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ASYMPTOTICS WITH INCREASING DIMENSION FOR
ROBUST REGRESSION WITH APPLICATIONS TO THE
BOOTSTRAP!

By ENNO MAMMEN

Universitdit Heidelberg

A stochastic expansion for M-estimates in linear models with many
parameters is derived under the weak condition xn'/3(log n)2/3 — 0, where n
is the sample size and « the maximal diagonal element of the hat matrix. The
expansion is used to study the asymptotic distribution of linear contrasts and
the consistency of the bootstrap. In particular, it turns out that bootstrap
works in cases where the usual asymptotic approach fails.

1. Introduction. The classical approach of asymptotic statistics is to embed
the model being studied in a sequence of models by letting the number n of
observations grow to infinity and rescaling the parameters. But there exist
examples where this approach is misleading, because features of the model which
are important in the finite sample case are lost asymptotically. For instance, for
linear models with many parameters Huber (1981) proposes an asymptotic
approach where the dimension of the linear model grows with n to infinity. In
this article we continue the study of M-estimates in linear models with increas-
ing dimension. But the emphasis will lie on cases where dimension asymptotics
leads to other results than the classical approach where the dimension is fixed.

Another example is the leakage effect in time-series analysis which occurs if
there is a strong peak in the spectrum of a stationary process. Then data
tapering leads to an essential improvement of parametric and nonparametric
estimates of the spectral density, as can be seen in simulation studies, but only
an asymptotic approach which adjusts the model for each n, making the peak
ever stronger, so that its influence is felt asymptotically, can explain the
advantages of data tapers [Dahlhaus (1988)]. Other examples are provided by
sparse contingency tables. Standard asymptotics do not take into account the
sparsity of the table and may therefore lead to inaccurate approximations.
Koehler (1986) proposes another approach to the asymptotics of goodness-of-fit
statistics testing the overall fit of a log-linear model. This approach is based on
an increasing number of categories and leads to approximations which are more
accurate for sparse tables, as can be seen in simulation studies. Ehm (1986),
generalising results of Haberman (1977a, 1977b), has used a dimension-asymp-
totics approach to study the behaviour of ML-estimates of log-linear models in
sparse and unbalanced tables. Especially he has developed quantities which
indicate the accuracy of the usual Gaussian approximation. For log-linear models
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with closed form ML-estimates Sauermann (1986) shows the superiority of the
parametric bootstrap over Gaussian approximations in the case of sparse tables.
This is done using dimension asymptotics combined with extensive Monte Carlo
simulations. For arbitrary exponential families with increasing number of param-
eters the asymptotic behaviour of the ML-estimate and of the likelihood ratio
test has been studied by Portnoy (1988).

An alternative approach in classical asymptotics is higher-order Edgeworth
expansions. But in the examples cited above this approach seems to be of a
limited value. This is connected with the empirical fact that Edgeworth expan-
sions usually produce significant improvements only when the Gaussian approxi-
mation is not too inaccurate. And clearly the assumptions necessary for Edge-
worth expansions are stronger than those for Gaussian approximations. Thus it
seems more promising to weaken the assumptions of the classical asymptotic
approach in such a way that more features of the finite sample model become
asymptotically relevant.

For each n we consider the linear model

(1.1) Y.=X/B+¢, i=1,...,n,
where the X,’s and B are p-dimensional vectors, the Y,’s are the observations
and the ¢,’s are i.i.d. errors distributed according to a distribution F. The X;’s

and p may depend on n.
An M-estimator B or (8, 6) is defined by

(1.2) ZXHP(YL' - Xi',é) =0
or by

(13) Ex4((Y; - x/8)/6) = o,
(1.4) Yx((Y; - X:8)/8) = o,

where ¢, x: R — R are given functions. For a discussion of robustness properties
of M-estimates in linear models we refer to Hampel, Ronchetti, Rousseeuw and
Stahel (1986). But especially it should be remarked that several proposed
estimates with high breakdown points are M-estimates with redescending -
function where the solution of (1.2) or (1.3) and (1.4) is chosen properly [see
Rousseeuw and Yohai (1984) and Yohai (1987)].

A overview of articles connected with the asymptotics of M-estimators in
linear models with increasing dimension is contained in Portnoy (1984). The
most general result is stated in Portnoy (1985). He assumes that the dimension p
grows with n in such a way that

(1.5) p*2(logn)*?/n >0 asn— .

Then, under some technical conditions on ¢ and complicated assumptions about
the design, it is shown that certain linear contrasts are approximately Gaussian.
The conditions on the design are not fulfilled by ANOVA designs. For instance, if
the X, are i.i.d. random variables the conditions hold in probability under strong
assumptions on the tails of the distribution of the X.

The aim of this article is not to show only that classical results for M-esti-
mates (for instance asymptotic normality) hold under weaker conditions. Rather
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we will give a stochastic approximation of the M-estimate which in general is
different from the (first- and) higher-order stochastic expansions for fixed dimen-
sion. Our expansion for the M-estimate holds uniformly and essentially under
the condition that

(1.6) kn'/3(log n)*? > 0,

where k is the maximal diagonal element of the hat matrix

n -1
K= sup XL-’( Y X,Xl’) X,
=1

1<i<n
(1.7) ) e g2
= sup (ZX,X,’) X,
l<i<nll\i=1

(see Theorems 1 and 2). For the stochastic expansion of the M-estimate no
further assumptions on the design are needed. The conditions used are weaker
than in Portnoy (1985). There the conditions imply in particular that the design
is balanced in a complicated sense and that k = O( p/n). Then (1.6) follows from
(L5).

The stochastic expansion of the M-estimate will be used to show the consis-
tency of the bootstrap estimate of the distribution of the M-estimate and its
linear contrasts (see Theorem 5). This is an improvement of a result of Shorack
(1982). In particular, the bootstrap works in cases where the usual asymptotic
approach fails. As can be seen by the stochastic expansion the M-estimate has
bias whose euclidean norm can be of order \/ﬁ (= p/ Vn in the balanced case)
which may tend to c under (1.6). Every linear contrast of the M-estimate is
asymptotically Gaussian but biased by the projection of this bias (see Theorem
4). In Theorem 3 a criterion is given which indicates when the bias vanishes
asymptoticially.

We expect that, under weaker conditions of the type kn%log n)? — 0, stochas-
tic expansions of the M-estimate are possible along the lines of this article if the
bias is of smaller order than /kp. a could then be chosen the nearer to 0 the
smaller the order of the bias is. Such a result would have similar consequences
for the bootstrap and the asymptotic distribution of linear contrasts as above.
But the proof would be very tedious.

2. Results. First we state our main result, the stochastic expansion for the
M-estimate.

Let Y,=X/B+¢, i=1,...,n, where BER? and ¢;, i=
1,..., n, areii.d. according to a distribution F. Let y: R — R
be a bounded function with three bounded derivatives fulfill-

(2.1) ing EY(e) =0 and d = Ey’(¢;) > 0. Assume n — oo and
kn'/%(log n)**® - 0. k is the maximal diagonal element of the
hat matrix [see (1.7)]. ¥ and p and X,, i=1,..., n, may
depend on n.
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THEOREM 1. Assume (2.1). Then there exists a solution B of
ZXi"P(Yi - Xi/:B) =0
such that for § = (£, X,X/)/%( B — B) the following expansion holds:
(2.2) 16 — 6l = 0p(1),

where

n
23) 6,=A"Y,—A"BA Y, + 1A' Y X(X/A7,) v (e, — Xia) + a,
1 0 2
: i=1

ey
1

n -1/2
) (ZX,X;) X, i=1,...,n,
=1

(2.4) b, = f Xy(e; — Xta),

1
=
By
:>§:z
b=
<
Nl
>
s

(25) A

(26) B= f XX/ (' (e, — X/a) — Ey'(e, — Xla)).

Furthermore, for a fixed constant C the constant a (the asympftotic bias) is a
solution of

(2.7) lall < CYxp,
(2.8) Ef, = a.

If ¢ is monotone the equality (1.2) has a unique solution. Otherwise B is
uniquely defined on {b: max, _,_,|X/b — X/B| < 8} with probability tending to 1
for 8 small enough.

To prove Theorem 1, we will show that |[£X,y(e;, — X/ él)|| is small. Then the
Newton-Kantorowitsch theorem implies that there exists a solution of (1.2) in
the neighborhood of 0 The main idea of the proof is to use only properties of 0
and not of . The proofs of Theorem 1 and of the following theorems are given in
the next section.

For p fixed, and x —» 0, § is asymptotically distributed according to
N, EY*(¢;)/(EY'(¢,))’L,). The normalisation by (7., X,X/)'/? corresponds to
the classical vn -normahzatlon Only in the case a = 0 does the stochastic
expansion (2.3) coincide with the usual higher-order expansion for fixed dimen-
sion p. But under the assumptions of the theorem it may occur that ||a| — .
In (2.3) the norm of the first term is of order ‘/1—) and the norm of the second and
the third term is of order \/E .
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As in Huber (1981) and Portnoy (1985) the technical differentiability condi-
tions assumed are not fulfilled by some commonly used y-functions. Such
smoothness conditions are necessary for a treatment of M-estimates which is
based on a stochastic expansion. As indicated by Portnoy (1985) an alternative
approach may be based on a study of the joint density of the M-estimate. Then
the conditions on ¢ could be relaxed by assuming smoothness of the density of
the g;’s.

A theorem analogous to Theorem 1 can be formulated for the case where the
scale is estimated simultaneously. Before doing this we state some regularity
conditions on x.

Let x: R » R be a bounded function with three bounded
derivatives satisfying Ex(e;) = 0. Furthermore, x*x®(x) and
x*®(x) are bounded for k<3 and Ey'(¢e)e,Ex/(¢,) <
EY'(,)EX'(¢)e;.

THEOREM 2. Assume (2.1) and (2.9). Then there exists a solution (f,6) of
EXﬂP((Yi - Xi/:B)/O) =0,
2x((Y,— X/B)/o) =0

such that for § = (L7 X, X/)/%(8 — B) and § = n*/%é — 1) the following ex-
pansions hold:

(2.9)

(2.10) 16 — 6,11 = op(1),
(2.11) 19 = 1l = 0p(1),
where

(2.12) o 5 i e — X'G _
i o] B )5 (2
X, is defined as in Theorem 1. The vector zz) and the (p+1)X(p+1)
matrices A and B are defined as H(‘;), EH’(‘C’) and H’(‘;) - EH’(‘j), where the
random function H is given by
g, — X/0
e

] “ X
(2.13) H( 7) = El (n_l/zx
The p X p matrix A is generated from A ' by removing the last row and the last
column. Furthermore, for a fixed constant C the constant (@, c) (the asymptotic
bias) is a solution of

(2.14) “ )H < C/wp,

0~1 _[(a
(2.15) E(? ) - (c)
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(8, 6) is uniquely defined on {(b,s): max,_,_,|X/b— X/B| <8, |s — 1| < &)
with probability tending to 1 for 8§ small enough.

The solution of (1.2) [or (1.3) and (1.4)] may not be unique (for instance if ¢ is
redescending). Then according to Theorem 1 (or 2) there exists asymptotically
only one solution which is consistent in the sense that max, _;_,|X/B| tends to 0
(and 6 tends to 1). For this solution the expansion (2.2) [or (2.10) and (2.11)]
holds. To apply Theorems 1 and 2 to the high breakdown point procedures of
Rousseeuw and Yohai (1984) and Yohai (1987), it remains to prove consistency of
these estimators.

It is possible to give an explicit asymptotic expression for the bias a. Instead
of this we state only a criterion which indicates when the bias vanishes asymp-
totically.

THEOREM 3. Assume (2.1) and [T, X, X,%l = o(1). Then |la|l = o(1),
where X is defined as in Theorem 1. Assume additionally (2.9). Then |(&, c)|| =
o(1), if [In~ 2L X\l = o(1).

An example where the bias a is zero is given in the symmetric situation, where
¢ is an odd function (and x is symmetric) and the ¢’s have a symmetric
distribution. But Theorem 3 shows that there exist also many asymmetric
examples where the bias vanishes (at least asymptotically). In particular, Theo-
rem 3 can be applied to the case of a random design.

Theorems 1 and 2 can be applied to prove asymptotic normality for linear
contrasts.

THEOREM 4. Assume (2.1). Then for a, € R? with bounded |«
(2.16) do(L(e;6), N((e0), llanl"EY(e,)/E* (:))) = 0.
Assume additionally (2.9). Then

217) d2($(a,:0)’N((a;&),(an o)z(a; 0),)) S

3 c o 1/)7lo 1
where 3 = (EH'(0))"‘EH(0)H(0Y(EH'(0)) ! and where for two probability mea-
sures ., v the quantity d,(p, v) denotes the modification of the Mallows distance,

nll

dy(p, ») = inf{(E(IU - VI A 1) 2(U) = p, 2(V) = »).

Another possible application of Theorems 1 and 2 is the study of bootstrap.
To estimate the distribution of A, the bootstrap proceeds as follows. Define the
residuals &, := Y, — X/8, i=1,..., n, and let F, denote the empirical distribu-
tion function of the . Now generate n ii.d. observation ef,..., ¢y distributed
according to F,. Define Y;* = X,-’,é +¢e*, i=1,...,n,and B* as the (“consistent”)

i
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solution of
> X(w(¥ - xif%) - [var,) -0
i=1

By Monte Carlo replications of this procedure the distribution of ,@ * - ,@ (given
F,) can be determined. This is the bootstrap estimate of the distribution of
B — B. Similarly a bootstrap estimate of the distribution of (8 — 8,6 — o) can
be defined. It has been proved by Shorack (1982) that the bootstrap estimates
the distribution of linear contrasts consistently if kp? — 0 (i.e., in the balanced
case: p>/n — 0). The special case of the least-squares estimate (i.e., Y = id) has
been considered by Bickel and Freedman (1983). They show that the bootstrap
estimate is consistent in estimating the distribution of § — 8 if p?/n — 0 and in
estimating the distribution of linear contrasts of § — 8 if p/n — 0. We state
now a generalisation of Shorack’s result. Put §* = (£, X, X/)/% 8* — B) and
define §* and ¥* analogously.

THEOREM 5. Assume (2.1). Then for a,, € R? with ||a,|| bounded
(2.18) dy(ayf, a/6*) - 0 in probability,
(2.19) d,(6,6%) - 0 in probability, if additionally p*/n — 0.
Assume additionally (2.9). Then
(2.20) dy((as8, %), (a,8*,9%)) > 0 in probability,
(2.21) d,((4,9),(8*,9*)) = 0 in probability, if additionally p*/n — 0.

Here for two random variables X,Y the quantity d,(X,Y) denotes the modified
Mallows distance between the distributions of X and Y, respectively (see Theo-
rem 4),

do( X, Y) = dy( £(X), 2(Y)).

In particular Theorem 5 indicates that bootstrap works in cases where the
usual asymptotic approach fails. The bootstrap estimates the bias of a linear
contrast consistently—also in cases where the bias tends to co. If design points
are leverage points it can happen that p%/n — 0 but that kp does not converge
to 0. Then the distribution of § cannotbe approximated by a Gaussian distribu-
tion (measured by the Mallows distance d,). But nevertheless the bootstrap
estimate of the distribution of § is consistent. The proof of Theorem 5 is based
on the fact that a stochastic expansion analogous to (2.3) also holds for 6*. A
similar approach has been used by Sauermann (1986) in the case of large sparse
contingency tables. Also there the bootstrap estimates not only the distribution
of the first-order linear term of the stochastic expansion of an estimator but also
the distribution of the higher-order terms. This phenomenon has also been
recognized in studies of the bootstrap which are based on higher-order Edge-
worth expansions [see, for instance, Beran (1984)].
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3. Proofs.

ProoF oF THEOREM 1. Without loss of generality we assume

(3.1) Y XX/ = I,

i=1
Then X; = X,, i =1,...,n,and « = sup, _,_ || X,| [see (1.7)] and £ || X,||% =
p. First, using Brouwer S ﬁxed point theorem [Dunford and Schwartz (1958)], we
determine the order of the bias term a.

LemMaA 1. Assume (2.1) and (3.1). Then for C large enough there exists for
every n a solution a of (2.7) and (2.8): ||la|| < Cykp, Eb, = a.

PrOOF. Define f: R” — R” exactly as E(A(f, — a)) [see (2.3)-(2.6)], but as
a function of a. Then

f(b) = ¥ XEu(e, — X/b)

i=1

- ¥ X X/A(5) ' X,) (B (e, — X/b)/ (e, — X/b)
(3.2) =l
—Ey(e; — X/b)EY'(e; — X/b)}
+3 X Xi(Xi'A(b)_1X1)(Xi'A(b)_1Xk)
ik, I=1
XEY(e,— X/b)y (e, — Xib)y"(e; — X{b),

where A(b) :== L X, X/EY'(e; — X/b). Put g(b):= (1/d)f(b) + b. Then
f(a) = 0 and g(a) = a.

We will show, that—if C is chosen large enough—for all n the inequality
I6]| < Cyxp implies ||g(d)|| < C\/;c; Then with Brouwer’s fixed-point theorem
the statement of the lemma will follow.

Now assume

(3.3) 18]l < Cykp .
Then for § with ||0|| < 1 [note 3.1)]

Zoxmp (e, — X/b) + 6'b

< const. Z 1X/0|(X/b)*

(3.4) i=1
< const. sup |X/0] Y (X/b)*
l<i<n i=1

< const. \/Exp = o(‘/:cp ),
where we have used boundedness of ¥ and yx?p < Vk®n = o(1).
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Furthermore, using (3.3) by tedious but straightforward calculations, it
can be shown that the second and third terms in (3.2) are of the
form const. X7, X,||A(b)"/2X,|? + e, and const. L, X;||A(b) 1 X||® + ey,
respectively, where |e || = o(\/a) and ||ey|l = O(M). Now ||g(b)| <
const. /kp is implied by

(3.5) 2. X,|DX,|*

i=1

where D = A(b)"Y20r A(b)"L. O

< const. M ,

The proof of the expansion (2.2) is based on an application of a
Newton-Kantorowitsch theorem. We cite a version which will be used here
[Kantorowitsch and Akilow (1964)].

THEOREM (Newton-Kantorowitsch theorem). Assume that a function G:
RP — R? has two continuous derivatives for |x — x| < r. Furthermore, as-
sume

(3.6) T = (G'(x,)) " exists,

(3.7) ITG (x0)Il < m,

(3.8) ITG"(x)|| <X for ||x — xo|| < T,

(3.9) h=M<1/2,
1-V1-2h

(3.10) To= ——————m<r.

Then the equation G(x) = 0 has a solution x* with

llx* — x|l < 15.

We will prove (3.6)~(3.8) for 1 = Op(xn'/*(log n)*’?) and A = 6},(\/;) and x, =
6,. Then (3.9) and (3.10) follow automatically with r, = Op(xn'/?(log n)*/?). This
proves (2.2).

This theorem will be applied as follows. We set G(8) = LI, X;y(¢; — X/0).

1. STEP: PROOF OF (3.6). We apply the following two lemmas.

LEMMA 2. Assume (2.1) and (3.1). Then
(3.11) sup |X;(6, — a)| = Op(Vi /logn).

1<isn
LEMMA 3. Assume (2.1) and (3.1). Then
(3.12) ”ZXiXi,("V(ei) - d) “ = op(1).
APPLICATION OF LEMMAS 2 AND 3. For (3.6) it suffices to prove
1G"(8,) — dI,Il = 0p(1).



DIMENSION ASYMPTOTICS 391

But this can be seen as follows:

IG'(6,) — dL|| = sup
19N<1

f (X/0)*(v'(e; — X/6,) - d)l

i=1

i (X/0)*(w'(e;) — d)l

i=1

< sup
en<1

S (x:0)%(X/6,)

i=1

+const. sup
len<1

= 0p(1) + const. sup |X/6,|.

l<i<n

This is of order op(1) according to Lemmas 1 and 2.

Proor or LEMMA 2. The proof of (3.11) is divided into three steps. We will
show

(3.13) sup | X/(A~Y(d, - E6,))| = Op(vk {logn),

l<i<n
(3.14) sup |X/(A7'BA~Y, - E(A'BA™,))| = op(vk),
1<i<n
sup X/ ) XJ(X/A_IHAO)2\P”(£1 - X/a)
l<i<n =1

(3.15)
_E(XI(XZ'A_Ivo)zilJ"(ez - X,’a))’ = op(Vk ).

ProoOF OF (3.13) [Compare Lemma 3.3 in Portnoy (1985)]. Put X, := A~X,
and d; = EY(¢; — X/a). Then for 1 <i < n for C = 0 and for ¢ with ¢ small
enough

P(XiA‘l( 9, — Ey) > CVx y/logn)
< Eexp(t Y XX, (v(e— X/a) - d);) — tC\/E,/logn)

1
1

IA A

l<n
J=p

A A

l1<l<n

IA

< exp( - tC\/p?,/log n)
\

(Here it has been used that ¢ is bounded and that |tX;X,| < |tx|const. is small
enough.)

2
P
1+ const.t2( Y X”-XU)
j=1

< exp(const. t% — tCVk {logn )
[because of £} (X/X,;)? = || X,||? < const.|| X,||®> < const. k]
= exp(log n(const.— C)),
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if ¢ is chosen as ¢ = ylogn / vk . Here const. does not depend on C or i. This
proves (3.13). O

Proor oF (3.14). Instead of (3.14) we show

(3.16) sup Y ay(V;W,— EV,W,)| = Op(x log n),
l<i<sn'l<k,l<n

(3.17) - sup Y aiL,V.Ey(g— X,’a)’ = OP(\/x3p ,/logn),
l<i<sn'l<k,l<n

where

(3.18) ah, = (X/A7X, ) (X{ATX)),

(3.19) Vi =1y'(e, — X{a) — EY'(e, — X[a),

(3.20) W, =4(e, - X/a) — Ey(¢g,— X/a).

Clearly, (3.14) is implied by (3.16) and (3.17). The terms in (3.14) are just the sum
of the terms in (3.16) and (3.17).

The proof of (3.17) goes along the same lines as the proof of (3.13). Addition-
ally one has to check that

n n 2
(3.21) sup Y| X akEv(e,~ X/a)| = O(x’p).
1<i<n k=1 \[=1

The proof of (3.16) can also be based on an application of the Markov inequality
[as can the proofs of (3.13) and (3.17)]. But here the difficulty arises that one has
to bound the Laplace transform of a quadratic form in independent variables. To
do this we expand the Laplace transform in a series and use the following bound
for the moments of a quadratic form.

LEMMA 4. Assume that V,,...,V,,W,,...,W, are independent variables

with mean value 0. Then for Z = L7 j:Iai VW, for k > 2
n k/2
(3.92)  E|Z - E(Z)* < 2%C(k)[C2k) | ¥ a%(EVZA)/*(EW2)"| |
, i, j=1

where C(k) = (2¥%/ Vo[ (k + 1)/2).

Lemma 4 is a slight modification of a result of Whittle (1960). The proof is
essentially the same. Before applying (3.22) observe that (EV?2*¥)/* and
(EW?k)!/% are bounded (say by b,) because ¢ and y’ are assumed to be
bounded. Furthermore, for a constant b, one gets with Stirling’s formula

(3.23) %—— ,c:(z@ < bk,
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Finally, for a constant b,,

n

T (a,)’ = lz (XA7'X, ) ( X{A-'K,)’

k,1=1 k=1
(3.24) < const.k Y, (X,.’A_le)2
k=1
< b,k

Now, applying (3.22) for Z = Z* = ¥} ,_,a},V,W, for xt small enough, one gets

Eexp(t(Z' - E(Z')) <1+ ¥ 23k;—l:C(k)\/C(2k) bE(byx?) ™
k=2 :

3.25

(3:25) <1+ Y (2%,bbY2)" (kt)*
k=2

< 1 + const. k22

Now proceeding similarly as in the proof of (3.13) proves (3.16). O

Proor or (3.15). To finish the proof of Lemma 2, we have to show (3.15).
This can be done by first noting that

(3.26) E|D - E(D) - (D - ED)||* = 04(1),
where D is the third term of the expansion of §, that is,

- = ~145\2 172 ’
D=A"" ) Xk(Xk'A 1‘90) V(e — X{a)
k=1

and D is the quadratic form
D= ¥ ATX(X[ATX)(X;ATX,)E(" (s ~ X{a))WW,,
ke ltm(£k)

[W, is defined in (3.20)]. (3.26) implies that for the proof of (3.15) one can treat
the quadratic form X;D instead of the cubic form X/D. But this can be done as
in the proof of (3.14). The proof of (3.26) is straightforward but lengthy and
consists essentially only of applications of the Cauchy-Schwarz inequality. O

PROOF OF LEMMA 3. We want to show that

(3.27) IBI* = Appex = 0p(1),
where A, is the maximal eigenvalue of B? and the random matrix B is defined
by
B= ) XX/ (v'(e) - d).
i=1

If 7, is the (random) normed eigenvector of B to the eigenvalue YA max » then one

has A, =|B7)% The idea of this proof is based on an approximation
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procedure of 7,. Define e == || BBT||2 = T'B*T, where T is a Gaussian random
variable distributed according to N(0, I,/p) and independent of B.
Now

e | BIT'™)" = Moo T'm)".
Therefore
Npax < e/(T,Tl) = Op(p)e.
Furthermore, the proof of (3.27) is finished by

(3.28) e = Op(x2+ {x%/p).

The proof of (3.28) is straightforward but very lengthy (e is a form of order 6 in
independently but not identically distributed variables). O

We continue with the second condition (3.7) of the Newton-Kantorowitsch
theorem.

2. STEP: PROOF OF (3.7). (3.7) follows from Lemma 5.

LEMMA 5. Assume (2.1) and (3.1). Then
1G(8)1 =) X Xub (e~ X06))

=0 (xn1/3(10g n)*?).

Proor. A Taylor expansion gives

n

(3.29) G(4,) = Z X(e;— X/6) =T + T, + T,

with

T, = ix¢(e - X/a) - ZXX(a - a)y'(e — X/a),

i=1

i=1
T,=1Y X,(x/(6, - a)) y"(e; — X/a),
i=1

T,=—% Z Xi(Xi'(él - a))B‘PW(Ei),

where £; lies between ¢; and ¢, — X/a. First we treat T).
With

U= Y X(X/A7 %) (e, - X/a),

i=1
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we get [see (2.3)-(2.6)]
T, +1U=6,-(A+B)(A % - ABA Y, + JA"'U) + 1U

(3.30)
=8 +8S,,
where S, := BA 'BA', and S, := — 1BA~'U. By straightforward calculations
one gets
(3.31) ISl = Op(x*2Vn),
(3.32) IS2l = Op(x*2 V).

For T, one gets

(833) T,-3U=3 i Xy (e — Xi’a)((Xi,(oAl - a))2 - (Xi'A_léo)Z)’
i=1

n
IT, — ;Ull = sup 3 Z (Xi’a)lp"(si - Xi,a)(Xi’(oAl -—a- A_loo))

191<1 i=1

x(X/(6, - a + A74,))

< const. sup 1/ Y. (X/0)* Y (Xi'(ﬂAl -a- A‘IBAO))2
i=1

(3.34) wi<t ¥ is1
X sup |X{(§l —a+A74,)|
l<i<n
= const.||0A1 -—a- A‘1§0|| sup ‘Xi’(él -—a+ A‘IOAO)I

1<i<n

= OP(szn \/E‘/log n )
because of Lemma 2 and (3.1) and
16, — @ — A7l = Op(Ve*n).

This can be proved by straightforward calculations.
Finally, we give a bound for ||T}||,

Tyl = sup 2 Y (X/0)(X:(6, - a))’v” (&)

nen<1 i=1

sup const. ; X/9)* ; X/(6, - a °
(3.35) 18l1<1 i=1( ) i§1( (4, ))

o ( (v yiogn)) )

= Op(y/p x(log n)),
where Lemma 2 and llél —al| = OP(,/]—) ) have been used.

IA

IA
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Now combining (3.30)—(3.35), one gets
ITy + Ty + Tl < ISill + 11Sell + 1T, — U + 1Tl

= Op(m‘/log n) + Op(yp x(log n))
= Op(kn*(log)**)

because of \/p = o(n'/?/(log n)'/?), which is implied by

%(log n)*? < kn'/3(log n)*? - 0. ]

For the proof of Theorem 1 it remains to prove (3.8).
3. STEP: PROOF OF (3.8).
LEMMA 6. Assume (2.1) and (3.1). Then ||G"(8)|| = Op(¥x).

Proor.

IG"(8)|| = sup Z (Xi,Tl)(Xi,Tz)(Xi’7'3)4"”(£i - Xi'o)
Imll<1 i=1
[Imll<1
limll<1

< const. sup )y (Xi'71)2(Xi""2)2 Y (X{m)?
i=1

Toy T3 i=1

< const. sup sup |X/m| = O(V«). O

Inll<l 1<i<n
Proor oF THEOREM 2. The proof goes along the lines of the ‘pqOOf of
Theorem 1. The Newton-Kantorowitsch theorem has to be applied to the
function H(6,y). O

Proor oF THEOREM 3. Put for a constant C,

C,=C

Y XIX)2
i=1

Define f and g as in Lemma 1. Then one can show that if C is chosen large
enough

I8l < C, implies |lg(d)|| < C,.

Therefore the first statement of Theorem 3 follows from Brouwer’s fixed-point
theorem. The second statement follows similarly. O
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ProorF oF THEOREM 4. We will indicate only the proof of (2.16). Assume
lae,)l = 1. According to Theorem 1, it suffices to show

(3.36) da,A"Y(6, - Eb,) — a,(§, — EB,) = 0p(1),
(3.37) a,A"'BA Y, — Ea,A"'BA ', = 0,(1),

a,A” Y Xi(Xi'A_léo)2¢//(8i - X/a)
i=1

(3.38) n
~EajA7' ) Xi(Xi,A_léO)2¢,/(£i - X/a) = op(1).
i=1
(3.36) follows from ||A — dI|| = o(1).
The proof of (3.37) and (3.38) is straightforward, but lengthy. One has to

calculate the variance of the left-hand side terms. For the treatment of (3.38)
(3.26) can be used. O

Proor or THEOREM 5. We will give only the proof of (2.18) and (2.19).
Without loss of generality assume (3.1). Note that with probability tending to 1
given F, (the distribution of the residuals) the following holds, as can be proved
along the lines of the proof of Theorem 1:

(3.39) 16* — 6| = o, (1),
where

jr = A~y — ABAy
3.40 n s A
(3.40) +1A7T Y X(X,AGx) " (ex — X/6) + 6.

i=1
Furthermore,
n

Ga)  hr=TX (¢(e - X10) - [vdF,),
(3.42) = Z X/Ep¥' (e} — X/d),
(3.43) - Z X/ (y'(ex — X/8) — Epy'(er — X/6))

and @ is chosen such that

léll < CYkp and Eg6* = a.

PROOF OF (2.18). With the arguments given in the proof of Theorem 4 one

sees that for (2.18) it suffices to show
p2
(3.44) 16 ~ all = Op| Vi |/ —

= 0p(1).
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To prove (3.44), one shows

(3.45) 17(8) - f(a) = O(I\/;’;

(3.46) (&) — dIl| = o(1)
uniformly in ||b|| < const. \/G (f is defined in Lemma 1). O

b

ProoOF OF (2.19). To prove (2.19), we will show that the Mallows distance
between the distributions of the corresponding terms in (3.40) and (2.3), respec-
tively, converges in probability to 0.

Assume R,,..., R, areii.d. according to F and R},..., R} are i.i.d. accord-
ing to F,, with

8:=E(R,~ RY)" = d(F, F,) > d}(F, F,),
where d, denotes the Mallows distance,
dy(p,v) = int{(E|U - V|?)"*: 2(U) =, 2(V) = »).
Then given F, [see Bickel and Freedman (1981)]
d3(6, - E6,, by — E. 67
< ¥ IXIPE(4(R, - X{a) - Ey(R; - X/a) - (R} - X(d)
i=1

(3.47) +Ey(RF — X/4))°
< const. Y ||Xi||2(8 + (X/(a - d))z)
i=1
< const.( pd + «lla — 4||?).

With similar arguments for the other terms one gets finally

(3.48) 46— B, 0 = By f) ,
< const.(pd + «lla — 41>+ |A™ = A7Y%p + ||la — 4|?).

Now because of (3.44) the second and the fourth terms converge to 0
in probability. The convergence of the first term follows by the assumption
p%/n - 0 and

(3.49) 8 = Ox(p/n).
To prove (3.49), note that
(3.50) 8 = dj(F,F,) < 2d%(F, F,) + 2d3(F,, F,),
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where F, denotes the empirical distribution of €., &,, and

(3.51) di(F,, F,) <

S|~

n 2 1 .
Y (X/6)" = 161> = O(p/n).
i=1

It remains to bound the third term in (3.48). This can be done by
AT — A2 < A4 -4 - A)2

< op(l)( sup Y (X/0)’(ER, - R¥| +|X/(a - &)|)"
10ll<1 i=1
< 0p(1)(8 + lla — 4||?)
2
o2,
n

where in the last step (3.44) and (3.49) have been used. O

p
= OP(;) + OP
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