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ASYMPTOTICS TOWARD THE PLANAR RAREFACTION WAVE
FOR VISCOUS CONSERVATION LAW

IN TWO SPACE DIMENSIONS

MASATAKA NISHIKAWA AND KENJI NISHIHARA

Abstract. This paper is concerned with the asymptotic behavior of the so-
lution toward the planar rarefaction wave r(x

t
) connecting u+ and u− for the

scalar viscous conservation law in two space dimensions. We assume that the
initial data u0(x, y) tends to constant states u± as x → ±∞, respectively.
Then, the convergence rate to r(x

t
) of the solution u(t, x, y) is investigated

without the smallness conditions of |u+−u−| and the initial disturbance. The
proof is given by elementary L2-energy method.

1. Introduction

We consider the Cauchy problem for the scalar viscous conservation law in two
space dimensions:

ut + f(u)x + g(u)y = µ∆u, (t, x, y) ∈ R+ ×R2,(1.1)

u(0, x, y) = u0(x, y),(1.2)

where f and g are smooth functions, and µ is a positive constant. We assume that
f is convex, i.e.,

f ′′(u) ≥ α > 0 for u ∈ R,(1.3)

and that the initial data is asymptotically constant:

u0(x, y) → u± as x→ ±∞ for any fixed y ∈ R,(1.4)

where u± are constants satisfying u− < u+. The asymptotic behavior as t→∞ of
the solution is closely related to that of the Riemann problem for the corresponding
hyperbolic conservation law in one space dimension:

rt + f(r)x = 0, (t, x) ∈ (−1,∞)×R,(1.5)

r(−1, x) = rR
0 (x) ≡

{
u− for x < 0,
u+ for x > 0.

(1.6)
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The entropy solution r(t, x) of (1.5), (1.6) is given by

r(t, x) =


u− for x < f ′(u−)(t+ 1),

(f ′)−1(
x

t+ 1
) for f ′(u−)(t+ 1) ≤ x ≤ f ′(u+)(t+ 1),

u+ for f ′(u+)(t+ 1) < x.

(1.7)

The function (t, x, y) → r(t, x) is called the planar rarefaction wave. In a one
dimensional case, the asymptotic behaviors of solutions were originally investigated
by Il’in and Oleinik [3]. Harabetian [1] obtained the convergence rate toward the
rarefaction wave. Hattori and Nishihara [2] showed more precise behaviors of the
solution for the Burgers equation, employing the Hopf-Cole transformation. See
also [5], [6], [7], [8], [10].

In a two dimensional case, Xin [9] has first investigated the stability of the planar
rarefaction wave. Ito [4] has recently shown the convergence rate toward the planar
rarefaction wave. In both papers, the smallness of initial disturbance is essentially
assumed. In [4], the rarefaction wave is also assumed to be weak.

Our main purpose in this paper is to show that the solution u(t, x, y) asymp-
totically behaves as r(t, x) with the same rate as that in [4] without smallness
conditions, which improves their results.

Denote R2
+ = {(x, y) ∈ R2;x > 0}, R2

− = {(x, y) ∈ R2;x < 0} and D = ( ∂
∂x ,

∂
∂y ).

Then, our main theorem is as follows.

Theorem 1. Suppose that u0(x, y) − u± ∈ L2(R2
±) ∩ L1(R2

±) and Dαu0(x, y) ∈
H1(R2), |α| = 1. Then the problem (1.1),(1.2) has a unique global solution u(t, x, y)
satisfying

sup
y∈R

‖u(t, ·, y)− r(t, ·)‖L2(Rx) ≤ C(1 + t)−
1
4 log(2 + t),(1.8)

where C is a positive constant depending on u0.

Our plan in this paper is as follows. In the next section, we construct a smooth
rarefaction wave, which is different from that in [4], and reformulate our problem. In
the last two sections, we give the proofs of theorems for the reformulated problems.

2. Smooth approximation and preliminaries

We first introduce the function w̃(t, x) as a solution to the problem:

w̃t + w̃w̃x = µw̃xx, (t, x) ∈ (−1,∞)×R,(2.1)

w̃(−1, x) = r̃R
0 (x) ≡ f ′(rR

0 (x)).(2.2)

The Hopf-Cole transformation gives the information of the properties of w̃. Using
w̃(t, x), we define “the smooth rarefaction wave” w(t, x) as

w(t, x) = (f ′)−1(w̃(t, x))|t≥0.(2.3)

According to (1.3), w(t, x) satisfies

wt + f(w)x = µwxx + µ
f ′′′(w)
f ′′(w)

w2
x, (t, x) ∈ R+ ×R,(2.4)

w(0, x) = w0(x) ≡ f ′(w̃(0, x)).(2.5)

The properties of the smooth rarefaction wave w(t, x) are stated in the following
lemma. From now on, we denote several constants by C or c without confusion.
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Lemma 1 (Hattori and Nishihara [2]). The smooth rarefaction wave w(t, x) given
by (2.3) satisfies the following properties:

(i) |w(t, x) − u±| ≤ C exp(−c|x|2),
(ii) wx(t, x) > 0,
(iii) ‖wx(t, ·)‖Lp(R) ≤ (1 + t)−1+ 1

p , ‖wxx(t, ·)‖Lp(R) ≤ (1 + t)−1,

(iv) ‖w(t, ·)− r(t, ·)‖Lp(R) ≤ C(1 + t)−
p−1
2p .

Since there is a “forcing term” f ′′′(w)
f ′′(w) w

2
x in the equation (2.4), we further intro-

duce the smooth rarefaction wave U(t, x) approximate to w, which satisfies

Ut + f(U)x = Uxx, (t, x) ∈ R+ ×R,(2.6)

U(0, x) = U0(x) ≡ f ′(w̃(0, x)).(2.7)

The monotonicity in x of U(t, x) was obtained by Xin [9], which is important in
the a priori estimates in §4.

Lemma 2 (Xin [9]). Suppose that U0(x) is monotonically increasing:

d

dt
U0(x) > 0, x ∈ R.(2.8)

Then, the solution U(t, x) of (2.6),(2.7) satisfies

d

dx
U(t, x) > 0, (t, x) ∈ R+ ×R.(2.9)

Thus, setting

u(t, x, y)− r(t, x) = {w(t, x) − r(t, x)} + {U(t, x)− w(t, x)} + {u(t, x, y)− U(t, x)}
≡ {w(t, x) − r(t, x)} + v(t, x) + V (t, x, y),

we have reached two reformulated problems:

vt + {f(w + v)− f(w)}x = µvxx − µ
f ′′′(w)
f ′′(w)

w2
x, (t, x) ∈ R+ ×R,(2.10)

v(0, x) = U0(x)− w(0, x) ≡ v0(x),(2.11)

and

Vt + {f(U + V )− f(U)}x + g(U + V )y = µ∆V, (t, x, y) ∈ R+ ×R2,(2.12)

V (0, x, y) = u0(x, y)− U0(x) ≡ V0(x, y).(2.13)

The perturbations v and V satisfy the following theorems, respectively.

Theorem 2 (Decay estimate). Suppose that v0 ∈ H2(R) ∩ L1(R). Then the prob-
lem (2.10),(2.11) has a unique global solution v(t, x) satisfying

v ∈ C0([0,∞);H2(R)) ∩ C0([0,∞);L1(R)),

vx ∈ L2(0, T ;H2(R)),

and

‖v(t, ·)‖L2(R) ≤ C(1 + t)−
1
4 log(2 + t).(2.14)
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Theorem 3 (Decay estimate). Suppose that V0 ∈ H2(R2) ∩ L1(R2). Then, the
problem (2.12),(2.13) has a unique global solution V (t, x, y) satisfying

V ∈ C0([0,∞);H2(R)), ∇V ∈ L2(0,∞;H2(R)),

and

sup
y∈R

‖V (t, ·, y)‖L2(Rx) ≤ C(1 + t)−
3
4 .(2.15)

Theorem 2, Theorem 3 and Lemma 1 (iv) yield the desired estimate (1.8). In
the next two sections, we devote ourselves to the proofs of Theorems 2 and 3,
respectively.

3. Decay estimates for the perturbation v

We begin with the Cauchy problem

vt + {f(w + v)− f(w)}x = µvxx − µ
f ′′′(w)
f ′′(w)

w2
x, (t, x) ∈ R+ ×R,(3.1)

v(0, x) = U(0, x)− w(0, x) ≡ v0(x).(3.2)

We shall show that the problem (3.1),(3.2) has a unique global solution in the
solution space X(0,∞), where

XM (0, T ) =

ψ
∣∣∣∣∣∣
ψ ∈ C0([0, T ];H2(R)), ψx ∈ L2(0, T ;H2(R))

and sup
[0,T ]

‖ψ(t, ·)‖H2 ≤M

 .

In what follows, we often abbreviate the domain R of H2(R), etc.

Proposition 1 (Local existence). Suppose that v0 ∈ H2(R). For any M > 0,
there exists a positive constant T0 depending on M such that if ‖v0‖H2 ≤ M, then
the problem (3.1), (3.2) has a unique solution v(t, x) ∈ X2M (0, T0).

Proposition 1 can be proved in a standard way. So we omit the proof. Next, we
show a priori estimates of v.

Proposition 2 (A priori estimate). Suppose that v is a solution of (3.1),(3.2) in
XM (0, T ) for positive constants T and M . Then there exists a positive constant C0

such that

‖v(t)‖2
H2 +

∫ t

0

∫
R

wxv
2dxdτ +

∫ t

0

‖vx(τ)‖2
H2dτ ≤ C0(‖v0‖2

H2 + 1).(3.3)

Proof. Multiplying (3.1) by v, we have

1
2
d

dt

∫
R

v2dx+
∫

R

v{f(w + v)− f(w)}xdx+ µ

∫
R

v2
xdx = −

∫
R

v
f ′′′(w)
f ′′(w)

w2
xdx.

(3.4)

The second term of (3.4) is estimated by the following:∫
R

v{f(w + v)− f(w)}xdx = −
∫

R

vx{f(w + v)− f(w)}dx

=
∫

R

[
−
(∫ w+v

w

f(y)dy − f(w)v
)

x

+ {f(w + v)− f(w)− f ′(w)v}wx

]
dx(3.5)

≥ α

2

∫
R

wxv
2dx.
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The right hand side is estimated as follows:∣∣∣∣∫
R

v
f ′′′(w)
f ′′(w)

w2
xdx

∣∣∣∣ ≤ C

∫
R

w2
x|v|dx ≤

α

4

∫
R

wx|v|2dx+ C

∫
R

w3
xdx.

Integrating (3.4) over [0,t] and using Lemma 1 (iii), we get

‖v(t)‖2 +
∫ t

0

∫
R

wxv
2dxdτ +

∫ t

0

‖vx(τ)‖2dτ ≤ C0(‖v0‖2 + 1).(3.6)

Here and later, by ‖·‖ we denote the L2-norm in R or R2 without confusions. Next,
we derive the higher order estimates. Multiplying (3.1) by (−vxx), we have

1
2
d

dt

∫
R

v2
xdx−

∫
R

vxx{f(w + v)− f(w)}xdx + µ

∫
R

v2
xxdx

= µ

∫
R

vxx
f ′′′(w)
f ′′(w)

w2
xdx.

(3.7)

The right-hand side is estimated as∣∣∣∣∫
R

vxx
f ′′′(w)
f ′′(w)

w2
xdx

∣∣∣∣ ≤ 1
4
‖vxx‖2 + C‖wx‖4

L4.

The second term of (3.7) is estimated as∣∣∣∣∫
R

vxx{f(w + v)− f(w)}xdx

∣∣∣∣ ≤ µ

4
‖vxx‖2 + C

{
‖vx(t)‖2 +

∫
R

wxv
2dx

}
.

Here, the maximum principle for a parabolic equation has been employed. Hence,
we have

‖vx(t)‖2 +
∫ t

0

‖vxx(τ)‖2dτ ≤ C0(‖v0‖2
H1 + 1).(3.8)

Differentiating (3.1) twice in x, and multiplying it by vxx, we have

1
2
d

dt
‖vxx(t)‖2 +

∫
R

vxx{f(w + v)− f(w)}xxxdx+ µ‖vxxx(t)‖2

= −µ
∫

R

vxx

(
f ′′′(w)
f ′′(w)

w2
x

)
xx

dx,

which yields

‖vxx(t)‖2 +
∫ t

0

‖vxxx(τ)‖2dτ ≤ C0(‖v0‖2
H2 + 1).(3.9)

Thus, the proof of Proposition 3 is complete.

Combining Proposition 1 with Proposition 2, we obtain the global result.

Theorem 4 (Global existence). Suppose that v0(x) ∈ H2(R). Then the problem
(3.1),(3.2) has a unique global solution v(t, x) satisfying

v ∈ C0([0,∞);H2(R)), vx ∈ L2(0,∞;H2(R)),

and the estimate (3.3).

In order to obtain the decay order of v, we further assume that v0 ∈ L1(R).
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Lemma 3. Suppose that v0 ∈ L1(R) ∩H2(R). Then the solution v(t, x) also sat-
isfies

‖v(t)‖L1 ≤ ‖v0‖L1 + C1 log(1 + t),(3.10)

where C1 is a constant depending on |u+ − u−|.
Proof. The L1-estimate (3.10) of v can be proved by the same method as that in
[4]. So we omit the proof.

Theorem 5 (Decay estimate). Suppose that v0 ∈ H2(R) ∩ L1(R). Then, for any
0 < ε < 1

2 , the solution v(t, x) of (3.1),(3.2) satisfies

(1 + t)k+ 1
2+ε‖∂k

xv(t)‖2

+
∫ t

0

(1 + τ)k+ 1
2+ε

(∫
R

wx|∂k
xv(τ)|2dx + ‖∂k

xvx(τ)‖2

)
dτ

≤ CIk(1 + t)ερk(t), k = 0, 1,

(3.11)

(1 + t)2+ε‖∂2
xv(t)‖2

+
∫ t

0

(1 + τ)2+ε

(∫
R

wx|∂2
xv(τ)|2dx+ ‖∂2

xvx(τ)‖2

)
dτ

≤ CI2(1 + t)ερ2(t),

(3.12)

where

Ik = (‖v0‖L1 + ‖v0‖Hk + 1)2, k = 0, 1, ρ0 = log2(2 + t), ρ1 = log10(2 + t),

and

I2 = (‖v0‖L1 + ‖v0‖H2 + 1)
70
3 , ρ2 = log6(2 + t).

Remark. The estimate (3.11) with k = 0 shows (2.14) in Theorem 2.

Proof. The proof is similar to one in Ito [4]. However, the smooth rarefaction wave
w(t, x) in [4] is different from ours and its estimates are done for the linearized
equation around w(t, x). Hence, we give the outline of the proof.

First, we show (3.11) with k = 0. From (3.4) and Lemma 1 (iii), we have

d

dt
‖v(t)‖2 +

∫
R

wxv
2dx+ ‖vx(t)‖2 ≤ C(1 + t)−2.(3.13)

Multiplying (3.13) by (1 + t)
1
2+ε, we have

d

dt
{(1 + t)

1
2+ε‖v(t)‖2}+ (1 + t)

1
2+ε

(∫
R

wxv
2dx+ ‖vx(t)‖2

)
≤ C{(1 + t)−

1
2 +ε‖v(t)‖2 + (1 + t)−

3
2+ε}.

(3.14)

By the Gagliardo-Nirenberg inequality

‖v(t)‖2 ≤ C‖v(t)‖ 4
3
L1(R)‖vx(t)‖ 2

3 ,(3.15)
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we obtain

d

dt
{(1 + t)

1
2 +ε‖v(t)‖2}+ (1 + t)

1
2+ε

(∫
R

wxv
2dx+ ‖vx(t)‖2

)
≤ C{(1 + t)−

1
2+ε‖v(t)‖ 4

3
L1‖vx(t)‖ 2

3 + (1 + t)−
3
2 +ε}

≤ 1
2
(1 + t)

1
2+ε‖vx(t)‖2 + C{(1 + t)−1+ε‖v(t)‖2

L1 + (1 + t)−
3
2 +ε}

≤ 1
2
(1 + t)

1
2+ε‖vx(t)‖2 + C{(1 + t)−1+ε(‖v0‖2

L1 + C1 log2(1 + t)) + (1 + t)−
3
2+ε};

that is,

d

dt
{(1 + t)

1
2+ε‖v(t)‖2}+ (1 + t)

1
2 +ε

(∫
R

wxv
2dx+ ‖vx(t)‖2

)
≤ C{(1 + t)−1+ε(‖v0‖2

L1 + C1 log2(1 + t)) + (1 + t)−
3
2+ε}.

(3.16)

Integrating (3.16) over [0,t] in t, we obtain (3.11) with k = 0.
Next, we derive (3.11) with k = 1. From (3.7), we have

1
2
d

dt
‖vx(t)‖2 −

∫
R

vxx{f(w + v)− f(w)}xdx+ µ‖vxx(t)‖2 ≤ C(1 + t)−3.(3.17)

Here

−
∫

R

vxx{f(w + v)− f(w)}xdx

=
1
2

∫
R

f ′′(w + v)wxv
2
xdx+

∫
R

[
1
2
v3

x − vxx{f ′(w + v)− f ′(w)}wx

]
dx.

Hence, due to (1.3), we have

d

dt
‖vx(t)‖2 + α

∫
R

wxv
2
xdx+ ‖vxx(t)‖2

≤ C

{∫
R

|vxx||v||wx|dx+
∫

R

|vx|3dx+ (1 + t)−3

}
(3.18)

≤ 1
2
‖vxx(t)‖2 + C

{∫
R

w2
xv

2dx+ ‖vx(t)‖3
L3 + (1 + t)−3

}
.

Multiplying (3.18) by (1 + t)
3
2+ε, we have

d

dt
{(1 + t)

3
2+ε‖vx(t)‖2}+ α(1 + t)

3
2 +ε

∫
R

wxv
2
xdx+ (1 + t)

3
2+ε‖vxx(t)‖2

≤ C

{
(1 + t)

1
2 +ε‖vx(t)‖2 + (1 + t)

3
2+ε

∫
R

w2
xv

2dx(3.19)

+(1 + t)
3
2+ε‖vx(t)‖3

L3 + (1 + t)−
3
2+ε
}
.

Noting that

(1 + t)
3
2+ε

∫
R

w2
xv

2dx ≤ (1 + t)
3
2+ε‖wx(t)‖L∞

∫
R

wxv
2dx

≤ C(1 + t)
1
2+ε

∫
R

wxv
2dx,
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and making use of (3.11) with k = 0 and the Gagliardo-Nirenberg inequality

‖vx(t)‖3
L3(R) ≤ C‖vxx(t)‖ 7

4
L2(R)‖v(t)‖

5
4
L2(R),(3.20)

we obtain

(1 + t)
3
2+ε‖v2

x(t)‖2 +
∫ t

0

(1 + τ)
3
2+ε

(
α

∫
R

wxv
2
xdx+ ‖vxx(τ)‖2

)
dτ

≤ C

{
I0(1 + t)ερ0 +

∫ t

0

(1 + τ)
3
2+ε‖v(τ)‖10

L2(R) dτ

}
≤ C

{
I0(1 + t)ερ0 +

∫ t

0

(1 + τ)
3
2+ε(I0(1 + τ)−

1
2 ρ0)5dτ

}
,

which yields (3.11) with k = 1. Finally, multiply (3.9) by (1+ t)2+ε and use (3.11).
After several calculations, we can obtain the desired estimate (3.12). Though the
details are omitted, we cannot multiply (3.9) by (1+ t)

5
2+ε in our method. Because

we have the decay order ‖wxx(t)‖2 = O(t−2), not O(t−
5
2 ) (cf. Ito [4]).

Thus the proof is complete.

4. Decay estimates for the perturbation V

In this section, we consider the Cauchy problem in two space dimension:

Vt + {f(U + V )− f(U)}x + g(U + V )y = ∆V,(4.1)

V (0, x, y) = V0(x, y) ≡ u0(x, y)− U0(x).(4.2)

The solution space is

X̃M (0, T ) =

ψ
∣∣∣∣∣∣
ψ ∈ C0([0, T ];H2(R2)), ∇ψ ∈ L2(0, T ;H2(R2))

and sup
[0,T ]

‖ψ(t, ·, ·)‖H2 ≤M

 ,

with T > 0. Then we have

Proposition 3 (Local existence). Suppose that V0 ∈ H2(R2). For any M > 0,
there exists a positive constant T0 depending on M such that if ‖V0‖H2 ≤M, then
the problem (4.1), (4.2) has a unique solution V (t, x, y) ∈ X̃2M (0, T0).

Proposition 3 can be proved in a standard way. So we omit the proof. Next, we
show a priori estimates of V .

Proposition 4 (A priori estimate). Suppose that V is a solution of (4.1),(4.2) in
X̃M (0, T ) for positive constants T and M . Then there exists a positive constant C1

depending on V0 such that

‖V (t)‖2
H2 +

∫ t

0

∫
R2
UxV

2dxdydτ +
∫ t

0

‖∇V (τ)‖2
H2dτ ≤ C1‖V0‖2

H2 .(4.3)

Proof. Multiplying (4.1) by V and integrating the resultant equation over R2, we
have

1
2
d

dt
‖V (t)‖2 +

∫
R2
V {f(U + V )− f(U)}xdxdy

+
∫

R2
V g(U + V )ydxdy + µ‖∇V (t)‖2 = 0.

(4.4)
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The second and third terms are, respectively, estimated as follows:∫
R2
V {f(U + V )− f(U)}xdxdy = −

∫
R2
Vx{f(U + V )− f(U)}dxdy

=
∫

R2

[
−
(∫ U+V

U

f(y)dy − f(U)V

)
x

+ {f(U + V )− f(U)− f ′(U)V }Ux

]
dxdy(4.5)

≥ α

2

∫
R2
UxV

2dxdy.

Since U is independent of y,∫
R2
V g(U + V )ydxdy = −

∫
R2
Vyg(U + V )dxdy

= −
∫

R2
∂y

(∫ U+V

U

g(ξ)dξ

)
dxdy = 0.(4.6)

Using (4.5) and (4.6), we have the basic estimate

‖V (t)‖2 +
∫ t

0

∫
R2
UxV

2dxdydτ +
∫ t

0

‖∇V (τ)‖2dτ ≤ C‖V0‖2.(4.7)

The estimates of the derivatives in x, y of V can be obtained similarly to those in
Proposition 2. We omit the details.

The combination of Propositions 3 and 4 gives the global result.

Theorem 6 (Global existence). Suppose that V0(x) ∈ H2(R2). Then the problem
(4.1),(4.2) has a unique global solution V (t, x, y) satisfying

V ∈ C0([0,∞);H2(R)), ∇V ∈ L2(0,∞;H2(R)).

and the estimate (4.3).

We now show the decay estimates on V . As in Lemma 3, the following L1-
estimate plays an important roll.

Lemma 4 (Ito [4]). Suppose further, in Theorem 6, that V0 ∈ L1(R2). Then the
solution V (t, x, y) also satisfies

‖V (t)‖L1(R2) ≤ ‖V0‖L1(R2).(4.8)

Applying Lemma 4, we have the following theorem.

Theorem 7 (Decay estimate). Suppose that V0(x, y) ∈ H2(R2) ∩ L1(R2) and let
V (t, x, y) be the solution of (4.1),(4.2). Then, for any ε > 0, there exists a constant
C > 0 such that the following decay estimates hold:

(1 + t)1+ε‖V (t)‖2

+
∫ t

0

(1 + τ)1+ε

(∫
R2
Ux|V (τ)|2dxdy + ‖∇V (τ)‖2

)
dτ(4.9)

≤ C(1 + t)ε(‖V0‖L1 + ‖V0‖)2,
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(1 + t)
15
8 +ε‖Vx(t)‖2

+
∫ t

0

(1 + τ)
15
8 +ε

(∫
R2
Ux|Vx(τ)|2dxdy + ‖∇Vx(τ)‖2

)
dτ(4.10)

≤ C(1 + t)ε log4(2 + t)(‖V0‖L1 + ‖V0‖H1)2,

(1 + t)2+ε‖Vy(t)‖2

+
∫ t

0

(1 + τ)2+ε

(∫
R2
Ux|Vy(τ)|2dxdy + ‖∇Vy(τ)‖2

)
dτ(4.11)

≤ C(1 + t)ε(‖V0‖L1 + ‖V0‖H1)2,

(1 + t)
39
16 +ε‖Vxx(t)‖2

+
∫ t

0

(1 + τ)
39
16 +ε

(∫
R2
Ux|Vxx(τ)|2dxdy + ‖∇Vxx(τ)‖2

)
dτ(4.12)

≤ C(1 + t)ε log8(2 + t)(‖V0‖L1 + ‖V0‖H2)2,

(1 + t)
23
8 +ε‖Vxy(t)‖2

+
∫ t

0

(1 + τ)
23
8 +ε

(∫
R2
Ux|Vxy(τ)|2dxdy + ‖∇Vxy(τ)‖2

)
dτ(4.13)

≤ C(1 + t)ε log8(2 + t)(‖V0‖L1 + ‖V0‖H2)2,

(1 + t)3+ε‖Vyy(t)‖2

+
∫ t

0

(1 + τ)3+ε

(∫
R2
Ux|Vyy(τ)|2dxdy + ‖∇Vyy(τ)‖2

)
dτ(4.14)

≤ C(1 + t)ε(‖V0‖L1 + ‖V0‖H2)2.

Remark. From (4.9) and (4.11), the estimate (2.15) in Theorem 3 is obtained as

sup
y
‖V (t, ·, y)‖2 ≤ C‖V (t, ·, ·)‖‖Vy(t, ·, ·)‖

≤ C(1 + t)−
1
2−1 = C(1 + t)−

3
2 .

Proof. From (4.4)–(4.6), we get

1
2
d

dt
‖V (t)‖2 +

1
2
α

∫
R2
UxV

2dxdy + µ‖∇V (t)‖2 ≤ 0.(4.15)

Multiplying (4.15) by 2(1 + t)1+ε, we have

d

dt
{(1 + t)1+ε‖V (t)‖2}+ (1 + t)1+ε

(
α

∫
R2
UxV

2dxdy + 2‖∇V (t)‖2

)
≤(1 + ε)(1 + t)ε‖V (t)‖2.

(4.16)

By the Gagliardo-Nirenberg inequality

‖V (t)‖2
L2(R2) ≤ C‖V (t)‖L1(R2)‖∇V (t)‖L2(R2),
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we obtain

d

dt
{(1 + t)1+ε‖V (t)‖2}+ (1 + t)1+ε

(
α

∫
R2
UxV

2dxdy + 2‖∇V (t)‖2

)
≤ C(1 + t)

1+ε
2 ‖∇V (t)‖(1 + t)

ε−1
2 ‖V (t)‖L1(R2)

≤ (1 + t)1+ε‖∇V (t)‖2 + C(1 + t)ε−1‖V (t)‖2
L1(R2)

≤ (1 + t)1+ε‖∇V (t)‖2 + C(1 + t)ε−1‖V0‖2
L1(R2).

(4.17)

Integrating (4.17) over [0, t] in t, we obtain (4.9). Next, we estimate Vy and Vx.
First, multiplying ∂

∂y (4.1) by Vy , we have

1
2
d

dt
‖Vy(t)‖2 +

∫
R2
Vy{f(U + V )− f(U)}xydxdy

+
∫

R2
Vyg(U + V )yydxdy + µ‖∇Vy(t)‖2 = 0.

(4.18)

The integration by parts gives:

The second and third terms of (4.18)

=
1
2

∫
R2
f ′′(U + V )UxV

2
y dxdy +

1
2

∫
R2
{f ′′(U + V )VxV

2
y + g′′(U + V )V 3

y }dxdy.

Hence,

1
2
d

dt
‖Vy(t)‖2 +

α

2

∫
R2
UxV

2
y dxdy + µ‖∇Vy(t)‖2

≤ C

∫
R2

(|Vy |3 + |Vx||Vy|2)dxdy.
(4.19)

Since

C

∫
R2
|Vx||Vy |2dxdy

≤ C

∫
R

sup
y∈R

|Vx(t, x, y)|‖Vy(t, x, ·)‖2
L2(Ry)dx

≤ C

∫
R

‖Vx(t, x, ·)‖ 1
2
L2(Ry)‖Vxy(t, x, ·)‖

1
2
L2(Ry)‖Vy(t, x, ·)‖2

L2(Ry)dx

≤ µ

4
‖Vxy(t)‖2

L2(R2) + C

∫
R

‖Vx(t, x, ·)‖ 2
3
L2(Ry)‖Vy(t, x, ·)‖ 8

3
L2(Ry)dx

≤ µ

4
‖Vxy(t)‖2

L2(R2)

+ C

∫
R

‖Vx(t, x, ·)‖ 2
3
L2(Ry)‖V (t, x, ·)‖ 4

3
L2(Ry)‖Vyy(t, x, ·)‖ 4

3
L2(Ry)dx

≤ µ

4
‖∇Vy(t)‖2

L2(R2) + C

∫
R

‖Vx(t, x, ·)‖2
L2(Ry)‖V (t, x, ·)‖4

L2(Ry)dx

≤ µ

4
‖∇Vy(t)‖2

L2(R2) + C sup
x∈R

‖V (t, x, ·)‖4
L2(Ry)‖Vx(t)‖2

L2(R2)

≤ µ

4
‖∇Vy(t)‖2

L2(R2) + C‖V (t)‖2
L2(Ry)‖Vx(t)‖4

L2(R2)
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and

C

∫
R2
|Vy |3dxdy ≤ µ

4
‖∇Vy(t)‖2

L2(R2) + C‖V (t)‖2
L2(R2)‖Vx(t)‖2

L2(R2)‖Vy(t)‖2
L2(R2),

we have
1
2
d

dt
‖Vy(t)‖2 +

α

2

∫
R2
UxV

2
y dxdy +

µ

2
‖∇Vy(t)‖2

≤ C‖V (t)‖2
L2(R2)‖Vx(t)‖2

L2(R2)(‖Vx(t)‖2
L2(R2) + ‖Vy(t)‖2

L2(R2)).
(4.20)

Noting that ‖V (t)‖2
L2(R2) ≤ C(1 + t)−1, we multiply (4.20) by (1 + t)2+ε and

integrating it over [0, t] to obtain (4.11). Second, multiplying ∂
∂x (4.1) by Vx. Then,

after similar calculations to the above, we have
1
2
d

dt
‖Vx(t)‖2 +

α

2

∫
R2
Ux|Vx|2dxdy +

µ

2
‖∇Vx(t)‖2

≤ C‖V (t)‖2
L2(R2)‖Vx(t)‖2

L2(R2)(‖Vx(t)‖2
L2(R2) + ‖Vy(t)‖2

L2(R2))(4.21)

+ C‖Ux(t)‖L∞

∫
R2
UxV

2dxdy.

Since ‖Ux(t)‖L∞(R) ≤ ‖wx(t)‖L∞(R) + ‖vx(t)‖L∞(R) ≤ C(1 + t)−
7
8 log4(2 + t) by

virtue of Theorem 5, we can multiply (4.21) by (1+ t)
15
8 +ε, not (1+ t)2+ε, to obtain

(4.10). The estimates (4.12)–(4.14) for the second derivatives of V are obtained
by more complicated calculations than those for the first derivatives. We omit the
details.

Thus the proof of Theorem 7 is complete.
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