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Asymptotics of supremum distribution of a
Gaussian process over a Weibullian time
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Let {X(t) : t ∈ [0,∞)} be a centered Gaussian process with stationary increments and variance function
σ 2
X

(t). We study the exact asymptotics of P(supt∈[0,T ] X(t) > u) as u → ∞, where T is an independent
of {X(t)} non-negative Weibullian random variable. As an illustration, we work out the asymptotics of the
supremum distribution of fractional Laplace motion.
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1. Introduction

The problem of analyzing the asymptotic properties of

P

(
sup

t∈[0,T ]
X(t) > u

)
as u → ∞ (1)

for a centered Gaussian process with stationary increments {X(t)} and deterministic T > 0 plays
an important role in many fields of applied and theoretical probability.

One of the seminal results in this area is the exact asymptotic

P

(
sup

t∈[0,T ]
X(t) > u

)
= P

(
X(T ) > u

)(
1 + o(1)

)
(2)

as u → ∞, which holds for a wide class of centered Gaussian processes (see [8,10] and [9] for
extensions of this result).

Some recently studied problems in, for example, queueing theory (dual risk theory) or hydro-
dynamics, motivate the analysis of (1) for T being a non-negative random variable independent
of {X(t)}. In particular, the tail asymptotics of the steady-state buffer content for a hybrid fluid
queue with the input modeled by a superposition of an integrated on-off process and a Gaussian
process with stationary increments can be reduced (under some assumptions) to the analysis
of (1) for some suitably chosen random T (see, e.g., [11] and references therein). Additionally,
the analysis of the supremum distribution of subordinated Gaussian processes is strongly related
to (1) over random T . For example, the asymptotics of the supremum of a fractional Laplace
motion (used in hydrodynamic models – see, e.g., [6,7]) over a deterministic interval can be re-
duced to (1) with X(t) being a fractional Brownian motion and T having Weibull distribution.
We refer to Section 5 for details.
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We note that the additional variability of T may influence the form of the asymptotics of (1),
leading to structures qualitatively different from (2). This was observed in [4], under the scenario
that T has a regularly varying tail distribution (see also [1]).

Motivated by the above applications, in this paper, we focus on the exact asymptotics of (1)
when T is a random variable, independent of {X(t)}, with asymptotically Weibullian tail dis-
tribution. In Theorem 3.1, we find the structural form of the asymptotics that holds for a wide
class of Gaussian processes with stationary increments and convex variance function (see as-
sumptions (A1)–(A3) in Section 2). Complementing this, in Corollary 3.2, we obtain an explicit
form for the asymptotics, which appear to be Weibullian.

Additionally, for {X(t)} being a fractional Brownian motion, we provide the exact asymptotics
of (1) for the whole range of Hurst parameters H ∈ (0,1]. It appears that in the case of H < 1/2
(concave variance function), the exact asymptotics takes a form qualitatively different from (2).

Finally, in Section 5, we apply the obtained results to the analysis of extremal behavior of
fractional Laplace motion; see [6,7].

2. Notation and preliminary results

Let {X(t) : t ∈ [0,∞)} be a centered Gaussian process with stationary increments, a.s. continuous
sample paths, X(0) = 0 a.s. and variance function σ 2

X(t) := Var(X(t)). We assume that:

(A1) σ 2
X(·) ∈ C1([0,∞)) is convex;

(A2) σ 2
X(·) is regularly varying at ∞ with parameter α∞ ∈ (1,2);

(A3) there exists D > 0 such that σ 2
X(t) ≤ Dtα∞ for each t ≥ 0.

We introduce the following classes of Gaussian processes:

• fBm: X(t) = BH (t) is a fractional Brownian motion with Hurst parameter H ∈ (0,1], that
is, a centered Gaussian process with stationary increments and σ 2

BH
(t) = t2H (note that (A2)

is satisfied for H ∈ (1/2,1));
• IG: X(t) = ∫ t

0 Z(s)ds, where {Z(t) : t ≥ 0} is a centered stationary Gaussian process with
covariance function R(t) = Cov(Z(s),Z(s + t)) which is regularly varying at ∞ with pa-
rameter α∞ − 2.

In this paper, we analyze the asymptotics of

P

(
sup

t∈[0,T ]
X(t) > u

)
(3)

as u → ∞, where T is a non-negative random variable, independent of {X(t)}, with asymptoti-
cally Weibullian tail distribution, that is,

P(T > t) = Ctγ exp(−βtα)
(
1 + o(1)

)
(4)

as t → ∞, where α,β,C > 0, γ ∈ R. We write T ∈ W (α,β, γ,C) if T satisfies (4).



196 M. Arendarczyk and K. Dȩbicki

Let us introduce some notation. For given H ∈ (0,1], by HH , we denote the Pickands’s con-
stant defined by the limit

HH = lim
T →∞

HH (T )

T
,

where HH (T ) := E exp(supt∈[0,T ]
√

2BH (t) − t2H ). Moreover, let �(u) := P(N > u), where
N denotes the standard normal random variable. σ̇X(t) denotes the first derivative of σX(t) and
σ̇ 2

X(t) = 2σX(t)σ̇X(t) the first derivative of σ 2
X(t).

Finally, we present a useful lemma, which is also of independent interest.

Lemma 2.1. Let X ∈ W (α1, β1, γ1,C1), Y ∈ W (α2, β2, γ2,C2) be independent non-negative
random variables. Then X · Y ∈ W (α,β, γ,C) with

α = α1α2

α1 + α2
,

β = β
α2/(α1+α2)

1 β
α1/(α1+α2)

2

[(
α1

α2

)α2/(α1+α2)

+
(

α2

α1

)α1/(α1+α2)
]
,

γ = α1α2 + 2α1γ2 + 2α2γ1

2(α1 + α2)
,

C = √
2πC1C2

1√
α1 + α2

(α1β1)
(α2−2γ1+2γ2)/(2(α1+α2))(α2β2)

(α1−2γ2+2γ1)/(2(α1+α2)).

The proof of Lemma 2.1 is presented in Section 6.1.

3. Main results

In this section, we present the main results of the paper. We begin with the structural form of the
analyzed asymptotics (Theorem 3.1), then we present an explicit asymptotic expansion (Corol-
lary 3.2).

Theorem 3.1. Let X(t) be a centered Gaussian process with stationary increments and variance
function that satisfies (A1)–(A3) and T ∈ W (α,β, γ,C) be a non-negative random variable,
independent of {X(t)}. Then, as u → ∞,

P

(
sup

s∈[0,T ]
X(s) > u

)
= P

(
X(T ) > u

)(
1 + o(1)

) = P
(
σX(T ) · N > u

)(
1 + o(1)

)
.

The proof of Theorem 3.1 is presented in Section 6.2.

Remark 3.1. It is tempting to ask to what extent (1) behaves as P(X(T ) > u) for other (than
Weibullian) distributions of T . Some limitations on the heaviness of the tail distribution of T can
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be inferred from [4], Theorem 2.1, which states that

P

(
sup

s∈[0,T ]
X(s) > u

)
= Const P

(
T > σ−1

X (u)
)

as u → ∞, (5)

if T has regularly varying tail distribution at ∞. Thus, the asymptotics of (5) are qualitatively
different from those observed in Theorem 3.1. We conjecture that an analog of Theorem 3.1 is
also true for lighter-than-Weibullian tail distributions of T .

If the variance function of {X(t)} is regular enough (in such a way that σX(T ) is asymptotically
Weibullian), then the combination of Theorem 3.1 with Lemma 2.1 enables us to obtain the exact
form of the asymptotics.

Corollary 3.2. Let X(t) be a centered Gaussian process with stationary increments and variance
function that satisfies (A1) and σ 2

X(t) = Dtα∞ +o(tα∞−α) as t → ∞ for α∞ ∈ (1,2) and D > 0.
If T ∈ W (α,β, γ,C) is a non-negative random variable independent of {X(t)}, then

sup
s∈[0,T ]

X(s) ∈ W (̃α, β̃, γ̃ , C̃)

with

α̃ = 2α

α + α∞
, β̃ = βα∞/(α+α∞)

(
D

2

)α/(α+α∞)((
α

α∞

)α∞/(α+α∞)

+
(

α∞
α

)α/(α+α∞))
,

γ̃ = 2γ

α + α∞
, C̃ = CD−1/α∞

√
α∞

2(α + α∞)

(
α∞
2αβ

Dα∞/α

)γ /(α+α∞)

.

The proof of Corollary 3.2 is given in Section 6.3.
Below, we apply the obtained asymptotics to IG processes. The family of fBm is analyzed

separately in Section 4. Due to the self-similarity of fBm, we are able to give a proof (independent
of Theorem 3.1) that covers the whole range of Hurst parameters H ∈ (0,1].

Example 3.1. Let T ∈ W (α,β, γ,C) and X(t) = ∫ t

0 Z(s)ds, where {Z(s) : s ≥ 0} is a cen-
tered stationary Gaussian process with continuous covariance function R(t) such that R(t) =
Dtα∞−2 + o(tα∞−2−α) as t → ∞ with α∞ ∈ (1,2). Following Karamata’s theorem (see, e.g.,
[3], Proposition 1.5.8),

σ 2
X(t) = 2

∫ t

0
ds

∫ s

0
R(v)dv = 2D

α∞(α∞ − 1)
tα∞ + o(tα∞−α)

as t → ∞. Hence, by Corollary 3.2, we have

sup
t∈[0,T ]

X(t) ∈ W (̃α, β̃, γ̃ , C̃)
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with

α̃ = 2α

α + α∞
,

β̃ = βα∞/(α+α∞)

(
D

α∞(α∞ − 1)

)α/(α+α∞)((
α

α∞

)α∞/(α+α∞)

+
(

α∞
α

)α/(α+α∞))
,

γ̃ = 2γ

α + α∞
,

C̃ = C

(
2D

α∞(α∞ − 1)

)−1/α∞√
α∞

2(α + α∞)

(
α∞
2αβ

(
2D

α∞(α∞ − 1)

)α∞/α)γ /(α+α∞)

.

4. The case of fBm

In this section, we focus on the exact asymptotics of (3) for {X(t)} being an fBm. The self-
similarity of fBm, combined with Lemma 2.1, enables us to provide the following theorem.

Theorem 4.1. Let {BH (s) : s ≥ 0} be an fBm with Hurst parameter H ∈ (0,1] and T ∈
W (α,β, γ,C) be a non-negative random variable independent of {BH (s) : s ≥ 0}. If:

(i) H ∈ (0,1/2), then

sup
s∈[0,T ]

BH (s) ∈ W
(

2α

2H + α
,β1,

2α − 3αH + 2γ

α + 2H
,C1

)
;

(ii) H = 1/2, then

sup
s∈[0,T ]

BH (s) ∈ W
(

2α

2H + α
,β1,

2γ

α + 2H
,2C2

)
;

(iii) H ∈ (1/2,1], then

sup
s∈[0,T ]

BH (s) ∈ W
(

2α

2H + α
,β1,

2γ

α + 2H
,C2

)
,

where

β1 = β2H/(2H+α)

(
1

2

(
α

H

)2H/(2H+α)

+
(

α

H

)−α/(2H+α))

C1 = HH

(
1

2

)1/(2H)
C√

2H + α
H(α+6H+2γ−2)/(2α+4H)(αβ)(1−2H−γ )/(α+2H),

C2 = C
√

H√
α + 2H

(
H

αβ

)γ /(α+2H)

.



Supremum of a Gaussian process over a Weibullian time 199

The following lemma plays an important role in the proof of Theorem 4.1.

Lemma 4.2. Let BH (·) be an fBm with Hurst parameter H ∈ (0,1]. If:

(i) H ∈ (0,1/2), then

sup
t∈[0,1]

BH (t) ∈ W
(

2,
1

2
,

1

H
− 3,

1

H
√

π
2−(H+1)/(2H)

)
;

(ii) H = 1/2, then

sup
t∈[0,1]

BH (t) ∈ W
(

2,
1

2
,−1,

2√
2π

)
;

(iii) H ∈ (1/2,1], then

sup
t∈[0,1]

BH (t) ∈ W
(

2,
1

2
,−1,

1√
2π

)
.

The proof of Lemma 4.2 follows by a straightforward application of [9], Theorem D.3.

Proof of Theorem 4.1. Using the self-similarity of fBm, we have

P

(
sup

s∈[0,T ]
BH (s) > u

)
= P

(
T H sup

s∈[0,1]
BH (s) > u

)
.

Note that T H ∈ W ( α
H

,β,
γ
H

,C) and (due to Lemma 4.2) sups∈[0,1] BH (s) is asymptotically
Weibullian.

Thus, all of the cases (i), (ii) and (iii) follow by a straightforward application of Lemma 2.1.
�

Remark 4.1. Note that if P(T > t) = exp(−At), then for a standard Brownian motion case,
some straightforward calculations give

P

(
sup

t∈[0,T ]
B1/2(t) > u

)
= exp

(−√
2Au

)
for each u ≥ 0.

5. Application to extremes of fractional Laplace motion

In this section, we apply Theorem 4.1 to the analysis of the asymptotics of the supremum distri-
bution of fractional Laplace motion over a deterministic interval.

Following [7], we recall the definition of fractional Laplace motion.



200 M. Arendarczyk and K. Dȩbicki

Let {�t ; t ≥ 0} be a gamma process with parameter ν > 0, that is, a Lévy process such that the
increments �t+s − �t have gamma distributions G(s/ν,1) with density

f (x) = 1

�(s/ν)
xs/ν−1 exp(−x),

where �(·) denotes the gamma function.
Then, by fractional Laplace motion fLm(σ, ν), we denote the process {LH (t); t ≥ 0} defined

as follows:

{LH (t); t ≥ 0} d= {σBH (�t ); t ≥ 0}.
A standard fractional Laplace motion corresponds to σ = ν = 1 and is denoted by fLm. We refer
to Kozubowski et al. [6,7] for motivations of interest in the analysis of this class of stochastic
processes.

Before we present the asymptotics of P(sups∈[0,S] LH (s) > u), let us observe that for given
S > 0, we have �S ∈ W (1,1, S − 1, 1

�(S)
). Indeed, applying Karamata’s theorem (see, e.g., [3],

Proposition 1.5.10), we have

P(�S > u) = 1

�(S)

∫ ∞

u

xS−1e−x dx = 1

�(S)

∫ ∞

eu

(logy)S−1y−2 dy = 1

�(S)
uS−1e−u

(
1 + o(1)

)
as u → ∞.

In the following proposition, we give the exact asymptotics of the supremum of fLm for H >

1/2. Let

mH =
(

1

2

)1/(2H+1)[(
1

2H

)2H/(2H+1)

+
(

1

2H

)1/(2H+1)]
.

Proposition 5.1. Let LH be a standard fLm. If H > 1/2, then

sup
s∈[0,S]

LH (s) ∈ W
(

2

2H + 1
,mH ,

2S − 2

1 + 2H
,
H(S+2H)/(2+4H)

�(S)
√

1 + 2H

)
.

Proof. First, we consider the lower bound. We observe that

P

(
sup

s∈[0,S]
BH (�s) > u

)
≥ P

(
BH (�S) > u

) = P
(
(�S)H N > u

)
.

Combining the above with the facts that (�S)H ∈ W ( 1
H

,1, S−1
H

, 1
�(S)

) and N ∈ W (2, 1
2 ,−1,

1√
2π

), together with Lemma 2.1, we obtain a tight asymptotic lower bound.
We now focus on the upper bound. Using the fact that sample paths of a gamma process are

non-decreasing, we get

P

(
sup

s∈[0,S]
BH (�s) > u

)
≤ P

(
sup

s∈[0,�S ]
BH (s) > u

)
.

In order to complete the proof, it suffices to apply (iii) of Theorem 4.1. �
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Remark 5.1. The case H ≤ 1/2 should be handled with care. Applying the argument presented
in the proof of Proposition 5.1 gives

P

(
sup

s∈[0,S]
LH (s) > u

)
≥ 1

�(S)
√

1 + 2H
H(S+2H)/(2+4H)u(2S−2)/(1+2H) exp

(−mH u2/(2H+1)
)(

1 + o(1)
)

as u → ∞, and

P

(
sup

s∈[0,S]
LH (s) > u

)
≤ 1

�(S)
2−1/(2H)H−(2H+S+4)/(4H+2)HH u(2SH−4H+1)/(H(2H+1))

× exp
(−mH u2/(2H+1)

)(
1 + o(1)

)
as u → ∞. The above leads to the following logarithmic asymptotics for H ∈ (0, 1

2 ]:
log(P sups∈[0,S] LH (s) > u)

u2/(2H+1)
= −mH

(
1 + o(1)

)
as u → ∞.

In the case H = 1
2 , S = 1, due to Remark 4.1, we have

1

2
exp

(−√
2u

) ≤ P
(

sup
s∈[0,1]

L1/2(s) > u
)

≤ exp
(−√

2u
)

for each u ≥ 0. We conjecture that the exact asymptotics for H ≤ 1/2 are influenced by the
distribution of jumps of the gamma process.

6. Proofs

In this section, we present detailed proofs of Lemma 2.1, Theorem 3.1 and Corollary 3.2.

6.1. Proof of Lemma 2.1

We begin by considering the asymptotic∫
U(x0(u))

f (x,u) exp[S(x,u)]dx

as u → ∞ for particular forms of f (x,u) and S(x,u), where x0(u) denotes the point at which
the function S(x,u) of x achieves its maximum over [0,∞) and

U(x0(u)) = {x : |x − x0(u)| ≤ q(u)|S′′
x,x(x0(u),u)|−1/2}
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for some suitable chosen function q(u).
The following theorem can be found in, for example, [5], Theorem 2.2.

Lemma 6.1 (Fedoryouk). Suppose that there exists a function q(u) → ∞ as u → ∞ such that

S ′′
x,x(x,u) = S′′

x,x(x0(u),u)[1 + o(1)] (6)

and

f (x,u) = f (x0(u),u)[1 + o(1)] (7)

as u → ∞ uniformly for x ∈ U(x0(u)). Then∫
U(x0(u))

f (x,u) exp[S(x,u)]dx =
√

− 2π

S′′
x,x(x0(u),u)

f (x0(u),u) exp[S(x0(u),u)](1 + o(1)
)

as u → ∞.

Lemma 6.1 enables us to get the following exact asymptotics, which will play an important
role in further analysis.

Lemma 6.2. Let α1, α2, β1, β2 > 0, γ ∈ R and a(u) = uα1/(2(α1+α2)), A(u) = u2α1/(α1+α2).
Then ∫ A(u)

a(u)

xγ exp

(
−β1u

α1

xα1
− β2x

α2

)
dx = Cuδ exp[−β3u

α3 ](1 + o(1)
)

as u → ∞, where

α3 = α1α2

α1 + α2
, β3 = β

α2/(α1+α2)

1 β
α1/(α1+α2)

2

[(
α1

α2

)α2/(α1+α2)

+
(

α2

α1

)α1/(α1+α2)
]
,

δ = α1(−α2 + 2γ + 2)

2(α1 + α2)
,

C = √
2π

1√
α1 + α2

(α1β1)
(−α2+2γ+2)/(2(α1+α2))(α2β2)

(−α1−2γ−2)/(2(α1+α2)).

Proof. Let x0(u) = (
α1β1
α2β2

)1/(α1+α2)uα1/(α1+α2), r(u) = u(1−ε)α1/(α1+α2) for some ε ∈ (0,

min(α2/2,1)) and α3, β3, δ,C be as in Lemma 6.2. It is convenient to decompose the analyzed
integral in the following way:∫ A(u)

a(u)

xγ exp

(
−β1u

α1

xα1
− β2x

α2

)
dx

=
∫ x0(u)−r(u)

a(u)

+
∫ x0(u)+r(u)

x0(u)−r(u)

+
∫ A(u)

x0(u)+r(u)

= I1 + I2 + I3.
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Applying Lemma 6.1, we have, as u → ∞,

I2 =
∫ x0(u)+r(u)

x0(u)−r(u)

xγ exp

(
−β1u

α1

xα1
− β2x

α2

)
dx = Cuδ exp[−β3u

α3 ](1 + o(1)
)
. (8)

In order to complete the proof, it suffices to show that I1, I3 = o(I2) as u → ∞. Since proofs
for I1 and I3 are similar, we focus on the argument that shows I1 = o(I2) as u → ∞. Without
loss of generality, we assume that γ > 0. Then

I1 ≤ (
x0(u) − a(u)

)γ (
x0(u) − r(u) − a(u)

)
exp

(
− β1u

α1

(x0(u) − r(u))α1
− β2

(
x0(u) − r(u)

)α2

)
,

which, combined with the fact that (using a Taylor expansion)

− β1u
α1

(x0(u) − r(u))α1
− β2

(
x0(u) − r(u)

)α2

= −β3u
α3 − 1

2
(α1 + α2)(α1β1)

(α2−2)/(α1+α2)(α2β2)
(α1+2)/(α1+α2) (9)

× uα1(α2−2ε)/(α1+α2)
(
1 + o(1)

)
as u → ∞, straightforwardly implies that I1 = o(I3) as u → ∞ (since ε < α2/2). This completes
the proof. �

Proof of Lemma 2.1. Let X ∈ W (α1, β1, γ1,C1) and Y ∈ W (α2, β2, γ2,C2) be independent
non-negative random variables. Define a(u) = uα1/(2(α1+α2)), A(u) = u2α1/(α1+α2) and consider
the decomposition

P(XY > u) =
∫ ∞

0
P

(
X >

u

y

)
dFY (y)

=
∫ a(u)

0
P

(
X >

u

y

)
dFY (y) +

∫ A(u)

a(u)

P

(
X >

u

y

)
dFY (y)

+
∫ ∞

A(u)

P

(
X >

u

y

)
dFY (y)

= I1 + I2 + I3.

We analyze each of the integrals I1, I2, I3 separately. In order to simplify notation, we introduce
h1(u) = C1u

γ1 exp(−β1u
α1) and h2(u) = C2u

γ2 exp(−β2u
α2).

Integral I1. Since X ∈ W (α1, β1, γ1,C1), for given ε > 0 and u large enough, we have

I1 ≤ (1 + ε)h1

(
u

a(u)

)
= (1 + ε)C1u

(α1+2α2)/(2(α1+α2))γ1 exp

(
−β1u

α1α2/(α1+α2)+α2
1/(2(α1+α2))

)
.
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Integral I3. For u sufficiently large, we have, as u → ∞,

I3 ≤ P
(
Y > A(u)

) = C2u
2α1γ2/(α1+α2) exp

(−β2u
2α1α2/(α1+α2)

)(
1 + o(1)

)
.

Integral I2. We find upper and lower bounds of I2 separately. Using the fact that X,Y are
asymptotically Weibullian, we get, for sufficiently large u,∫ A(u)

a(u)

P

(
X >

u

y

)
dFY (y) ≥ (1 − ε)

∫ A(u)

a(u)

h1

(
u

y

)
dFY (y)

≥ (1 − ε)

∫ A(u)

a(u)

∂

∂y

[
h1

(
u

y

)]
P(Y > y)dy + (1 − ε)h1

(
u

a(u)

)
P
(
Y > (a(u))

)
− (1 − ε)h1

(
u

A(u)

)
P
(
Y > A(u)

)
≥ (1 − ε)2

∫ A(u)

a(u)

∂

∂y

[
h1

(
u

y

)]
h2(y)dy + (1 − ε)2h1

(
u

a(u)

)
h2(a(u))

− (1 − ε2)h1

(
u

A(u)

)
h2(A(u))

= (1 − ε)2I4 + (1 − ε)2R1 − (1 − ε2)R2.

Analogously, for sufficiently large u, we have the upper bound

I2 ≤ (1 + ε)2I4 + (1 + ε)2R1 − (1 − ε2)R2.

Additionally,

R1 = h1

(
u

a(u)

)
h2(a(u)) ≤ h1

(
u

a(u)

)
= C1u

(α1γ1+2α2γ1)/(2(α1+α2)) exp
(−β1u

α1α2/(α1+α2)+α2
1/(2(α1+α1))

)
and

R2 = h1

(
u

A(u)

)
h2(A(u)) ≤ h2(A(u)) = C2u

2α1γ2/(α1+α2) exp
(−β2u

2α1α2/(α1+α2)
)
.

Finally, applying Lemma 6.2, we find the asymptotics of integral I4:

I4 = C3u
γ3 exp(−β3u

α3)
(
1 + o(1)

)
as u → ∞, with

α3 = α1α2

α1 + α2
, β3 = β

α2/(α1+α2)

1 β
α1/(α1+α2)

2

[(
α1

α2

)α2/(α1+α2)

+
(

α1

α2

)α1/(α1+α2)
]
,
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γ3 = α1α2 + 2α1γ2 + 2α2γ1

2(α1 + α2)
,

C3 = √
2πC1C2

1√
α1 + α2

(α1β1)
(α2−2γ1+2γ2)/(2(α1+α2))(α2β2)

(α1−2γ2+2γ1)/(2(α1+α2)).

Since I1, I2,R1,R2 = o((C3u
γ3 exp(−β3u

α3)) as u → ∞, we have

P(X · Y > u) = I4
(
1 + o(1)

) = C3u
γ3 exp(−β3u

α3)
(
1 + o(1)

)
as u → ∞. This completes the proof. �

6.2. Proof of Theorem 3.1

Let τ1 = 2
α∞+2α

, τ2 = 4
2α∞+α

and δ = δ(u) = σ 3
X(t)

σ̇X(t)
2u−2 log2 u. Additionally, let {Z(s) : s ≥ 0} be

a centered stationary Gaussian process with covariance function Cov(Z(s),Z(s + t)) = e−tα∞
.

The existence of such a process is guaranteed by the fact that α∞ < 2, which implies that the
covariance of Z(·) is positively defined; see, for example, proof of [8], Theorem D.3.

The proof of Theorem 3.1 is based on the following two lemmas.

Lemma 6.3. Let X(t) be a centered Gaussian process with stationary increments such that
conditions (A1)–(A3) are satisfied. Then, for sufficiently large u,

P

(
sup

s∈[0,t−δ]
X(s) > u

)
≤ �

(
u

σX(t)

)
exp

(− log2(u)/2
)

uniformly for t := t (u) ∈ [uτ1, uτ2 ].

Proof. Let t := t (u) ∈ [uτ1 , uτ2 ]. Observe that σ 2
X(t)2u−2 log2(u) → 0 uniformly for t ∈

[uτ1 , uτ2] as u → ∞ and limt→∞ σX(t)
t σ̇X(t)

= limt→∞
2σ 2

X(t)

t σ̇ 2
X(t)

= 2
α∞ (due to [3], formula (1.11.1)).

Hence,

δ(u) = o(t) as u → ∞. (10)

Now, for sufficiently large u, we consider the following decomposition:

P

(
sup

s∈[0,t−δ]
X(s) > u

)
≤ P

(
sup

s∈[0,1]
X(s) > u

)
(11)

+
(D/σ 2

X(1))1/α∞[t−δ]∑
k=0

P

(
sup

s∈[1+(σ 2
X(1)/D)1/α∞k,1+(σ 2

X(1)/D)1/α∞ (k+1)]

X(s)

σX(s)
>

u

σX(t − δ)

)
.
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According to the Borell inequality (see, e.g., [2], Theorem 2.1), the first term is bounded by

P

(
sup

s∈[0,1]
X(s) > u

)
≤ exp

(
− (u − E sups∈[0,1] X(s))2

2

)
as u → ∞.

Due to (A1), (A3), for each v,w ≥ 1 such that |v − w| ≤ (
σ 2

X(1)

D
)1/α∞ ,

Cov

(
X(v)

σX(v)
,

X(w)

σX(w)

)
≥ Cov

(
Z

((
D

σ 2
X(1)

)1/α∞
v

)
,Z

((
D

σ 2
X(1)

)1/α∞
w

))
.

Thus, Slepian’s inequality (see, e.g., [9], Theorem C.1) combined with [9], Theorem D.2,
straightforwardly leads to the following upper bound of (11):(

D

σ 2
X(1)

)1/α∞
[t − δ]P

(
sup

s∈[0,(σ 2
X(1)/D)1/α∞]

Z(s) >
u

σX(t − δ)

)
(12)

= Hα∞ t

(
u

σX(t)

)2/α∞
�

(
u

σX(t − δ)

)(
1 + o(1)

)
as u → ∞. Hence, in order to complete the proof, it suffices to note that

�

(
u

σX(t − δ)

)
≤ 4�

(
u

σX(t)

)
exp

(
−u2(σ 2

X(t) − σ 2
X(t − δ))

2σ 2
X(t)σ 2

X(t − δ)

)

≤ 4�

(
u

σX(t)

)
exp

(
−u2δ2σX(t − θδ)σ̇X(t − θδ)

2σ 4
X(t)

)

≤ 4�

(
u

σX(t)

)
exp

(
−u2δσX(t)σ̇X(t)

2σ 4(t)

)
(13)

= 4�

(
u

σX(t)

)
exp(− log2(u)), (14)

where θ ∈ (0,1), and (13) is a consequence of (10) and of the fact that, by condition (A1),
σ̇ 2

X = 2σX(t)σ̇X(t) is monotone and (in view of [3], formula (1.11.1)) regularly varying at ∞.
Thus, combining (11) with (12) and (14), for sufficiently large u,

P

(
sup

s∈[0,t−δ]
X(s) > u

)
≤ 4Hα∞ t ·

(
u

σX(t)

)2/α∞
�

(
u

σX(t)

)
exp

(− log2(u)
)(

1 + o(1)
)

≤ �

(
u

σX(t)

)
exp

(− log2(u)/2
)
,

uniformly for t ∈ [uτ1 , uτ2 ]. This completes the proof. �
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Lemma 6.4. Let X(t) be a centered Gaussian process with stationary increments such that
conditions (A1)–(A3) are satisfied. Then, for sufficiently large u,

P

(
sup

s∈[t−δ,t]
X(s) > u

)
≤ (1 + ε)�

(
u

σX(t)

)
uniformly for t := t (u) ∈ [uτ1, uτ2 ].

Proof. Let ε > 0. Then

P

(
sup

s∈[t−δ,t]
X(s) > u

)
≤ P

(
sup

s∈[t−δ,t]
X(s)

σX(s)
>

u

σX(t)

)
.

Using the fact that for each v,w ∈ [t − δ, t],

Cov

(
X(v)

σX(v)
,

X(w)

σX(w)

)
≥ Cov

(
Z

((
2D

σ 2
X(t)

)1/α∞
v

)
,Z

((
2D

σ 2
X(t)

)1/α∞
w

))
,

Slepian’s inequality gives

P

(
sup

s∈[t−δ,t]
X(s)

σX(s)
>

u

σX(t)

)

≤ P

(
sup

s∈[t−δ,t]
Z

((
2D

σ 2
X(t)

)1/α∞
s

)
>

u

σX(t)

)
(15)

= P

(
sup

s∈[0,(2D)1/α∞u2/α∞ δ(σX(t))−4/α∞ (u/σX(t))−2/α∞]
Z(s) >

u

σX(t)

)
.

Observe that for each ε1 > 0, there exists u large enough such that (2D)1/α∞u2/α∞ ×
δ(σX(t))−4/α∞ ≤ ε1 uniformly for t ∈ [uτ1 , uτ2 ], which, combined with [9], Theorem D.1, im-
plies the following upper bound for (15):

P

(
sup

s∈[0,ε1(u/σX(t))−2/α∞]
Z(s) >

u

σX(t)

)
≤ (1 + ε1)Hα∞(ε1)�

(
u

σX(t)

)
≤ (1 + ε)�

(
u

σX(t)

)
,

where the last inequality is due to the fact that Hα∞(t) → 1 as t → 0.
This completes the proof. �

Proof of Theorem 3.1. Since the lower bound is immediate, we focus on the analysis of the
upper bound. We have

P

(
sup

s∈[0,T ]
X(s) > u

)
≤

∫ uτ1

0
P

(
sup

s∈[0,t]
X(s) > u

)
dFT (t) +

∫ uτ2

uτ1
P

(
sup

s∈[0,t−δ]
X(s) > u

)
dFT (t)
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+
∫ uτ2

uτ1
P

(
sup

s∈[t−δ,t]
X(s) > u

)
dFT (t) +

∫ ∞

uτ2
P

(
sup

s∈[0,t]
X(s) > u

)
dFT (t)

= I1 + I2 + I3 + I4.

We now investigate the asymptotic behavior of each of the integrals.
Integral I1.

I1 ≤ P

(
sup

s∈[0,1]
X(s) > u

)
+ P

(
sup

s∈[1,uτ1 ]
X(s) > u

)
.

Following an argument analogous to that given in the proof of Lemma 6.3, we obtain the
following asymptotic upper bound for the above sum:

Constuτ1

(
u

σX(uτ1)

)2/α∞
�

(
u

σ(uτ1)

)
≤ exp

(−u2α/(α+α∞)+ε
)(

1 + o(1)
)

(16)

as u → ∞, for some ε > 0.
Integral I2. According to Lemma 6.3, for all t ∈ [uτ1 , uτ2 ] and for u large enough,

P

(
sup

s∈[0,t−δ]
X(s) > u

)
≤ �

(
u

σX(t)

)
exp

(− log2(u)/2
)
.

Hence,

I2 ≤ exp
(− log2(u)/2

) ∫ ∞

0
�

(
u

σX(t)

)
dFT (t)

(17)
= exp

(− log2(u)/2
)
P
(
X(T ) > u

) = o
(
P
(
X(T ) > u

))
.

Integral I3. Due to Lemma 6.4, for each ε > 0 and u large enough,

I3 ≤ (1 + ε)

∫ ∞

0
ψ

(
u

σX(t)

)
dFT (t) = (1 + ε)P

(
X(T ) > u

)
. (18)

Integral I4.

I4 = P(T > uτ2) ≤ exp
(−u2α/(α+α∞)+ε

)(
1 + o(1)

)
as u → ∞, for some ε > 0.

Observe that for each ε > 0 and sufficiently large u,

P
(
X(T ) > u

) = P
(
σX(T )N > u

) ≥ P
(
σX(T ) > uα∞/(α+α∞)

)
P
(

N > uα/(α+α∞)
)

≥ exp
(−u2α/(α+α∞)+ε

)
.

Thus I1, I2, I4 = o(I3) as u → ∞, which, in view of (18), implies that

P

(
sup

t∈[0,T ]
X(t) > u

)
≤ (1 + ε)P

(
X(T ) > u

)
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for each ε > 0 and sufficiently large u. This completes the proof. �

6.3. Proof of Corollary 3.2

By a straightforward inspection, we observe that σ 2
X(t) satisfies (A1)–(A3). Thus, in view of

Theorem 3.1, we have

P

(
sup

s∈[0,T ]
X(s) > u

)
= P

(
σX(T ) · N > u

)(
1 + o(1)

)
as u → ∞. Since N ∈ W (2,1/2,−1,1/

√
2π), due to Lemma 2.1, in order to complete the

proof, it suffices to show that σX(T ) ∈ W ( 2α
α∞ , βDα/α∞ ,

2γ
α∞ ,CD−1/α∞). In view of

P
(
σX(T ) > u

) = C((σX)−1(u))γ exp(−β((σX)−1(u))α)
(
1 + o(1)

)
and the fact that (σX)−1(u) = D−1/α∞u2/α∞(1 + o(1)), this reduces to

exp(−β((σX)−1(u))α) = exp

(
− β

Dα/α∞ u2α/α∞
)(

1 + o(1)
)

as u → ∞, which follows by inspection.
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