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Abstract: This paper deals with a multivariate Gaussian observation model where

the eigenvalues of the covariance matrix are all one, except for a finite number

which are larger. Of interest is the asymptotic behavior of the eigenvalues of the

sample covariance matrix when the sample size and the dimension of the obser-

vations both grow to infinity so that their ratio converges to a positive constant.

When a population eigenvalue is above a certain threshold and of multiplicity one,

the corresponding sample eigenvalue has a Gaussian limiting distribution. There

is a “phase transition” of the sample eigenvectors in the same setting. Another

contribution here is a study of the second order asymptotics of sample eigenvectors

when corresponding eigenvalues are simple and sufficiently large.
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1. Introduction

The study of eigenvalues and eigenvectors of sample covariance matrices has

a long history. When the dimension N is fixed, distributional aspects for both

Gaussian and non-Gaussian observations have been dealt with at length by var-

ious authors. Anderson (1963), Muirhead (1982) and Tyler (1983) are among

standard references. With dimension fixed, much of the study of the eigenstruc-

ture of sample covariance matrix is based on the fact that sample covariance

approximates population covariance matrix well when sample size is large. How-

ever this is no longer the case when N/n → γ ∈ (0,∞) as n → ∞, where n

is the sample size. Under these circumstances it is known (see Bai (1999) for

a review) that, if the true covariance is the identity matrix, then the Empiri-

cal Spectral Distribution (ESD) converges almost surely to the Marčenko-Pastur

distribution, henceforth denoted by Fγ . When γ ≤ 1, the support Fγ is the set

[(1 − √
γ)2, (1 +

√
γ)2], and when γ > 1 an isolated point zero is added to the

support. It is known (Bai and Yin (1993)) that when the population covariance

is the identity, the largest and the smallest eigenvalues, when γ ≤ 1, converge al-

most surely to the respective boundaries of the support of Fγ . Johnstone (2001)



1618 DEBASHIS PAUL

derived the asymptotic distribution for the largest sample eigenvalue under the

setting of an identity covariance under Gaussianity. Soshnikov (2002) proved the

distributional limits under weaker assumptions, in addition to deriving distribu-

tional limits of the kth largest eigenvalue, for fixed but arbitrary k.

However, in recent years researchers in various fields have been using different

versions of non-identity covariance matrices of growing dimension. Among these,

a particularly interesting model has most of the eigenvalues one, and the few

that are not are well-separated from the rest. This has been deemed the “spiked

population model” by Johnstone (2001). It has also been observed that for certain

types of data, e.g., in speech recognition (Buja, Hastie and Tibshirani (1995)),

wireless communication (Telatar (1999)), statistical learning (Hoyle and Rattray

(2003, 2004)), a few of the sample eigenvalues have limiting behavior that is

different from the behavior when the covariance is the identity. The results of

this paper lend understanding to these phenomena.

The literature on the asymptotics of sample eigenvalues when the covariance

is not the identity is relatively recent. Silverstein and Choi (1995) derived the

almost sure limit of the ESD under fairly general conditions. Bai and Silverstein

(2004) derived the asymptotic distribution of certain linear spectral statistics.

However, a systematic study of the individual eigenvalues has been conducted

only recently by Péché (2003) and Baik, Ben Arous and Péché (2005). These

authors deal with the situation where the observations are complex Gaussian

and the covariance matrix is a finite rank perturbation of identity. Baik and

Silverstein (2006) study the almost sure limits of sample eigenvalues when the

observations are either real or complex, and under fairly weak distributional

assumptions. They give almost sure limits of the M largest and M smallest

(non-zero) sample eigenvalues, where M is the number of non-unit population

eigenvalues.

A crucial aspect of the work of the last three sets of authors is the discovery of

a phase transition phenomenon. Simply put, if the non-unit eigenvalues are close

to one, then their sample versions will behave in roughly the same way as if the

true covariance were the identity. However, when the true eigenvalues are larger

than 1 +
√
γ, the sample eigenvalues have a different asymptotic property. The

results of Baik et al. (2005) show an n2/3 scaling for the asymptotic distribution

when a non-unit population eigenvalue lies below the threshold 1 +
√
γ, and an

n1/2 scaling for those above that threshold.

This paper is about the case of independently and identically distributed ob-

servations X1, . . . ,Xn from an N -variate real Gaussian distribution with mean

zero and covariance Σ = diag(ℓ1, ℓ2, . . . , ℓM , 1, . . . , 1), where ℓ1 ≥ ℓ2 ≥ · · · ≥
ℓM > 1. Notice that, since observations are Gaussian, there is no loss of gen-

erality in assuming the covariance matrix to be diagonal: under an orthogonal
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transformation of the data, the sample eigenvalues are invariant and the sample

eigenvectors are equivariant. The N × n matrix X = (X1 : . . . : Xn) is a double

array, indexed by both n and N = N(n) on the same probability space, and

with N/n → γ, where γ is a positive constant. Throughout it is assumed that

0 < γ < 1, although much of the analysis can be extended to the case γ ≥ 1 with

a little extra work. The aim is to study the asymptotic behavior of the large

eigenvalues of the sample covariance matrix S = (1/n)XXT as n→ ∞.

In this context, the primary focus of study is the second order behavior

of the M largest eigenvalues of the sample covariance matrix. Distributional

limits of the sample eigenvalues ℓ̂ν are derived when ℓν > 1 +
√
γ, for the case

when ℓν has multiplicity one. A comprehensive study of all possible scenarios

is beyond the scope of this paper. The almost sure limits (see Theorem 1 and

Theorem 2) of the sample eigenvalues, obtained by Baik and Silverstein (2006),

are used in the proofs of some of the results. However, in the Gaussian case

the same limits can be derived through the approach taken here in deriving

the distributional limits of the eigenvalues and eigenvectors. For details refer

to Paul (2004). This alternative approach gives a different perspective to the

limits, in particular to their identification as certain linear functionals of the

limiting Marčenko-Pastur law when the true eigenvalue is above 1+
√
γ. Another

aspect of the current approach is that it throws light on the behavior of the

eigenvectors associated with the M largest eigenvalues. The sample eigenvectors

also undergo a phase transition. By performing a natural decomposition of the

sample eigenvectors into “signal” and “noise” parts, it is shown that when ℓν >

1 +
√
γ, the “signal” part of the eigenvectors is asymptotically normal. This

paper also gives a reasonably thorough description of the “noise” part of the

eigenvectors.

The results derived in this paper contain some important messages for in-

ference on multivariate data. First, the phase transition phenomena described

in this paper means that some commonly used tests for the hypothesis Σ = I,

like the largest root test (Roy (1953)), may not reliably detect small departures

from an identity covariance when the ratio N/n is significantly larger than zero.

At the same time, Theorem 3 can be used for making inference on the larger

population eigenvalues. This is discussed further in Section 2.2. Second, impor-

tant consequence of the results here are insights as to why it might not be such a

good idea to use Principal Component Analysis (PCA) for dimension reduction

in a high-dimensional setting, at least not in its standard form. This has been

observed by Johnstone and Lu (2004), who show that when N/n → γ ∈ (0,∞),

the sample principal components are inconsistent estimates of the population

principal components. Theorem 4 says exactly how bad this inconsistency is



1620 DEBASHIS PAUL

and its proof demonstrates clearly how this inconsistency originates. Theorem

5 and Theorem 6 are important to understanding the second order behavior of

the sample eigenvectors, and have consequences for analyses of functional data.

This is elaborated on in Section 2.4.

The rest of the paper is organized as follows. Section 2 has the main results.

Section 3 has key quantities and expressions that are required to derive the

results. Section 4 is devoted to deriving the asymptotic distribution of eigenvalues

(Theorem 3). Section 5 concerns matrix perturbation analysis, which is a key

ingredient in the proofs of Theorem 4-6. Some of the proofs are given in Appendix

A and Appendix B.

2. Discussion of the Results

Throughout ℓ̂ν is used to denote the νth largest eigenvalue of S, and =⇒ is

used to denote convergence in distribution.

2.1. Almost sure limit of M largest eigenvalues

The following results are due to Baik and Silverstein (2006), and are proved

under finite fourth moment assumptions on the distribution of the random vari-

ables.

Theorem 1. Suppose that ℓν ≤ 1 +
√
γ and that N/n → γ ∈ (0, 1), as n → ∞.

Then

ℓ̂ν → (1 +
√
γ)2, almost surely as n→ ∞. (1)

Theorem 2. Suppose that ℓν > 1 +
√
γ and that N/n → γ ∈ (0, 1) as n → ∞.

Then

ℓ̂ν → ℓν

(
1 +

γ

ℓν − 1

)
, almost surely as n→ ∞. (2)

Denote the limit in (2) by ρν := ℓν

(
1 + γ

ℓν−1

)
; ρν appears (Lemma B.1) as a

solution to the equation

ρ = ℓ(1 + γ

∫
x

ρ− x
dFγ(x)) (3)

with ℓ = ℓν . Since Fγ is supported on [(1 − √
γ)2, (1 +

√
γ)2] for γ ≤ 1 (with a

single isolated point added to the support for γ > 1), the function on the RHS

is monotonically decreasing in ρ ∈ ((1 +
√
γ)2,∞), while the LHS is obviously

increasing in ρ. So a solution to (3) exists only if ℓν ≥ 1 + cγ , for some cγ > 0.

That cγ =
√
γ is a part of Lemma B.1. Note that when ℓν = 1 +

√
γ, ρν =

(1 +
√
γ)2 is the almost sure limit of the jth largest eigenvalue (for j fixed) in

the identity covariance case.
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2.2. Asymptotic normality of sample eigenvalues

When a non-unit eigenvalue of Σ is of multiplicity one, and above the critical

value 1 +
√
γ, it is shown that the corresponding sample eigenvalue is asymptot-

ically normally distributed. Note that for the complex Gaussian case, a result

in the analogous situation has been derived by (Baik et al. (2005, Thm 1.1(b))).

They showed that when the largest eigenvalue is greater than 1 +
√
γ and of

multiplicity k, the largest sample eigenvalue, after similar centering and scaling,

converges in distribution to the distribution of the largest eigenvalue of a k × k

GUE (Gaussian Unitary Ensemble). They also derived the limiting distributions

for the case when a (non-unit) population eigenvalue is smaller than 1+
√
γ. Dis-

tributional aspect of a sample eigenvalue for the real case in the latter situation

is beyond the scope of this paper. The method used in this paper differs substan-

tially from the approach taken by Baik et al. (2005). They used the joint density

of the eigenvalues of S to derive a determinantal representation of the distribution

of the largest eigenvalue and then adopted the steepest descent method for the

asymptotic analysis. However, this paper relies on a matrix analysis approach.

Theorem 3. Suppose that ℓν > 1 +
√
γ and that ℓν has multiplicity 1. Then as

n,N → ∞ so that N/n − γ = o(n−1/2),

√
n(ℓ̂ν − ρν) =⇒ N(0, σ2(ℓν)) (4)

where, for ℓ > 1 +
√
γ and ρ(ℓ) = ℓ(1 + γ/(ℓ− 1)),

σ2(ℓ) =
2ℓρ(ℓ)

1 + ℓγ
∫

x
(ρ(ℓ)−x)2

dFγ(x)
=

2ℓρ(ℓ)

1 + ℓγ
(ℓ−1)2−γ

= 2ℓ2(1 − γ

(ℓ− 1)2
). (5)

In the fixed N case, when the νth eigenvalue has multiplicity 1, the νth sam-

ple eigenvalue is asymptotically N(ℓν , (1/n)2ℓ2ν) (Anderson (1963)). Thus the

positivity of the dimension to sample size ratio creates a bias and reduces the

variance. However, if γ is much smaller compared to ℓν , the variance σ2(ℓν) is

approximately 2ℓ2ν which is the asymptotic variance in the fixed N case. This

is what we expect intuitively, since the eigenvector associated with this sample

eigenvalue, looking to maximize the quadratic form involving S (under orthog-

onality restrictions), will tend to put more mass on the νth coordinate. This is

demonstrated even more clearly by Theorem 4.

Suppose that we test the hypothesis Σ = I versus the alternative that Σ =

diag(ℓ1, . . . , ℓM , 1, . . . , 1) with ℓ1 ≥ · · · ≥ ℓM > 1, based on i.i.d. observations

from N(0,Σ). If ℓ1 > 1 +
√
γ, it follows from Theorem 2 that the largest root

test is asymptotically consistent. For the special case when ℓ1 is of multiplicity

one, Theorem 3 gives an expression for the asymptotic power function, assuming



1622 DEBASHIS PAUL

that N/n converges to γ fast enough, as n → ∞. One has to view this in

context, since the result is derived under the assumption that ℓ1, . . . , ℓM are all

fixed, and we do not have a rate of convergence for the distribution of ℓ̂1 toward

normality. However, Theorem 3 can be used to find confidence intervals for the

larger eigenvalues under the non-null model.

2.3. Angle between true and estimated eigenvectors

It is well-known (see, for example, Muirhead (1982), or Anderson (1963))

that, when Σ = I and the observations are Gaussian, the matrix of sample

eigenvectors of S is Haar distributed. In the non-Gaussian situation, Silverstein

(1990) showed weak convergence of random functions of this matrix. In the

context of non-identity covariance, Hoyle and Rattray (2004) described a phase

transition phenomenon in the asymptotic behavior of the angle between the true

and estimated eigenvector associated with a non-unit eigenvalue ℓν . They term

this “the phenomenon of retarded learning”. They derived this result at a level of

rigor consistent with that in the physics literature. Their result can be rephrased

in our context to mean that if 1 < ℓν ≤ 1 +
√
γ is a simple eigenvalue, then the

cosine of the angle between the corresponding true and estimated eigenvectors

converges almost surely to zero; yet, there is a strictly positive limit if ℓν >

1+
√
γ. Part (a) of Theorem 4, stated below and proved in Section 5, is a precise

statement of the latter part of their result. This also readily proves a stronger

version of the result regarding inconsistency of sample eigenvectors as is stated

in Johnstone and Lu (2004).

Theorem 4. Suppose that N/n → (0, 1) as n,N → ∞. Let ẽν denote the N × 1

vector with 1 in the νth coordinate and zeros elsewhere, and let pν denote the

eigenvector of S associated with the eigenvalue ℓ̂ν.

(a) If ℓν > 1 +
√
γ and of multiplicity one,

|〈pν , ẽν〉| a.s.→
√(

1 − γ

(ℓν − 1)2

)/(
1 +

γ

ℓν − 1

)
as n→ ∞. (6)

(b) If ℓν ≤ 1 +
√
γ,

〈pν , ẽν〉 a.s.→ 0 as n→ ∞. (7)

2.4. Distribution of sample eigenvectors

Express the eigenvector pν corresponding to the νth sample eigenvalue as

pν = (pT
A,ν , p

T
B,ν)T , where pA,ν is the subvector corresponding to the first M

coordinates. Follow the convention that νth coordinate of pν is nonnegative. Let

ek denote the kth canonical basis vector in R
M . Then the following holds.
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Theorem 5. Suppose that ℓν > 1 +
√
γ and that ℓν has multiplicity 1. Then as

n,N → ∞ so that N/n − γ = o(n−1/2),

√
n(

pA,ν

‖pA,ν‖
− eν) =⇒ NM (0,Σν(ℓν)), (8)

Σν(ℓν) =

(
1

1 − γ
(ℓν−1)2

)
∑

1≤k 6=ν≤M

ℓkℓν
(ℓk − ℓν)2

eke
T
k . (9)

The following is a non-asymptotic result about the behavior of the νth sample

eigenvector. Here ν can be any number between 1 and min(n,N).

Theorem 6. The vector pB,ν/‖pB,ν‖ is distributed uniformly on the unit sphere

S
N−M−1 and is independent of ‖pB,ν‖.

Theorem 6, taken in conjunction with Theorem 4 and Theorem 5, has in-

teresting implications in the context of functional data analysis (FDA). One ap-

proach in FDA involves summarizing the data in terms of the first few principal

components of the sample curves. A common technique here is to apply a smooth-

ing to the curves before carrying out the PCA. Occassionally this is followed by

smoothing of the estimated sample eigenvectors. Ramsay and Silverman (1997)

detailed various methods of carrying out a functional principal component anal-

ysis (FPCA).

Think of a situation where each individual observation is a random function

whose domain is an interval. Further, suppose that these functions are corrupted

with additive and isotropic noise. If the true functions are smooth and belong

to a finite-dimensional linear space, then it is possible to analyze these data by

transforming the noisy curves in a suitable orthogonal basis, e.g., a wavelet basis

or a Fourier basis. If the data are represented in terms of first N basis functions

(where N is the resolution of the model, or the number of equally spaced points

where the measurements are taken), then the matrix of coefficients in the basis

representation can be written as X, whose columns are N -dimensional vectors

of wavelet or Fourier coefficients of individual curves. The corresponding model

can then be described, under the assumption of Gaussianity, in terms of an

N(m,Σ) model, where m is the mean vector and Σ is the covariance matrix

with eigenvalues ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓM > σ2 = · · · = σ2. Here σ2 is the variance

of the isotropic noise associated with the sample curves. Our results show that

when ℓν > σ2(1 +
√
γ) and N/n converges to some γ ∈ (0, 1), it is possible to

give a fairly accurate approximation of the sample eigenvectors associated with

the “signal” eigenvalues (up to a convention on sign). The similarity of the

resulting expressions to the standard “signal plus noise” models prevalent in the

nonparametric literature, and its implications in the context of estimating the

eigenstructure of the sample curves, are being investigated by the author.
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3. Representation of the Eigenvalues of S

Throughout assume that n is large enough so that N/n < 1. Partition the

matrix S as

S =

[
SAA SAB

SBA SBB

]
,

where the suffix A corresponds to the set of coordinates {1, . . . ,M}, and B

corresponds to the set {M + 1, . . . , N}. As before, use ℓ̂ν and pν to denote the

νth largest sample eigenvalue and the corresponding sample eigenvector. To avoid

any ambiguity, follow the convention that the νth element of pν is nonnegative.

Write pν as pT
ν = (pT

A,ν , p
T
B,ν) and denote the norm ‖pB,ν‖ by Rν . Then almost

surely 0 < Rν < 1.

With this setting in place, express the first M eigen-equations for S as

SAApA,ν + SABpB,ν = ℓ̂νpA,ν , ν = 1, . . . ,M, (10)

SBApA,ν + SBBpB,ν = ℓ̂νpB,ν , ν = 1, . . . ,M, (11)

pT
A,νpA,ν′ + pT

B,νpB,ν′ = δν,ν′ , 1 ≤ ν, ν ′ ≤M, (12)

where δνν′ is the Kronecker symbol. Denote the vector pA,ν/‖pA,ν‖ = pA,ν/√
1 −R2

ν by aν . Thus, ‖aν‖ = 1. Similarly define qν := pB,ν/Rν , and again

‖qν‖ = 1.

Since almost surely 0 < Rν < 1, and ℓ̂νI − SBB is invertible, it follows from

(11) that

qν =

√
1 −R2

ν

Rν
(ℓ̂νI − SBB)−1SBAaν . (13)

Divide both sides of (10) by
√

1 −R2
ν and substitute the expression for qν , to

yield

(SAA + SAB(ℓ̂νI − SBB)−1SBA)aν = ℓ̂νaν , ν = 1, . . . ,M. (14)

This equation is important since it shows that ℓ̂ν is an eigenvalue of the matrix

K(ℓ̂ν), where K(x) := SAA + SAB(xI − SBB)−1SBA, with corresponding eigen-

vector aν . This observation is the building block for all the analyses that follow.

However, it is more convenient to express the quantities in terms of the spectral

elements of the data matrix X.

Let Λ denote the diagonal matrix diag(ℓ1, . . . , ℓM ). Because of normality, the

observation matrix X can be reexpressed as XT = [ZT
AΛ1/2 : ZT

B ], ZA is M × n,

ZB is (N −M) × n. The entries of ZA and ZB are i.i.d. N(0, 1), and ZA and

ZB are mutually independent. Also assume that ZA and ZB are defined on the

same probability space.



EIGENSTRUCTURE FOR SPIKED COVARIANCE 1625

Write the singular value decomposition of ZB/
√
n as

1√
n
ZB = VM 1

2HT , (15)

where M is the (N −M) × (N −M) diagonal matrix of the eigenvalues of SBB

in decreasing order; V is the (N −M)× (N −M) matrix of eigenvectors of SBB ;

and H is the n× (N −M) matrix of right singular vectors. Denote the diagonal

elements of M by µ1 > · · · > µN−M , suppressing the dependence on n.

Note that the columns of V form a complete orthonormal basis for R
N−M ,

while the columns of H form an orthonormal basis of an (N −M) dimensional

subspace (the rowspace of ZB) of R
n.

Define T := (1/
√
n)HTZT

A. T is an (N − M) × M matrix with columns

t1, . . . , tM . The most important property about T is that the vectors t1, . . . , tM
are distributed as i.i.d. N(0, 1

nIN−M) and are independent of ZB. This is because

the columns of H form an orthonormal set of vectors, the rows of ZA are i.i.d.

Nn(0, I) vectors, and ZA and ZB are independent.

Thus, (14) can be expressed as,

(SAA + Λ
1

2T TM(ℓ̂νI −M)−1TΛ
1

2 )aν = ℓ̂νaν , ν = 1, . . . ,M. (16)

Also, K(x) can be expressed as

K(x) = SAA + Λ
1

2T TM(xI −M)−1TΛ
1

2 . (17)

Rewrite (12) in terms of the vectors {aν : ν = 1, . . . ,M} as

aT
ν [I + Λ

1

2T T (ℓ̂νI −M)−1M(ℓ̂ν′I −M)−1TΛ
1

2 ]aν′

=
1

1 −R2
ν

δνν′ , 1 ≤ ν, ν ′ ≤M. (18)

Proofs of the theorems depend heavily on the asymptotic behavior of the largest

eigenvalue, as well as the Empirical Spectral Distribution (ESD) of Wishart ma-

trices in the null (i.e., identity covariance) case. Throughout, the ESD of SBB is

denoted by F̂n,N−M . We know that (Bai (1999))

F̂n,N−M =⇒ Fγ , almost surely as n→ ∞. (19)

The following result, proved in Appendix A, is about the deviation of the largest

eigenvalue of SBB from its limiting value κγ := (1 +
√
γ)2. The importance of

this result is that, for proving the limit theorems, it is enough to do calculations

by restricting attention to sets of the form µ1 ≤ κγ + δ for some suitably chosen

δ > 0.
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Proposition 1. For any 0 < δ < κγ/2,

P(µ1 − κγ > δ) ≤ exp

(
−3nδ2

64κγ

)
, for n ≥ n0(γ, δ), (20)

where n0(γ, δ) is an integer large enough that |(1 +
√

(N −m)/n)2 − κγ | ≤ δ/4

for n ≥ n0(γ, δ).

4. Proof of Theorem 3

The first step here is to utilize the eigen-equation (16) to get

ℓ̂ν = aT
ν (SAA + Λ

1

2T TM(ℓ̂νI −M)−1TΛ
1

2 )aν . (21)

From this, after some manipulations (see Section 5.1 for details),

√
n(ℓ̂ν−ρν)(1+ℓνt

T
ν M(ρνI−M)−2tν + dν)

=
√
n(sνν +ℓνt

T
ν M(ρνI−M)−1tν−ρν) + oP (1), (22)

where dν = −ℓν(ℓ̂ν − ρν)(t
T
ν M(ρνI −M)−2(ℓ̂νI −M)−1tν + OP (1)), and sνν is

the (ν, ν)th element of S. It follows readily that dν = oP (1). It will be shown

that the term on the RHS of (22) converges in distribution to a Gaussian random

variable with zero mean and variance

2ℓνρν

(
1 + ℓνγ

∫
x

(ρν − x)2
dFγ(x)

)
. (23)

Next, from Proposition 2 stated below (and proved in Appendix B), it follows

that

tTν M(ρνI −M)−2tν
a.s.−→ γ

∫
x

(ρν − x)2
dFγ(x). (24)

Hence (4), with σ2(ℓ) given by the first expression in (5), follows from (23), (24),

(22) and Slutsky’s Theorem. Application of (58) gives the second equality in (5),

and the third follows from simple algebra.

Proposition 2. Suppose that N/n → γ ∈ (0, 1) as n → ∞. Let δ, ǫ > 0 satisfy

δ < [4(κγ + ǫ/2)/(ρ − κγ − ǫ/2)2][(N −M)/n] and ρ ≥ κγ + ǫ. Then there is
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n∗(ρ, δ, ǫ, γ) such that for all n ≥ n∗(ρ, δ, ǫ, γ),

P

(
|tTj M(ρI −M)−2tj − γ

∫
x

(ρ− x)2
dFγ(x)| > δ, µ1 < κγ +

ǫ

2

)

≤ 2 exp

(
− n

N −M

n( δ
4)2(ρ− κγ − ǫ

2)4

6(κγ + ǫ
2)2

)

+2exp

(
− n

n+N −M

n2( δ
4 )2

2

(ρ− κγ − ǫ
2)6

16ρ2(κγ + ǫ
2)

)

+2exp

(
− n

n+N −M

n2( δ
4 )2

2

(ρ− κγ − ǫ
2)4

4(κγ + ǫ
2)

)
, 1 ≤ j ≤M.

The main term on the RHS of (22) can be expressed as Wn +W ′
n, where

Wn =
√
n(sνν−(1−γ)ℓν +ℓνt

T
ν M(ρνI−M)−1tν−ℓνρν

1

n
trace((ρνI−M)−1)),

W ′
n =

√
nℓν(ρν

1

n
trace((ρνI −M)−1) − γℓν

ℓν − 1
).

Note that by (57), γℓν/(ℓν − 1) = γ[1 + (1/(ℓν − 1))] = γ
∫

[ρν/(ρν − x)]dFγ(x) .

On the other hand

ρν
1

n
trace((ρνI −M)−1) =

N −M

n

∫
ρν

ρν − x
F̂n,N−M (x).

Since the function 1/(ρν − z) is analytic in an open set containing the interval

[(1 −√
γ)2, (1 +

√
γ)2], from (Bai and Silverstein (2004, Thm 1.1)) the sequence

W ′
n = oP (1) because (N/n) − γ = o(n−1/2).

4.1. Asymptotic normality of Wn

Recall that by definition of T , tν = (1/
√
n)HTZA,ν where ZT

A,ν is the νth

row of ZA. Since N −M < n, and the columns of H are orthonormal, one can

extend them to an orthonormal basis of R
n given by the matrix H̃ = [H : Hc],

where Hc is n× (n−N +M). Thus, H̃H̃T = H̃T H̃ = In. Write

sνν = ℓν
1

n
ZT

A,νZA,ν = ℓν
1

n
ZT

A,νH̃H̃
TZA,ν

= ℓν(‖
1√
n
HTZA,ν‖2 + ‖ 1√

n
HT

c ZA,ν‖2)

= ℓν(‖tν‖2 + ‖wν‖2),

with wν := (1/
√
n)HT

c ZA,ν. Thus wν ∼ N(0, In−N+M/n); tν ∼ N(0, IN−M/n);

and these are mutually independent and independent of ZB. Therefore, one can
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represent Wn as a sum of two independent random variables W1,n and W2,n,

where

W1,n = ℓν
√
n(‖wν‖2 − (1 − γ)),

W2,n = ℓνρν

√
n(tTν (ρνI −M)−1tν − 1

n
trace((ρνI −M)−1)).

Since n‖wν‖2 ∼ χ2
n−N+M and N/n − γ = o(n−1/2), it follows that W1,n =⇒

N(0, 2ℓ2ν(1 − γ)). Later, it is shown that

W2,n =⇒ N(0, 2ℓ2νγ

∫
ρ2

ν

(ρν − x)2
dFγ(x)). (25)

Therefore, the asymptotic normality of Wn is established. W ′
n = oP (1) then im-

plies asymptotic normality of the RHS of (22). The expression (23) for asymptotic

variance is then deduced from the identity

∫
ρ2

ν

(ρν − x)2
dFγ(x) = 1 +

1

ℓν − 1
+ ρν

∫
x

(ρν − x)2
dFγ(x),

which follows from (57). Therefore, the asymptotic variance of Wn is

2ℓ2ν(1 − γ) + 2ℓ2νγ

∫
ρ2

ν

(ρν − x)2
dFγ(x)

= 2ℓ2ν(1 +
γ

ℓν − 1
) + 2ℓ2νρνγ

∫
x

(ρν − x)2
dFγ(x),

from which (23) follows since ℓν(1 + γ/(ℓν − 1)) = ρν .

4.2. Proof of (25)

Let tν = (tν,1, . . . , tν,N−M )T , tν,j
i.i.d.∼ N(0, 1/n) and independent of M.

Hence, if yj =
√
ntν,j, then

W2,n = ℓνρν
1√
n

(N−M∑

j=1

1

ρν − µj
y2

j −
N−M∑

j=1

1

ρν − µj

)
,

where {yj}N−M
j=1

i.i.d.∼ N(0, 1), and {yj}N−M
j=1 is independent of M. To establish

(25) it suffices to show that, for all t ∈ R,

φW2,n
(t) := E exp(itW2,n) → φeσ2(ℓν)(t) := exp

(
− t2σ̃2(ℓν)

2

)
, as n→ ∞,

where σ̃2(ℓ) = 2ℓ2γ
∫
ρ2(ℓ)/(ρ2(ℓ) − x)2dFγ(x) for ℓ > 1 +

√
γ. Define Jγ(δ) :=

{µ1 ≤ κγ + δ}, where δ > 0 is any number such that ρν > κγ + 2δ. Note that
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Jγ(δ) is a measurable set that depends on n, and P(Jγ(δ)) → 1 as n → ∞ by

Proposition 1. Thus we need only establish that for all t ∈ R,

E

[∣∣∣E(eitW2,n | M) exp
(t2σ̃2(ℓν)

2

)
− 1
∣∣∣, µ1 ≤ κγ + δ

]
→ 0, as n→ ∞, (26)

where the outer expectation is with respect to the distribution of M. Since the

characteristic function of a χ2
1 random variable is ψ(x) = 1/

√
1 − 2ix, on the set

{µ1 ≤ κγ + δ}, the inner conditional expectation is

N−M∏

j=1

ψ
( tℓνρν√

n(ρν − µj)

)
exp

(
− itℓνρν√

n

N−M∑

j=1

1

ρν − µj

)

=

N−M∏

j=1

(
1 − 2itℓνρν√

n(ρν − µj)

)− 1

2

exp
(
− itℓνρν√

n

N−M∑

j=1

1

ρν − µj

)
. (27)

Let log z (z ∈ C) be the principal branch of the complex logarithm. Then

(
1 − 2itℓνρν√

n(ρν − µj)

)− 1

2

= exp

(
−1

2
log

(
1 − 2itℓνρν√

n(ρν − µj)

))
.

In view of the Taylor series expansion of log(1 + z) (valid for |z| < 1), for n ≥
n∗(ν, γ, δ), large enough so that (|t|ℓνρν)/(

√
n(ρν−κγ−δ)) < 1/2, the conditional

expectation (27) is

exp

(
1

2

N−M∑

j=1

∞∑

k=1

1

k

(2itℓνρν√
n

1

ρν − µj

)k
− itℓνρν√

n

N−M∑

j=1

1

ρν − µj

)
.

The inner sum is dominated by a geometric series and hence is finite for n ≥
n∗(ν, γ, δ) on the set Jγ(δ). Interchanging the order of summations, on Jγ(δ) the

term within the exponent becomes

− t
2

2

[
2ℓ2νρ

2
ν

1

n

N−M∑

j=1

1

(ρν − µj)2

]
+

1

2

∞∑

k=3

1

k

(
2itℓνρν√

n

)k N−M∑

j=1

1

(ρν − µj)k
. (28)

Denote the first term of (28) by an(t) and the second term by r̃n(t). For n ≥
n∗(ν, γ, δ), on Jγ(δ),

|r̃n(t)| ≤ t2

3

[
2ℓ2νρ

2
ν

1

n

N−M∑

j=1

1

(ρν − µj)2

]( 2|t|ℓνρν√
n(ρν − κγ − δ)

)

×
(

1 − 2|t|ℓνρν√
n(ρν − κγ − δ)

)−1

. (29)
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Let G2(· ; ρ, γ, δ) to be the bounded function (ρ > κγ + δ) defined through

(55). Then on Jγ(δ), (1/n)
∑N−M

j=1 [1/(ρν −µj)
2] = ((N −M)/n)

∫
G2(x; ρν , γ, δ)

dF̂n,N−M (x) and the quantity on the RHS converges almost surely to γ
∫
G2(x; ρν ,

γ, δ)dFγ (x) = γ
∫

[1/(ρν − x)2]dFγ(x) because of the continuity of G2(·; ρν , γ, δ)

and (19). Moreover, on Jγ(δ), an(t) and r̃n(t) are bounded for n ≥ n∗(ν, γ, δ).
Therefore, from this observation, and (27) and (28), the sequence in (26) is

bounded by

E

[
exp

(
an(t) +

t2σ̃2(ℓν)

2

)
(exp (|r̃n(t)|) − 1) IJγ(δ)

]

+E

[∣∣∣ exp
(
an(t) +

t2σ̃2(ℓν)

2

)
− 1
∣∣∣ IJγ(δ)

]
,

which converges to zero by the Bounded Convergence Theorem.

5. Approximation to the Eigenvectors

This section deals with an asymptotic expansion of the eignvector aν of the

matrix K(ℓ̂ν) associated with the eigenvalue ℓ̂ν , when ℓν is greater than 1 +
√
γ

and has multiplicity 1. This expansion has already been used in the proof of

Theorem 3. An important step, presented through Lemma 1, is to provide a

suitable bound for the remainder in the expansion. The approach taken here
follows the perturbation analysis approach in Kneip and Utikal (2001), (see also

Kato (1980, Chap. 2)). For the benefit of the readers, the steps leading to the

expansion are outlined below.

First observe that ρν is the eigenvalue of (ρν/ℓν)Λ associated with the eigen-

vector eν . Define

Rν =

M∑

k 6=ν

ℓν
ρν(ℓk − ℓν)

eke
T
k . (30)

Note that Rν is the resolvent of (ρν/ℓν)Λ “evaluated” at ρν . Then utilize the

defining equation (16) to write

(
ρν

ℓν
Λ − ρνI)aν = −(K(ℓ̂ν) − ρν

ℓν
Λ)aν + (ℓ̂ν − ρν)aν .

Define Dν = K(ℓ̂ν)− (ρν/ℓν)Λν ; premultiply both sides by Rν ; and observe that

Rν((ρν/ℓν)Λ − ρνI) = IM − eνe
T
ν := P⊥

ν . Then

P⊥
ν aν = −RνDνaν + (ℓ̂ν − ρν)Rνaν . (31)

As a convention, suppose that 〈eν , aν〉 ≥ 0. Then write aν = 〈eν , aν〉eν + P⊥
ν aν

and observe that Rνeν = 0. Hence

aν − eν = −RνDνeν + rν , (32)
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where rν = −(1 − 〈eν , aν〉)eν − RνDν(aν − eν) + (ℓ̂ν − ρν)Rν(aν − eν). Now,

define

αν = ‖RνDν‖ + |ℓ̂ν − ρν |‖Rν‖, and βν = ‖RνDνeν‖. (33)

The following lemma gives a bound on the residual rν . The proof can be found

in Paul (2004).

Lemma 1. rν satisfies

‖rν‖ ≤
{
βν

(
αν(1+αν )

1−αν(1+αν ) + βν

(1−αν (1+αν))2

)
if αν <

√
5−1
2 ,

α2
ν + 2αν always.

(34)

The next task is to establish that βν = oP (1) and αν = oP (1). First, write

Dν = (SAA − Λ) + Λ
1

2

(
T TM(ρνI −M)−1T − 1

n
trace(M(ρνI −M)−1)I

)
Λ

1

2

+

(
1

n
trace(M(ρνI −M)−1) − γ

∫
x

ρν − x
dFγ(x)

)
Λ

+ (ρν − ℓ̂ν)Λ
1

2T TM(ρνI −M)−1(ℓ̂νI −M)−1TΛ
1

2 . (35)

Since ℓ̂ν
a.s.→ ρν > κγ and µ1

a.s.→ κγ , in view of the analysis carried out in Section

4, it is straightforward to see that ‖Dν‖ a.s.→ 0. Therefore, αν
a.s.→ 0 and βν

a.s.→ 0

from (33). However, it is possible to get a much better bound for βν .

Define V (i,ν) := T TM(ρνI −M)−iT − (1/n)trace(M(ρνI −M)−i)I for i =

1, 2. Expand Dν up to second order around ρν , and observe that Rν∆eν = 0 for

any diagonal matrix ∆. From this, and (17), it follows that

RνDνeν = Rν(K(ρν) − ρν

ℓν
Λ)eν + (ρν − ℓ̂ν)RνK(ρν)eν + (ℓ̂ν − ρν)

2rν , (36)

where K(ρν) = Λ1/2V (2,ν)Λ1/2; and ‖rν‖ = OP (1). Note that (i) all terms,

except those on the diagonal, of the matrix Λ1/2T TM(ρνI −M)−iTΛ1/2eν are

OP (n−1/2) for i = 1, 2 (from an inequality similar to (41)), (ii) all except the

diagonal of SAA are OP (n−1/2), and (iii) Rν is diagonal with (ν, ν)th entry equal

to 0. It now follows easily that

βν = OP (n−
1

2 ) + (ℓ̂ν − ρν)
2OP (1). (37)

5.1. Explanation for expansion (22)

The RHS of (21) can be written as

eT
ν K(ℓ̂ν)eν + 2eT

ν K(ℓ̂ν)(aν − eν) + (aν − eν)
TK(ℓ̂ν)(aν − eν). (38)
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The first term in (38) is the major component of (22), and it can be written as

sνν + ℓνt
T
ν M(ρνI −M)−1tν + (ρν − ℓ̂ν)ℓνt

T
ν M(ρνI −M)−2tν

+(ρν − ℓ̂ν)
2ℓνt

T
ν M(ρνI −M)−2(ℓ̂νI −M)−1tν .

Again, from (32), (33), (34) and (37),

(aν−eν)
TK(ℓ̂ν)(aν−eν) = ‖aν−eν‖2OP (1) = β2

ν OP (1)

= OP (n−1)+(ℓ̂ν−ρν)
2OP (n−

1

2 )+(ℓ̂ν−ρν)
4OP (1).

To check the negligibility of the second term in (38), observe that by (32),

eT
ν K(ℓ̂ν)(aν − eν) = −eT

νDνRνDνeν + eT
ν K(ℓ̂ν)rν

= −eT
νDνRνDνeν + oP (n−

1

2 ) + (ℓ̂ν − ρν)
2oP (1),

where the last equality is due to (34), (37) and αν = oP (1). Use (36), and the

definition of Rν , to get the expression

eT
ν DνRνDνeν

=
M∑

j 6=ν

ℓν
ρν

(
ℓjℓν
ℓj−ℓν

)[
sjν√
ℓjℓν

+V
(1,ν)
jν +(ρν−ℓ̂ν)V (2,ν)

jν +(ρν−ℓ̂ν)2Ṽ (3,ν)
jν

]2

,

where Ṽ (3,ν) = T TM(ρνI −M)−2(ℓ̂νI −M)−1T . Observe that for j 6= ν, each

of the terms sjν , V
(1,ν)
jν and V

(2,ν)
jν is OP (n−1/2) and Ṽ

(3,ν)
jν = OP (1). It follows

that

eT
ν DνRνDνeν = OP (n−1) + (ℓ̂ν − ρν)

2OP (n−1/2) + (ℓ̂ν − ρν)
4OP (1).

5.2. Proof of Theorem 4

Part (a). As a convention, choose 〈pν , ẽν〉 ≥ 0. First, note that with pA,ν as in

(10), 〈pν , ẽν〉 = 〈pA,ν, eν〉 =
√

1 −R2
ν 〈aν , eν〉. Since βν

a.s.→ 0 and αν
a.s.→ 0, from

(32) and (34), it follows that 〈aν , eν〉 a.s.→ 1. Therefore, from (18), (24), Theorem

2 and the above display,

1

1 −R2
ν

a.s.→ 1 + ℓνγ

∫
x

(ρν − x)2
dFγ(x),

from which (6) follows in view of Lemma B.2.

Part (b). From (18), it is clear that for (7) to hold, either aT
ν Λ1/2T TM(ℓ̂νI −

M)−2TΛ1/2aν
a.s.→ ∞, or 〈aν , eν〉 a.s.→ 0. Hence, it suffices to show that the smallest

eigenvalue of the matrix E := T TM(ℓ̂νI − M)−2T diverges to infinity almost
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surely. The approach is to show that given ǫ > 0, there is a Cǫ > 0 such that the

probability P(λmin(E) ≤ Cǫ) is summable over n, and that Cǫ → ∞ as ǫ→ 0.

Denote the rows of T by tT
j , j = 1, . . . , N −M (treated as an 1×M vector);

tj’s are to be distinguished from the vectors t1, . . . , tM , the columns of T . In

fact, tT
j = (tj1, . . . , tjM). Then

E =

N−M∑

j=1

µj

(ℓ̂ν − µj)2
tjt

T
j ≥

N−M∑

j=ν

µj

(ℓ̂ν − µj)2
tjt

T
j =: Eν , say,

in the sense of inequalities between positive semi-definite matrices. Thus λmin(E)

≥ λmin(Eν). Then on the set J1,ν := {ℓ̂ν < κγ + ǫ, µ1 < κγ + ǫ/2},

Eν ≥
N−M∑

j=ν

µj

(κγ + ǫ− µj)2
tjt

T
j =: Eν

since ℓ̂ν ≥ µν , by the interlacing inequality of eigenvalues of symmetric matrices

(Rao (1973, Sec. 1f)). Thus, in view of Proposition 1, we need only provide a

lower bound for the smallest eigenvalue of Eν . However, it is more convenient to

work with the matrix

E =

N−M∑

j=1

µj

(κγ + ǫ− µj)2
tjt

T
j = T TM((κγ + ǫ)I −M)−2T. (39)

Proving summability of P(λmin(E) ≤ Cǫ, J1,ν) (where Cǫ → ∞ as ǫ→ 0) suffices,

because it is easy to check that P(‖Eν − E‖ > ǫ, J1,ν) is summable.

By Proposition 2, given 0 < δ < [16(κγ + ǫ/2)/ǫ2][(N −M)/n], there is an

n∗(δ, ǫ, γ) such that, for all j = 1, . . . ,M , for all n ≥ n∗(δ, ǫ, γ),

P(|tTj M((κγ +ǫ)I−M)−2tj−γ
∫

x

(κγ +ǫ−x)2dFγ(x)|>δ, J1,ν)≤ε1(n), (40)

where ε1(n) is summable in n. On the other hand, since
√
ntj ∼ N(0, IN−M ) for

j = 1, . . . ,M , and on Jγ(ǫ/2)

‖M((κγ + ǫ)I −M)−2‖ =
µ1

(κγ + ǫ− µ1)2
≤ κγ + ǫ

2

( ǫ
2)2

,

Lemma A.1 implies that, for j 6= k and 0 < δ < [2(κγ + ǫ/2)/ǫ2][(N −M)/n],

P(|tTj M((κγ +ǫ)I−M)−2tk|>δ, J1,ν)≤2 exp

(
− n

N −M

nδ2( ǫ
2 )4

3(κγ + ǫ
2)2

)
. (41)
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Denote the RHS of (41) by ε2(n). Notice that |λmin(E) − λmin(DE)| ≤ ‖E −
DE‖HS , where ‖ · ‖HS denotes the Hilbert-Schmidt norm and DE is the diagonal

of E. Hence, from (40) and (41), with δM = δ(1 +
√
M(M − 1)),

P(λmin(E) ≤ γ

∫
x

(κγ + ǫ− x)2
dFγ(x) − δM , J1,ν)

≤Mε1(n) +
M(M − 1)

2
ε2(n) (42)

for 0 < δ < [2(κγ + ǫ/2)/ǫ2][(N −M)/n], and for all n ≥ n∗(δ, ǫ, γ).

If 0 < ǫ < 2γ, then it can be checked that
∫
x/(κγ + ǫ − x)2dFγ(x) >

(1/16
√
γπ)(1/

√
ǫ). Therefore, set δ = ǫ(1 +

√
M(M − 1))−1 and choose ǫ small

enough so that (
√
γ/16π)(1/

√
ǫ) − ǫ > 0. Call the last quantity Cǫ, and observe

that Cǫ → ∞ as ǫ→ 0. By (42), the result follows.

5.3. Proof of Theorem 5

Use the fact (due to Theorem 3) that ℓ̂ν − ρν = OP (n−1/2) and equations

(32), (34) and (37) to get

√
n(aν − eν) = −

√
nRνDνeν + oP (1). (43)

Since ℓ̂ν − ρν = OP (n−1/2), and since the off-diagonal elements of the matrix

V (2,ν) are OP (n−1/2), from (36),

√
n(aν − eν) = −

M∑

k 6=ν

ℓν
ρν

√
ℓkℓν

(ℓk − ℓν)

[√
nskν√
ℓkℓν

+
√
ntTk M(ρνI −M)−1tν

]
ek

+ oP (1). (44)

Now, to complete the proof use the same trick as in the proof of Theorem 3.

Using the same notation write skν =
√
ℓkℓν [t

T
k tν +wT

k wν ], where for 1 ≤ k ≤M ,

wk
i.i.d.∼ N(0, (1/n)In−N+M ), tk

i.i.d.∼ N(0, (1/n)IN−M ), and {wk} and {tk} are

mutually independent, and independent of ZB .

The asymptotic normality of
√
n(aν −eν) can then be established by proving

the asymptotic normality of W3,n :=
∑M

k 6=ν(ℓν/ρν)[
√
ℓkℓν/(ℓk − ℓν)]

√
nwT

k wνek

and W4,n :=
∑M

k 6=ν(ℓν/ρν)[
√
ℓkℓν/(ℓk − ℓν)]

√
ntTk (I + M(ρνI −M)−1)tνek sepa-

rately. It can be shown that,

W3,n =⇒ NM (0, (1 − γ)
ℓ2ν
ρ2

ν

M∑

k 6=ν

ℓkℓν
(ℓk − ℓν)2

eke
T
k ).
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To prove the asymptotic normality of W4,n, fix an arbitrary vector b ∈ R
M ,

and consider the characteristic function of bTW4,n, conditional on M. As in the

proof of Theorem 3, it is enough that, for some pre-specified δ > 0,

E

[∣∣∣∣E(eia
T W4,n |M) exp

(
1

2
bT Σ̃ν(ℓν)b

)
−1

∣∣∣∣ , µ1≤κγ +δ

]
→ 0 as n→∞, (45)

where

Σ̃ν(ℓν) = Σν(ℓν) − (1 − γ)
ℓ2ν
ρ2

ν

∑

1≤k 6=ν≤M

ℓkℓν
(ℓk − ℓν)2

eke
T
k

= γℓ2ν

∫
1

(ρν − x)2
dFγ(x)

∑

1≤k 6=ν≤M

ℓkℓν
(ℓk − ℓν)2

eke
T
k .

Define Jγ(δ) := {µ1 ≤ κγ + δ} where δ is small enough so that ρν > κγ + 2δ.
Define

Cν = ℓ2ν
∑

1≤k 6=ν≤M

ℓkℓν
(ℓk − ℓν)2

eke
T
k .

Choose n large enough so that bTCνb < n(ρν − κγ − δ)2. Then observe that on
Jγ(δ),

E(eib
T W4,n |M) = E[E(eib

T W4,n |tν ,M)|M]

= E

[
exp

(
−1

2
bTCνbt

T
ν (ρνI −M)−2tν

)
|M
]

=

N−M∏

j=1

(
1 +

bT Cνb

n(ρν − µj)2

)− 1

2

, (46)

where the first and the last steps owe to the fact that the tk ∼ N(0, IN−M/n) and
are independent for k = 1, . . . ,M . The rest of the proof imitates the arguments

used in the proof of Theorem 3 and is omitted.

5.4. Proof of Theorem 6

An invariance approach is taken to prove the result. Use the notation of
Section 3. Write pB,ν as pB,ν = pB,ν(Λ,ZA,ZB). That is, treat pB,ν as a map

from R
M × R

M×n × R
(N−M)×n into R

N−M that maps (Λ,ZA,ZB) to the vector
which is the B-subvector of the νth eigenvector of S. Also, recall that Rν =

‖pB,ν‖.
Denote the class of (N−M)×(N−M) orthogonal matrices by ON−M . From

the decomposition of S in Section 3, it follows that, for G ∈ ON−M arbitrary,

GpB,ν = pB,ν(Λ,ZA, GZB), i.e., for every fixed ZA = zA, as a function of ZB ,

GpB,ν(Λ, zA,ZB) = pB,ν(Λ, zA, GZB). (47)
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Define, for r > 0, Ar := Ar(zA) = {zB ∈ R
(N−M)×n : ‖pB,ν(Λ, zA, zB)‖ = r}.

Then (47) implies that

GAr = Ar for all G ∈ ON−M , for all r > 0. (48)

Thus, for any 0 < r1 < r2 < 1, the set

{‖pB,ν(Λ, zA, zB)‖ ∈ [r1, r2)} =
⋃

r1≤r<r2

Ar(zA),

is invariant under rotation on the left. Note that
⋃

r1≤r<r2
Ar(zA) is the zA-

section of the set {Rν ∈ [r1, r2)} and hence is measurable (w.r.t. the σ-algebra

generated by ZB).

From this it follows that for every fixed ZA = zA, and every Borel measurable

subset H of the unit sphere S
N−M−1, for all G ∈ ON−M it is meaningful to write

P(Rν ∈ [r1, r2), G
pB,ν(Λ, zA,ZB)

Rν
∈ H|ZA = zA)

= P(ZB ∈
⋃

r1≤r<r2

Ar(zA), G
pB,ν(Λ, zA,ZB)

‖pB,ν(Λ, zA,ZB)‖ ∈ H|ZA = zA)

= P(GZB ∈
⋃

r1≤r<r2

Ar(zA),
pB,ν(Λ, zA, GZB)

‖pB,ν(Λ, zA, GZB)‖ ∈ H|ZA = zA)

(by (47) and (48))

= P(ZB ∈
⋃

r1≤r<r2

Ar(zA),
pB,ν(Λ, zA,ZB)

‖pB,ν(Λ, zA,ZB)‖ ∈ H|ZA = zA)

(since GZB
L
= ZB , independent of ZA)

= P(Rν ∈ [r1, r2),
pB,ν(Λ, zA,ZB)

Rν
∈ H|ZA = zA).

From the equality of the first and the last terms, by standard arguments we

conclude that for all Borel subset H of S
N−M−1,

P(G
pB,ν

Rν
∈ H|Rν ,ZA) = P(

pB,ν

Rν
∈ H|Rν ,ZA)

for all G ∈ ON−M . This rotational invariance means that given Rν and ZA, the

conditional distribution of qν = pB,ν/Rν is uniform on S
N−M−1. Moreover, since

the conditional distribution of qν does not depend on (Rν ,ZA), qν and (Rν ,ZA)

are independent. In particular, the marginal distribution of qν is uniform on

S
N−M−1.
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Appendix A

A.1. Weak concentration inequalities for random quadratic forms

The following two lemmas are referred to as weak concentration inequalities.

Suppose that C : X → R
n×n is a measurable function. Let Z be a random

variable taking values in X . Let ‖C‖ denote the operator norm of C, i.e., the

largest singular value of K.

Lemma A.1. Suppose that X and Y are i.i.d. Nn(0, I) independent of Z. Then

for every L > 0 and 0 < δ < 1, for all 0 < t < δ/(1 − δ)L,

P

( 1

n
|XTC(Z)Y | > t, ‖C(Z)‖ ≤ L

)
≤ 2 exp

(
−(1 − δ)nt2

2L2

)
. (49)

Lemma A.2. Suppose that X is distributed as Nn(0, I) independent of Z. Also

let C(z) = CT (z) for all z ∈ X . Then for every L > 0 and 0 < δ < 1, for all

0 < t < 2δ/(1 − δ)L,

P(
1

n
|XTC(Z)X−trace(C(Z))| > t, ‖C(Z)‖ ≤ L) ≤ 2 exp

(
−(1 − δ)nt2

4L2

)
. (50)

The proofs involve standard arguments and are omitted.

A.2. Proof of Proposition 1

In order to prove this result the following result, a part of Theorem 2.13 of

Davidson and Szarek (2001), is used.

Lemma A.3. Let Z be a p × q matrix of i.i.d. N(0, 1/q) entries with p ≤ q.

Let smax(Z) and smin(Z) denote the largest and the smallest singular value of Z,

respectively. Then

P(smax(Z) > 1 +

√
p

q
+ t) ≤ e−

qt2

2 , (51)

P(smin(Z) < 1 −
√
p

q
− t) ≤ e−

qt2

2 . (52)

Take p = N − M , q = n and Z = ZB/
√
n. Note that

√
µ1 = smaxZB/

√
n.

Let m1 := (1 +
√

(N −M)/n)2. For any r > 0, if
√
µ1 − √

m1 ≤ r, then
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µ1 −m1 ≤ (
√
µ1 +

√
m1)max{√µ1 −

√
m1, 0} ≤ (2

√
m1 + r)r . This implies, by

(51), that

e−
nr2

2 ≥ P(smax(
1√
n
ZB) >

√
m1 + r) ≥ P(µ1 −m1 > r(2

√
m1 + r)).

Set t = r(2
√
m1 + r) = (r +

√
m1)

2 −m1. Solving for r one gets that, for t > 0,

r =
√
t+m1 −

√
m1. Substitute in the last display to get, for t > 0,

P(µ1 −m1 > t) ≤ exp
[
−n

2
(
√
t+m1 −

√
m1)

2
]
. (53)

Now, to complete the proof, observe that

√
t+m1 −

√
m1 =

t√
t+m1 +

√
m1

>
t

2
√
t+m1

≥ t

2
√
t+ κγ + δ/4

for n ≥ n0(γ, δ). Since δ < κγ/2 implies that κγ + δ < 3κγ/2, for n ≥ n0(γ, δ),

one has
√

3δ/4 +m1 − √
m1 >

√
6δ/(8

√
κγ). The result follows if t = 3δ/4 is

substituted in (53), since |m1 − κγ | ≤ δ/4.

A.3. A concentration inequality for Lipschitz functionals

We restate Corollary 1.8(b) of Guionnet and Zeitouni (2000) in our context.

Lemma A.4. Suppose that Y is an m × n matrix, m ≤ n, with independent

(real or complex) entries Ykl with law Pkl, 1 ≤ k ≤ m, 1 ≤ l ≤ n. Let S∆ =

Y∆Y∗ be a generalized Wishart matrix, where ∆ is a diagonal matrix with real,

nonnegative diagonal entries and spectral radius φ∆ > 0. Suppose that the family

{Pkl : 1 ≤ k ≤ m, 1 ≤ l ≤ n} satisfies the logarithmic Sobolev inequality with

uniformly bounded constant c. Then for any function f such that g(x) := f(x2)

is Lipschitz, for any δ > 0,

P

(∣∣∣
1

m
trace f(

1

m+ n
S∆) − E(

1

m
trace f(

1

m+ n
S∆))

∣∣∣ > δ

)

≤ 2 exp

(
− m2δ2

2cφ∆|g|2L

)
, (54)

where |g|L is the Lipschitz norm of g.

Define

Gk(x; ρ, γ, ǫ) =

{ 1
(ρ−x)k x ≤ κγ + ǫ

1
(ρ−κγ−ǫ)k x > κγ + ǫ

, where ρ>κγ +ǫ, k=1, 2, . . . . (55)

Then define fk(x) = Gk(x; ρ, γ, ǫ), k = 1, 2, gk(x) = fk(x
2), and notice that gk(x)

is Lipschitz with |gk|L = [2k(κγ + ǫ)1/2]/[(ρ − κγ − ǫ)k+1]. Take m = N −M ,
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Y = ZB and ∆ = [(m + n)/n]In, and recall that N(0, 1) satisfies logarithmic

Sobolev inequality with constant c = 1 (Bogachev (1998, Thm. 1.6.1)). Further,

φ∆ = (m + n)/n and S∆ = (m + n)SBB . Therefore Lemma A.4 implies the

following.

Proposition A.1. For k = 1, 2, and any δ > 0,

P

(∣∣∣
1

n
trace Gk(SBB ; ρ, γ, ǫ) − E(

1

n
trace Gk(SBB ; ρ, γ, ǫ))

∣∣∣ > δ

)

≤ 2 exp

(
− n

n+N −M

n2δ2

2

(ρ− κγ − ǫ)2(k+1)

4k2(κγ + ǫ)

)
. (56)

Appendix B

B.1. Expression for ρν

Lemma B.1. For ℓν ≥ 1 +
√
γ, ρν = ℓν (1 + [γ/(ℓν − 1)]) solves (3).

Proof. First step is to show that for any ℓ > 1 +
√
γ,

∫
x

ρ(ℓ) − x
fγ(x)dx =

1

ℓ− 1
, (57)

where ρ(ℓ) = ℓ (1 + [γ/(ℓ− 1)]), and fγ(x) is the density of Marčenko-Pastur

law with parameter γ(≤ 1). This is obtained by direct computation. The case

ℓ = 1 +
√
γ follows from this and the Monotone Convergence Theorem.

The following result is easily obtained from Lemma B.1.

Lemma B.2. For ℓ > 1 +
√
γ,

∫
x

(ρ(ℓ) − x)2
dFγ(x) =

1

(ℓ− 1)2 − γ
. (58)

B.2. Proof of Proposition 2

First, consider the expansion

tTj M(ρI −M)−2tj − γ

∫
x

(ρ− x)2
dFγ(x)

=

[
tTj M(ρI −M)−2tj −

1

n
trace(M(ρI −M)−2)

]

+

[
1

n
trace(M(ρI −M)−2) − γ

∫
x

(ρ− x)2
dFγ(x)

]
.
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Split the second term further as

ρ

[
1

n
trace((ρI −M)−2) − γ

∫
1

(ρ− x)2
dFγ(x)

]

−
[

1

n
trace((ρI −M)−1) − γ

∫
1

ρ− x
dFγ(x)

]

= (I) − (II), say.

Define Jγ(ǫ/2) := {µ1 ≤ κγ + ǫ/2}. In order to bound the first term, notice that√
ntj ∼ N(0, IN−M ) for j = 1, . . . ,M , and on Jγ(ǫ/2),

‖M(ρI −M)−2‖ =
µ1

(ρ− µ1)2
≤ κγ + ǫ

2

(ρ− κγ − ǫ
2)2

.

Thus, apply Lemma A.2 to conclude that (setting δ = 1/3 in the lemma),

P

(∣∣∣tTj M(ρI −M)−2tj −
1

n
trace (M(ρI −M)−2)

∣∣∣ ≥ δ

4
, Jγ(

ǫ

2
)
)

≤ 2 exp

(
− n

N−M
(ρ−κγ− ǫ

2)4n( δ
4)2

6(κγ + ǫ
2)2

)
for 0<δ<

4(κγ + ǫ
2)

(ρ−κγ− ǫ
2)2

(
N −M

n

)
. (59)

To provide bounds for (I), observe that on Jγ(ǫ/2), trace ((ρI − M)−2) =

trace G2(SBB ; ρ, γ, ǫ/2), where G2(·; ·, ·, ·) is defined through (55). Therefore,

Proposition A.1 implies that

P

(
ρ
∣∣∣
1

n
trace ((ρI −M)−2) − E(

1

n
trace G2(SBB ; ρ, γ, ǫ/2))

∣∣∣ >
δ

4
, Jγ(

ǫ

2
)
)

≤ 2 exp

(
− n

n+N −M

n2( δ
4)2

2

(ρ− κγ − ǫ
2 )6

16ρ2(κγ + ǫ
2)

)
. (60)

Analogously, use G1(·; ·, ·, ·) instead of G2(·; ·, ·, ·) in the analysis of (II), to obtain

P

(∣∣∣
1

n
trace ((ρI −M)−1) − E(

1

n
trace G1(SBB ; ρ, γ, ǫ/2))

∣∣∣ >
δ

4
, Jγ(

ǫ

2
)
)

≤ 2 exp

(
− n

n+N −M

n2( δ
4 )2

2

(ρ− κγ − ǫ
2)4

4(κγ + ǫ
2 )

)
. (61)

Take Fn,N−M to be the expected ESD of SBB . Now, to tackle the remainders in

(I) and (II) notice that, since G1 and G2 are continuous and bounded in their

first argument, for k = 1, 2,

E

( 1

n
trace Gk(SBB ; ρ, γ,

ǫ

2
)
)

=
N −M

n

∫
Gk(x; ρ, γ,

ǫ

2
)dF n,N−M(x).
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Bai (1993) proved under fairly weak conditions (Bai (1993, Thm. 3.2), that if

θ1 ≤ p/n ≤ θ2 where 0 < θ1 < 1 < θ2 <∞, then

‖Fn,p − F p

n
‖∞ ≤ C1(θ1, θ2)n

− 5

48 , (62)

where Fp/n denotes the Marčenko-Pastur law with parameter p/n. Here ‖ · ‖∞
means the sup-norm and C1 is a constant which depends on θ1, θ2.

Since F(N−M)/n =⇒ Fγ , as n→ ∞, and G1(·; ρ, γ, ǫ/2) is bounded and con-

tinuous, and
∫
G1(x; ρ, γ, ǫ/2)dFγ (x) =

∫
(ρ− x)−1dFγ(x) from (62), it follows

that there is n1(ρ, δ, ǫ, γ) ≥ 1 such that, for n ≥ n1(ρ, δ, ǫ, γ),

∣∣∣E
( 1

n
trace G1(SBB ; ρ, γ,

ǫ

2
)
)
− γ

∫
1

ρ− x
dFγ(x)

∣∣∣ ≤ δ

8
. (63)

Similarly, there is n2(ρ, δ, ǫ, γ) ≥ n1(ρ, δ, ǫ, γ) such that for n ≥ n2(ρ, δ, ǫ, γ),

ρ
∣∣∣E
( 1

n
trace G2(SBB ; ρ, γ,

ǫ

2
)
)
− γ

∫
1

(ρ− x)2
dFγ(x)

∣∣∣ ≤ δ

8
. (64)

Combine (59), (60), (61), (64) and (63), and the result follows.
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