . . . , um)z2/2

)]

= E

[
exp

(
iz

m∑

j=1

γj

(
Aα,β(uj ) + Zα,β(uj )

)
)]

by Lebesgue’s dominated convergence theorem, the second equality following from the fact that∑m
j=1 γjZα,β(uj ) is centered normal with variance Dα,β(u1, . . . , um).

According to Formula (57) of Lemma 5.6

EF

[
exp

(
iz
∑

k≥0

Z̄k+1,t

)]
− exp

(
−
∑

k≥0

EF

[
Z̄2

k+1,t

]
z2/2

)
P→ 0.

Hence the first summand on the right-hand side of (44) tends to zero in probability if we verify

that

∑

k≥0

EF

[
Z̄2

k+1,t

] d→ Dα,β(u1, . . . , um) (46)
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and
∑

k≥0

EF

[
Z̄2

k+1,t1{|Z̄k+1,t |>y}
] P→ 0 (47)

for all y > 0. Relation (46) follows from (45) with λ1 = 0 and λ2 = 1. In view of the inequality

(19) relation (47) is implied by (31) which has already been checked. This finishes the proof for

this case because limt→∞
P{ξ>t}v(t)

P{ξ>t}v(t)+h(t)2 = 1 − q ensures that

√
1 − q

√
P{ξ > t}

v(t)
∼

P{ξ > t}√
P{ξ > t}v(t) + h(t)2

.

The proof of Theorem 2.5 is complete. �

4.3. Proofs of Corollary 2.6 and Proposition 2.7

Proof of Corollary 2.6. We first show that the function f (u,w) = E[X(u)X(w)] −E[X(u)] ×
E[X(w)] is uniformly regularly varying in strips in R2

+ of index β with limit function C.

The assumption q < 1 ensures

lim
t→∞

v(t)/h(t)2 = ∞,

hence E[X(t)2] ∼ v(t), in particular, v(t) is regularly varying of index β which must be nonneg-

ative. Further, limt→∞ E[X(ut)]E[X(wt)]/v(t) = 0 because

E[X(ut)]E[X(wt)]
v(t)

≤
(E[X(wt)])2

v(wt)

v(wt)

v(t)

for 0 < u < w by monotonicity. More importantly, limt→∞ E[X(ut)X(wt)]/v(t) = C(u,w),

and the function C is continuous in R2
+ (see Lemma 2 in [9]) because, for each t > 0, the function

(u,w) �→ E[X(ut)X(wt)] is increasing in each variable. Recall that convergence of monotone

functions to a continuous limit is necessarily locally uniform. Therefore, in both limit relations

above the convergence is locally uniform in R2
+. Hence

lim
t→∞

f (ut,wt)

v(t)
= C(u,w)

locally uniformly in R2
+ which entails the uniformity in strips, as desired.

Recall that β ≥ 0 and note that whenever h is regularly varying of index ρ we must have ρ ≥ 0.

Putting

Qα,ρ(u) :=
∫

[0,u]
(u − y)ρ dW←

α (y), u ≥ 0

we observe that Qα,ρ := (Qα,ρ(u))u≥0 is a.s. continuous on [0,∞) with Qα,ρ(0) = 0 (in the

case ρ = 0 the process is just W←
α and the random function u �→ W←

α (u) is a.s. continuous as
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the generalized inverse of the a.s. strictly increasing random function t �→ Wα(t)). Now we check

that, by continuity, we can define Zα,β(0) to be equal to 0. To this end, observe that

E
[
Zα,β(u)2

]
= E

[∫

[0,u]
(u − y)β dW←

α (y)

]
=

Ŵ(β + 1)

Ŵ(1 − α)Ŵ(α + β + 1)
uβ+α → 0, u ↓ 0

having used (63) for the second equality. Hence, limu↓0 Zα,β(u) = 0 in probability. An important

consequence of the fact that the limit processes are equal to zero at the origin is that the weak

convergence of the finite-dimensional distributions proved in Theorem 2.5 for u > 0 can be

extended to u ≥ 0.

Since, for each t > 0, the process (Y (ut))u≥0 is a.s. nondecreasing, according to Theorem 3

in [6] it remains to show that the limit processes are continuous in probability. This is obvious

for Qα,ρ . Further,

P
{∣∣Zα,β(w) − Zα,β(u)

∣∣> ε|W←
α

}

≤
1

ε2

(∫

[0,u]
(u − y)β dW←

α (y)

+
∫

[0,w]
(w − y)β dW←

α (y) − 2

∫

[0,u]
C(u − y,w − y)dW←

α (y)

)

for 0 < u < w and ε > 0, by Chebyshev’s inequality. As w ↓ u, the second term converges a.s.

to
∫
[0,u](u − y)β dW←

α (y) in view of the aforementioned a.s. continuity. By Fatou’s lemma

lim inf
w↓u

∫

[0,u]
C(u − y,w − y)dW←

α (y) ≥
∫

[0,u]
C(u − y,u − y)dW←

α (y)

=
∫

[0,u]
(u − y)β dW←

α (y)

as C is continuous in R2
+. Hence, limw↓u P{|Zα,β(u)−Zα,β(w)| ≥ ε|W←

α } = 0 a.s. The proof of

this convergence when w ↑ u is analogous. Applying now the Lebesgue dominated convergence

theorem, we conclude that (Zα,β(u))u≥0 is continuous in probability. The proof of Corollary 2.6

is complete. �

Proof of Proposition 2.7. Let Z∗
α be a version of Zα,−α . We show that for every interval [a, b]

with 0 < a < b,

E

[
sup

t∈[Wα(a),Wα(b)]
Z∗

α(t)2
∣∣W←

α

]
= ∞ a.s. (48)

To prove this, first notice that according to Theorem 2 in [10] there exists an event ′ with

P(′) = 1 such that for any ω ∈ ′

lim sup
y↑s

Wα(s,ω) − Wα(y,ω)

(s − y)1/α
≤ r
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for some deterministic constant r ∈ (0,∞) and some s := s(ω) ∈ [a, b]. Fix any ω ∈ ′. There

exists s1 := s1(ω) such that

(
Wα(s,ω) − Wα(y,ω)

)−α ≥ (s − y)−1r−α/2

whenever y ∈ (s1, s). Set t := t (ω) = Wα(s,ω) and write

E
[
Z∗

α(t)2|W←
α

]
(ω) =

∫

[0,t (ω)]

(
t (ω) − y

)−α
dW←

α (y,ω)

=
∫

[0,Wα(s,ω)]

(
Wα(s,ω) − y

)−α
dW←

α (y,ω)

=
∫ s

0

(
Wα(s,ω) − Wα(y,ω)

)−α
dy

≥
∫ s

s1

(
Wα(s,ω) − Wα(y,ω)

)−α
dy

≥
1

2rα

∫ s

s1

(s − y)−1 dy = +∞.

This proves (48), for t (ω) ∈ [Wα(a,ω),Wα(b,ω)] for all ω ∈ ′.
Now observe that if Z∗

α has paths in D(0,∞) a.s., then, for any 0 < a < b,

P

{∣∣∣ sup
t∈[Wα(a),Wα(b)]

Z∗
α(t)

∣∣∣< ∞
∣∣W←

α

}
= 1. (49)

Note that the process Wα is measurable with respect to the σ -field generated by W←
α and that,

given W←
α , the process Z∗

α is centered Gaussian. Hence, from Theorem 3.2 on page 63 in [1]

(applied to (Z∗
α(t))t∈[Wα(a),Wα(b)] and (−Z∗

α(t))t∈[Wα(a),Wα(b)] both conditionally given W←
α ),

we conclude that (49) is equivalent to

E

[
sup

t∈[Wα(a),Wα(b)]
Z∗

α(t)2
∣∣W←

α

]
< ∞ a.s. (50)

which cannot hold due to (48). Hence Z∗
α has paths in D(0,∞) with probability less than 1.

Finally, suppose that C(u,w) = 0 for all u 	= w, u,w > 0. Then, given W←
α , the Gaussian

process Z∗
α has uncorrelated, hence independent values. For any fixed t > 0 and any decreasing

sequence (hn)n∈N with limn→∞ hn = 0 we infer

P
{
Z∗

α is right-continuous at t |W←
α

}
≤ P

{
lim sup
n→∞

Z∗
α(t + hn) = Z∗

α(t)
∣∣W←

α

}
= 0 a.s. (51)

which proves that Z∗
α has paths in the Skorokhod space with probability 0. To justify (51)

observe that, given W←
α , the distribution of Z∗

α(t) is Gaussian, hence continuous, while

lim supn→∞ Z∗
α(t + hn) is equal to a constant (possibly ±∞) a.s. by the Kolmogorov zero–



Asymptotics of random processes with immigration I 1265

one law which is applicable because Z∗
α(t +h1), Z∗

α(t +h2), . . . are (conditionally) independent.

The proof of Proposition 2.7 is complete. �

5. Auxiliary results

In this section, we collect technical results some of which are known and stated here for the

reader’s convenience. Others are extensions of known results or important technical steps used

more than once in the derivations of our main results. We begin with a series of known results:

Lemma 5.1 is Theorem 4.2 in [4], Lemma 5.2(a) is Theorem 1.5.2 from [7], Lemma 5.2(b) is a

consequence of Theorem 1.5.3 in [7], Lemma 5.2(c) is Karamata’s theorem (Proposition 1.5.8 in

[7]), Lemma 5.3 is Lemma 3.2 in [22].

Lemma 5.1. Let (S, d) be an arbitrary metric space. Suppose that (Zun,Zn) are random ele-

ments on S × S. If Zun ⇒n Zu ⇒u Z on (S, d) and

lim
u

lim sup
n

P
{
d(Zun,Zn) > ε

}
= 0

for every ε > 0, then Zn ⇒ Z on (S, d), as n → ∞.

Lemma 5.2. Let g be regularly varying at ∞ of index ρ and locally bounded outside zero.

(a) Then, for all 0 < a < b < ∞,

lim
t→∞

sup
a≤s≤b

∣∣∣∣
g(st)

g(t)
− sρ

∣∣∣∣= 0.

(b) Suppose ρ 	= 0. Then there exists a monotone function such that g(t) ∼ u(t) as t → ∞.

(c) Let ρ > −1 and a > 0. Then
∫ t

a
g(y)dy ∼ (ρ + 1)tg(t) as t → ∞.

Lemma 5.3. c(t) appearing in (11) is regularly varying at ∞ of index 1/α.

Lemma 5.4 follows from Lemma A.5 in [21] in combination with the continuous mapping

theorem. We note in passing that [34] and Chapter VI, Section 6c in [25] are classical references

concerning the convergence of stochastic integrals.

Lemma 5.4. Let 0 ≤ a < b < ∞.

(a) Suppose that, for each t > 0, ft ∈ D and that the random process (Xt (y))a≤y≤b has

almost surely increasing path. Assume further that limt→∞ ft (y) = f (y) uniformly in y ∈ [a, b]
and that Xt ⇒X , t → ∞ in the J1-topology on D[a, b], the paths of (X (y))a≤y≤b being almost

surely continuous. Then

∫

[a,b]
ft (y)dXt (y)

d→
∫

[a,b]
f (y)dX (y), t → ∞.
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(b) Assume that Xt ⇒ X , t → ∞, in the J1- or M1-topology on D[a, b] and that, as t → ∞,

finite measures ρt converge weakly on [a, b] to δc , the Dirac measure concentrated at c. If X is

almost surely continuous at c, then

∫

[a,b]
Xt (y)ρt (dy)

d→X (c), t → ∞.

Lemma 5.5. Let W be a nonnegative random variable with Laplace transform ϕ(s) := E[e−sW ],
s ≥ 0. Then, for θ ∈ (0,1),

E
[
W−θ
]
=

1

Ŵ(θ)

∫ ∞

0

sθ−1ϕ(s)ds. (52)

Proof. Let R be a random variable with the standard exponential law which is indepen-

dent of W . Then, for s ≥ 0, ϕ(s) = P{R/W > s}. Hence, Ŵ(1 + θ)E[W−θ ] = E[(R/W)θ ] =
θ
∫∞

0 sθ−1ϕ(s)ds. �

Lemma 5.6. Let (Zk,t )k∈N,t>0 be a family of random variables defined on some probability

space (,R,P) and let G be a sub-σ -algebra of R. Assume that, given G and for each fixed

t > 0, the Zk,t , k ∈ N are independent. If

∑

k≥0

EG

[
Z2

k+1,t

] d→ D, t → ∞ (53)

for a random variable D and

∑

k≥0

EG

[
Z2

k+1,t1{|Zk+1,t |>y}
] P→ 0, t → ∞ (54)

for all y > 0, then, for each z ∈R,

EG

[
exp

(
iz
∑

k≥0

Zk+1,t

)]
d→ exp
(
−Dz2/2

)
, t → ∞, (55)

E

[
exp

(
iz
∑

k≥0

Zk+1,t

)]
→ E
[
exp
(
−Dz2/2

)]
, t → ∞ (56)

and

EG

[
exp

(
iz
∑

k≥0

Zk+1,t

)]
−EG

[
exp

(
iz
∑

k≥0

Ẑk+1,t

)]
P→ 0, t → ∞, (57)

where, given G, Ẑ1,t , Ẑ2,t , . . . are conditionally independent normal random variables with mean

0 and variance EG[Z2
k+1,t ], that is,

EG

[
exp(izẐk+1,t )

]
= exp
(
−EG

[
Z2

k+1,t

]
z2/2
)
, k ∈N0.
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Proof. Apart from minor modifications, the following argument can be found in the proof of

Theorem 4.12 in [28] in which the weak convergence of the row sums in triangular arrays to a

normal law is investigated. For any ε > 0,

sup
k≥0

EG

[
Z2

k+1,t

]
≤ ε2 + sup

k≥0

EG

[
Z2

k+1,t1{|Zk+1,t |>ε}
]
≤ ε2 +

∑

k≥0

EG

[
Z2

k+1,t1{|Zk+1,t |>ε}
]
.

Using (54) and letting first t → ∞ and then ε ↓ 0, we infer

sup
k≥0

EG

[
Z2

k+1,t

] P→ 0. (58)

In view of (53)

EG

[
exp

(
iz
∑

k≥0

Ẑk+1,t

)]
= exp

(
−
∑

k≥0

EG

[
Z2

k+1,t

]
z2/2

)
d→ exp
(
−Dz2/2

)
(59)

for each z ∈R. Next, we show that
∑

k≥0 Zk+1,t has the same distributional limit as
∑

k≥0 Ẑk+1,t

as t → ∞. To this end, for z ∈ R, consider

∣∣∣∣EG

[
exp

(
iz
∑

k≥0

Zk+1,t

)]
−EG

[
exp

(
iz
∑

k≥0

Ẑk+1,t

)]∣∣∣∣

=
∣∣∣∣
∏

k≥0

EG

[
exp(izZk+1,t )

]
−
∏

k≥0

EG

[
exp(izẐk+1,t )

]∣∣∣∣

≤
∑

k≥0

∣∣EG

[
exp(izZk+1,t )

]
−EG

[
exp(izẐk+1,t )

]∣∣

≤
∑

k≥0

∣∣∣∣EG

[
exp(izZk+1,t )

]
− 1 +

z2

2
EG

[
Z2

k+1,t

]∣∣∣∣

+
∑

k≥0

∣∣∣∣EG

[
exp(izẐk+1,t )

]
− 1 +

z2

2
EG

[
Ẑ2

k+1,t

]∣∣∣∣

≤ z2
∑

k≥0

EG

[
Z2

k+1,t

(
1 ∧ 6−1|zZk+1,t |

)]
+ z2
∑

k≥0

EG

[
Ẑ2

k+1,t

(
1 ∧ 6−1|zẐk+1,t |

)]
,

where, to arrive at the last line, we have utilized |EG[·]| ≤ EG[| · |] and the inequality

∣∣eiz − 1 − iz + z2/2
∣∣≤ z2 ∧ 6−1|z|3, z ∈R,

which can be found, for instance, in Lemma 4.14 of [28]. For any ε ∈ (0,1) and z 	= 0

∑

k≥0

EG

[
Z2

k+1,t

(
1 ∧ 6−1|zZk+1,t |

)]
≤ ε
∑

k≥0

E
[
Z2

k+1,t

]
+
∑

k≥0

EG

[
Z2

k+1,t1{|Zk+1,t |>6ε/|z|}
]
.
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Recalling (54) and letting first t → ∞ and then ε ↓ 0 give

∑

k≥0

EG

[
Z2

k+1,t

(
1 ∧ 6−1|zZk+1,t |

)] P→ 0.

Further,

∑

k≥0

EG

[
Ẑ2

k+1,t

(
1 ∧ 6−1|zẐk+1,t |

)]
≤

|z|
6

∑

k≥0

EG

[
|Ẑk+1,t |3

]

=
√

2|z|
3
√

π

∑

k≥0

(
EG

[
Z2

k+1,t

])3/2

≤
√

2|z|
3
√

π

(
sup
k≥0

EG

[
Z2

k+1,t

])1/2∑

k≥0

EG

[
Z2

k+1,t

]
.

Here, (53) and (58) yield

∑

k≥0

EG

[
Ẑ2

k+1,t

(
1 ∧ 6−1|zẐk+1,t |

)] P→ 0.

Thus, we have already proved (57) which together with (59) implies (55). Relation (56) follows

from (55) by taking expectations and using uniform integrability. The proof of Lemma 5.6 is

complete. �

Lemma 5.7. Let ρ > −1, α ∈ (0,1) and C denote the limit function for f (u,w) =
E[X(u)X(w)] − E[X(u)]E[X(w)] wide-sense regularly varying in R2

+ of index β for some

β ≥ −α. Then the integrals

∫

[0,s]
C(s − y, t − y)dW←

α (y), 0 < s < t < ∞ and

(60)∫

[0,s]
(s − y)ρ dW←

α (y), s > 0

exist as Lebesgue–Stieltjes integrals and are almost surely finite. Furthermore, the process Zα,β

is well-defined.

Proof. To begin with, we intend to show that

E

[∫

[0,s]
(s − y)ρ dW←

α (y)

]
< ∞, s > 0. (61)

To this end, we first derive the following identity

E
[
W←

α (y)
]
=

1

Ŵ(1 − α)Ŵ(1 + α)
yα =: dαyα, y ≥ 0. (62)
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Indeed,

E
[
W←

α (y)
]
=
∫ ∞

0

P
{
W←

α (y) > t
}

dt =
∫ ∞

0

P
{
Wα(t) ≤ y

}
dt =
∫ ∞

0

P
{
t1/αWα(1) ≤ y

}
dt

=
∫ ∞

0

P
{
Wα(1)−αyα ≥ t

}
dt = E

[
Wα(1)−α

]
yα =

1

Ŵ(1 − α)Ŵ(1 + α)
yα,

where the last equality follows from (52) with θ = α and ϕ(s) = exp(−Ŵ(1 − α)sα). Hence

E

[∫

[0,s]
(s − y)ρ dW←

α (y)

]
=

α

Ŵ(1 − α)Ŵ(1 + α)

∫ s

0

(s − y)ρyα−1 dy

(63)

=
Ŵ(ρ + 1)

Ŵ(1 − α)Ŵ(ρ + α + 1)
sρ+α

which proves (61).

Passing to the proof of

E

[∫

[0,s]
C(s − y, t − y)dW←

α (y)

]
< ∞, 0 < s < t (64)

we assume that C(u,w) > 0 for some u 	= w, u,w > 0 and then observe that in view of (62)

and (14),

E

[∫

[0,s]
C(s − y, t − y)dW←

α (y)

]
= αdα

∫ s

0

C(s − y, t − y)yα−1 dy

≤
αdα

2

∫ s

0

(
(s − y)β + (t − y)β

)
yα−1 dy < ∞

since α > 0 and β ≥ −α > −1. This proves (64).

Further, we check that the process Zα,β is well-defined. To this end, we show that the function

�(s, t) defined by

�(s, t) :=
∫

[0,s]
C(s − y, t − y)dW←

α (y), 0 < s ≤ t

is nonnegative definite, that is, for any m ∈ N, any γ1, . . . , γm ∈ R and any 0 < u1 < · · · <

um < ∞
m∑

j=1

γ 2
j �(uj , uj ) + 2

∑

1≤r<l≤m

γrγl�(ur , ul)

=
m−1∑

i=1

∫

(ui−1,ui ]

(
m∑

k=i

γ 2
k C(uk − y,uk − y) + 2

∑

i≤r<l≤m

γrγlC(ur − y,ul − y)

)
dW←

α (y)

+ γ 2
m

∫

(um−1,um]
C(um − y,um − y)dW←

α (y) ≥ 0 a.s.,



1270 A. Iksanov, A. Marynych and M. Meiners

where u0 := 0. Since the second term is nonnegative a.s., it suffices to prove that so is the first.

The function (u,w) �→ C(u,w), 0 < u ≤ w is nonnegative definite as a limit of nonnegative

definite functions. Hence, for each 1 ≤ i ≤ m − 1 and y ∈ (ui−1, ui),

m∑

k=i

γ 2
k C(uk − y,uk − y) + 2

∑

i≤r<l≤m

γrγlC(ur − y,ul − y) ≥ 0.

Thus, the process Zα,β does exist as a conditionally Gaussian process with covariance function

�(s, t), 0 < s ≤ t . �

Lemma 5.8 is designed to facilitate the proofs of Proposition 2.2 and Theorem 2.5.

Lemma 5.8. Suppose that condition (6) holds for some α ∈ (0,1) and some ℓ∗, and that

f (u,w) = Cov[X(u)X(w)] is either uniformly regularly varying in strips in R2
+ or fictitious

regularly varying in R2
+, in either of the cases, of index β for some β ≥ −α and with limit

function C. If

lim
ρ↑1

lim sup
t→∞

P{ξ > t}
v(t)

∫

(ρz,z]
v
(
t (z − y)

)
dU(ty) = 0 (65)

for all z > 0, then

λ1

√
P{ξ > t}

v(t)

∫

[0,um]

m∑

j=1

γjh
(
(uj − y)t

)
1[0,uj ](y)dν(ty)

+ λ2
P{ξ > t}

v(t)

∫

[0,um]

(
m∑

j=1

γ 2
j v
(
(uj − y)t

)
1[0,uj ](y)

+ 2
∑

1≤i<j≤m

γiγjf
(
(ui − y)t, (uj − y)t

)
1[0,ui ](y)

)
dν(ty)

(66)

d→ λ1b
−1/2

m∑

j=1

γj

∫

[0,uj ]
(uj − y)(β−α)/2 dW←

α (y)

+ λ2

(
m∑

j=1

γ 2
j

∫

[0,uj ]
(uj − y)β dW←

α (y)

+ 2
∑

1≤i<j≤m

γiγj

∫

[0,ui ]
C(ui − y,uj − y)dW←

α (y)

)
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for any m ∈N, any real γ1, . . . , γm, any 0 < u1 < · · · < um < ∞ and any real λ1 and λ2 provided

that whenever λ1 > 0

lim
t→∞

v(t)P{ξ > t}
h(t)2

= b ∈ (0,∞) (67)

and

lim
ρ↑1

lim sup
t→∞

√
P{ξ > t}

v(t)

∫

(ρz,z]
h
(
(z − y)t

)
dU(ty) = 0 (68)

for all z > 0.

Proof. We only prove the lemma in the case that λ2 	= 0 and C(u,w) > 0 for some u 	= w. Fix

any ρ ∈ (0,1) such that ρum > um−1 (u0 := 0).

Since v is regularly varying at ∞ of index β , we infer

lim
t→∞

v
(
(u − y)t

)
/v(t) = (u − y)β ,

lim
t→∞

h
(
(u − y)t

)
/
√

v(t)P{ξ > t} = b−1/2(u − y)(β−α)/2

for each y ∈ [0, u), respectively, having utilized (67) for the second relation. Furthermore, the

convergence in each of these limit relations is uniform in y ∈ [0, ρu] by Lemma 5.2(a). Since

f (u,w) is uniformly regularly varying in strips in R2
+ we conclude that for r < l the convergence

limt→∞ f ((ur −y)t, (ul −y)t)/v(t) = C(ur −y,ul −y) is uniform in y ∈ [0, ρur ], too. Hence,

lim
t→∞

(
λ1

∑m
j=1 γjh((uj − y)t)1[0,ρuj ](y)

√
v(t)P{ξ > t}

+ λ2

∑m
j=1 γ 2

j v((uj − y)t)1[0,ρuj ](y)

v(t)

+ 2λ2

∑
1≤r<l≤m γrγlf ((ur − y)t, (ul − y)t)1[0,ρur ](y)

v(t)

)

= λ1b
−1/2

m∑

j=1

γj (uj − y)(β−α)/2
1[0,ρuj ](y)

+ λ2

(
m∑

j=1

γ 2
j (uj − y)β1[0,ρuj ](y)

+ 2
∑

1≤r<l≤m

γrγlC(ur − y,ul − y)1[0,ρur ](y)

)
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uniformly in y ∈ [0, ρum]. The random function W←
α is a.s. continuous as has already been

explained in the proof of Corollary 2.6. Thus,6 in view of (10)

λ1

√
P{ξ > t}

v(t)

∫

[0,ρum]

m∑

j=1

γjh
(
(uj − y)t

)
1[0,ρuj ](y)dν(ty)

+ λ2
P{ξ > t}

v(t)

∫

[0,ρum]

(
m∑

j=1

γ 2
j v
(
(uj − y)t

)
1[0,ρuj ](y)

+ 2
∑

1≤r<l≤m

γrγlf
(
(ur − y)t, (ul − y)t

)
1[0,ρur ](y)

)
dν(ty)

(69)

d→ λ1b
−1/2

m∑

j=1

γj

∫

[0,ρuj ]
(uj − y)(β−α)/2 dW←

α (y)

+ λ2

(
m∑

j=1

γ 2
j

∫

[0,ρuj ]
(uj − y)β dW←

α (y)

+ 2
∑

1≤r<l≤m

γrγl

∫

[0,ρur ]
C(ur − y,ul − y)dW←

α (y)

)

by Lemma 5.4(a). For later use note that

lim
ρ↑1

lim sup
t→∞

P{ξ > t}
v(t)

∫

(ρur ,ur ]
v
(
(ul − y)t

)
dU(ty) = 0, r < l (70)

which can be proved by the same argument as before (since v(t (ul − y))/v(t) converges uni-

formly to (ul − y)β on (ρur , ur ] as t → ∞), though appealing to

lim
t→∞

P{ξ > t}U(ty) =
yα

Ŵ(1 − α)Ŵ(1 + α)

(see formula (8.6.4) on page 361 in [7]) rather than (10).

According to Lemma 5.1, relation (66) follows if we can verify that, as ρ ↑ 1, the right-hand

side of (69) converges in distribution to the right-hand side of (66) and that

lim
ρ↑1

lim sup
t→∞

P

{∣∣∣∣∣λ1

√
P{ξ > t}

v(t)

m∑

j=1

γj

∫

(ρuj ,uj ]
h
(
t (uj − y)

)
dν(ty)

+ λ2
P{ξ > t}

v(t)

(
m∑

j=1

γ 2
j

∫

(ρuj ,uj ]
v
(
t (uj − y)

)
dν(ty) (71)

6Since y �→ ν(y) has a.s. increasing paths, so does y �→ P{ξ > t}ν(ty) for each t > 0.
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+ 2
∑

1≤r<l≤m

γrγl

∫

(ρur ,ur ]
f
(
(ur − y)t, (ul − y)t

)
dν(ty)

)∣∣∣∣∣> δ

}
= 0

for all δ > 0. The first of these (even with distributional convergence replaced by a.s. conver-

gence) is a consequence of the monotone convergence theorem and the a.s. finiteness of the

integrals in (66) which follows from Lemma 5.7. Left with proving (71) use (13) to observe that

(65) together with (70) leads to

lim
ρ↑1

lim sup
t→∞

P{ξ > t}
v(t)

∫

(ρur ,ur ]

∣∣f
(
(ur − y)t, (ul − y)t

)∣∣dU(ty) = 0, r < l.

Applying Markov’s inequality, we conclude that (71) follows from the last asymptotic relation,

(65) and (68). This completes the proof of (66). �

Lemma 5.9. Let 0 ≤ r1 < r2 ≤ 1. Suppose that φ : [0,∞) → [0,∞) is either increasing and

limt→∞(φ(t)/
∫ t

0 φ(y)dy) = 0, or decreasing and, if r2 = 1, locally integrable. If Eξ < ∞ and

limt→∞
∫ (1−r1)t

(1−r2)t
φ(y)dy = ∞, then

∫

[r1t,r2t]
φ(t − y)dU(y) ∼

1

Eξ

∫ (1−r1)t

(1−r2)t

φ(y)dy, t → ∞.

If φ is decreasing this is Lemma 8.2 in [24], the case of increasing φ and r1 = 0, r2 = 1 is

covered by Lemma A.4 in [20]. In the general case the proof goes along the lines of the proof of

Theorem 4 in [46], we omit the details.

In [20], Lemma A.4, it is shown that a particular case of Lemma 5.9 also holds for functions φ

of bounded variation. We now give an example which demonstrates that the result of Lemma 5.9

may fail to hold for ill-behaved φ. Let, for instance, φ(t) = 1Qc

+
(t), where Qc

+ is the set of

positive irrational numbers. Then
∫ t

0 φ(y)dy = t . Now suppose the law of ξ is concentrated at

rational points in (0,1). Note that choosing these points properly, the law of ξ can be made lattice

as well as nonlattice. The points of increase of the renewal function U(y) are rational points only.

Hence
∫
[0,t] φ(t − y)dU(y) = 0 for rational t .

Lemma 5.10. Let Eξ < ∞ and φ : [0,∞) → [0,∞) be a locally bounded and measurable

function.

(a) Let 0 ≤ r1 < r2 ≤ 1. If there exists a monotone function ψ : [0,∞) → [0,∞) such that

φ(t) ∼ ψ(t) as t → ∞, then

∫

[r1t,r2t]
φ(t − y)dU(y) ∼

∫

[r1t,r2t]
ψ(t − y)dU(y), t → ∞

provided that, when r2 = 1, limt→∞
∫ t

0 φ(y)dy = ∞ and limt→∞(φ(t)/
∫ t

0 φ(y)dy) = 0.
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(b) If there exists a locally bounded and measurable function ψ : [0,∞) → [0,∞) such that

φ(t) = o(ψ(t)) as t → ∞ and limt→∞
∫ t

0 ψ(t − y)dU(y) = +∞, then

∫

[0,t]
φ(t − y)dU(y) = o

(∫

[0,t]
ψ(t − y)dU(y)

)
, t → ∞.

Proof. (a) For any δ ∈ (0,1) there exists a t0 > 0 such that

1 − δ ≤ φ(t)/ψ(t) ≤ 1 + δ (72)

for all t ≥ t0.

Case r2 < 1. We have, for t ≥ (1 − r2)
−1t0,

(1 − δ)

∫

[r1t,r2t]
ψ(t − y)dU(y) ≤

∫

[r1t,r2t]
φ(t − y)dU(y) ≤ (1 + δ)

∫

[r1t,r2t]
ψ(t − y)dU(y).

Dividing both sides by
∫
[r1t,r2t] ψ(t − y)dU(y) and sending t → ∞ and then δ ↓ 0 gives the

result.

Case r2 = 1. Since ψ is monotone, it is locally integrable. Further, limt→∞
∫ t

0
ψ(y)dy = ∞

and limt→∞(ψ(t)/
∫ t

0 ψ(y)dy) = 0. Hence, Lemma 5.9 applies and yields

lim
t→∞

∫

[r1t,t]
ψ(t − y)dU(y) = ∞.

In view of (72), we have

∫

[r1t,t]
φ(t − y)dU(y) ≤ (1 + δ)

∫

[r1t,t−t0]
ψ(t − y)dU(y) +

∫

(t−t0,t]
φ(t − y)dU(y)

≤ (1 + δ)

∫

[r1t,t]
ψ(t − y)dU(y) + U(t0) sup

0≤y≤t0

φ(y)

for t ≥ (1 − r1)
−1t0, the last inequality following from the subadditivity of U . Dividing both

sides by
∫
[r1t,t] ψ(t − y)dU(y) and sending t → ∞ yields

lim sup
t→∞

∫
[r1t,t] φ(t − y)dU(y)
∫
[r1t,t] ψ(t − y)dU(y)

≤ 1 + δ.

The converse inequality for the lower limit follows analogously.

(b) For any δ ∈ (0,1) there exists a t0 > 0 such that φ(t)/ψ(t) ≤ δ for all t ≥ t0. The rest of

the proof is the same as for the case r2 = 1 of part (a). �

In the main text we have used the following corollary of Lemma 5.9.
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Lemma 5.11. Let Eξ < ∞ and φ : [0,∞) → [0,∞) be locally bounded, measurable and regu-

larly varying at +∞ of index β ∈ (−1,∞). If β = 0, assume further that there exists a monotone

function u such that φ(t) ∼ u(t) as t → ∞. Then, for 0 ≤ r1 < r2 ≤ 1,

∫

[r1t,r2t]
φ(t − y)dU(y) ∼

tφ(t)

(1 + β)Eξ

(
(1 − r1)

1+β − (1 − r2)
1+β
)
, t → ∞.

The result is well known in the case where φ is increasing, r1 = 0, r2 = 1, β 	= 0, and the law

of ξ is nonlattice, see Theorem 2.1 in [39].

Proof of Lemma 5.11. If β 	= 0, Lemma 5.2(b) ensures the existence of a positive monotone

function u such that φ(t) ∼ u(t) as t → ∞. If β = 0 such a function exists by assumption.

Modifying u if needed in the right vicinity of zero we can assume that u is monotone and locally

integrable. Therefore,

∫

[r1t,r2t]
φ(t − y)dU(y) ∼

∫

[r1t,r2t]
u(t − y)dU(y) ∼

1

Eξ

∫ (1−r1)t

(1−r2)t

u(y)dy,

where the first equivalence follows from Lemma 5.10(a) and the second is a consequence

of Lemma 5.9 (observe that, with g = φ or g = u, limt→∞(g(t)/
∫ t

0 g(y)dy) = 0 and

limt→∞
∫ (1−r1)t

(1−r2)t
g(y)dy = ∞ hold by Lemma 5.2(c) because g is regularly varying of index

β > −1). Finally, using Lemma 5.2(c) we obtain

1

Eξ

∫ (1−r1)t

(1−r2)t

u(y)dy ∼
tu(t)

(1 + β)Eξ

(
(1 − r1)

1+β − (1 − r2)
1+β
)

∼
tφ(t)

(1 + β)Eξ

(
(1 − r1)

1+β − (1 − r2)
1+β
)
.

The proof is complete. �

Part (a) of the next lemma is a slight extension of Lemma 5.2 in [22].

Lemma 5.12. Suppose that (6) holds. Let φ : [0,∞) →R be a locally bounded and measurable

function satisfying φ(t) ∼ tγ ℓ(t) as t → ∞ for some γ ≥ −α and some ℓ. If γ = −α, assume

additionally that there exists a positive increasing function q such that limt→∞
φ(t)

P{ξ>t}q(t)
= 1.

Then:

(a)

lim
ρ↑1

lim sup
t→∞

P{ξ > t}
φ(t)

∫

[ρt,t]
φ(t − y)dU(y) = 0;

in particular,

lim
t→∞

P{ξ > t}
φ(t)

∫

[0,t]
φ(t − y)dU(y) =

Ŵ(1 + γ )

Ŵ(1 − α)Ŵ(1 + α + γ )
;
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(b)
∫
[0,t] φ1(t − x)dU(x) = o(φ(t)/P{ξ > t}) as t → ∞ for any positive locally bounded

function φ1 such that φ1(t) = o(φ(t)), t → ∞.

Proof. (a) In the case γ ∈ [−α,0] this is just Lemma 5.2 of [22]. In the case γ > 0 exactly the

same proof applies.

(b) For any δ > 0 there exists a t0 > 0 such that φ1(t)/φ(t) ≤ δ for all t ≥ t0. Hence,

∫

[0,t]
φ1(t − y)dU(y) ≤ δ

∫

[0,t]
φ(t − y)dU(y) +

(
U(t) − U(t − t0)

)
sup

0≤y≤t0

φ1(y)

for t ≥ t0. According to part (a) the first term on the right-hand side grows like constφ(t)/P{ξ >

t}. By Blackwell’s renewal theorem, limt→∞(U(t) − U(t − t0)) = 0. Dividing the inequality

above by φ(t)/P{ξ > t} and sending first t → ∞ and then δ ↓ 0 finishes the proof. �
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