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ASYMPTOTICS OF THE PRINCIPAL EIGENVALUE

FOR A LINEAR TIME-PERIODIC PARABOLIC OPERATOR II:

SMALL DIFFUSION

SHUANG LIU, YUAN LOU, RUI PENG, AND MAOLIN ZHOU

Abstract. We investigate the effect of small diffusion on the principal eigen-
values of linear time-periodic parabolic operators with zero Neumann boundary
conditions in one dimensional space. The asymptotic behaviors of the prin-
cipal eigenvalues, as the diffusion coefficients tend to zero, are established for
non-degenerate and degenerate spatial-temporally varying environments. A
new finding is the dependence of these asymptotic behaviors on the periodic
solutions of a specific ordinary differential equation induced by the drift. The
proofs are based upon delicate constructions of super/sub-solutions and the
applications of comparison principles.

1. Introduction

In this paper, we consider the following linear time-periodic parabolic eigenvalue
problem in one dimensional space:

(1.1)

⎧
⎪⎨
⎪⎩

∂tϕ−D∂xxϕ− ∂xm∂xϕ+ V ϕ = λ(D)ϕ in (0, 1)× (0, T ),

∂xϕ(t, 0) = ∂xϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1),

where D > 0 represents the diffusion rate, and the functions m ∈ C2,1([0, 1]× [0, T ])
and V ∈ C([0, 1]× [0, T ]) are assumed to be periodic in t with a common period T .

By the Krein-Rutman Theorem, (1.1) admits a simple and real eigenvalue (called
principal eigenvalue), denoted by λ(D), which corresponds to a positive eigen-
function (called principal eigenfunction) and satisfies Reλ > λ(D) for any other
eigenvalue λ of (1.1); see Proposition 7.2 of [12]. The principal eigenvalue λ(D)
plays a fundamental role in the study of reaction-diffusion equations and systems
in spatio-temporal media, e.g. in the stability analysis for equilibria [3, 4, 12, 14].
Of particular interest is to understand the dependence of λ(D) on the parameters
[15, 16, 19, 20]. The present paper continues our previous studies in [17, 18] on the
principal eigenvalues for time-periodic parabolic operators, where the dependence
of λ(D) on frequency and advection rate were investigated. Our main goal here is
to establish the asymptotic behavior of λ(D) as the diffusion rate D tends to zero.
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For notational convenience, given any T -periodic function p(x, t), we define

p̂(x) :=
1

T

∫ T

0

p(x, s) ds and p+(x, t) := max {p(x, t), 0} ,

and redefine ∂xxm̂(0) and ∂xxm̂(1) via
(1.2)

∂xxm̂(0) =

{
−∞ if ∂xm̂(0+) < 0,

∞ if ∂xm̂(0+) > 0,
and ∂xxm̂(1) =

{
∞ if ∂xm̂(1−) < 0,

−∞ if ∂xm̂(1−) > 0.

For the case when V and ∂xm depend upon the space variable alone, i.e. V (x, t) =
V (x) and ∂xm(x, t) = m′(x), problem (1.1) reduces to the following elliptic eigen-
value problem:

(1.3)

{
−Dϕ′′ −m′(x)ϕ′ + V (x)ϕ = λ(D)ϕ in (0, 1),

ϕ′(0) = ϕ′(1) = 0.

This sort of advection-diffusion operator in (1.3) with small diffusion can be re-
garded as a singular perturbation of the corresponding first order operator [24],
and was studied in [11] by the large deviation approach. Therein, the limit of the
principal eigenvalue λ(D) as D → 0 plays a pivotal role in studying the large time
behavior of the trajectories of stochastic systems; see also [7, 10]. Recently the as-
ymptotic behavior of λ(D) for problem (1.3) has been considered in [6] for general
bounded domains, and their result in particular implies

Theorem 1.1 ([6]). Assume V (x, t) = V (x) and ∂xm(x, t) = m′(x). Suppose that

m′(0) �= 0, m′(1) �= 0, and all critical points of m are non-degenerate. Then

lim
D→0

λ(D) = min
x∈Σ∪{0,1}

{V (x) + [m′′]+ (x)} ,

where Σ := {x ∈ (0, 1) : m′(x) = 0} and m′′(0),m′′(1) are defined by (1.2).

We refer to [21] for recent progress on problem (1.3) under general boundary
conditions.

Theorem 1.1 indicates that the limit of λ(D) relies upon the set of critical points
of function m in the elliptic scenario. Turning to the time-periodic parabolic case
where m depends on both spatial and temporal variables, it seems reasonable to
anticipate that the limit of λ(D) will be associated to the curves x(t) satisfying
∂xm(x(t), t) = 0. This is indeed the case for the limit of the principal eigenvalue
with large advection, and we refer to Theorem 1.1 in [18] for further details. How-
ever, it turns out that this is generally not true while considering the limit of λ(D)
as D tends to zero. Instead, the asymptotic behavior of λ(D) depends heavily on
the periodic solutions of the following ordinary differential equation:

(1.4)

{
Ṗ (t) = −∂xm (P (t), t) ,

P (t) = P (t+ T ).

More specifically, our main result can be stated as follows.

Theorem 1.2. Assume that ∂xm(0, t) �= 0 and ∂xm(1, t) �= 0 for all t ∈ [0, T ]. Let

∂xxm̂(0) and ∂xxm̂(1) be defined by (1.2).
(i) If (1.4) has at least one but finitely many T -periodic solutions, denoted by

{Pi(t)}Ni=1, satisfying 0 < P1(t) < . . . < PN (t) < 1, and ∂xxm (Pi(t), t) �= 0 for
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1 ≤ i ≤ N and t ∈ [0, T ], then

lim
D→0

λ(D) = min
0≤i≤N+1

{
1

T

∫ T

0

[
V (Pi(s), s) + [∂xxm]+ (Pi(s), s)

]
ds

}
,

where P0(t) ≡ 0 and PN+1(t) ≡ 1;
(ii) If (1.4) has no periodic solutions, then

lim
D→0

λ(D) = min
{
V̂ (0) + [∂xxm̂]+ (0) , V̂ (1) + [∂xxm̂]+ (1)

}
.

If V and m are independent of time, all solutions of (1.4) are constants which
correspond to the critical points of function m, and part (i) of Theorem 1.2 is
reduced to Theorem 1.1. When m(x, t) is monotone in x, part (ii) of Theorem 1.2
was first established in [22].

One potential application of Theorem 1.2 is the study of large-time behaviours
of solutions to the Cauchy problem for singularly perturbed parabolic equations in
spatio-temporal media [1, 8, 12], in which the growth or decay rate of the solutions
can be described in terms of λ(D). In a very recent work [9], the asymptotics of
λ(D) for small D was considered in a case of underlying advection ∂xm being a
constant, when analyzing the effect of small mutations on phenotypically-structured
populations in a shifting and fluctuating environment.

The restriction ∂xxm (P (t), t) �= 0 in Theorem 1.2, in fact guarantees the non-
degeneracy of advection ∂xm along periodic solution P of (1.4). See [5, 18] for the
definitions of degeneracy and non-degeneracy. To complement Theorem 1.2, we
consider a type of degenerate advection in the following result:

Theorem 1.3. Suppose that for each 1 ≤ i ≤ N , ∂xm(κi, t) ≡ 0 for all t ∈ [0, T ],
and 0 < κ1 < · · · < κN < 1. Furthermore, assume that {i : 0 ≤ i ≤ N} = A ∪B,

where

A =
{
i : 0 ≤ i ≤ N, ∂xm(x, t) �= 0, (x, t) ∈ (κi, κi+1)× [0, T ]

}
;

B =
{
i : 0 ≤ i ≤ N, ∂xm(x, t) ≡ 0, (x, t) ∈ [κi, κi+1]× [0, T ]

}
,

with κ0 = 0 and κN+1 = 1. Then we have

(1.5)

lim
D→0

λ(D) = min

{
min

0≤i≤N+1

{
V̂ (κi) + [∂xxm̂]+(κi)

}
, min

i∈B

{
min

x∈[κi,κi+1]
V̂ (x)

}}
,

where ∂xxm̂(0) and ∂xxm̂(1) are defined by (1.2).

The main contribution of Theorem 1.3 is to allow B �= ∅, i.e. the spatial-
temporal degeneracy of function ∂xm. When B = ∅, which means ∂xm(x, t) �= 0
for all x �= κi, 0 ≤ i ≤ N + 1, all solutions of (1.4) are nothing but constant
solutions P ≡ κi, 1 ≤ i ≤ N , and consequently, Theorem 1.3 becomes a special case
of Theorem 1.2 when B = ∅.

The assumption i ∈ A implies there are no periodic solutions of (1.4) in [κi, κi+1]
× [0, T ] except for constant solutions P ≡ κi and P ≡ κi+1. Without this assump-
tion, the situation becomes even more complicated. To illustrate the complexity,
we consider the special case m(x, t) = αb(t)x as in [18], where α > 0 denotes the
advection rate, and the T -periodic function b is Lipschitz continuous. In this case,
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problem (1.1) becomes

(1.6)

⎧
⎪⎨
⎪⎩

∂tϕ−D∂xxϕ− αb(t)∂xϕ+ V ϕ = λ(D)ϕ in (0, 1)× [0, T ],

∂xϕ(0, t) = ∂xϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1).

For different α and b, we have the following result:

Theorem 1.4. Let λ(D) denote the principal eigenvalue of (1.6).

(i) If b̂ �= 0, then for all α > 0,

lim
D→0

λ(D) =

{
V̂ (1) for b̂ > 0,

V̂ (0) for b̂ < 0.

(ii) If b̂ = 0, set P (t) = −
∫ t

0
b(s)ds, P = max[0,T ] P , and P = min[0,T ] P. Then

lim
D→0

λ(D) =

⎧
⎨
⎩
miny∈[−αP, 1−αP ]

{
1
T

∫ T

0
V (αP (s) + y, s)ds

}
, 0 < α ≤ 1

P−P
,

1
T

∫ T

0
V (P̃α(s), s)ds, α > 1

P−P
,

where P̃α ∈ C([0, T ]; [0, 1]) is the unique T -periodic solution of
˙̃P (t) = −αF (P̃ (t), t)

in [0, 1], and F is given by

(1.7) F (x, t) =

⎧
⎪⎨
⎪⎩

b(t) 0 < x < 1, t ∈ [0, T ],

min{b(t), 0}, x = 0, t ∈ [0, T ],

max{b(t), 0}, x = 1, t ∈ [0, T ].

Remark 1.5. When b̂ = 0 and α = 1
P−P

, part (ii) of Theorem 1.4 implies that

λ(D) → 1
T

∫ T

0
V
(

P (s)−P

P−P
, s
)
ds as D → 0. Direct calculation yields that P (t)−P

P−P
is

in fact a periodic solution of ˙̃P (t) = − 1
P−P

F (P̃ (t), t), so that the uniqueness part

in Lemma 4.1 implies P̃α(t) → P (t)−P

P−P
as α → 1

P−P
. This means that the limit of

λ(D) as D → 0 is continuous at α = 1
P−P

.

For m(x, t) = αb(t)x, Theorem 1.4 gives a complete description of the behaviors
of λ(D) as D → 0, and it provides a type of complicated spatial-temporal degen-
eracy not covered by Theorem 1.3. To further illustrate Theorem 1.4, consider the
case b(t) = − π

T sin
(
2πt
T

)
, in which

P (t) = 1
2 cos

(
2πt
T

)
− 1

2 , P = 0, P = −1.

More precisely, (i) when 0 < α < 1, we could find some yα ∈ [α, 1] such that λ(D) →
1
T

∫ T

0
V (αP (s) + yα, s)ds as D → 0, and the trajectory {αP (t) + yα : t ∈ [0, T ]} in

x-t plane is illustrated by the red solid curve in Fig. 1(a), where the two red dotted
curves represent {αP (t)+α : t ∈ [0, T ]} and {αP (t)+1 : t ∈ [0, T ]}, respectively; (ii)
When α = 1, we have λ(D) → 1

T

∫ T

0
V (P (s)+ 1, s)ds as D → 0, and the trajectory

{P (t) + 1 : t ∈ [0, T ]} is shown in Fig. 1(b); (iii) When α > 1, it follows that

λ(D) → 1
T

∫ T

0
V (P̃α(s), s)ds, and the corresponding trajectory {P̃α(t) : t ∈ [0, T ]}

is given in Fig. 1(c)–(d).
As the proofs of Theorems 1.2, 1.3, and 1.4 are fairly technical, in the following

we briefly outline the main strategies in proving Theorems 1.2 and 1.3:
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Figure 1. Each rectangle corresponds to the region [0, 1]× [0, T ]
in x-t plane. The limit of λ(D) as D → 0 is determined by the
average of V over the red solid curves, illustrated for various ranges
of α and m(x, t) = −απx

T sin
(
2πt
T

)
.

(i) We note that λ(D) for (1.3) in the elliptic situation can be characterized by
variational formulation [5,6,21,23]. In contrast, the time-periodic parabolic
problem (1.1) has no variational formulations. Our general strategy is to
construct super/sub-solutions and apply generalized comparison principle
developed in [18, Theorem A.1]. This technique was first introduced by
Berestycki and Lions [2] to the elliptic scenario, whereas its adaptation to
our context is more subtle because of the presence of temporal variable; see
[22] for further discussions.

(ii) We first establish Theorem 1.3 which assumes that ∂xm is strictly positive,
negative, or identically zero in each sub-interval (κi, κi+1). The main dif-
ficulty is to establish the lower bound of the principal eigenvalue in (1.5).
The construction of super-solutions near the curves {(κi, t), t ∈ [0, T ]} is
rather subtle, due to the fact that the spatio-temporal derivatives of the
principal eigenfunction of (1.1) restricted to the curves may be unbounded
as D tends to zero. Our strategy is to construct the super-solution almost
coinciding with the principal eigenfunction of (1.1) near these curves, and
then use an iterated argument to extend the super-solution to the whole
domain.

(iii) A key ingredient in the proof of Theorem 1.2 is to recognize the critical
role of the solutions of (1.4). Our idea is to reduce the proof of Theorem
1.2 to that of Theorem 1.3 with B = ∅. As Theorem 1.3 assumes that ∂xm
is either strictly positive or negative in each sub-interval (κi, κi+1), there
are two difficulty in doing so: First, the solutions Pi(t) of (1.4) are not
constant ones as specified in Theorem 1.3. This difficulty can be overcome
by introducing a proper transformation so that Pi(t) become constant after
the transformation. The second difficulty is that a priori we do not know
the sign of the term ∂xm in each (κi, κi+1). Our idea is to introduce another
transformation, which is associated with the trajectories of (1.4). We prove
that after the second transformation, ∂xm is indeed either strictly positive
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or negative in each (κi, κi+1), so that the proof of Theorem 1.3 is directly
applicable to complete the proof of Theorem 1.2.

This paper is organized as follows: In Section 2 we present some results associated
with the case when all of periodic solutions of (1.4) are constants and establish
Theorem 1.3. These results are used in Section 3 to give the proof of Theorem
1.2, by combining with an idea of “straightening periodic solutions”. Section 4
is devoted to the proof of Theorem 1.4. A generalized comparison result will be
presented in the Appendix.

2. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Hereafter, we use LD to
denote the time-periodic parabolic operator

LD := ∂t −D∂xx − ∂xm∂x + V.

For any x ∈ [0, 1], we define a T -periodic function fx : [0, T ] → (0,∞) by

(2.1) fx(t) = exp

[
−
∫ t

0

V (x, s)ds+ V̂ (x)t

]
,

which solves, for fixed x ∈ [0, 1], that (log fx)
′ = V̂ (x)− V (x, t).

Proposition 2.1. For any constant κ ∈ (0, 1), suppose that
{
∂xm(x, t) > 0, (x, t) ∈ [0, κ)× [0, T ],

∂xm(x, t) < 0, (x, t) ∈ (κ, 1]× [0, T ].

Then we have

lim
D→0

λ(D) = V̂ (κ).

Proof. We first prove the upper bound

(2.2) lim sup
D→0

λ(D) ≤ V̂ (κ).

Fix any ǫ > 0. For sufficiently small D, we construct a strict non-negative
sub-solution ϕ in the sense of Definition A.1 (see Appendix A) such that

(2.3)

⎧
⎪⎪⎨
⎪⎪⎩

LDϕ ≤
[
V̂ (κ) + ǫ

]
ϕ in ((0, 1) \ X)× (0, T ),

∂xϕ(0, t) = ∂xϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1),

for some point set X determined later.
To this end, by continuity of V , we choose small δ ∈ (0, 1) such that

(2.4) |V (x, t)− V (κ, t)| < ǫ/2 on [κ− δ, κ+ δ]× [0, T ].

Then we define ϕ by

ϕ(x, t) := fκ(t) · z(x),
where fκ(t) is defined in (2.1) with x = κ, and z ∈ C([0, 1]) is given by

(2.5) z(x) :=

{
−(x− κ)2 + δ2 on [κ− δ, κ+ δ],

0 on [0, κ− δ) ∪ (κ+ δ, 1].
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Observe that ∂xϕ
(
(κ± δ)+ , ·

)
> ∂xϕ

(
(κ± δ)− , ·

)
. We identify X in (2.3) as

X = {κ± δ}.

To verify (2.3), note from definition (2.1) that f ′
κ = (V̂ (κ) − V (κ, t))fκ, direct

calculations on [κ− δ, κ+ δ]× [0, T ] yield that for small D,

LDϕ = f ′
κ(t)z −D∂xxϕ− ∂xm∂xϕ+ V (x, t)ϕ

=
[
V̂ (κ)− V (κ, t) + V (x, t)

]
ϕ− ∂xm∂xϕ−D∂xxϕ

≤
[
V̂ (κ) + ǫ/2

]
ϕ− ∂xm∂xϕ−D∂xxϕ

≤
[
V̂ (κ) + ǫ

]
ϕ,

where −∂xm∂xϕ − D∂xxϕ ≤ ǫ
2ϕ in the last inequality is due to the fact that

−∂xm∂xϕ < 0 ≤ ǫϕ in the neighborhoods of {κ ± δ} × [0, T ]. Hence (2.3) holds,

and (2.2) follows from (2.3) and Proposition A.2 by letting ǫ → 0+.
Next, we show that

(2.6) lim inf
D→0

λ(D) ≥ V̂ (κ).

Define ϕ ∈ C2,1([0, 1]× [0, T ]) by

ϕ(x, t) := fκ(t) · eM1(x−κ)2

with M1 > 0 to be specified later. For any given ǫ > 0, we shall choose M1 large
so that for sufficiently small D, ϕ satisfies

(2.7)

⎧
⎪⎪⎨
⎪⎪⎩

LDϕ ≥
[
V̂ (κ)− ǫ

]
ϕ in (0, 1)× (0, T ),

∂xϕ(0, t) < 0 < ∂xϕ(1, t) on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1).

To establish (2.7), we first recall that δ is chosen as in (2.4). For x ∈ (0, κ− δ]∪
[κ+ δ, 1), there exists some ǫ0 > 0 such that |∂xm| ≥ ǫ0, and thus

−∂xm∂x(logϕ) = 2M1∂xm · (x− κ) ≥ 2M1δǫ0,

from which direct calculation leads to

LDϕ ≥
{
V̂ (κ) + V (x, t)− V (κ, t)−D

[
2M1 + 4M2

1 (x− κ)2
]
+ 2M1δǫ0

}
ϕ.(2.8)

We choose M1 large such that 2M1δǫ0 > 2‖V ‖L∞ . Letting D be small enough in

(2.8), we deduce LDϕ ≥ V̂ (κ)ϕ as desired.
For x ∈ [κ− δ, κ+ δ], by −∂xm∂xϕ ≥ 0 and the definition of δ we have

LDϕ ≥
{
V̂ (κ) + V (x, t)− V (κ, t)−D

[
2M1 + 4M2

1 (x− κ)2
]}

ϕ ≥
[
V̂ (κ)− ǫ

]
ϕ

for sufficiently small D.
Therefore, (2.7) holds and (2.6) follows from Proposition A.2 with X = ∅. �
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To proceed further, we will need the following result:

Lemma 2.2. Let ρ(t) ≥ 0 ( �≡ 0) be any T -periodic function. For each R > 0,
denote by μR the principal eigenvalue of the following problem:

(2.9)

⎧
⎪⎨
⎪⎩

∂tϕ− ∂xxϕ− xρ(t)∂xϕ = μRϕ in (−R,R)× (0, T ),

ϕ(−R, t) = ϕ(R, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on [−R,R].

Then we have

lim
R→∞

μR = ρ̂.

Proof. For each δ ≥ 0, in view of ρ(t) ≥ 0 ( �≡ 0) in [0, T ], we choose βδ(t) as the
unique positive solution of the problem

(2.10)

{
β̇(t)
2 = β(t) [ρ(t) + δ − β(t)] in [0, T ],

β(0) = β(T ).

Denote by (αδ(t), μδ) an eigenpair, with αδ(t) > 0, of the eigenvalue problem

(2.11)

{
α̇(t) + βδ(t)α(t) = μα(t) in [0, T ],

α(0) = α(T ).

Dividing both sides of (2.10) by βδ, and integrating the resulting equation over

[0, T ], by periodicity of βδ we have β̂δ = ρ̂ + δ. Similarly, (2.11) implies μδ = β̂δ.
Therefore,

(2.12) μδ = β̂δ = ρ̂+ δ.

For any δ ≥ 0, we define T -periodic function ψδ ∈ C2,1(R× [0, T ]) by

(2.13) ψδ(x, t) := αδ(t)e
−βδ(t)

2 x2

,

which, by definitions (2.10) and (2.11), solves

(2.14) Lδψδ := ∂tψδ − ∂xxψδ − x(ρ(t) + δ)∂xψδ = μδψδ in R× [0, T ].

We first show lim infR→∞ μR ≥ ρ̂. For δ = 0, ψ0 defined by (2.13) is a super-
solution to (2.9) in the sense of Definition A.1 for any R > 0. By Proposition A.2,
we have μR ≥ μ0 = ρ̂ for any R > 0, and thus lim infR→∞ μR ≥ ρ̂.

Next, we show lim supR→∞ μR ≤ ρ̂. Fix any δ > 0. Choose Rδ > 0 large such
that δx2βδ(t) ≥ ρ̂+ δ for all |x| ≥ Rδ and t ∈ [0, T ]. Then let ǫ = ǫ(δ) > 0 be small

so that δψδ(Rδ, t) ≥ ǫ(ρ̂+2δ) for all t ∈ [0, T ]. Set ψ̃δ = max{ψδ − ǫ, 0}. Note that

we can choose ǫ smaller if necessary such that ψ̃δ(x, t) > 0 holds for all |x| ≤ Rδ

and t ∈ [0, T ].

On {(x, t) : ψ̃δ(x, t) > 0, |x| ≥ Rδ}, by (2.12) and (2.14) we calculate that

∂tψ̃δ − ∂xxψ̃δ − xρ(t)∂xψ̃δ − (ρ̂+ 2δ)ψ̃δ

=(ρ̂+ δ)ψδ − δx2βδ(t)ψδ − (ρ̂+ 2δ)(ψδ − ǫ)

≤(ρ̂+ δ)ψδ − δx2βδ(t)ψδ

≤0,

(2.15)

where the last inequality follows from the choice of Rδ.
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On {(x, t) : ψ̃δ(x, t) > 0, |x| ≤ Rδ}, we have

∂tψ̃δ − ∂xxψ̃δ − xρ(t)∂xψ̃δ − (ρ̂+ 2δ)ψ̃δ

=(ρ̂+ δ)ψδ − δx2βδ(t)ψδ − (ρ̂+ 2δ)(ψδ − ǫ)

≤(ρ̂+ δ)ψδ − (ρ̂+ 2δ)(ψδ − ǫ)

≤ǫ(ρ̂+ 2δ)− δψδ(Rδ, t)

≤0,

(2.16)

where the last inequality is due to the choice of ǫ.
Choose some large R̃δ > Rδ such that ψ̃δ(R̃δ, t) = 0 for all t ∈ [0, T ]. By (2.15)

and (2.16), the constructed ψ̃δ is a sub-solution to (2.9) in the sense of Definition

A.1 for any R ≥ R̃δ. A direct application of Proposition A.2 yields μR ≤ ρ̂ + 2δ
for all R ≥ R̃δ, and thus lim supR→∞ μR ≤ ρ̂ + 2δ. Letting δ → 0 completes the
proof. �

Proposition 2.3. For any κ ∈ (0, 1), suppose that
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂xm(x, t) < 0, (x, t) ∈ (0, κ)× [0, T ],

∂xm(x, t) > 0, (x, t) ∈ (κ, 1)× [0, T ],

∂xxm(κ, t) ≥ ( �≡)0, t ∈ [0, T ],

m(x, 0) = m(x, T ), x ∈ [0, 1].

Then we have

lim
D→0

λ(D) = min
{
V̂ (0), V̂ (κ) + ∂xxm̂(κ), V̂ (1)

}
.

Proof. For any given ǫ > 0, we choose some small δ > 0 such that

(2.17)
|V (x, t)− V (0, t)| < ǫ/2, (x, t) ∈ [0, δ]× [0, T ],
|V (x, t)− V (κ, t)| < ǫ/2, (x, t) ∈ [κ− δ, κ+ δ]× [0, T ],
|V (x, t)− V (1, t)| < ǫ/2, (x, t) ∈ [1− δ, 1]× ∈ [0, T ].

Part I. In this part, we establish the upper bound

lim sup
D→0

λ(D) ≤ λmin := min
{
V̂ (0), V̂ (κ) + ∂xxm̂(κ), V̂ (1)

}
.

By a similar argument as in Proposition 2.1, it is straightforward to show that

lim sup
D→0

λ(D) ≤ min
{
V̂ (0), V̂ (1)

}
.

It remains to prove

(2.18) lim sup
D→0

λ(D) ≤ V̂ (κ) + ∂xxm̂(κ).

Fix any ǫ > 0. For sufficiently small D, we construct a sub-solution ϕ such that

(2.19)

⎧
⎪⎪⎨
⎪⎪⎩

LDϕ ≤
[
V̂ (κ) + ∂xxm̂(κ) + 2ǫ

]
ϕ in ((0, 1) \ X)× [0, T ],

∂xϕ(0, t) = ∂xϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1),

where the set X will be determined later.
To this end, we define

m̄(x, t) := [∂xxm(κ, t) + ǫ] · (x−κ)2

2 ,
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and further choose δ smaller if necessary such that

(2.20) |∂xm̄| ≥ |∂xm| in [κ− δ, κ+ δ]× [0, T ].

Let λ̄D denote the principal eigenvalue of the problem

(2.21)

⎧
⎪⎨
⎪⎩

∂tψ −D∂xxψ − ∂xm̄∂xψ = λ̄Dψ in (κ− δ, κ+ δ)× [0, T ],

ψ(κ− δ, t) = ψ(κ+ δ, t) = 0 on [0, T ],

ψ(x, 0) = ψ(x, T ) on [κ− δ, κ+ δ],

and the corresponding eigenfunction ψ
D

is chosen to be positive in (κ− δ, κ+ δ)×
[0, T ]. Under the scaling y = x−κ√

D
, we set ϕ

D
(y, t) := ψ

D
(
√
Dy+ κ, t), which is the

principal eigenfunction (associated to λ̄D) of the problem
⎧
⎪⎪⎨
⎪⎪⎩

∂tϕ− ∂yyϕ− y[∂xxm(κ, t) + ǫ]∂yϕ = λ̄Dϕ in
(
− δ√

D
, δ√

D

)
× [0, T ],

ϕ(− δ√
D
, t) = ϕ( δ√

D
, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on
[
− δ√

D
, δ√

D

]
.

By Lemma 2.2, we deduce that

(2.22) lim
D→0

λ̄D = ∂xxm̂(κ) + ǫ.

We extend ψ
D
, the principal eigenfunction of (2.21), to [0, 1]× [0, T ] by setting

ψ
D

≡ 0 on ([0, κ− δ] ∪ [κ+ δ, 1])× [0, T ].

Applying the Hopf boundary lemma to (2.21), we have

∂xψD

(
(κ− δ)+, ·

)
> 0 = ∂xψD

(
(κ− δ)−, ·

)
,

∂xψD

(
(κ+ δ)+, ·

)
= 0 > ∂xψD

(
(κ+ δ)−, ·

)
,

so that we choose X by X = {κ± δ}.
Define

ϕ(x, t) = fκ(t) · ψD
(x, t) in [0, 1]× [0, T ],

where fκ(t) is given by (2.1) with x = κ. We verify that ϕ satisfies (2.19). By
properties of ψ

D
and (2.20) we can derive that

−∂xm∂xψD
≤ −∂xm̄∂xψD

in [0, 1]× [0, T ].

Hence, direct calculations on ((0, 1) \ X)× [0, T ] give

LDϕ =
[
−V (κ, t) + V̂ (κ) + V (x, t)

]
ϕ+

[
∂tψD

−D∂xxψD
− ∂xm∂xψD

]
fκ(t)

≤
[
V̂ (κ) + ǫ/2

]
ϕ+

[
∂tψD

−D∂xxψD
− ∂xm̄∂xψD

]
fκ(t)

=
[
V̂ (κ) + λ̄D + ǫ/2

]
ϕ

≤
[
V̂ (κ) + ∂xxm̂(κ) + 2ǫ

]
ϕ,

provided that D is small enough, where the last inequality is a consequence of
(2.22). Therefore, ϕ defines a sub-solution satisfying (2.19), which together with
Proposition A.2 implies (2.18).
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Part II. We shall establish the lower bound

(2.23) lim inf
D→0

λ(D) ≥ λmin := min
{
V̂ (0), V̂ (κ) + ∂xxm̂(κ), V̂ (1)

}
.

For each small ǫ > 0, the main ingredient in the proof is to construct a positive
continuous super-solution ϕ in the sense of Definition A.1, i.e. for sufficiently small
D,

(2.24)

⎧
⎪⎨
⎪⎩

LDϕ ≥ (1− ǫ)(λmin − ǫ)ϕ in ((0, 1) \ X)× [0, T ],

∂xϕ(0, t) = ∂xϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1),

where the point set X will be determined in Step 3. Then (2.23) follows from
Proposition A.2 and arbitrariness of ǫ.

Step 1. We prepare some notations. First, we choose suitable T -periodic function
ρ(t) ≥�≡ 0 and small δ > 0 such that

(2.25)

{
max{∂xxm(κ, t)− ǫ, 0} ≤ ρ(t) ≤ ∂xxm(κ, t), t ∈ [0, T ],

ρ(t)|x− κ| ≤ |∂xm(x, t)|, (x, t) ∈ [κ− δ, κ+ δ]× [0, T ].

Due to ρ̂ > 0, define r(t) as the unique positive T -periodic solution of

(2.26)
ṙ(t)

2− ℓ
= r(t)

[
ρ(t)−

(
4

(2− ℓ)2
+

ǫ

2

)
r(t)

]
,

where the small parameter ℓ ∈ (0, ǫ/2] can be specified as follows: Note that there
exist 0 < r < r independent of ℓ ∈ (0, ǫ/2] such that

0 < r < r(t) < r for all t ∈ [0, T ] and ℓ ∈ [0, ǫ/2].

We fix ℓ ∈ (0, ǫ/2] small such that

(2.27)

⎧
⎨
⎩

2
2−ℓ
4

(2−ℓ)2
+ ǫ

2

≥ 1− ǫ,

ν := ℓr
2−ℓ <

[√
4

(2−ℓ)2 + ǫ
2 − 1

]
r.

Without loss of generality, we assume there is some n∗ ∈ N (n∗ > 3) such that

(2.28) 1/ℓ = 2n∗−2,

and further choose δ smaller if necessary such that

δ < κ− (n∗ + 1)δ < κ+ (n∗ + 1)δ < 1− δ.

For fixed r(t) and ℓ, we define (α1(t), λℓ) as the eigenpair of

(2.29)

{
α̇1(t) +

2
2−ℓα1(t)r(t) = λℓα1(t) in [0, T ],

α1(0) = α1(T ).

Similar to (2.12), we deduce from (2.26) and (2.29) that

λℓ =
2

2− ℓ
r̂ =

2
2−ℓ

4
(2−ℓ)2 + ǫ

2

ρ̂,

which, together with (2.27), leads to

(2.30) λℓ ≥ (1− ǫ)ρ̂.
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Step 2. We construct a positive super-solution ψ ∈ C(R× [0, T ]) for the auxiliary
problem

(2.31)

{
∂tψ − ∂yyψ − yρ(t)∂yψ = (1− ǫ)ρ̂ψ in R× [0, T ],

ψ(x, 0) = ψ(x, T ) on R.

Using the notations introduced in Step 1, we define

(2.32) ψ(y, t) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α1(t)e
− r(t)

2−ℓy
2

on [−y0, y0]× [0, T ],

η1(t)e
− (r(t)+ν)yℓ

0
2−ℓ y2−ℓ

on (y0,∞)× [0, T ],

η1(t)e
− (r(t)+ν)yℓ

0
2−ℓ (−y)2−ℓ

on (−∞,−y0)× [0, T ],

where y0 is a constant to be determined later, and η1(t) = α1(t)e
νy2

0
2−ℓ , so that

ψ ∈ C(R× [0, T ]) and (log η1)
′ = (logα1)

′ independent of y0.
By the definition of ν in (2.27), we may assert that for any y0 > 0,

(2.33) ∂y(logψ)(y
−
0 , ·) =

[
− 2r(·)
2− ℓ

]
y0 > [−(r(·) + ν)] y0 = ∂y(logψ)(y

+
0 , ·),

and similarly, ∂yψ((−y0)
−, ·) > ∂yψ((−y0)

+, ·). Therefore, in view of (2.30), to

verify that ψ defined by (2.32) is a super-solution of (2.31), it remains to choose
large y0 such that

(2.34) ∂tψ − ∂yyψ − yρ(t)∂yψ ≥ λℓψ in (R \ {±y0})× [0, T ],

which can be verified by the following computations:

(i) For y ∈ (−y0, y0), by (2.26) and (2.32), direct calculations yield

∂tψ − ∂yyψ − yρ(t)∂yψ

=

[
(logα1)

′ − ṙ(t)

2− ℓ
y2 +

2r(t)

2− ℓ
− 4r2(t)

(2− ℓ)2
y2 +

2r(t)ρ(t)

2− ℓ
y2
]
ψ

≥
[
(logα1)

′ +
2r(t)

2− ℓ

]
ψ +

[
− ṙ(t)

2− ℓ
− 4r2(t)

(2− ℓ)2
+ r(t)ρ(t)

]
y2ψ

≥
[
(logα1)

′ +
2r(t)

2− ℓ

]
ψ

=λℓψ.

(ii) For y ∈ (y0,∞), again by (2.26) and (2.32), we calculate that

∂tψ − ∂yyψ − yρ(t)∂yψ − λℓψ

= [(log η1)
′ − λℓ]ψ + yℓ0y

2−ℓ

[
− ṙ(t)

2− ℓ
+ (1− ℓ)(r(t) + ν)y−2

]
ψ

+ yℓ0y
2−ℓ

[
−(r(t) + ν)2yℓ0y

−ℓ + (r(t) + ν)ρ(t)
]
ψ

≥ [(logα1)
′ − λℓ]ψ + yℓ0y

2−ℓ

[
− ṙ(t)

2− ℓ
− (r(t) + ν)2 + r(t)ρ(t)

]
ψ

= [(logα1)
′ − λℓ]ψ + yℓ0y

2−ℓ

[(
4

(2− ℓ)2
+

ǫ

2

)
r2(t)− (r(t) + ν)2

]
ψ.

In light of
(

4
(2−ℓ)2 + ǫ

2

)
r2(t) > (r(t) + ν)2 (due to (2.27)), we may pick y0

large enough to ensure (2.34) on (y0,∞)× [0, T ].
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(iii) For y ∈ (−∞,−y0), we can verify (2.34) by the same argument as in (ii).

Consequently, (2.34) holds true, and ψ constructed by (2.32) is a super-solution
of (2.31) in the sense of Definition A.1.

In what follows, we divide the construction of super-solution ϕ which satisfies
(2.24) into the following several steps via separating different regions; see Fig. 2 for
the profile of ϕ to be constructed.

Figure 2. The profile of ϕ for fixed t ∈ [0, T ]

Step 3. We construct super-solution ϕ on [κ − δ, κ + δ] × [0, T ] satisfying (2.24).

Let ψ be given by (2.32) with fixed y0 chosen in Step 2. We assume
√
Dy0 < δ,

and define X by

(2.35) X =

n∗⋃

n=1

{κ± nδ} ∪ {δ, 1− δ} ∪
{
κ±

√
Dy0

}
,

where n∗ is chosen in (2.28). Set

(2.36) ϕ(x, t) := fκ(t) · ψ
(
x− κ√

D
, t

)
on [κ− δ, κ+ δ]× [0, T ],

where fκ(t) is defined by (2.1) with x = κ. Note that ϕ is symmetric in x with
respect to x = κ, and is decreasing in x for x ≥ κ and t ∈ [0, T ]. Thus by (2.25)
and (2.36) we arrive at

−∂xm∂xϕ = |∂xm| · |∂xϕ| ≥ fκ(t)ρ(t)
|x− κ|√

D

∣∣∣∣∂yψ
(
x− κ√

D
, t

)∣∣∣∣(2.37)

= −fκ(t)ρ(t) · y∂yψ (y, t) ,
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where y = x−κ√
D
. This implies that on ([κ− δ, κ+ δ] \ {κ±

√
Dy0})× [0, T ],

LDϕ ≥
[
−V (κ, t) + V̂ (κ) + V (x, t)

]
ϕ+

[
∂tψ − ∂yyψ − ρ(t)y∂yψ

]
fκ(t)

≥
[
V̂ (κ)− ǫ/2 + (1− ǫ)ρ̂

]
ϕ

≥
[
V̂ (κ) + (1− ǫ)∂xxm̂(κ)− ǫ(1− ǫ)

]
ϕ

≥(1− ǫ)(λmin − ǫ)ϕ,

where the first inequality is due to (2.37), the second inequality follows from (2.17)
and the fact that ψ is a super-solution of (2.31) (see Step 2), and the third inequality
follows from (2.25).

On the other hand, by (2.33), we have

∂x(logϕ)((κ+
√
Dy0)

+, ·) < ∂x(logϕ)((κ+
√
Dy0)

−, ·) (as κ+
√
Dy0 ∈ X).

Therefore, ϕ defined by (2.36) satisfies (2.24) on [κ− δ, κ+ δ]× [0, T ].

Step 4. We construct ϕ which satisfies (2.24) on (κ + δ, κ + 2δ] × [0, T ]. Since√
Dy0 < δ, by (2.36) in Step 3 and (2.32) in Step 2, we have

(2.38)

{
logϕ(κ+ δ, t) = log fκ(t) + log η1(t)− (r(t)+ν)yℓ

0δ
2−ℓ

(2−ℓ)D1−ℓ/2 ,

∂x(logϕ)((κ+ δ)−, ·) = −(r(·) + ν)
yℓ
0δ

1−ℓ

D1−ℓ/2 ,

whence there is some constant K0 > 0 such that

(2.39) |∂t(logϕ)(κ+ δ, ·)| =
∣∣∣∣(log fκ)

′ + (log η1)
′ − ṙ(t)yℓ0δ

2−ℓ

(2− ℓ)D1−ℓ/2

∣∣∣∣ <
K0

D1−ℓ/2
.

We introduce a small parameter ǫ0 > 0 such that

|∂xm| ≥ ǫ0 on ([δ, κ− δ] ∪ [κ+ δ, 1− δ])× [0, T ],

and fix constant K1 so that

K1 > (r̄ + ν)yℓ0δ
1−ℓ + 2K0/ǫ0.

Then we define

(2.40) ϕ(x, t) := ζ1(x, t) · e−
K1(x−κ)

D1−ℓ/2 on (κ+ δ, κ+ 2δ]× [0, T ].

Here ζ1 ∈ C2,1((κ+ δ, κ+ 2δ)× [0, T ]) is determined by
(2.41)

log ζ1(x, t) =
[
(κ+2δ)−x

δ

]
·
[

K1δ
D1−ℓ/2 + logϕ(κ+ δ, t)

]
+
[
x−(κ+δ)

δ

]
log f1(t),

with T -periodic function f1(t) defined in (2.1) with x = 1, so that

ζ1(κ+ δ, t) = e
K1δ

D1−ℓ/2 · ϕ(κ+ δ, t).

This implies immediately that ϕ defined by (2.40) is continuous at {κ+ δ}× [0, T ].
In light of ∂xζ1 < 0 (for small D), using (2.38) and (2.40), by choice of K1 we can
verify that

∂x(logϕ)((κ+ δ)+, ·) < −K1/D
1−ℓ/2 < ∂x(logϕ)((κ+ δ)−, ·) (as κ+ δ ∈ X).

On the other hand, combined with (2.38), (2.39), and (2.41), we see that

|∂t(log ζ1)| <
2K0

D1−ℓ/2
, − 3K1

D1−ℓ/2
< ∂x(log ζ1) < 0, and ∂xx(log ζ1) = 0
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for small D, and thus
∣∣∣∣
∂xxζ1
ζ1

∣∣∣∣ =
∣∣∂xx(log ζ1) + [∂x(log ζ1)]

2
∣∣ < 9K2

1

D2−ℓ
,

from which, using (2.40) and −∂xm · ∂x(log ζ1) ≥ 0, we may calculate that

LDϕ =

{
∂t(log ζ1)−D

[
∂xxζ1
ζ1

− 2K1

D1−ℓ/2
∂x(log ζ1) +

K2
1

D2−ℓ

]}
ϕ

+

{
−∂xm ·

[
∂x(log ζ1)−

K1

D1−ℓ/2

]
+ V

}
ϕ

≥
[
− 2K0

D1−ℓ/2
− 16K2

1

D1−ℓ
+

ǫ0K1

D1−ℓ/2
+ V

]
ϕ

=
1

D1−ℓ/2

[
−2K0 + ǫ0K1 − 16K2

1D
ℓ/2 +D1−ℓ/2V

]
ϕ.

Since ǫ0K1 > 2K0 (by the definition of K1), we may choose D small such that
(2.24) holds. Step 4 is thereby completed.

Step 5. We construct ϕ on (κ+ 2δ, κ+3δ]× [0, T ]. By (2.40) and (2.41) in Step 4,
we have
(2.42)

logϕ(κ+ 2δ, t) = log f1(t)−
2K1δ

D1−ℓ/2
and ∂x(logϕ)((κ+ 2δ)−, ·) > − 4K1

D1−ℓ/2
.

Fix a constant K2 such that K2 > 16K2
1/ǫ0, where ǫ0 is given in Step 4 such that

∂xm ≥ ǫ0 on [κ+ δ, 1− δ]× [0, T ]. Define

(2.43) ϕ(x, t) := f1(t) · φ2(x) on (κ+ 2δ, κ+ 3δ]× [0, T ],

where φ2 solves
(2.44){

(log φ2)
′(x) = − 4K1

D1−ℓ/2

[
κ+3δ−x

δ

]
− K2

D1−ℓ

[
x−(κ+2δ)

δ

]
in (κ+ 2δ, κ+ 3δ],

log φ2(κ+ 2δ) = − 2K1δ
D1−ℓ/2 .

Together (2.43) with (2.42) and (2.44), we discover that ϕ is continuous at
{κ+ 2δ} × [0, T ], and

∂x(logϕ)((κ+2δ)+, ·) = −4K1/D
1−ℓ/2 < ∂x(logϕ)((κ+2δ)−, ·) (as κ+2δ ∈ X).

For all x ∈ (κ+ 2δ, κ+ 3δ], by (2.44) we have
∣∣∣∣∣
φ
′′
2

φ2

∣∣∣∣∣ =
∣∣(log φ2)

′′ + [(logφ2)
′]2

∣∣ ≤ 4K1

δD1−ℓ/2
+

16K2
1

D2−ℓ
,

from which we arrive at

LDϕ =
[
(log f1)

′ −Dφ
′′
2/φ2 − ∂xm · (log φ2)

′ + V
]
ϕ

≥
[
(log f1)

′ − 4K1

δ
Dℓ/2 − 16K2

1

D1−ℓ
+

ǫ0K2

D1−ℓ
+ V

]
ϕ.

In view of ǫ0K2 > 16K2
1 , we once more would select D small enough such that

(2.24) holds.
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Step 6. We construct ϕ on (κ+ 3δ, κ+ (n∗ + 1)δ]× [0, T ], where n∗ is determined
by (2.28) in Step 1. By the definition of φ2 in (2.44), we have

(2.45) ∂x(logϕ)
(
(κ+ 3δ)−, ·

)
= (log φ2)

′ (κ+ 3δ) = −K2/D
1−ℓ.

We introduce a sequence {Kn}n∗

n=3 independent of D such that Kn > K2
n−1/ǫ0.

With φ2 in hand, by induction we define φn ∈ C2,1([κ + nδ, κ + (n + 1)δ]) (n =
3, . . . , n∗) to solve

(2.46)

⎧
⎪⎪⎨
⎪⎪⎩

(log φn)
′(x) = −

[
Kn−1

D1−2n−3ℓ
+ ǫ

]
·
[
κ+nδ−x

δ

]
− Kn

D1−2n−2ℓ

[
x−(κ+nδ)

δ

]

in (κ+ nδ, κ+ (n+ 1)δ],

log φn(κ+ nδ) = log φn−1(κ+ nδ).

Then we define

(2.47) ϕ(x, t) := f1(t) · φn(x) on (κ+ nδ, κ+ (n+ 1)δ]× [0, T ].

By (2.45) and (2.46), it can be verified that

∂x(logϕ)
(
(κ+ 3δ)+, ·

)
= ∂x(log φ3) (κ+ 3δ)

= −
[

K2

D1−ℓ
+ ǫ

]
< ∂x(logϕ)

(
(κ+ 3δ)−, ·

)
,

and similarly for 4 ≤ n ≤ n∗,

∂x(logϕ)
(
(κ+ nδ)+, ·

)
< ∂x(logϕ)

(
(κ+ nδ)−, ·

)
(as κ+ nδ ∈ X).

For each 3 ≤ n ≤ n∗, it follows from (2.46) that for x ∈ (κ+ nδ, κ+ (n+ 1)δ]

(2.48) −
[

Kn−1

D1−2n−3ℓ
+ ǫ

]
≤ (log φn)

′ ≤ − Kn

D1−2n−2ℓ
,

and then as in Step 5, we derive that

(2.49)

∣∣∣∣∣
φ
′′
n

φn

∣∣∣∣∣ =
∣∣(logφn)

′′ + [(log φn)
′]2

∣∣ ≤ 2Kn−1

δD1−2n−3ℓ
+

K2
n−1

D2−2n−2ℓ
.

By (2.48) and (2.49), on (κ+ nδ, κ+ (n+ 1)δ]× [0, T ], we calculate that

LDϕ =
[
(log f1)

′ −Dφ
′′
n/φn − ∂xm · (log φn)

′ + V
]
ϕ

≥
[
(log f1)

′ − 2Kn−1

δ
D2n−3ℓ − K2

n−1

D1−2n−2ℓ
+

ǫ0Kn

D1−2n−2ℓ
+ V

]
ϕ.

Since ǫ0Kn > K2
n−1, we choose D to be small so that ϕ satisfies (2.24).

Step 7. We construct ϕ on (κ+(n∗+1)δ, 1]× [0, T ]. Set κ∗ = κ+(n∗+1)δ. Observe
from Step 6 and the definition of n∗ in (2.28) that

∂x(logϕ)((κ
∗)−, ·) = −Kn∗

/D1−2n∗−2ℓ = −Kn∗
.

We define

(2.50) ϕ(x, t) := f1(t)φn∗
(κ∗) ·

{
e−K∗(x−κ∗) on (κ∗, 1− δ]× [0, T ],

e
K∗+ǫ

2δ (1−x)2+θ1 on (1− δ, 1]× [0, T ],
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where K∗ > Kn∗
will be determined later, and the parameter θ1 is chosen such that

ϕ is continuous at {1− δ} × [0, T ]. It follows that

∂x(logϕ)(x
+, ·) < ∂x(logϕ)(x

−, ·) for x ∈ {κ∗, 1− δ} ⊂ X.

It remains to verify that ϕ defined by (2.50) satisfies (2.24). For x ∈ (κ∗, 1− δ],
since ∂xm ≥ ǫ0, using (2.50) we deduce that

LDϕ ≥
[
(log f1)

′ −DK2
∗ + ǫ0K∗ + V

]
ϕ.

By choosing K∗ large and then choosing D small, we see that ϕ satisfies (2.24).
For x ∈ (1− δ, 1], since −∂xm∂xϕ ≥ 0, by (2.50), letting D be so small that

LDϕ ≥
{
(log f1)

′ −D(K∗ + ǫ)/δ ·
[
(K∗ + ǫ)(x− 1)2/δ + 1

]
+ V

}
ϕ

≥
[
V̂ (1)− V (1, t) + V (x, t)− ǫ/2

]
ϕ

≥(λmin − ǫ)ϕ,

where the last inequality is due to (2.17).
By Steps 3-7, we have already constructed the strict super-solution ϕ satisfying

(2.24) on [κ− δ, 1]× [0, T ] with the set X given by (2.35), which is summarized in
the following table for the convenience of readers; see also Fig. 2.

Construction of ϕ on [κ− δ, 1]× [0, T ]

ϕ(x, t) Region Defined in

fκ(t) · ψ
(

x−κ√
D

, t
)

[κ− δ, κ+ δ]× [0, T ] (2.36) in Step 3

ζ1(x, t) · e
−K1(x−κ)

D1−ℓ/2 [κ+ δ, κ+ 2δ]× [0, T ] (2.40) and (2.41) in Step 4

f1(t) · φn(x)
(κ+ nδ, κ+ (n+ 1)δ]× [0, T ]

(n = 2, . . . , n∗)
(2.46) and (2.47) in

Steps 5 and 6

f1(t)φn∗
(κ∗) · e−K∗(x−κ

∗) (κ∗, 1− δ]× [0, T ] (2.50) in Step 7

f1(t)φn∗
(κ∗) · e

K∗+ǫ
2δ

(1−x)2+θ1 (1− δ, 1]× [0, T ] (2.50) in Step 7

Finally, we construct ϕ on [0, κ− δ)× [0, T ] symmetrically; and precisely, define
(2.51)

ϕ(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ2(x, t) · e
K1(κ−x)

D1−ℓ/2 on [κ− 2δ, κ− δ)× [0, T ],

f0(t) · φn(2κ− x) on

{
[κ− (n+ 1)δ, κ− nδ)× [0, T ],

(n = 2, . . . , n∗),

f0(t)φn∗
(κ∗) · eK∗(κ∗−x) on [δ, κ∗)× [0, T ],

f0(t)φn∗
(κ∗) · e

K∗+ǫ
2δ x2+θ2 on [0, δ)× [0, T ],

where κ∗ = κ− (n∗ + 1)δ, and similar to (2.41), ζ2 solves

log ζ2(x, t) =
[
x−(κ−2δ)

δ

]
·
[

K1δ
D1−ℓ/2 + logϕ(κ− δ, t)

]
+
[
(κ−δ)−x

δ

]
log f0(t),

with f0 defined in (2.1) with x = 0, and θ2 is chosen such that ϕ is continuous
at {δ} × [0, T ]. Using the same arguments as in Steps 4-7, we may conclude that
ϕ defined by (2.51) verifies (2.24), and thus ϕ constructed above defines a super-
solution on the entire region [0, 1]× [0, T ] with X given by (2.35). Therefore, (2.23)
follows from Proposition A.2. �
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By assuming ∂xm(0, t) > 0 and ∂xm(1, t) < 0 for each t ∈ [0, T ], it is shown in
Proposition 2.1 that the limit of λ(D) as D → 0 does not depend upon the value of
V on boundary points {0, 1} × [0, T ]. However, without the positivity assumption
of ∂xm(0, t), one can prove

Lemma 2.4. Suppose that ∂xm(x, t) > 0 for all (x, t) ∈ (0, 1)× [0, T ]. Then

lim
D→0

λ(D) = min
{
V̂ (0) + [∂xxm̂]+(0), V̂ (1)

}
,

where ∂xxm̂(0) is defined by (1.2).

Proof. If ∂xm(0, t) = 0 for all t ∈ [0, T ], Lemma 2.4 can be proved directly by
constructing the same super/sub-solutions as those in Proposition 2.3 defined on
[κ, 1]× [0, T ]. It suffices to consider the remaining case ∂xm̂(0) > 0 and in view of
∂xxm̂+(0) = ∞ in this case, i.e. to show

lim
D→0

λ(D) = V̂ (1).

First, similarly as in the proof of Proposition 2.1, we may construct a sub-solution
to prove lim supD→0 λ(D) ≤ V̂ (1). In the sequel, we show

(2.52) lim inf
D→0

λ(D) ≥ V̂ (1).

For any given ǫ > 0, we fix some small δ > 0 such that

|V (x, t)− V (1, t)| < ǫ/2 on [1− δ, 1]× [0, T ].

The strategy is to construct a positive super-solution ϕ ∈ C2,1([0, 1]× [0, T ]), which
satisfies

(2.53)

⎧
⎪⎪⎨
⎪⎪⎩

LDϕ ≥
[
V̂ (1)− ǫ

]
ϕ in (0, 1)× [0, T ],

∂xϕ(0, t) < 0, ∂xϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1)

for sufficiently small D. To this end, we proceed as follows:
On [1− δ, 1]× [0, T ], we define

ϕ(x, t) := f1(t) · e
M2
2δ (1−x)2 on [1− δ, 1]× [0, T ],

where M2 > 0 will be determined later, and f1(t) is given by (2.1) with x = 1.
Similar to Step 2 in Proposition 2.1, one can verify that (2.53) holds on [1− δ, 1]×
[0, T ].

On [0, δ]× [0, T ], since ∂xm(0, t) ≥ ( �≡)0 for t ∈ [0, T ] (due to ∂xm̂(0) > 0 ), one
can find some t0 ∈ (0, T ) and positive constants ǫ0, δ0 such that

∂xm(x, t) > ǫ0 for any (x, t) ∈ [0, δ]× [t0 − δ0, t0 + δ0].

Fix η2 ∈ C∞([0, T ]) to be a positive T -periodic function such that

(2.54) (log η2(t))
′
> ‖V (·, t)‖L∞ + |V̂ (1)| for t ∈ [0, t0 − δ] ∪ [t0 + δ, T ].

We then define, for (x, t) ∈ [0, δ]× [0, T ],

ϕ(x, t) := η2(t) · e−M2x.
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On [0, δ]× [t0 − δ0, t0 + δ0], since ∂xm(x, t) > ǫ0, by straightforward computations
we deduce

LDϕ ≥
[
(log η2)

′ −DM2
2 +M2ǫ0 − V

]
ϕ,

whence by choosing M2 large and then choosing D small, we have LDϕ ≥ V̂ (1)ϕ.
On the other hand, on [0, δ] × ([0, t0 − δ] ∪ [t0 + δ, T ]), in view of (2.54) and

−∂xm∂xϕ ≥ 0, by letting D be small, we arrive at

LDϕ ≥
[
(log η2)

′ −DM2
2 − V

]
ϕ ≥ V̂ (1)ϕ,

whence (2.53) is verified on [0, δ]× [0, T ].
On (δ, 1− δ)× [0, T ], notice from the definition of ϕ above that

∂x(logϕ)(δ) = ∂x(logϕ)(1− δ) = −M2.

We can always find ϕ ∈ C2,1([δ, 1− δ]× [0, T ]) such that ϕ(·, 0) = ϕ(·, T ) and
∂x logϕ ≤ −M2 and |∂t logϕ| ≤ 2 ‖|(log f1)′|+ |(log η2)′|‖L∞ ,

and then (2.53) can be verified directly by further choosing M2 large and D small.
Therefore, such a super-solution ϕ defined above satisfies (2.53), and Proposition

A.2 concludes the proof. �

Corollary 2.5. Assume V (x, t) = V (x) and ∂xm(x, t) = m′(x). Suppose that

m′(x) > 0 for all x ∈ (0, 1). Then we have

lim
D→0

λ(D) = min {V (0) + [m′′]+(0), V (1)} .

Remark 2.6. Corollary 2.5 cannot be covered by Theorem 1.1. It also provides an
example such that Theorem 1.2 in [6] fails without the assumption |∇m| �= 0 on
∂Ω therein.

To establish Theorem 1.3, we prepare the following

Lemma 2.7. Given any 0 ≤ κ < κ ≤ 1, let λ(D) be the principal eigenvalue of the

problem

(2.55)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂tϕ−D∂xxϕ+ V ϕ = λ(D)ϕ in (κ, κ)× [0, T ],

c1∂xϕ(κ, t)− (1− c1)ϕ(κ, t) = 0 on [0, T ],

c2∂xϕ(κ, t) + (1− c2)ϕ(κ, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on [κ, κ],

where c1, c2 ∈ [0, 1]. Then we have

lim
D→0

λ(D) = min
x∈[κ,κ]

V̂ (x).

Remark 2.8. Lemma2.7 is proved in Lemma 2.4(c) of [14] for the case c1 = c2 = 1.

Proof of Lemma 2.7. For the upper bound, it suffices to claim that

lim sup
D→0

λ(D) ≤ V (x̃) for any x̃ ∈ (κ, κ).

Indeed, we follow the ideas as in Proposition 2.1 and define a sub-solution

(2.56) ϕ(x, t) := fx̃(t) · z̃(x)
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with fx̃(t) defined in (2.1) with x = x̃ and

z̃(x) =

{
cos

(
π
2δ̃
(x− x̃)

)
on [x̃− δ̃, x̃+ δ̃],

0 on [0, x̃− δ̃) ∪ (x̃+ δ̃, 1].

Here δ̃ is chosen such that |V (x, t)− V (x̃, t)| < ǫ/2 in [x̃− δ̃, x̃+ δ̃]× [0, T ] for any
given ǫ > 0. One may verify readily that

LDϕ ≤
[
V̂ (x̃) + ǫ

]
ϕ,

so that the upper bound follows from Proposition A.2.
It remains to prove

(2.57) lim inf
D→0

λ(D) ≥ min
x∈[κ,κ]

V̂ (x).

For any ǫ > 0, choose some T -periodic function Vǫ ∈ C2,1([κ, κ]× [0, T ]) such that

‖Vǫ − V ‖L∞([0,1]×[0,T ]) ≤ ǫ.

Then we define T -periodic function ϕǫ by

(2.58) ϕǫ(x, t) := exp

[
−
∫ t

0

Vǫ(x, s)ds+ tV̂ǫ(x)

]
βǫ(x),

where βǫ ∈ C2([κ, κ]) is a positive function and is chosen such that

(2.59) c1∂xϕǫ(κ, t)−(1−c1)ϕǫ(κ, t) ≤ 0 and c2∂xϕǫ(κ, t)+(1−c2)ϕǫ(κ, t) ≥ 0.

By (2.58) and the definition of Vǫ, we may choose D small to derive that

∂tϕǫ −D∂xxϕǫ + V ϕǫ =
[
V̂ǫ(x)− Vǫ(x, t) + V (x, t)

]
ϕǫ −D∂xxϕǫ

≥
[

min
x∈[κ,κ]

V̂ (x)− 3ǫ

]
ϕǫ,

which together with (2.59) implies that ϕǫ defined by (2.58) is a super-solution in
the sense of Definition A.1 with X = ∅. Thus (2.57) follows from Proposition A.2,
and the proof of Lemma 2.7 is now complete. �

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof can be carried out by the same ideas as in Propo-
sitions 2.1 and 2.3 with the help of Lemmas 2.4 and 2.7. Here we just outline it for
completeness.

Step 1. We establish the upper bound of lim supD→0 λ(D). First, using a similar
argument as in Lemma 2.7, one can establish

lim sup
D→0

λ(D) ≤ min
i∈B

{
min

x∈[κi,κi+1]
V̂ (x)

}

by constructing a suitable sub-solution like (2.56). Similarly, the estimate

lim sup
D→0

λ(D) ≤ min
{
V̂ (0) + [∂xxm̂]+(0), V̂ (1) + [∂xxm̂]+(1)

}

can also be proved; the details are omitted here. It remains to show

(2.60) lim sup
D→0

λ(D) ≤ V̂ (κi) + [∂xxm̂]+(κi) for all 1 ≤ i ≤ N.
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Fix any ǫ > 0. Choose some small δ > 0 such that |V (x, t)− V (κi, t)| < ǫ/2 on
[κi − δ, κi + δ]× [0, T ] for all 1 ≤ i ≤ N . To prove (2.60), we define

ϕ
i
(x, t) :=

{
fκi

(t) · z(x) if ∂xxm̂(κi) ≤ 0,

fκi
(t) · ψ

D
(x, t) if ∂xxm̂(κi) > 0,

where fκi
and z are defined respectively by (2.1) and (2.5), and ψ

D
denotes the

principal eigenfunction of (2.21) with κ = κi. The same arguments as in Step 1
of Propositions 2.1 and 2.3 allow us to verify that such a function ϕ

i
defines a

sub-solution in the sense of Definition A.1 such that for sufficiently small D,⎧
⎪⎪⎨
⎪⎪⎩

LDϕ
i
≤

[
V̂ (κi) + [∂xxm̂]+(κi) + 2ǫ

]
ϕ
i

in ((0, 1) \ {κi ± δ})× [0, T ],

∂xϕi
(0, t) = ∂xϕi

(1, t) = 0 on [0, T ],

ϕ
i
(x, 0) = ϕ

i
(x, T ) on (0, 1).

Then (2.60) is a direct consequence of Proposition A.2.

Step 2. We establish the lower bound of lim infD→0 λ(D). It suffices to find a
super-solution ϕ ∈ C([0, 1] × [0, T ]) satisfying (2.24) with λmin being replaced by
the right hand side of (1.5) and X will be determined later. Recall the sets A and
B defined in the statement of Theorem 1.3. The construction of ϕ can be given as
follows; see Fig. 3 for an illustrated example.

Figure 3. The black solid curve corresponds to an example of m
for fixed t. The super-solution ϕ is constructed respectively on
different regions (i)–(v).

(i) On ([κi − δ, κi+1 + δ] ∩ [0, 1]) × [0, T ] for 0 ≤ i ≤ N and i ∈ B with the
small constant δ > 0 to be determined later, we define ϕ as in the form of (2.58)
in Lemma 2.7 with

κ = κi − δ, κ = κi+1 + δ, and c1 = c2 = 1
2 .

(ii) On ([0, κ1

3 ] ∪ [ 2+κN

3 , 1])× [0, T ], if 0 �∈ B or N �∈ B, then such a super-solution
ϕ can be constructed by adapting the same arguments as in the proof of Lemma
2.4; Otherwise, it has been constructed in (i).
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(iii) On [κi−1+2κi

3 , 2κi+κi+1

3 ] × [0, T ] for i ∈ A and i − 1 ∈ A, one constructs ϕ
by Step 2 of Proposition 2.1 (with κ = κi) for the case ∂xxm̂(κi) ≤ 0, and by Part
II of Proposition 2.3 (with κ = κi) for the case ∂xxm̂(κi) > 0.

(iv) On the remaining region Ω× [0, T ], where

Ω =

⎧
⎪⎨
⎪⎩

( 2κi+κi+1

3 , κi+2κi+1

3 ) for i ∈ A and i− 1 ∈ A,

(κi−1 + δ, 2κi+κi+1

3 ) for i ∈ A and i− 1 ∈ B,

(κi−1+2κi

3 , κi − δ) for i ∈ B,

we construct ϕ by monotonically connecting the endpoints on ∂Ω, such that

(a) ϕ is continuous at ∂Ω× [0, T ];
(b) |∂x(logϕ)| > M3 for some large M3;
(c) ∂x(logϕ)(x

+, ·) < ∂x(logϕ)(x
−, ·) for x ∈ ∂Ω.

Define X = ∂Ω. By Lemmas 2.4 and 2.7, explicit calculations as in Propositions
2.1 and 2.3 imply that we may choose δ smaller if necessary such that the super-
solution ϕ defined above satisfies (2.24) with λmin being replaced by the right hand
side of (1.5). Then the lower bound of lim infD→0 λ(D) can be established by
Proposition A.2. The proof is now complete. �

3. Proof of Theorem 1.2

In this section, we study the case when the ODE (1.4) possesses finitely many
periodic solutions and establish Theorem 1.2 with the help of Theorem 1.3.

Proof of Theorem 1.2. We first prove part (i) of Theorem 1.2. Let {κi}0≤i≤N+1 be
any strictly increasing sequence such that

0 = κ0 < κ1 < . . . < κN < κN+1 = 1.

Fix small δ such that 0 < δ < min0≤i≤N (κi+1 − κi)/3 and

(3.1) ∂xxm (x, t) �= 0 for all x ∈ [Pi(t)− δ, Pi(t) + δ], t ∈ [0, T ], 1 ≤ i ≤ N.

To “straighten the periodic solution Pi(t)”, we first define a C2,1-diffeomorphism
Ψ : [0, 1]× [0, T ] → [0, 1] such that ∂yΨ(y, t) �= 0 and

(3.2) Ψ(y, t) =

{
y − κi + Pi(t) for y ∈ [κi − δ, κi + δ], t ∈ [0, T ], 1 ≤ i ≤ N,

y for y ∈ [0, δ] ∪ [1− δ, 1], t ∈ [0, T ].

Define Ṽ (y, t) = V (Ψ(y, t), t). By direct calculations, λ(D) is also the principal
eigenvalue of
(3.3)⎧
⎪⎪⎨
⎪⎪⎩

∂tϕ̃−D
∂yyϕ̃

(∂yΨ)2 −
[
∂ym̃−D

∂yyΨ
(∂yΨ)3

]
∂yϕ̃+ Ṽ (y, t)ϕ̃ = λ(D)ϕ̃ in (0, 1)× [0, T ],

∂yϕ̃(0, t) = ∂yϕ̃(1, t) = 0 on [0, T ],

ϕ̃(y, 0) = ϕ̃(y, T ) on (0, 1),

for which the principal eigenfunction becomes ϕ̃(y, t) = ϕ (Ψ(y, t), t). Here ϕ de-
notes the principal eigenfunction of problem (1.1), and m̃ is given by

(3.4) ∂ym̃(y, t) =
∂xm (Ψ(y, t), t)

∂yΨ
+

∂tΨ

∂yΨ
.

Next, we focus on problem (3.3), and divide the proof into several steps.
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Step 1. We show that the ODE problem

(3.5)

{
˙̃
P (t) = −∂ym̃(P̃ (t), t),

P̃ (t) = P̃ (t+ T )

has only N periodic solutions P̃i(t) ≡ κi, and ∂yym̃ (y, t) �= 0 for all (y, t) ∈ [κi −
δ, κi + δ]× [0, T ] and i = 1, . . . , N .

First, we claim that P̃i(t) ≡ κi is a solution of (3.5). This is due to the following
calculations:

∂ym̃(κi, t) =
∂xm(Ψ(κi, t), t)

∂yΨ(κi, t)
+

∂tΨ(κi, t)

∂yΨ(κi, t)

= ∂xm(Pi(t), t) + Ṗi(t) = 0,

where the first equality follows from (3.4), and the second equality is due to (3.2).

Suppose on the contrary that there exists a periodic solution P̃ (t) such that

P̃ (t) �≡ κi for any 1 ≤ i ≤ N . Then by (3.2) and (3.4), one can verify that

Ψ(P̃ (t), t) �≡ Pi(t) is a periodic solution to (1.4) by the following calculations:

Ψ̇(P̃ (t), t) =
˙̃
P (t)∂yΨ+ ∂tΨ = −∂ym̃(P̃ (t), t)∂yΨ+ ∂tΨ

= −∂xm(Ψ(P̃ (t), t), t)− ∂tΨ+ ∂tΨ

= −∂xm(Ψ(P̃ (t), t), t),

which is a contradiction. Therefore, (3.5) has only N periodic solutions P̃i(t) ≡ κi

(i = 1, . . . , N). Furthermore, from (3.1) and (3.2), it is easily seen that ∂yym̃ (y, t) �=
0 on [κi − δ, κi + δ]× [0, T ], which completes Step 1.

In the sequel, we aim to find a proper C2,1-transformation Φ : [0, 1]×R → [0, 1]
such that ∂zΦ > 0, and if for some m ∈ C2,1([0, 1]× [0, T ]) satisfying

(3.6) ∂zm(z, r) =
∂ym̃ (Φ(z, r), r)

∂zΦ
+

∂rΦ

∂zΦ
,

then ∂zm > 0 or ∂zm < 0 holds on (κi, κi+1)× [0, T ] for each 0 ≤ i ≤ N . Then we
may apply Theorem 1.3 to complete the proof.

Fix any 0 ≤ i ≤ N . We assume without loss of generality that ∂yym̃ (κi, t) < 0,
so that ∂ym̃ (κi + δ/2, t) < 0. For any s ∈ R, denote by qs(t) the unique solution of

(3.7)

{
q̇(t) = −∂ym̃(q(t), t+ s),

q(0) = κi + δ/2,

where m̃ is given by (3.4). Obviously, qs(t) = qs+T (t) for all s, t ∈ R. We define

(3.8) Q(t) := {(qr−t(t), r) : r ∈ R} ,
which is a continuous curve and is referred as the isochron of (3.7).

Step 2. Fix any 0 < t1 < t2. We show that Q(t1) ≺ Q(t2) (see Fig. 4) in the sense
that

(3.9) qr−t1(t1) < qr−t2(t2) for any r ∈ R.

We argue by contradiction by assuming Q(t1) ∩Q(t2) �= ∅ or Q(t2) ≺ Q(t1).
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Figure 4. The isochrons Q(t1) and Q(t2) of (3.7)

(i) If Q(t1) ∩ Q(t2) �= ∅, then by definition (3.8), there exists some r0 ∈ R such
that

(3.10) qr0−t1(t1) = qr0−t2(t2).

Then we define

q(t) := qr0−t1(t− r0 + t1) and q(t) := qr0−t2(t− r0 + t2),

both of which satisfy q̇(t) = −∂ym̃ (q(t), t), and

(3.11) q(r0 − t1) = q(r0 − t2) = κi + δ/2 and q(r0) = q(r0),

where q(r0) = q(r0) follows from (3.10). In view of t1 < t2, we have r0−t1 > r0−t2.
Thanks to the uniqueness of solutions to q̇(t) = −∂ym̃ (q(t), t), we conclude from
(3.11) that q(t) = q(t) for any t ∈ [r0 − t1, r0], and particularly, q(r0 − t1) =
q(r0 − t1) = κi + δ/2 = q(r0 − t2), i.e. qr0−t2(t2 − t1) = κi + δ/2 = qr0−t2(0), which
contradicts ∂ym̃ (κi + δ/2, t) < 0.

(ii) If Q(t2) ≺ Q(t1), then given any (qr1−t1(t1), r1) ∈ Q(t1), there is some
t0 ∈ (0, t1) such that (qr1−t1(t0), r2) ∈ Q(t2), where r2 = r1 − (t1 − t0). By
definition (3.8), we also have (qr2−t2(t2), r2) ∈ Q(t2), so that qr1−t1(t0) = qr2−t2(t2).
This, together with r2 − t0 = r1 − t1, leads to qr2−t0(t0) = qr2−t2(t2), whence
(qr2−t2(t2), r2) ∈ Q(t0) ∩Q(t2), i.e. Q(t0) ∩Q(t2) �= ∅. Since t0 < t2, we can apply
(i) to reach a contradiction.

Step 3. We show
lim
t→∞

Q(t) = {(κi+1, r) : r ∈ R},
in the sense that for any r ∈ R, qr−t(t) → κi+1 as t → ∞.

By M we denote the set of all continuous curves in [κi + δ/2, κi+1] × [0, T ]. By
Step 2, there is some curve Q∞ := {(q∞(s), s) : s ∈ R} ∈ M such that Q(t) → Q∞
as t → ∞. It suffices to show q∞ ≡ κi+1. To this end, we claim that q∞ is a
periodic solution of (3.5), and then q∞ ≡ κi+1 is a direct consequence of Step 1.
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Indeed, the periodicity of q∞ is due to the fact that qs(t) = qs+T (t) for all
s, t ∈ R. We show that q∞ is a solution to (3.5). Suppose not, then for given
s0 ∈ R, there exists some t0 > s0 such that the unique solution ps0(t) of

{
ṗ(t) = −∂ym̃ (p(t), t+ s0) ,

p(0) = q∞(s0),

satisfies ps0(t0− s0) �= q∞(t0). Let t∗ = t0 − s0. For any Σq := {(q(s), s) : s ∈ R} ∈
M, we denote by ps the unique solution of

{
ṗ(t) = −∂ym̃ (p(t), t+ s) ,

p(0) = q(s),

and define a continuous operator F : M → M by

F (Σq) := {(ps(t∗), t∗ + s) : s ∈ R} = {(pr−t∗(t∗), r) : r ∈ R} .
It is straightforward to verify that F (Q(t)) = Q(t+ t∗), and thus

F (Q∞) = Q∞,

from which we deduce in particular that pt0−t∗(t∗) = q∞(t0), that is ps0(t0 − s0) =
q∞(t0), a contradiction. Therefore, q∞ is a periodic solution of (3.5). Step 3 is
thereby completed.

Step 4. We define the transformation Φ satisfying ∂zΦ > 0, and for m given by
(3.6), we show that ∂zm > 0 or ∂zm < 0 holds in (κi, κi+1) × [0, T ] for each
0 ≤ i ≤ N .

For any 0 ≤ i ≤ N , we define Φi : [κi + δ/2, κi+1 − δ/2] × R → [κi, κi+1] such
that for any (z, r) ∈ [κi + δ, κi+1 − δ]× R,

(3.12) Φi(z, r) = qr−τi(z)(τi(z)),

where qr−τi(z) is the solution of (3.7) with s = r− τi(z) and τi(z) is determined by

(3.13) q−τi(z)(τi(z)) = z.

Obviously, {(Φi(z, r), r) : r ∈ R} = Q(τi(z)). It is easily seen that z → τi(z) is a
bijection (where the surjection follows from Step 3), is of class C2 and is increasing
(by Step 2), so that Φi ∈ C2,1([κi + δ, κi+1 − δ]× R) and ∂zΦi ≥ 0 by (3.9).

We claim that for (z, r) ∈ (κi + δ/2, κi+1 − δ/2)× R,

(3.14) τ ′i(z) > 0 and ∂ym̃ (Φi(z, r), r) + ∂rΦi = −∂zΦi

τ ′i(z)
.

For the sake of clarification, write qs(t) = q(t; s), where qs is defined by (3.7).
Differentiating both sides of (3.13) by z, we derive that

[
∂tq−τi(z)(τi(z))− ∂sq−τi(z)(τi(z))

]
τ ′i(z) = 1,

which implies τ ′i(z) �= 0, and thus τ ′i(z) > 0 since τi(z) is increasing. Similarly, by
(3.12), we deduce that ∂rΦi(z, r) = ∂sqr−τi(z)(τi(z)), and thus

∂zΦi(z, r) =
[
∂tqr−τi(z)(τi(z))− ∂sqr−τi(z)(τi(z))

]
τ ′i(z)

=
[
∂tqr−τi(z)(τi(z))− ∂rΦi(z, r)

]
τ ′i(z).

(3.15)
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By the definition of qr−τi(z)(τi(z)) in (3.7) with s = r− τi(z) and t = τi(z), we note
that

∂tqr−τi(z)(τi(z)) = −∂ym̃(Φi(z, r), r),

which, together with (3.15), implies (3.14).
We then claim that

(3.16) ∂zΦi(z, r) > 0 for any (z, r) ∈ (κi + δ/2, κi+1 − δ/2)× R.

To this end, denote by p̃(t; s) the unique solution of the problem
{
˙̃p(t) = −∂ym̃ (p̃(t), t) ,

p̃(s) = κi + δ/2,

whence by (3.7), we observe that qs(t) = p̃(t+ s; s). For any τ ∈ R, we have

p̃(τ ) = −
∫ τ

s

∂ym̃ (p̃(t), t) dt+ κi + δ/2,

so that

∂sp̃(τ ) = ∂ym̃ (κi + δ/2, s)−
∫ τ

s

∂yym̃ (p̃(t), t) ∂sp̃(t)dt,

and thus ∂sp̃(s) = ∂ym̃ (κi + δ/2, s) < 0. We further calculate that

∂τ (∂sp̃(τ )) = −∂yym̃ (p̃(τ ), τ )∂sp̃(τ ),

which implies immediately that for any r ∈ R,

(3.17) ∂sp̃(r) = ∂sp̃(s) exp

[
−
∫ r

s

∂yym̃ (p̃(τ ), τ ) dτ

]
< 0.

By (3.12) and the fact that qs(t) = p̃(t+ s; s), we can see Φi(z, r) = p̃(r; r− τi(z)),
so that

∂zΦi(z, r) = −∂sp̃(r) · τ ′i(z) > 0

by noting that τ ′i(z) > 0 in (3.14) and ∂sp̃(r) < 0 in (3.17).
Then we define a C2,1-transformation Φ : [0, 1] × R → [0, 1] such that ∂zΦ > 0

and for any 0 ≤ i ≤ N ,

(3.18) Φ(z, r) :=

{
Φi(z, r) on [κi + δ1, κi+1 − δ1]× R,

z on ([κi, κi + δ/2] ∪ [κi+1 − δ/2, κi+1])× R,

where δ1 ∈ (δ/2, δ] is chosen to be close to δ/2 such that

(3.19) ∂ym̃+ ∂rΦ < 0 on ([κi, κi + δ1] ∪ [κi+1 − δ1, κi+1])× R.

This is possible since by (3.18) and Step 1, it follows that

∂ym̃+ ∂rΦ = ∂ym̃ < 0 on ([κi, κi + δ/2] ∪ [κi+1 − δ/2, κi+1])× R.

Let m satisfy (3.6) with Φ defined by (3.18). For any z ∈ [κi, κi + δ1] ∪ [κi+1 −
δ1, κi+1], it follows from (3.6), (3.18), and (3.19) that ∂zm(z, r) < 0; For z ∈
[κi + δ1, κi+1 − δ1], by (3.18) we have Φ(z, r) = Φi(z, r), whence comparing (3.6)
with (3.14) gives ∂zm(z, r) = − 1

τ ′

i(z)
< 0. This completes Step 4.
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Step 5. We apply Theorem 1.3 to complete the proof. Let the C2,1-transformation
Φ be defined by (3.18) in Step 4. Denote

V (z, r) := Ṽ (Φ(z, r), r) and ϕ(z, r) := ϕ̃ (Φ(z, r), r) ,

where Ṽ and ϕ̃ are defined in (3.3). Using the definition of m in (3.6), direct
calculation enables us to transform (3.3) into the following equation:
(3.20)⎧
⎪⎪⎨
⎪⎪⎩

∂rϕ− D∂zzϕ
(∂yΨ)2(∂zΦ)2 −

[
∂zm+Dη3

]
∂zϕ+ V ϕ = λ(D)ϕ in (0, 1)× [0, T ],

∂zϕ(0, r) = ∂zϕ(1, r) = 0 on [0, T ],

ϕ(z, 0) = ϕ(z, T ) on (0, 1),

where η3 is given by

η3(z, r) :=
∂yyΨ

(∂yΨ)3∂zΦ
+

∂zzΦ

(∂zΦ)3(∂yΨ)2
.

For each 0 ≤ i ≤ N , by Step 4, ∂zm > 0 or ∂zm < 0 holds for all z ∈ (κi, κi+1);
by the definitions of Ψ and Φ in (3.2) and (3.18), we find that for any z ∈ [κi, κi +
δ/2] ∪ [κi+1 − δ/2, κi+1], ∂yyΨ = ∂zzΦ = 0, so that η3(z, r) = 0. Therefore, we
conclude that for any small ϑ > 0, there exists some ǫ0 = ǫ0(ϑ) > 0, independent
of small D, such that

(3.21) ∂zm+Dη3 ≥ ǫ0 or ∂zm+Dη3 ≤ −ǫ0 on [κi + ϑ, κi+1 − ϑ]× [0, T ].

Moreover, from (3.6) and (3.18), we observe that for any 1 ≤ i ≤ N ,

∂zm(κi, r) = ∂ym̃ (Φ(κi, r), r) = ∂ym̃ (κi, r) = 0,

which implies that ∂zm(κi, r) +Dη3(κi, r) = 0 since η3(κi, r) = 0. Together with

(3.21), noting that ∂yΨ = ∂zΦ = 1 on [κi, κi + ϑ̃] ∪ [κi+1 − ϑ̃, κi+1] with some

0 < ϑ̃ ≪ 1 for any 0 ≤ i ≤ N , we can follow directly the same proof of Theorem
1.3 with B = ∅ to (3.20) and deduce that

(3.22) lim
D→0

λ(D) = min
0≤i≤N+1

{
V̂ (κi) + [∂xxm̂]+(κi)

}
.

Noting that V̂ (κi) =
1
T

∫ T

0
V (Pi(s), s) ds and

∂zzm(κi, r) = ∂yym̃ (κi, r) = ∂xxm (Pi(r), r) ,

part (i) of Theorem 1.2 follows from (3.22).
Finally, part (ii) of Theorem 1.2 can be established by Steps 2–5 with N = 0.

The proof is now complete. �

4. Proof of Theorem 1.4

This section is devoted to the case m(x, t) = αb(t)x and the proof of Theorem

1.4. We start with the existence and uniqueness of P̃α defined in Theorem 1.4.

Lemma 4.1. Let F be defined by (1.7) and P ,P be given in Theorem 1.4. If

α ≥ 1
P−P

, then

(4.1)

{
Ṗ (t) = −αF (P (t), t) ,

P (t) = P (t+ T )

has a unique T -periodic solution in W 1,∞(R).
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Proof. Recalling the definition of F in (1.7), we observe that F (0, t) = min{b(t), 0}
≤ 0 and F (1, t) = max{b(t), 0} ≥ 0, so that P∗ ≡ 0 and P ∗ ≡ 1 are a pair of
sub- and super-solutions to (4.1). Hence, as F is bounded, there exists at least one
T -periodic solution in W 1,∞(R).

For the uniqueness, given any two T -periodic solutions P̃ and P̃α of (4.1), we

show P̃ = P̃α. Suppose not, without loss of generality we may assume P̃ (0) <

P̃α(0). We consider two cases:

(i) If P̃ (t1) = P̃α(t1) for some t1 ∈ (0, T ), in view of P̃ (T ) = P̃ (0) < P̃α(0) =

P̃α(T ), by continuity there is some t̃1 ∈ [t1, T ) such that P̃ (t̃1) = P̃α(t̃1) and

P̃ (t) < P̃α(t) for any t ∈ (t̃1, T ]. Then by the definition of F , it can be verified that
for any t ∈ [t̃1, T ],

(4.2) [P̃α(t)− P̃ (t)]− [P̃α(t̃1)− P̃ (t̃1)] = α

∫ t

t̃1

[
F (P̃ (s), s)− F (P̃α(s), s)

]
ds ≤ 0,

which implies P̃α(T )− P̃ (T ) ≤ P̃α(t̃1)− P̃ (t̃1) = 0, a contradiction.

(ii) If P̃ (t) < P̃α(t) for all t ∈ [0, T ], then (4.2) holds for all t ∈ [0, T ] and t̃1 = 0.

In view of P̃α(T )− P̃ (T ) = P̃α(0)− P̃ (0), we deduce that

P̃α(t)− P̃ (t) ≡ P̃α(0)− P̃ (0) for all t ∈ [0, T ].

In such a case, again by the definition of F , we infer that

P̃+ := P̃ + (P̃α(0)− P̃ (0))/2 ∈ (0, 1)

defines a T -periodic solution of (4.1), and thus ˙̃P+ = −αb(t), where P̃+ ∈ (0, 1) is

due to 0 ≤ P̃ < P̃+ < P̃α ≤ 1. By recalling P (t) = −
∫ t

0
b(s)ds, this implies that

P̃+ = αP (t) + c ∈ (0, 1) for some constant c ∈ R, so that

1 > max
[0,T ]

P̃+ −min
[0,T ]

P̃+ = α(P − P ),

which contradicts α ≥ 1
P−P

. Lemma 4.1 thus follows. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. The proof is divided into three steps.

Step 1. Assume b̂ �= 0 and show part (i) of Theorem 1.4. Let Ψ1 : [0, 1]× [0, T ] → R

denote a T -periodic diffeomorphism given by

Ψ1(y, t) = α

[
b̂t−

∫ t

0

b(s) ds

]
+ y.

Under the transformation x = Ψ1(y, t), as in (3.3), direct calculation from (1.6)
yields that λ(D) defines the principal eigenvalue of the problem

⎧
⎪⎨
⎪⎩

∂tϕ−D∂yyϕ−αb̂ · ∂yϕ+V1ϕ=λ(D)ϕ, y∈(−Ψ1(0, t), 1−Ψ1(0, t)), t∈ [0, T ],

∂yϕ(−Ψ1(0, t), t)=∂yϕ(1−Ψ1(0, t), t) = 0, t∈ [0, T ],

ϕ(y, 0)=ϕ(y, T ), y∈ [−Ψ1(0, 0), 1−Ψ1(0, 0)],
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where V1(y, t) = V (Ψ1(y, t), t). Then we can conclude that part (i) of Theorem 1.4

is a direct consequence of Theorem 1.2. Indeed, if b̂ > 0 for example, then ODE

(1.4) with ∂xm = αb̂ > 0 has no periodic solutions, so that by part (ii) of Theorem
1.2 we deduce that

lim
D→0

λ(D) =
1

T

∫ T

0

V1(1−Ψ1(0, s), s)ds = V̂ (1).

The same argument can be adapted to the case b̂ < 0, which completes Step 1.

Step 2. Assume b̂ = 0 and 0 < α ≤ 1
P−P

. We prove the first part of (ii) in Theorem

1.4. Recall P (t) = −
∫ t

0
b(s)ds defined in Theorem 1.4. Taking the transformation

x = y + αP (t) in (1.6), we derive that λ(D) is also the principal eigenvalue of the
problem
⎧
⎪⎨
⎪⎩

∂tϕ−D∂yyϕ+ V2ϕ = λ(D)ϕ, y ∈ (−αP (t), 1− αP (t)), t ∈ [0, T ],

∂yϕ(−αP (t), t) = ∂yϕ(1− αP (t), t) = 0, t ∈ [0, T ],

ϕ(y, 0) = ϕ(y, T ), y ∈ (−αP (0), 1− αP (0)),

where V2(y, t) = V (αP (t) + y, t). Under the transformation x = y + αP (t), all
periodic solutions of (1.4) are constants in the interval [−αP, 1−αP ]. This includes
the special case α = 1

P−P
, for which the interval reduces to a single point. It is

desired to show that

lim
D→0

λ(D) = min
y∈[−αP, 1−αP ]

V̂2(y).

First, the upper bound lim supD→0 λ(D) ≤ V̂2(y), for any y ∈ [−αP, 1−αP ], can
be established by the same arguments as in Step 1 of Lemma 2.7 by constructing
the sub-solution locally. We thus omit the details here.

It remains to show the lower bound of lim infD→0 λ(D). For any ǫ > 0, we define
T -periodic function V2ǫ ∈ C2,1(R× [0, T ]) satisfying ‖V2ǫ − V2‖L∞ ≤ ǫ, and choose
small δ > 0 such that

(4.3) λ̃min := min
y∈[−αP−2δ,1−αP+2δ]

V̂2ǫ(y) ≥ min
y∈[−αP,1−αP ]

V̂2(y)− 2ǫ.

We define φ ∈ C2,1([−αP − 2δ, 1− αP + 2δ]× [0, T ]) by

(4.4) φ(y, t) := exp

[
−
∫ t

0

V2ǫ(y, s)ds+ tV̂2ǫ(y)

]
βǫ(y),

where βǫ ∈ C2([−αP − 2δ, 1− αP + 2δ]) is a positive function chosen such that

∂yφ < 0 on [−αP − 2δ,−αP ]× [0, T ]

and ∂yφ > 0 on [1− αP, 1− αP + 2δ]× [0, T ].
(4.5)

Next, we aim to find a super-solution ϕ ∈ C([0, 1]× [0, T ]) which satisfies
(4.6)⎧
⎪⎪⎨
⎪⎪⎩

∂tϕ−D∂yyϕ+ V2ϕ ≥
[
λ̃min − 3ǫ

]
ϕ, y ∈ (−αP (t), 1− αP (t))\X, t ∈ [0, T ],

∂yϕ(−αP (t), t) ≤ 0 ≤ ∂yϕ(1− αP (t), t), t ∈ [0, T ],

ϕ(y, 0) = ϕ(y, T ), y ∈ (−αP (0), 1− αP (0)),
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where X = {−αP − 2δ, 1 − αP + 2δ}. Then it follows from Proposition A.2 and
(4.3) that

lim inf
D→0

λ(D) ≥ min
y∈[−αP, 1−αP ]

V̂2(y);

see also Remark A.3.
We only construct ϕ for y ∈ (−αP (t), 1− αP + δ) and t ∈ [0, T ]. The construc-

tions of the remaining regions are similar. To this end, by the definition of P , there
exist t3 > t2 such that

[t2, t3] ⊂ {t ∈ [0, T ] : −αP (t) > −αP − δ}.
We then choose η4 ∈ C2,1((−∞, 1 − αP + δ] × [0, T ]) to be a positive T -periodic
function, and satisfy that ∂yη4 ≤ 0 and

(4.7)

⎧
⎪⎨
⎪⎩

η4 ≡ 1 on [−αP − δ, 1− αP + δ]× [0, T ],

∂t(log η4) > 0 on [−αP − 2δ,−αP − δ)× ([0, T ] \ [t2, t3]) ,
∂t(log η4) ≥ M4 on (−∞,−αP − 2δ]× ([0, T ] \ [t2, t3]) .

Here M4 is chosen such that

M4 > ‖V2‖L∞ + λ̃min + ‖∂t log φ‖L∞ ,

where φ is defined by (4.4). Moreover, we extend φ to (−∞, 1− αP + 2δ] × [0, T ]
by setting φ(·, t) ≡ φ(−αP − 2δ, t) on (−∞,−αP − 2δ)× [0, T ], so that by (4.5) we
have

(4.8) ∂yφ((−αP − 2δ)+, ·) < 0 = ∂yφ((−αP − 2δ)−, ·).
Let φ and η4 be given by (4.4) and (4.7), then we define

(4.9) ϕ(y, t) := η4(y, t) · φ(y, t).
By (4.8), as η4 is smooth, one can infer that

∂y logϕ
(
(−αP − 2δ)+, ·

)
< ∂y logϕ

(
(−αP − 2δ)−, ·

)
as − αP − 2δ ∈ X.

It remains to check that ϕ defined above satisfies (4.6).
(i) For y ∈ (−αP (t), 1 − αP (t)) ∩ [−αP − δ, 1 − αP + δ] and t ∈ [0, T ], since

η4 ≡ 1 in (4.7), we have ϕ(y, t) = φ(y, t). By the definition of φ in (4.4), direct
calculations yield that

∂tϕ−D∂yyϕ+ V2ϕ =
[
V̂2ǫ(y)− V2ǫ(y, t) + V2(y, t)

]
φ−D∂yyφ.

By the definition of V2ǫ, we can argue as in Lemma 2.7 to choose D small such
that the first inequality in (4.6) holds. Then the part of boundary conditions on
{−αP (t), 1−αP (t)}∩ [−αP − δ, 1−αP + δ] and t ∈ [0, T ] can be verified by (4.5).

(ii) For y ∈ (−αP (t), 1 − αP (t)) ∩ [−αP − 2δ,−αP − δ) and t ∈ [0, T ], since
t ∈ [0, T ] \ [t2, t3] in this case, we use (4.7) and (4.9) to deduce that

∂tϕ−D∂yyϕ+ V2ϕ =
[
V̂2ǫ(y)− V2ǫ(y, t) + V2(y, t)

]
ϕ+ [∂t(log η4)−D∂yyϕ]ϕ

≥
[
λ̃min − 2ǫ+ ∂t(log η4) +O(D)

]
ϕ.

Since ∂t(log η4) > 0 in this case, again we choose D small such that (4.6) holds.
And the boundary conditions in this case can be verified by ∂yφ ≤ 0 and ∂yη4 ≤ 0.
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(iii) For y ∈ (−αP (t), 1 − αP (t)) ∩ (−∞,−αP − 2δ) and t ∈ [0, T ], since φ is
independent of y, by (4.7) and (4.9) direct calculation yields that

∂tϕ−D∂yyϕ+ V2ϕ ≥
[
(log φ)′ +M4 −D∂yyη4/η4 + V2

]
ϕ.

Thus the first inequality in (4.6) is verified by the definition ofM4, and the boundary
condition follows from ∂yη4 ≤ 0. Step 2 is now completed.

Step 3. Assume b̂ = 0 and α > 1
P−P

. We establish the second part of (ii) in Theo-

rem 1.4. Let P̃α denote the unique solution of (4.1). We apply the transformation

x = y + P̃α(t) to rewrite problem (1.6) as
⎧
⎪⎨
⎪⎩

∂tϕ−D∂yyϕ− αb̃(t)∂yϕ+ V3ϕ = λ(D)ϕ, (y, t) ∈ Ω̃,

∂yϕ(−P̃α(t), t) = ∂yϕ(1− P̃α(t), t) = 0, t ∈ [0, T ],

ϕ(y, 0) = ϕ(y, T ), y ∈ (−P̃α(0), 1− P̃α(0)),

where b̃(t) := b(t)− F (P̃α(t), t), V3(y, t) = V (P̃α(t) + y, t), and

Ω̃ =
{
(y, t) : y ∈ (−P̃α(t), 1− P̃α(t)), t ∈ [0, T ]

}
.

See Fig. 5 for an example of this transformation.

Figure 5. The diagram of Ω̃ under transformation x = y+ P̃α(t).

The red colored curve in the left side picture corresponds to P̃α(t),
whereas the red colored line in the right side picture is the image
of P̃α(t) after the transformation.

It remains to prove

lim
D→0

λ(D) = V̂3(0).

The upper bound lim supD→0 λ(D) ≤ V̂3(0) can be established by using the argu-

ments in Step 1 of Proposition 2.1. We next prove lim infD→0 λ(D) ≥ V̂3(0).
We claim that if α > 1

P−P
, then

mes
{
t ∈ [0, T ] : P̃α(t) ∈ {0, 1} and b �= 0

}
> 0,

i.e. there exist 0 ≤ t4 < t5 ≤ T such that b �= 0, and P̃α(t) ≡ 0 or P̃α(t) ≡ 1

on [t4, t5]. Suppose not, then P̃α is also a periodic solution of Ṗ (t) = −αb(t), so

that P̃α(t) = P (t) + c for c ∈ R, where P (t) = −
∫ t

0
b(s)ds as defined in part (ii) of
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Theorem 1.4. Since P̃α ∈ [0, 1], we have

1 ≥ max
[0,T ]

P̃α −min
[0,T ]

P̃α = α(P − P ),

which contradicts α > 1
P−P

.

In what follows, we assume P̃α(t) ≡ 1 on [t4, t5], and the proof is similar for the
other case. To proceed further, we introduce positive functions z5 ∈ C2(R) and
η5 ∈ C1([0, T ]) as follows: For any ǫ > 0, we choose some small δ > 0 such that

(4.10) |V3(y, t)− V3(0, t)| < ǫ/2 on [−2δ, 2δ]× [0, T ].

We first choose η5 to be T -periodic and

(4.11) (log η5)
′ > 2‖V ‖L∞ + ‖(log f1)′‖L∞ on [0, t4 + δ] ∪ [t5 − δ, T ].

Then we choose z5 such that

(4.12)

{
z′5(y) < 0 in (−∞, 0), z′5(y) > 0 in (0,∞),

(log z5)
′ ≤ −M5 in (−∞,−δ),

where M5 is some large constant to be determined later.
We define

(4.13) ϕ(y, t) := z5(y) ·

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1(t) for |y| ≤ δ,

ζ5(y, t) for − 2δ < y < −δ,

ζ5(−y, t) for δ < y < 2δ,

η5(t) for |y| ≥ 2δ,

where f1 is defined by (2.1) with x = 1. Due to the choice of η5 in (4.11), ζ5 can
be chosen such that ϕ ∈ C2,1(R× [0, T ]) and

(4.14) ∂t(log ζ5) ≥ (log f1)
′ on [0, t4 + δ] ∪ [t5 − δ, T ].

We shall verify that ϕ defined by (4.13) satisfies

(4.15) LDϕ := ∂tϕ−D∂yyϕ− αb̃(t)∂yϕ+ V3ϕ ≥ (V̂3(0)− ǫ)ϕ for (y, t) ∈ Ω̃,

provided that D is small enough. The verification is divided into the following
cases:

(i) For (y, t) ∈ ([−δ, δ]× [0, T ]) ∩ Ω̃, we note that (see Fig. 5)

b̃(t) ≥ 0 in ([−δ, 0]× [0, T ]) ∩ Ω̃ and b̃(t) ≤ 0 in ([0, δ]× [0, T ]) ∩ Ω̃.

One can check (4.15) by the same arguments as in Step 2 of Proposition 2.1.

(ii) For (y, t) ∈ ((−∞,−δ]× [t4+ δ, t5− δ])∩ Ω̃ = (−1,−δ)× [t4+ δ, t5− δ] (since

P̃α(t) ≡ 1 on [t4, t5]), there exists some ǫ0 > 0 such that b̃(t) > ǫ0. By the choice
of z5 in (4.12) and construction (4.13), direct calculation gives

LDϕ ≥
[
− |(log η5)′ + ∂t(log ζ5)

′| −D∂yyϕ+ αǫ0M5 − αb̃ |ζ5|+ V3

]
ϕ.

By choosing M5 large and D small, we can verify that (4.15) holds.

(iii) For (y, t) ∈ ([−2δ,−δ]× ([0, t4 + δ] ∪ [t5 − δ, T ]))∩Ω̃, by construction, ϕ(y, t)

= z5(y)ζ5(y, t). Observe that b̃ ≥ 0 in this case. Using (4.12), we choose M5 large
such that

−b̃(t)∂yϕ ≥ b̃(t) [M5 − ∂y(log ζ5)]ϕ ≥ 0.
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Hence, by (4.10) and (4.14), for small D we arrive at

LDϕ ≥
[
∂t(log ζ5) + V3 − ǫ/2

]
ϕ

≥
[
(log f1)

′ + V3 − ǫ/2
]
ϕ

=
[
V̂3(0)− V3(0, t) + V3(y, t)− ǫ/2

]
ϕ

≥
[
V̂3(0)− ǫ

]
ϕ.

(iv) For (y, t) ∈ ((−∞,−2δ)× ([0, t4 + δ] ∪ [t5 − δ, T ])) ∩ Ω̃, by (4.13) we have

ϕ(y, t) = z5(y)η5(t). Also since b̃ ≥ 0, the choice of z5 in (4.12) implies −b̃(t)∂yϕ ≥
0. Choosing D smaller if necessary, we use (4.11) to deduce that

LDϕ ≥
[
(log η5)

′ −Dz′′5/z5 − V3

]
ϕ ≥ V̂3(0)ϕ.

(v) For (y, t) ∈ ((δ,∞) × [0, T ]) ∩ Ω̃, the verification of (4.15) is rather similar
to that in cases (ii)–(iv), and thus is omitted.

Finally, we verify the boundary conditions

(4.16) ∂yϕ(−P̃α(t), t) ≤ 0 and ∂yϕ(1− P̃α(t), t) ≥ 0 for t ∈ [0, T ].

For the set {t ∈ [0, T ] : −αP̃α(t) ∈ [−2δ,−δ] or 1 − αP̃α(t) ∈ [δ, 2δ]}, we can
choose M5 large such that M5 > ‖∂y(log ζ5)‖L∞ to verify (4.16) as in case (iii).
The verification of (4.16) for the remaining cases is straightforward.

By (4.15) and (4.16), we apply Proposition A.2 and Remark A.3 to conclude

lim infD→0 λ(D) ≥ V̂3(0). The proof of Theorem 1.4 is thereby completed. �

Appendix A. Generalized super/sub-solution for a periodic parabolic
operator

In this section, we introduce a generalized definition of super/sub-solution for a
time-periodic parabolic operator and then present a comparison result. This result
is a mortification of Proposition A.1 in [18], and it plays a vital role in this paper.

Let L denote the following linear parabolic operator over (0, 1)× [0, T ]:

L = ∂tϕ− a1(x, t)∂xx − a2(x, t)∂x + a0(x, t).

In the sequel, we always assume a1(x, t) > 0 so that L is uniformly elliptic for each
t ∈ [0, T ], and assume a0, a1, a2 ∈ C([0, 1]× [0, T ]) are T -periodic in t.

Consider the linear parabolic problem

(A.1)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Lϕ = 0 in (0, 1)× [0, T ],

c1∂xϕ(0, t)− (1− c1)ϕ(0, t) = 0 on [0, T ],

c2∂xϕ(0, t) + (1− c2)ϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1),

where c1, c2 ∈ [0, 1]. We now define the super/sub-solution corresponding to (A.1)
as follows.

Definition A.1. The function ϕ in [0, 1]× [0, T ] is called a super-solution of (A.1)
if there exists a set X consisting of at most finitely many points:

X = ∅ or X = {κi ∈ (0, 1) : i = 1, . . . , N}
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for some integer N ≥ 1, such that

(i) ϕ ∈ C ((0, 1)× [0, T ]) ∩ C2 (((0, 1) \ X)× [0, T ]) ;
(ii) ∂xϕ(x

+, t) < ∂xϕ(x
−, t) for every x ∈ X and t ∈ [0, T ];

(iii) ϕ satisfies
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Lϕ ≥ 0 in ((0, 1) \ X)× (0, T ),

c1∂xϕ(0, t)− (1− c1)ϕ(0, t) ≤ 0 on [0, T ],

c2∂xϕ(1, t) + (1− c2)ϕ(1, t) ≥ 0 on [0, T ],

ϕ(x, 0) ≥ ϕ(x, T ) on (0, 1).

A super-solution ϕ is called to be strict if it is not a solution of (A.1). Moreover, a
function ϕ is called a (strict) sub-solution of (A.1) if −ϕ is a (strict) super-solution.

Let λ(L) denote the principal eigenvalue of the problem

(A.2)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Lϕ = λ(L)ϕ in (0, 1)× [0, T ],

c1∂xϕ(0, t)− (1− c1)ϕ(0, t) = 0 on [0, T ],

c2∂xϕ(0, t) + (1− c2)ϕ(1, t) = 0 on [0, T ],

ϕ(x, 0) = ϕ(x, T ) on (0, 1).

The following result was proved in [18, Proposition A.1] for the case c1 = c2 = 1,
and it can be extended to the general case c1, c2 ∈ [0, 1].

Proposition A.2. Let λ(L) denote the principal eigenvalue of (A.2). If (A.1)
admits some strict positive super-solution defined in Definition A.1, then λ(L) ≥ 0.
Moreover, if (A.1) admits some strict nonnegative sub-solution defined in Definition

A.1, then λ(L) ≤ 0.

Remark A.3. Instead of [0, 1]× [0, T ], Proposition A.2 also holds for the general do-
main given by {(x, t) : β1(t) < x < β2(t), t ∈ [0, T ]}, where β1, β2 ∈ C([0, T ]) satisfy
β1 < β2. This fact is applied in Section 4 to prove Theorem 1.4.
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