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Abstract. We consider the asymptotic distribution of covariate values in the quantile
regression basic solution under weak assumptions. A diagnostic procedure for assessing
homogeneity of the conditional densities is also proposed.
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1. Introduction

Quantile regression is an extension of more classical regression methods that allows

estimation of the conditional quantile of a response variable given covariate values. It

was developed by Koenker and Bassett [11] and has been widely applied in practice.

A comprehensive treatment of quantile regression is given in the monograph by

Koenker [10].

Suppose we observe (x1, Y1), . . . , (xn, Yn) and assume that the conditional τ quan-

tile of the response Yi given the predictor xi is gτ (xi) for an unknown function gτ . In

practice, we often assume a linear form for gτ so that gτ (xi) = xT
i β(τ). Henceforth,

we will focus on a fixed τ ∈ (0, 1) and suppress the dependence on τ of β(τ) and its

estimators.

The quantile regression estimator β̂n introduced in [11] minimizes

(1.1)

n
∑

i=1

̺τ (Yi − xT
i φ)

*The research for this paper was supported by a grant from the Natural Sciences and
Engineering Research Council of Canada.
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where ̺τ (s) = s{τ−I(s < 0)}; β̂n can be computed by solving a linear programming

problem and the hyperplane xT β̂n will go through at least p = dim(xi) points. Under

certain mild conditions on {xi, Yi}, we will have Yi = xT
i β̂n for exactly p points.

The purpose of this paper is to study the asymptotics of the p points {xi} lying in
the so-called basic solution under very general conditions, including the case where

the conditional quantile function is misspecified, that is, gτ (x) 6= xT β. We will also

propose a diagnostic procedure for “homogeneity” of the conditional density function

of the response over x.

2. Asymptotics

The quantile regression estimation problem can be expressed as a linear program-

ming problem, and can be solved using linear programming algorithms, for example,

the simplex algorithm ([4]) or interior point algorithms ([5], [7]); see [10], [12], and

[13] for details on their implementation in quantile regression. Thus the quantile

regression solution is potentially subject to degeneracy—when Yi = xT
i β̂n for more

than p points—and multiple solutions. However, under appropriate weak conditions

on the model, these are not issues.

Under mild regularity conditions on {(xi, Yi)} which will hold, for example, if
{εi} are continuous random variables (see [10]), β̂n is determined exactly (with

probability 1) by p points (xi1 , Yi1), . . . , (xip
, Yip

) where {i1, . . . , ip} is a subset of
{1, . . . , n} so that Yij

= xT
ij

β̂n for j = 1, . . . , p. More precisely, define

(2.1) Hn = {i 6 n : Yi = xT
i β̂n};

then β̂n satisfies

(2.2)
∑

i6∈Hn

ψτ (Yi − xT
i β̂n)xi =

∑

i∈Hn

αixi

where ψτ (s) = τ − I(s < 0) and αi ∈ [−τ, 1 − τ ] for i ∈ Hn. The estimator β̂n is a

unique minimizer of (1.1) if and only if αi ∈ (−τ, 1 − τ) for i ∈ Hn. Uniqueness will

be ensured if
n

∑

i=1

aixi 6= 0

with ai = −τ or 1 − τ for i = 1, . . . , n; when n is large, this condition will follow

provided that {xi} are not concentrated on a lattice on R
p.

We will assume the following regularity conditions in order to study the asymptotic

behaviour of {(xi, αi) : i ∈ Hn}.
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(A1) Y1, . . . , Yn are independent random variables with bounded densities

f1, . . . , fn such that

fi = f(·; xi)

where for each x, f(·; x) is continuous.

(A2) For some probability measure µ having a non-lattice component,

1

n

n
∑

i=1

I(xi ∈ B) → µ(B)

for all sets B with µ(∂B) = 0.

(A3) max
i

xT
i xi = o(n) and

1

n

n
∑

i=1

xix
T
i → C =

∫

xxTµ(dx).

(A4) For ε > 0 and |t| 6 ε, f(xT β0 + t; x) 6 Mε(x) where

lim sup
n→∞

1

n

n
∑

i=1

Mε(xi)‖xi‖2 <∞

and β0 is the solution of

∫∫

ψτ (y − xT β0)xf(y; x)µ(dx) dy = 0.

(A5) For some measure ν and any subset H of p elements from {1, . . . , n}, we
have

np/2P

{

∑

i6∈H

ψτ (Yi − xT
i (β0 + n−1/2w))xi ∈ B

}

=
ν(B)

{2π}p/2|Cτ |1/2
exp

(

−1

2
wTDκC

−1
τ Dκw

)

+ o(1)

where the o(1) remainder term is uniform in w over compact sets.

Condition (A2) essentially implies that the design behaves asymptotically like an

i.i.d. sample from the probability measure µ, even if the design is not random; the

asymptotics of the observations in Hn and its complement depend on the measure µ,

albeit in different ways. Note that conditions (A1) and (A2) together imply that the

empirical measure Qn defined by

Qn(A) =
1

n

n
∑

i=1

I{(xi, Yi) ∈ A}
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converges weakly (in probability) to a measureQ with Q(dx×dy) = µ(dx)f(y; x) dy.

Conditions (A2)–(A4) can be modified to accommodate potentially unbounded co-

variates by introducing a sequence of normalizing matrices {∆n} with ∆−1
n xi replac-

ing xi; for example, (A2) becomes

1

n

n
∑

i=1

I(∆−1
n xi ∈ B) → µ(B)

for sets B with µ(∂B) = 0. In this case, we are considering the asymptotic behaviour

of {(∆−1
n xi, αi) : i ∈ Hn}. Condition (A5) is a local limit version of the central limit

theorem

1√
n

n
∑

i=1

ψτ (Yi − xT
i (β0 + n−1/2w))xi

d−→ N (−Dκw, Cτ ),

which follows from conditions (A1)–(A4). For more information on conditions under

which local limit theorems hold, see [16] and [17]. The typical scenario envisaged

is one where the non-intercept component of µ has no lattice components and τ is

rational. In this case, ν would be a product of Lebesgue measure on R
p−1 and a

multiple of counting measure. Practically speaking, restricting τ to be rational is not

terribly restrictive—first, the rationals are dense in the interval [0, 1] and second, in

applications one typically considers rational values of τ .

Under conditions (A1)–(A4), the estimator β̂n converges in probability to β0 de-

fined in (A4). Moreover, as in [1], under conditions (A1)–(A4) we have

√
n(β̂n − β0)

d−→ N (0, D−1
κ CτD

−1
κ )

where

Dκ =

∫

κ(x)xxTµ(dx),(2.3)

κ(x) = f(xT β0; x)(2.4)

and

(2.5) Cτ =

∫∫

{τ − I(y < xT β0)}2xxTf(y; x) dy µ(dx).

See [1] for more details on misspecified quantile regression models.
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Theorem 2.1. Define Hn and {αi} as in (2.1) and (2.2). Then under conditions
(A1)–(A5),

{(xi, αi) : i ∈ Hn} d−→ {(T1,A1), . . . , (Tp,Ap)}

where (T1, . . . ,Tp) have a joint distribution given by

|(t1 . . . tp)|2
|Dκ|

p
∏

j=1

{κ(tj)µ(dtj)}

on the ordered set1 O = {t1 6 t2 6 . . . 6 tp} where Dκ and κ(t) are defined in (2.3)

and (2.4) and the conditional distribution of (A1, . . . ,Ap) givenT1 = t1, . . ., Tp = tp

is

P{(A1, . . . ,Ap) ∈ B | T1 = t1, . . . ,Tp = tp} =
ν{(t1 . . . tp)B}
|(t1 . . . tp)|

.

P r o o f. The idea behind the proof is similar to the proof of asymptotic normality

given in [2]. DefiningWn =
√
n(β̂n − β0), we will find the limiting joint density of

({(xi, αi) : i ∈ Hn},Wn).

Let B1, B2, B3 be subsets of O, (−τ, 1− τ)p and Rp respectively. Then following [2],

we have

P [{xi : i ∈ Hn} ∈ B1, {αi : i ∈ Hn} ∈ B2, Wn ∈ B3]

= n−p/2
∑

ΩH∈B1

∫

B3

|ΩH |
∏

i∈H

fi(x
T
i (β0 + n−1/2w))P{Vn(w,ΩH) ∈ B2}λ(dw)

where H is a subset of p elements from {1, . . . , n}, ΩH is the p × p matrix whose

columns are {xi : i ∈ H} and

(2.6) Vn(w,ΩH) =
∑

i6∈H

ψτ (Yi − xT
i (β0 + n−1/2w))Ω−1

H xi.

Using the local limit condition (A5) on Vn(w,ΩH) in (2.6), we have B2 ⊂ (−τ,
1 − τ)p,

np/2P{Vn(w,ΩH) ∈ B2} =
ν(ΩHB2)

{2π}p/2|Cτ |1/2
exp

(

−1

2
wTDκC

−1
τ Dκw

)

+ o(1)

1
ti 6 tj if and only if no component of ti is strictly greater than the corresponding
component of tj .
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and thus we have

P [{xi : i ∈ Hn} ∈ B1, {αi : i ∈ Hn} ∈ B2, Wn ∈ B3]

=
n−p

(2π)p/2

∑

ΩH∈B1

∫

B3

|ΩH |ν(ΩHB2)

|Cτ |1/2

∏

i∈H

κ(xi) exp
(

−1

2
wTDκC

−1
τ Dκw

)

λ(dw)

+ o(1).

The conclusion follows by noting that for any set B1

n−p
∑

ΩH∈B1

|ΩH |2
{

∏

i∈H

κ(xi)

}

→
∫

B1

|(t1 . . . tp)|2
p

∏

j=1

{κ(tj)µ(dtp)}

and then integrating over w. �

Note that the proof of Theorem 2.1 also implies that the limiting distribution of√
n(β̂n − β0) is independent of the distribution of (T1, . . . ,Tp,A1, . . . ,Ap).

The limiting distribution of {xi : i ∈ Hn} is simply a biased version of the p-fold
product of the limiting measure µ. Note that the limiting density (with respect to

this p-fold product measure) of (T1, . . . ,Tp) can be written as

(2.7) Φ(t1, . . . , tp) =
|(κ1/2(t1)t1 . . . κ

1/2(tp)tp)|2
|Dκ|

.

The determinant in the numerator of (2.7) is a measure of the dispersion of the

vectors κ1/2(t1)t1, . . . , κ
1/2(tp)tp.

E x am p l e 2.1. Consider the case where p = 2 with xi = (1, xi)
T and let µ be

the limiting measure of {xi}. Then the limiting density (with respect to the product
measure) of the non-intercept components is

Φ(x1, x2) =
κ(x1)κ(x2)(x1 − x2)

2

σ2
κ

for x1 6 x2

where

σ2
κ = Eµ{κ(X)}Eµ{κ(X)X2} − E2

µ{κ(X)X}.

One quantity of interest is the limiting distribution of the length Rn = {|xi − xj | :
i, j ∈ Hn}, the distance between the x values in the basic solution. If µ has a
density ψ with respect to the Lebesgue measure then Rn

d−→ R, where R has density

g(r) =
r2

σ2
κ

∫ ∞

−∞

κ(y)κ(y − r)ψ(y)ψ(y − r) dy for r > 0.
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If µ is a uniform distribution on [0, 1] with κ(x) = xγ for γ > −1 then

g(r) = (γ + 1)(γ + 3)(γ + 2)2r2
∫ 1

r

yγ(y − r)γ dy for 0 < r < 1.

Fig. 1 shows the densities for γ = −1/2, 0, 1, 5; R tends to be larger (closer to 1) for

negative values of γ and smaller (closer to 0) for positive values of γ.
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Figure 1. Densities of R in Example 2.1 for γ = −1/2, 0, 1, 5; as γ increases the mode of
the density decreases towards 0 (the dashed line corresponds to γ = −1/2, the
solid line to γ = 0, the dotted line to γ = 1).

3. An application

If κ(x) in (2.4) is constant over x then the limiting distribution of {xi : i ∈ Hn}
depends only on the limiting measure µ. For example, κ(x) is constant if Yi =

xT
i β + εi (i = 1, . . . , n) where {εi} are i.i.d. random variables. More generally,
inferential procedures for β̂n are greatly simplified if we are able to assume that

κ(x) is constant.

A simple diagnostic test for the constancy of κ(x) can be obtained by estimating

the distribution of {xi : i ∈ Hn} using subsampling or, alternatively, bootstrap
sampling. Here we will focus on subsampling although the ideas described below

will also apply to bootstrap sampling.

Specifically, for some α ∈ (0, 1) we draw subsamples (without replacement) of

size ⌊αn⌋ (that is, the integer part of αn) from the pairs {(x1, Y1), . . . , (xn, Yn)}.
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Define S to be such a subsample of {1, . . . , n} and define β̂S to minimize

∑

i∈S

̺τ (Yi − xT
i φ).

Also define HS = {i : Yi = xT
i β̂S}. The distribution of {xi : i ∈ HS} can be

compared to the probability distribution on subsets H of size p from {1, . . . , n}
under the assumption that κ(x) is constant; the proof of Theorem 2.1 suggests that

the distribution of Hn is well-approximated by

(3.1) P(H) =
|ΩH |2

∣

∣

∣

n
∑

i=1

xix
T
i

∣

∣

∣

for H = {i1 < i2 < . . . < ip}

where ΩH is the matrix with columns {xi : i ∈ H}. In particular, we can compare
the distribution of appropriate real-valued (or low dimensional) functions φ(ΩH)

under subsampling to the distribution obtained via sampling from P in (3.1). When
κ(x) is constant, one would expect the two distributions to be similar and, if the

function φ is chosen appropriately, distinctly different if κ(x) is not constant. One

possible function that is intuitively attractive is the (absolute) determinant of the

matrix ΩH or, more generally, functions of the eigenvalues of ΩT
HΩH such as the

largest eigenvalue or the trace.

Generating random variates from P in (3.1) is non-trivial. For small p, it is feasible
to sample from P using rejection sampling since for a given distribution Q(H) (for

example, a uniform distribution on the subsetsH), sup
H

P(H)/Q(H) can be evaluated

analytically. More generally, we can use the upper bound

P(H) =
|ΩH |2

∣

∣

∣

n
∑

i=1

xix
T
i

∣

∣

∣

6

(

1

p

∑

j∈H

hj

)p

where h1, . . . , hn are the diagonals of the “hat” matrix:

hj = xT
j

( n
∑

i=1

xix
T
i

)−1

xj .

Since rejection sampling using a uniform distribution forQmay be quite inefficient,
we may wish to sample from Q that more closely approximates P . One possibility is
to sample observations with large hj with higher probability since these observations

are somewhat more likely to be generated by P than observations with small hj . For

example, we can define

(3.2) Q(H) ∝
∏

j∈H

hδ
j
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for some δ > 0. Alternatively, we can use a Metropolis-Hastings algorithm ([15], [6])

to sample from P ; for example, taking i.i.d. samples from a proposal distribution Q
(for example, such as defined in (3.2)) we can define an independence Metropolis-

Hastings algorithm that accepts a proposal H∗ generated by Q given a previous
state Hj (and sets Hj+1 = H∗) if

(3.3) Uj <
|ΩH∗ |2
|ΩHj

|2
Q(Hj)

Q(H∗)

where {Uj} is a sequence of i.i.d. uniform random variables on the interval [0, 1]

with Uj independent of both H
∗ and Hj ; if the condition (3.3) fails, Hj+1 = Hj .

E x am p l e 3.1. Values of two predictors {(x1i, x2i)} for i = 1, . . . , 100 are drawn

from a zero mean bivariate normal distribution with covariance matrix

C =

(

1 1

1 1.04

)

.

The two predictors are highly correlated; the sample correlation is 0.970 while the

theoretical correlation is 0.962. We will consider three scenarios for the response {Yi}:
(a) Yi = β0 + β1x1i + β2x2i + εi where {εi} are i.i.d. N (0, 1);

(b) Yi = β0 + β1x1i + β2x2i + εi where {εi} are independent with εi ∼ N (0,

|x1i − x2i|2);
(c) Yi = x1ix2i + εi where {εi} are i.i.d. N (0, 1).

For each case, we fit a linear quantile model in the two covariates taking τ = 1/2.

The heteroscedasticity given by (b) is not immediately apparent looking at (bivariate)

scatterplots of the response versus each of the predictors while the true quantile func-

tions for (c) are non-linear. Figs. 2–4 show the distributions of φ(ΩH) = |(xi1 . . .xi3)|
for half samples (that is, taking subsamples of size 50) compared to its distribution

under P . For these data, the distribution of determinants φ(ΩH) based on subsam-

ples from the data generated by model (a) is much closer to the distribution P than
the corresponding distributions based on subsamples from the data generated by (b)

and (c). In particular, this method appears to be quite successful in detecting the

non-constant κ(x) for the heteroscedastic data generated by model (b). In partic-

ular, the distributions of φ(ΩH) for the data from models (b) and (c) appear to be

stochastically smaller than the distribution of φ(ΩH) induced by sampling from P .

Example 3.1 shows that the subsampling method has some potential as a diag-

nostic for testing the assumption that κ(x) is constant. A conjecture is that under

constancy of κ(x), the difference (as measured by some appropriate metric for weak

convergence) between the distribution under subsampling and the distribution un-

der P will converge to 0 for subsample sizes mn → ∞ satisfying mn/n→ α ∈ [0, 1).
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Figure 2. Distribution of |(xi1 . . .xip
)| for i1 < . . . < ip ∈ HS compared to the distribution

from P in (3.1) for model (a) in Example 3.1.
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Figure 3. Distribution of |(xi1 . . .xip
)| for i1 < . . . < ip ∈ HS compared to the distribution

from P in (3.1) for model (b) in Example 3.1.

In practice, taking the subsampling fraction (whose limit is α) to be small appears

to be somewhat better although more research needs to be done here. There are,

of course, many other issues that need to be resolved, in particular, “good” choices

of φ(ΩH) for distributional comparisons. As with any graphical procedure, some care

must be taken in interpreting the plots. However, there are two attractive features of

this procedure—first, it is essentially non-parametric in the sense that the reference
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Figure 4. Distribution of |(xi1 . . .xip
)| for i1 < . . . < ip ∈ HS compared to distribution

from P in (3.1) for model (c) in Example 3.1.

distribution P does not depend on any unknown parameters and second, it gives a
check of the constancy of κ(x) for a given quantile τ independent of other quantiles.

Assessing the constancy of κ(x) for a given quantile τ0 in a linear quantile regres-

sion model is typically by looking at estimates of β(τ) for values of τ in an interval I
that contains τ0. Assuming (as is almost always the case) that the first element

of xi is 1, we can assess the constancy of κ(x) for τ = τ0 by testing the hypoth-

esis βj(τ) = βj for τ ∈ I and j = 2, . . . , p. Goodness-of-fit tests for the quantile

regression process have been proposed by Koenker and Xiao [14] and Chernozhukov

and Fernández-Val [3]. Koenker and Xiao [14] use an approach based on the martin-

gale transformation proposed by Khmaladze [8] while [3] uses subsampling to obtain

critical values for test statistics.

Alternatively, we could let the width of the interval I shrink to the point τ0 as
the sample size increases. Recent work by the author and Chuan Goh [9] indicates

that the asymptotics of the spacings process n{β̂n(τ0 + s/n) − β̂n(τ0)} depends on
the asymptotics of {(xi, αi) : i ∈ Hn} and of the point process of small but non-zero
residuals; the limiting distribution of the point process is a non-homogeneous point

process.
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