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Abstract. We consider boundary value problems for elliptic systems in a domain complementary
to a smooth surfaceM with boundaryE . The same boundary conditions are prescribed on both
sides of the surfaceM . The most important model behind this investigation is the crack problem
in three-dimensional linear elasticity (either isotropic or anisotropic): there the boundary conditions
are Neumann, i.e. tractions are prescribed on both faces of the crack surfaceM . We prove that the
singular functions appearing in the expansion of the solution along the crack edgeE all have the
form r

1
2
+kψ(θ) in local polar coordinates(r, θ) : the logarithmic shadow terms predicted by the

general theory do not appear. Moreover, we obtain that, for a smooth right hand side, the jump of the
displacement across the crack surface is the product ofr

1
2 with a smooth vector function onM .

We present two different, but complementing, approaches leading to these results, and providing
distinct generalizations. The first one is based on a Wiener-Hopf factorization of the pseudodifferen-
tial symbol on the surfaceM obtained after reduction of the boundary value problem. The condition
on the symbol which yields the absence of logarithmic terms into the solution of the boundary pseu-
dodifferential equation is a variant of the transmission condition. The asymptotics of the solution in
the full space is then deduced by a representation formula from the asymptotics of the solution onM .
The second approach concerns directly the boundary value problem and is based on a closer look at
the Mellin symbol at each point of the crack edgeE . The Mellin symbol is proved to act between
special subspaces of angular functions and the absence of logarithmic terms is the consequence of a
series of compatibility conditions, valid for any Agmon–Douglis–Nirenberg system.
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Part A. Scope and principal results

A.1 THE CRACK DOMAIN AND THE BOUNDARY VALUE PROBLEM

Let M be a boundedC∞ orientable surface of codimension1 in R
n+1 . We assume

thatM is a manifold withC∞ boundaryE . We consider boundary value problems set in
the domain

Ω := R
n+1 \M .

For the equations oflinear elasticity(Lamé or, more generally, anisotropic material law),
the solutions of such boundary value problems yield the stresses in the domainΩ aroundM
which represents acrackwith front E . For the equations ofelectromagnetism(Helmholtz
or Maxwell), the solutions represent the diffracted field around thescreenM .

We are going to set our problem and describe our results in a framework including such
problems, which is also covered by the hypotheses of our two methods.

We denote byx = (x1, . . . , xn+1) cartesian coordinates inRn+1 and by∂α
x the partial

derivative∂α1
1 . . . ∂

αn+1

n+1 . Let b be a homogeneous integrodifferential form of degree1 with
constant coefficients acting onN component vectorsu , v ∈ H1(Ω)N

b(u, v) =
N∑

j=1

N∑
k=1

∑
|α|,|β|=1

∫
Ω

aαβ
jk ∂α

xuj ∂β
xvk dx.

Here u = (u1, . . . , uN) , v = (v1, . . . , vN) and the coefficientsaα,β
j,k are constant. We

assume that the formb is coercive onH1(Ω)N , i.e. that for some constantsc , C > 0 there
holds

(HA1) ∀u ∈ H1(Ω)N , Re b(u, u) + C‖u‖2

L2(Ω)
≥ c‖u‖2

H1(Ω)
.

Moreover, we suppose thatb is symmetric onH1(Ω)N :

(HA2) ∀u, v ∈ H1(Ω)N , b(u, v) = b(v, u).

The partial differential operator associated with the bilinear formb is

L = (Ljk)j,k
with Ljk = −

∑
|α|,|β|=1

∂β
x aαβ

jk ∂α
x.

Hypotheses(HA1) and (HA2) are satisfied for the Laplace equation (N = 1 ), for the
equations of general elasticity, including the anisotropic case, (N is equal to the dimension
of the space) and for equations of thermoelasticity and electroelasticity (N is the dimension
of the space plus1 ).
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4 PART A. SCOPE AND PRINCIPAL RESULTS

SinceM is orientable, we can define a smooth unit normal vector fieldn on M ,
which is unique if we choose the direction of the normal at some fixed point. After fixing
the field n we can fix the tracesγ−+ , taking γ+ opposite to the direction ofn (i.e. from
“above” if we considern as pointing upward) and takingγ− in the direction ofn (i.e.
from “below”).

The Neumann operatorT associated withb and the normal fieldn is defined as

T = (Tjk)j,k
with Tjk =

∑
|α|,|β|=1

nβ aαβ
jk ∂α

x , nβ = nβ1

1 . . . n
βn+1

n+1 .

Let B denote either the identity (which will be associated with the Dirichlet operator)
or the Neumann operatorT on M . We consider solutionsu ∈ H1(Ω)N of the problem{

Lu = f in Ω
γ−+Bu = 0 on M ,

(A.1.1)

with, possibly, conditions at infinity (note that we may relax the conditionu ∈ H1(Ω)N into
u ∈ H1(Ω ∩ BR)N for any R > 0 , with BR the ball of center0 and radiusR ). We
assume thatf is a C∞ vector function onR

n+1 , with compact support.

A.2 STATE OF THE ART AND MOTIVATIONS

Due to the presence of the edgeE , the domain is highly non-smooth and this yields
strong singularities for the solutions of problem (A.1.1) along this edge. The general struc-
ture of these singularities is known, and addressed by many works, see [ChkDu2, CoDa1,
Da1, DuWe1, Gr1, KozMaRo1, MaPl1, MaRo1]. The generic form of these singularities is

c(X ′)

Q∑
q=0

rλ(X ′) logq r ψq(X
′, θ)

whereX ′ represents coordinates inE , and (r, θ) polar coordinates in the planes normal to
E , centered onE .

The structure ofu in a neighborhood of the boundaryE of M is very important in
applications. For example, inelasticity, it provides an essential tool for the investigation of
crack propagation in the quasi–static case. The propagation criterion is based on the stress
intensity factors (the coefficientsc(X ′) of the leading terms in asymptotics) and on the
“polarization operator” (which involves the second terms in asymptotics), see [Na1].

Thus, it is important to know that the asymptotic expansion contains neither oscillatory
terms (i.e.non real exponentsλ ) nor logarithmic terms (ie.logq r with q ≥ 1 ). Concerning
oscillations, it is known that the solution of the crack problems never oscillates provided the
crack is inside an homogeneous material, even if the material is anisotropic, see [DuWe1].
Concerning logarithms, although absence of logarithms in the leading terms was known long
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ago for isotropic materials [Gr2, NaPl1], the same was not proved for further terms, where
logarithms could appear as a shadow singularities.

The main scope of the present investigation is to establish that the structure of the solu-
tion u of the general problem (A.1.1) issimplerthan the general theory would predict. The
main result can be summarized in one sentence:

“The edge asymptotics ofu does not contain any logarithmic termlog r .”

Still in the framework of elasticity, this was observed in the case of a curved crack in the
isotropic elastic planeR2 for the second term in the asymptotics in [WeSt1, Theorem 2.4]
and in the case of a half plane crackR2

+ in the anisotropic elastic spaceR3 in [DuWe1,
Theorem 4.3]; For curved cracks the conjecture was first formulated by S.A. NAZAROV.

Moreover, it has been shown [CoDa4, DuNa1], that even in the very general framework
of Agmon–Douglis–Nirenberg systems with the same boundary conditions on both sides of
the crackM , theprincipal part of the asymptoticscontains only powers ofr with half-
integer exponents (ie.λ = 1

2
+k , k ∈ N0 ), and without anylog r term, see also [Koz1] for

scalar operators of order2m with Dirichlet condition. In this work, we prove that, in fact,
this simple structure extends to thecomplete asymptotics.

The result that the whole asymptotics does not containlog r terms is by no way obvious,
and is not an easy consequence of the simple structure of its principal part. Indeed, because
the exponents1

2
+ k of the whole asymptotics are all translated from each other by integers,

we should expectlog r terms, due to the interaction between the non-principal terms in
the operator and the principal singularities (see, for example, [KozMaRo1, Remark 10.5.1],
where this interaction is explained).

A.3 REDUCTION TO THE CRACK SURFACE AND REPRESENTATION FORMULAS

One of the essential features of our crack-type boundary value problem (A.1.1) is thatall
informationon the singular behavior ofu is contained in anN -component vector function
φ , defined on the crack surface by the jump ofu acrossM

φ = [Cu] := γ+Cu − γ−Cu

where C denotes the complementing trace ofB , i.e. the Dirichlet trace ifB is Neumann
and C = T if B is Dirichlet. Of course, the asymptotics ofu will yield the asymptotics
of φ . But even more important is thatφ can be directly obtained as the solution of a
pseudodifferential equation onM of the form

a(X , DX ) φ(X ) = g(X ), X ∈M , (A.3.1)

and analyzed in this respect. The relation between the boundary value problem (A.1.1) and
the pseudodifferential equation (A.3.1) will be fully explained in§B.2. Let us only mention
that in the case of the Dirichlet problema = V , where V := γ+V = γ−V is the trace of
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the single layer potentialV associated with the operatorL , and in the case of the Neumann
problem,a = W , whereW := γ−TD = γ+TD is the Neumann trace of the double layer
potentialD . Then u can be reconstructed by the representation formula

∀x ∈ Ω , u(x) = Nf(x) +D [u](x) − V [Tu](x) , (A.3.2)

where [u] := γ+u − γ−u and [Tu] := γ+Tu − γ−Tu denote the jumps of the functions
u(x) and Tu(x) across the surfaceM and N denotes the Newton (volume) potential.
Thus, the asymptotics ofu depends only onφ because the volume potential partNf is
smooth and[Bu] = 0 on M .

Note that the coerciveness hypothesis(HA1) ensures the Fredholm property of both
problems (A.1.1) and (A.3.1) in appropriate spaces.

Thus, two different approaches are available to us: either first study the solutionφ of
equation (A.3.1), then derive the asymptotics ofu , or first study the solutionu of problem
(A.1.1), then derive the asymptotics ofφ = [Cu] .

FIRST APPROACH. The first approach is exposed in Part B: we develop the potential
operator technique based on the Wiener–Hopf factorization, according to the three main
following steps:

St. 1 The boundary value problem (A.1.1) is reduced to a pseudodifferential equation of type
(A.3.1) on the crack surfaceM by invoking the representation of solutions (A.3.2),
see§B.2.

St. 2 Asymptotics of solutionsφ of the pseudodifferential equation on the crack surface
are found using the Wiener–Hopf factorization, see§B.3 –§B.7.

St. 3 By inserting the surface asymptotics into the representation formula (A.3.2), the full
spatial asymptotic expansion ofu is derived, see§B.8.

G. ESKIN was the first who applied the Wiener–Hopf factorization to investigations of
asymptotics, see [Es1]. The method received contributions by several authors [Be1, ChkDu1,
ChkDu2, ChkDu3, CoSt1, DuWe1, DuNa1]. In particular in [ChkDu1] necessary and suffi-
cient conditions for the absence of logarithms in the principal part of the asymptotics were
found. Here we obtain criteria for the absence of logarithms in the whole asymptotics.

SECOND APPROACH. The second approach is exposed in Part C: it relies on the classical
Mellin transform,cf [Ko1], and more recent representation formulas for the angular part of
singular functions,cf [CoDa2]. The main steps are:

St. 1 By separation of variables and Mellin transform inr , the problem is transformed into
systems of ordinary differential equations in the angular variableθ with the parame-
ters X ′ and λ , the dual variable ofr , see§C.1.

St. 2 The solutions of these systems are represented by contour integrals around the unit
circle with theCayley symbolsof the principal part of the operator, see§C.4.

St. 3 By the Cayley representation formulae, the condition of absence of logarithm is re-
duced to compatibility conditions between traces of a series of right hand sides in the
Mellin calculus, see§C.5.
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A.4 RESULTS

In order to state our results, let us introducelocal coordinatesin a neighborhood of the
edgeE which is the crack front.

Definition A.4.1 (i) Let X ′ = (X 1, . . . ,X n−1) denote local coordinates inE .
(ii) For X ′ ∈ E , let ΠX ′ denote the normal plane toE containingX ′ . We take polar

coordinates(r, θ) in ΠX ′ such thatr = 0 is the intersectionΠX ′ ∩ E , θ = −π is
ΠX ′ ∩M from below andθ = π is ΠX ′ ∩M from above.

(iii) We setX n = r cos θ and X n+1 = r sin θ . The n coordinates(X ′,X n) are local co-
ordinates inM and then+1 coordinatesX := (X ′,X n,X n+1) are local coordinates
in Ω in a neighborhood ofE .

(iv) The local cylindrical coordinates are(X ′, r, θ) and we shall use(X ′, r, 0) = X ∈M
and (X ′, 0, 0) = X

′ ∈ E .
(v) The dual variables ofX = (X ′,X n,X n+1) are denoted byξ = (ξ′, ξn, ξn+1) .

(vi) We denote byκ : X 	→ x the generic map of an atlas onM , and byJκ(X ) :=
[Dκ(X )�]−1 , the inverse of its Jacobian matrix.

From the combination of general edge asymptotics [MaPl1, MaRo1, NaPl1], [Da1,
CoDa1], and of the particular structure of the principal part for crack problems [DuWe1,
CoDa4], we may derive that there holds the following general statement, see§B.2 and C.2.

Proposition A.4.2
(i) Any solutionu of the boundary value problem(A.1.1) with a smooth right hand sidef
has the following asymptotic expansion asr → 0 : For any integerK ≥ 0

u =
N∑

j=1

c0
j(X

′) r
1
2 ψ0

j(X
′, θ) +

K∑
k=1

q(k)∑
q=0

j(k)∑
j=1

ck,q
j (X ′) r

1
2
+k logqr ψk,q

j (X ′, θ) (A.4.1)

+ ureg,K + urem,K .

The coefficientsc0
j , ck,q

j are C∞(E ) functions depending onf . The regular partureg,K

is a linear combination of terms of the formc(X ′) p(X n,X n+1) , with polynomial p and
C∞(E ) coefficientc . The remainderurem,K satisfies∂βurem,K = O(rK−|β|+1/2) as r → 0

for any multi-indexβ ∈ N
n+1
0 . The ψ0

j and ψk,q
j are N -component vector functions in

C∞([−π, π] × E ) and depend only on the domainΩ and the operators(L, B) .

(ii) Any solutionφ = [Cu] of the pseudodifferential equation(A.3.1) with a smooth right
hand sideg has the following asymptotic expansion asr → 0 : For any integerK

φ = r
ν
2 d0(X ′) +

K∑
k=1

q(k)∑
q=0

r
ν
2
+k logq r dk,q(X ′) + φrem,K . (A.4.2)

Here ν is the order of the pseudodifferential operatora . The d0 and dk,q are N -
component vector functions inC∞(E ) . The remainderφrem,K satisfies ∂βφrem,K =

O(rK−|β|+ν/2) as r → 0 for any multi-indexβ ∈ N
n+1
0 .
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Our main result in this paper is that there are no logarithmic terms at all in expansions
(A.4.1) and (A.4.2):

Theorem A.4.3
(i) Any solutionu of the boundary value problem(A.1.1) with smooth right hand sidef
has the following asymptotic expansion asr → 0 : For any integerK ≥ 0

u =
N∑

j=1

c0
j(X

′) r
1
2 ψ0

j(X
′, θ) +

K∑
k=1

j(k)∑
j=1

ck
j (X

′) r
1
2
+k ψk

j (X
′, θ) (A.4.3)

+ ureg,K + urem,K .

The scalar coefficientsck
j belong toC∞(E ) and depend onf , while the N -component

vector functionsψk
j depend only on the domainΩ and the operators(L, B) .

(ii) Any solutionφ = [Cu] of the pseudodifferential equation(A.3.1) with smooth right
hand sideg has the following asymptotic expansion asr → 0 : For any integerK ≥ 0

φ = r
ν
2 d0(X ′) +

K∑
k=1

r
ν
2
+k dk(X ′) + φrem,K . (A.4.4)

The coefficientsd0 and dk,q are N -component vector functions inC∞(E ) .

This result is proved in Parts B and C, in more general frameworks: In Part B, for a general
class of pseudo-differential equations with classical symbols satisfying a “continuity prop-
erty” which is a sort of variant of the transmission condition. In Part C, it is proved for a large
class of Agmon–Douglis–Nirenberg systems with covering boundary conditions. Moreover
both approaches allow precise representation formulas for the “angular” vector functions
ψk

j (X
′, θ) as linear combinations of simple trigonometric functions, see§B.8 and C.7.

Because of the relationφ = [Cu] betweenu and φ , it is quite simple to link the first
terms in expansions (A.4.3) and (A.4.4).

In the Neumann case,C = Id and:

d0(X ′) =
N∑

j=1

c0
j(X

′)
[
ψ0

j(X
′, θ)

]
π
,

where [ψ(θ)]
π

denotes the jumpψ(π) − ψ(−π) . In the Dirichlet case,C = T , and let
r−1T0(X

′, θ; r∂r, ∂θ) + T1(X
′)∂X ′ be the expression ofT in cylindrical coordinates. Then

there holds

d0(X ′) =
N∑

j=1

c0
j(X

′)
[
T0(X

′, θ; 1
2
, ∂θ)ψ

0
j(X

′, θ)
]
π
.

Defining s0
j(X

′) ∈ C∞(E ) ⊗ C
N by{

s0
j(X

′) =
[
ψ0

j(X
′, θ)

]
π

if C = Id,

s0
j(X

′) =
[
T0(θ,X

′; 1
2
, ∂θ)ψ

0
j(X

′, θ)
]
π

if C = T,
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we get the common relation

d0(X ′) =
N∑

j=1

c0
j(X

′) s0
j(X

′). (A.4.5)

The vectorss0
j(X

′) , j = 1, . . . , N are independent of the right hand side andform a basis
of C

N for each fixedX ′ . We will address in a forthcoming paper formulae and numerical
methods for computing the scalar coefficientsc0

j(X
′) .

Conversely, as a consequence of the representation formula (A.3.2), we obtain the in-
verse relation between the coefficients involved in (A.4.5): all coefficientsc0

j(X
′) are de-

fined as a composition of some matrices withd0(X ′) , see [ChkDu2].

A.5 M ODULAR REPRESENTATION

The asymptotics (A.4.3) and (A.4.4) give the possibility of representingu and φ as
finite linear combination of non-smooth functions with smooth coefficients: As a straight-
forward consequence of (A.4.4), we obtain the following factorization of the densityφ :

Corollary A.5.1 Any solutionφ of the boundary pseudodifferential equation(A.3.1) with
a smooth right hand sideg satisfies

r−
ν
2 φ ∈ C∞(M )N . (A.5.1)

As a further consequence of the expansion (A.4.3), we can prove that a simple splitting
of u holds in local cylindrical coordinates. For this, we first introduceU , a closed tubular
neighborhood of the edgeE where the local cartesian coordinates are well defined. We may
takeU as a set of the form

U =
{
(X ′,X n,X n+1) ; r ≤ r0, X

′ ∈ E
}
.

Then we denote byŬ its expression in local cylindrical coordinates

Ŭ =
{
(X ′, r, θ) ; 0 ≤ r ≤ r0, θ ∈ [−π, π], X ′ ∈ E

}
.

Note that we clearly distinguish the two facesθ = −π and θ = π of Ŭ .

Corollary A.5.2 Let u be any solution of the problem(A.1.1) with a smooth right hand
side f and denote by̆u its expression in local cylindrical coordinates:u(X ′,X n,X n+1) =
ŭ(X ′, r, θ) . Then ŭ admits a splitting in two parts

ŭ(X ′, r, θ) = ŭ0(X
′, r, θ) + r

1
2 ŭ1(X

′, r, θ), (A.5.2)

where ŭ0 and ŭ1 are C∞(Ŭ ) in the variablesr , θ and X
′ .
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Now, we may write (A.5.2) in local cartesian coordinates and obtain

u(X ′,X n,X n+1) = u0(X
′,X n,X n+1) + r

1
2 u1(X

′,X n,X n+1). (A.5.3)

The part u0 in (A.5.3) is in fact C∞(U ) in the coordinates(X ′,X n,X n+1) . Now we
may wonder if u1 is also aC∞(U ) function. This is not true. For example, for the
Laplace operator with Dirichlet boundary conditions we haveu1 = c1 sin 1

2
θ+c2r sin 3

2
θ+· · ·

Replacing the factorr
1
2 by another function does not help. We need to splitr1/2u1 into new

parts. Again, whenL = ∆ and n = 2 , we simply have

r
1
2 u1 = c1(ζ

1
2 − ζ̄

1
2 ) + c2(ζ

3
2 − ζ̄

3
2 ) + c3(ζ

5
2 − ζ̄

5
2 ) · · ·

with ζ = reiθ . Therefore

r
1
2 u1 = ζ

1
2 (c1 + c2ζ + c3ζ

2 + · · ·) + ζ̄
1
2 (c1 + c2ζ̄ + c3ζ̄

2 + · · ·)

which means thatr1/2u1 can be written asζ
1
2 u′

1 + ζ̄
1
2 u′

2 with C∞(U ) functions u′
1 and

u′
2 . This result extends to the wider class of problems satisfying hypotheses(HA1) and

(HA2) , provided a condition on the symbol of the interior operatorL : the symbolξ 	→ L(ξ)
of L is defined so thatL = L(Dx) , whereDx = i∂x . We require that this symbol satisfies,

(HA3) ∀X ′ ∈ E , the rootsτ ∈ C of det L
(
Jκ(X

′)(0, 1, τ)
)

= 0 are simple,

where we recall,cf Definition A.4.1, thatX ′ stands forX = (X ′, 0, 0) and (0, 1, τ) is the
value of the dual variableξ = (ξ′, ξn, ξn+1) . Note thatL

(
Jκ(X

′) ξ
)

is the principal part
of the symbol of the operatorL written in local variables(X ; ξ) .

Theorem A.5.3 If hypotheses(HA1) – (HA3) are satisfied, then there exist2N scalar
singular functionsσ� = r1/2ϕ�(X

′, θ) for + = 1, . . . , 2N , with ϕ� ∈ C∞(E × [−π, π])
such that any solutionu of the problem(A.1.1)with smooth right hand sidef can be split
as follows

u = u0 + σ1u
′
1 + · · · + σ2Nu′

2N , (A.5.4)

whereu0 , u′
1, . . . ,u

′
2N are C∞(U ) –smooth vector functions in local cartesian variables.



Part B. The Wiener–Hopf approach

In this part we investigate the asymptotics of solutions of a class of Pseudo-Differential
Equations (ΨDE) on the manifoldM ; we also study how these asymptotics are transformed
by representation formulas and how they give back asymptotics for our class of Boundary
Value Problems (BVP).

In §B.1, we fix notations for more or less classical Sobolev and Bessel potential spaces,
including anisotropic Bessel potential spaces.

In §B.2, we recall how the boundary value problem (A.1.1) with the Dirichlet or Neu-
mann boundary conditions can be reduced to theΨDE (A.3.1) on the manifoldM . The
feedback is governed by the representation formulas which reconstruct the solution of the
BVP in Ω from the solution of theΨDE onM .

In §B.3, we introduce a large class of classicalΨDE on M and recall from [ChkDu1,
Es1] the general form of asymptotics of the solutionsφ of such equations near the boundary
E of M .

In §B.4, we concentrate our attention on a sub-class of classicalΨDE where the full
symbol satisfies a special continuity condition, denoted(HB4) , with respect to the conormal
variable and state the main result of Part B: the asymptotics of the solutions do not contain
any logarithmic term (see Theorem B.4.1). We prove that theΨDE (A.3.1) obtained from
the BVP (A.1.1) belong to our sub-class ofΨDE.

In §B.5, before proving the main theorem in its full general framework, we investigate
the simpler situation ofscalar ΨDO in dimension1 . We find a necessary and sufficient
condition, denoted(HB5) for the absence of logarithms from the whole asymptotics: the
continuity condition(HB4) we exhibit in the general situation of dimensionn for systems
appears as a particular case of(HB5) .

In §B.6, we give useful auxiliary propositions relating toΨDO in one variable acting on
functions of n variables and in§B.7, we prove the main Theorem B.4.1.

In §B.8, relying on results from [ChkDu2], we give, as a consequence of the simple
structure of the solutionsφ of ΨDE, the form of vector functionsu defined in Ω by
a certain type of representation formula acting onφ . We prove that the representation
formulae (A.3.2) belong to this type. As a result we have the statement of Theorem A.4.3.

11
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B.1 SOBOLEV AND BESSEL POTENTIAL SPACES

B.1.A STANDARD SPACES

We first recall the definition of the Fourier transform and Sobolev spaces.

Let S (Rn+1) denote the Schwartz space of all rapidly decreasing functions andS ′(Rn+1)
the dual space of tempered distributions. Forϕ ∈ S ′(Rn+1) let

Fϕ(ξ) = Fy→ξϕ(ξ) :=

∫
Rn+1

eiξ·y ϕ(y) dy , ξ ∈ R
n+1

denote its Fourier transform inRn+1 . The inverse Fourier transformF−1
ξ→y in R

n+1 is
defined as

F−1
ξ→yψ(x) :=

1

(2π)n+1

∫
Rn+1

e−iy·ξ ψ(ξ) dξ .

We denote byFx→ξ andF−1
ξ→x the Fourier and inverse Fourier transforms inR

n .

The Sobolev spaceHs(Rn+1) is defined as the subspace ofS ′(Rn+1) endowed with
the norm

‖ϕ‖2

Hs(Rn+1)
:=

∫
Rn+1

(1 + |ξ|2)s |Fy→ξϕ(ξ)|2 dξ

For an integers = m ∈ N0 an equivalent norm on the spaceHm(Rn+1) is( ∑
|α|≤m

∫
Rn+1

|∂α
y ϕ(y)|2 dy

)1/2

.

For a domainΩ ⊂ R
n+1 with a smooth boundary (Ω can be, for example, one of the

half–spacesRn+1
−+

:= R
n × R−+ ), two families of spaces can be defined:

(i) The subspacẽHs(Ω) ⊂ Hs(Rn+1) of the distributionsϕ which are supported in-
side Ω . The extension by0 outside Ω of such a distribution yields an element in
Hs(Rn+1) .

(ii) The quotient spaceHs(Ω) := Hs(Rn+1)/H̃s(Ωc) , where Ωc := R
n+1 \ Ω is the

complementary domain. The spaceHs(Ω) can also be interpreted as the space of
restrictionspΩϕ of functions ϕ ∈ Hs(Rn+1) . The space is endowed with the factor–
norm, i.e. the minimal norm of all possible extensions toR

n+1 .

By H̃s(Ω)N , Hs(Ω)N , we will denote the spaces ofN –vector functions.

For a surfaceM ⊂ R
n+1 of codimension1 , with a smooth boundary∂M , the spaces

Hs(M ) and H̃s(M ) are defined in a standard way, involving some fixed finite covering
{Uj}J

j=1 of M , appropriate diffeomorphismsκj : Uj → Vj ⊂ R
n
+ and partition of a

unity subordinate to the fixed covering, see, e.g. [Es1, Hr1].
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B.1.B ANISOTROPIC WEIGHTED SPACES

Besides the above classical spaces, we need a 3-parameter class of anisotropic Sobolev
spaces with weight. The weight appears as integer powers of one particular coordinate.
We first define these spaces onR

n , then onR
n
+ , finally on M .

Let µ , s ∈ R and κ ∈ N0 . We denote byH(µ,s),κ(Rn) the Hilbert space of distribu-
tions u with finite norm

‖u‖2

H(µ,s),κ(Rn)
:=

κ∑
k=0

‖〈D′〉µ〈D〉s+kxk
nu‖

2

L2(Rn)
�

κ∑
k=0

‖〈ξ′〉µ〈ξ〉s+kF [Dk
nu]‖2

L2(Rn)

where x = (x′, xn) are cartesian coordinates inRn , Dn := i∂n , ξ = (ξ′, ξn) are the
corresponding dual variables,

〈ξ〉 := (1 + |ξ|2) 1
2 ,

and where
〈D′〉µ := F−1

ξ′→x′〈ξ′〉µFy′→ξ′ , 〈D〉ν := F−1
ξ→x〈ξ〉νFy→ξ .

are the Bessel potential operators. For integerµ , s ∈ N0 we have the equivalent norm

κ∑
k=0

∑
α′∈N

n−1

|α′|≤µ

∑
β∈N

n

|β|≤s+k

‖∂α′
x′ ∂β

x [xk
nu]‖

L2(Rn)
.

We define the Frechet spaces

H(∞,s),κ(Rn) :=
⋂
µ∈N

H(µ,s),κ(Rn) and H(∞,s),∞(Rn) :=
⋂
κ∈N

H(∞,s),κ(Rn) .

The functions in these spaces areHs globally on R
n and C∞ in R

n \ (Rn−1 × {0}) .

On the half-spaceRn
+ = R

n−1×R+ , we defineH(µ,s),κ(Rn
+) as the space of restrictions

to R
n
+ of distributions in H(µ,s),κ(Rn) . The spaceH̃(µ,s),κ(Rn

+) denotes the subspace of
H(µ,s),κ(Rn) of distributions with support inRn

+ .

The spacesH(µ,s),κ(M ) and H̃(µ,s),κ(M ) for a smooth compact manifoldM with a
smooth boundary∂M are defined in a standard way, involving some fixed finite covering
of M , appropriate diffeomorphisms and partition of a unity subordinate to the covering, so
that the particular coordinatexn corresponds to the distance to∂M in M , see [ChkDu1,
§ 1.1].

B.2 REDUCTION TO THE BOUNDARY

In this section, we explain in more detail the way from BVP (A.1.1) toΨDE (A.3.1) and
back.
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We start from the first Green formula for allu ∈ H2(Ω)N and v ∈ H1(Ω)N :

b(u, v) = −
∫

Ω

Lu · v dy +

∫
M

γ+(Tu) · γ+v dσ −
∫
M

γ−(Tu) · γ−v dσ. (B.2.1)

Under the symmetry hypothesis(HA2) we have the simplified second Green formula for all
u, v ∈ H2(Ω)N

∫
Ω

(
u · Lv − Lu · v

)
dy =

∫
M

(
γ+u · γ+(Tv) − γ−u · γ−(Tv)

− γ+(Tu) · γ+v + γ−(Tu) · γ−v
)

dσ . (B.2.2)

Let us recall a construction for the fundamental matrix of the operatorL(DX ) , i.e. the
distribution FL such that

∀x ∈ R
n+1 , L(DX )FL(x) = δ(x)Id , FL ∈ S ′(Rn+1) , (B.2.3)

where Id is the identity matrix andδ is the Dirac distribution at0

∀ϕ ∈ C∞(Rn+1), (δ, ϕ) = ϕ(0) .

After choosing inR
n+1 a system of coordinatesx = (x, xn+1) ∈ R

n × R which partic-
ularizes one coordinate, the fundamental matrix of equation (B.2.3) can be written in the
following form, see [Hr1]:

FL(x) := F−1
ξ→x

[
1

2π

∫
L−+

L−1(ξ, τ)e−iτxn+1dτ

]
if +−xn+1 > 0 (B.2.4)

where (ξ, τ) ∈ R
n ×R represents the dual variables of(x, xn+1) . The contourL+ (L− )

is situated in the upper (in the lower) complex half–planeC+ := R ⊕ iR+ (in C− :=
R ⊕ iR− ) and is oriented counterclockwise (clockwise, respectively) encircling all roots of
the polynomialdet L(ξ, τ) with respect to the variableτ in the corresponding half–planes
τ ∈ C−+ .

Taking as test functionsv(x) the columns of the matrixFL(x − y) and inserting the
equationL(Dx)u = f into the second Green formula (B.2.2), we easily obtain a represen-
tation formula for anyu satisfying the equationL(Dx)u = f :

∀x ∈ Ω , u(x) = Nf(x) +D [u](x) − V [Tu](x) , (B.2.5)

where

∀X ∈M , [u](X ) := γ+u(X ) − γ−u(X ) , [Tu](X ) := γ+Tu(X ) − γ−Tu(X )



B.3. ASYMPTOTICS OF SOLUTIONS OFΨDE – A GENERAL CASE 15

denote the jumps of the functionsu(X ) and Tu(X ) across the surfaceM ; the opera-
tors V , D and N are the well-known single layer, double layer and volume (Newton)
potentials:

V φ(x) =

∫
M

FL(x − σ)φ(σ) dσ , Dφ(x) =

∫
M

(TFL)∗(σ − x)φ(σ) dσ , (B.2.6)

Nf(x) =

∫
Rn+1

(FL)∗(x − y)f(y) dy , x ∈ Ω . (B.2.7)

HereA ∗ := A � denotes the hermitian conjugate of the matrixA .

Solving the boundary value problem (A.1.1) with the help of the representation formula
(B.2.5) we have to find only one density, eitherϕ = [u] ∈ H̃

1
2 (M ) for the Neumann

problem or ψ = [Tu] ∈ H̃− 1
2 (M ) for the Dirichlet problem (due to the boundary condi-

tions in (B.2.5) the other density vanishes onM ). Invoking the well–known jump relations
(“Plemelj formulae”) (see, e.g., [KuGeBaBu1, ChPi]) we get the following pseudodifferen-
tial equations on the crack surface (compare with (A.3.1))

W (X , DX )ϕ(X ) = −γ+TNf(X ) , X ∈M , for Neumann, (B.2.8)

V (X , DX )ψ(X ) = γ+Nf(X ) , X ∈M , for Dirichlet. (B.2.9)

Here W (X , DX ) = γ+TD = γ−TD is the trace of the composition of the Neumann oper-
ator with the double layer potential and is a hypersingular operator, understood as a pseudo-
differential operator of order 1.V (X , DX ) = γ+V = γ−V is the trace of the single layer
potential on the surfaceM and is a weakly singular integral operator (pseudodifferential
operator of order−1 ).

Thus, by solving the equation (B.2.8) or (B.2.9), and inserting the solution into the rep-
resentation formula

u(x) = Nf(x) +Dϕ(x), x ∈ Ω, for Neumann, (B.2.10)

u(x) = Nf(x) − V ψ(x), x ∈ Ω, for Dirichlet, (B.2.11)

we obtain a solution of the boundary value problem (A.1.1).

B.3 ASYMPTOTICS OF SOLUTIONS OF ΨDE – A GENERAL CASE

In this section we recall general results on asymptotics of solutions toΨDE on a manifold
with smooth boundary from [Es1, ChkDu1] obtained by the Wiener–Hopf approach.

Let us consider a classicalN × N matrix symbola(X ; ξ) of order ν ∈ R , defined on
the cotangent manifoldT ∗M to M ⊂ R

n+1 :

a ∈ Sν
cl(T

∗M )N×N ⇐⇒ a(X , ξ) = a0(X , ξ) + a1(X , ξ) + · · · ,

∀λ > 0 , ∀X ∈M , ∀ξ ∈ R
n , aj(x, λξ) = λν−jaj(x, ξ) , (B.3.1)



16 PART B. THE WIENER–HOPF APPROACH

where aj(x, θ) are C∞ –smooth on the bundle of cotangent unit spheresM × S
n−1 ⊂

T ∗M (see [Hr1] and [ChkDu1,§ 1.2]).

For any Sobolev exponents ∈ R , the correspondingN × N system ofΨDE on M
with symbol a(X ; ξ) is continuous fromH̃s(M )N into Hs−ν(M )N . We are interested in
the structure of anyφ satisfying for somes ∈ R and an integerK > 0 :

φ ∈ H̃s(M )N such that a(X ; DX )φ = g, with g ∈ Hs−ν+K(M )N . (B.3.2)

Further we suppose that the principal homogeneous parta0(X ; ξ) , which we will also
denote byapr(X ; ξ) is elliptic , which reads

(HB1) det apr(X ; ξ) �= 0, X ∈M , ξ ∈ R
n \ {0} .

The following N × N matrix plays a fundamental role in the structure of the solutions
φ satisfying (B.3.2)

b(X ′) := [apr(X
′, 0 ; 0, +1)]−1 apr(X

′, 0 ; 0,−1) , X
′ ∈ E (B.3.3)

where we recall thatX := (X ′,X n) ∈ M are the local andξ = (ξ′, ξn) are the dual
coordinates, withX ′ ∈ E = ∂M the edge variable. Note that for allξ′ ∈ R

n−1 :

apr(X
′, 0 ; 0, −+1) = lim

t→−+∞
|t|−νapr(X

′, 0 ; ξ′, t) .

For anyX ′ ∈ E , let us denote by

λ1(X
′), . . . , λN(X ′) the eigenvalues of b(X ′),

where we repeat each eigenvalue according to itsalgebraicmultiplicity.

The assumption which will ensure the absence of logarithms in the principal term of the
asymptotics of theφ satisfying (B.3.2) is thatb is diagonalizablein each pointX ′ in E ,
and that the eigenvalues areC∞(E ) , which is written as:

(HB2)


∀X ′ ∈ E , ∃ a numbering of eigenvalues and an invertible matrixK (X ′):

b(X ′) = K (X ′)
(
diag{λ1(X

′), . . . , λN(X ′)}
)
K −1(X ′)

X
′ 	→ K (X ′), X

′ 	→ λj(X
′) are C∞(E ).

We need one more assumption on the eigenvalues ofb(X ′) : let us set

δj(X
′) = (2πi)−1 log λj(X

′), j = 1, . . . , N .

We assume that

(HB3)

{
∃η ∈ (−1

2
, 1

2
), ∃ aC∞(E ) determination of theδj(X

′)

such that ∀X ′ ∈ E , η − 1
2

< Re δj(X
′) < η + 1

2
.

While locally a consequence of(HB2) , this assumption has to be required to hold globally
on E .

The following result, see [DuSaWe1, Lemma A.6], provides a general framework where
assumptions(HB2) and (HB3) are satisfied.
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Lemma B.3.1 If for any X ′ ∈ E the two matricesapr(X
′, 0; 0, −+1) in (B.3.3)are positive

definite, then the matrixb(X ′) is diagonalizable with unitaryK (X ′) , its eigenvalues are
real, which means that the numbersδj(X

′) can be chosen purely imaginary:

δj ∈ C∞(E ) , Re δj(X
′) = 0 for all j = 1, · · · , N . (B.3.4)

The main result in this section is the asymptotic structure of solutionsφ of (B.3.2),
whose first termdoes not contain logarithms. We recall that(X ′, r) = (X ′, r, −+π) denotes
the local cylindrical coordinate system onM in a closed tubular neighborhood of the edge
E = ∂M (see Definition A.4.1).

Theorem B.3.2 (see [ChkDu1] and [Es1, Ch.26]). We assume hypotheses(HB1) , (HB2)
and (HB3) . We choose

• a determination of theδj , j = 1, . . . , N ,

• a real Sobolev exponents ,

such that there holds for allX ′ ∈ E

∀j = 1, . . . , N ,
ν

2
+ Re δj(X

′) > −1 , (B.3.5)

and

∀j = 1, . . . , N , −ν

2
+ s − 1

2
< Re δj(X

′) < −ν

2
+ s +

1

2
. (B.3.6)

Moreover letφ ∈ H̃s(M )N be a solution of the equationa(X ; DX )φ = g where the right
hand sideg is C∞(M )N . Then, for any integerK > 0 the solutionφ has the following
asymptotic expansion

φ(X ′, r) = K (X ′) r
ν
2
+∆(X ′)χ(r)

[
d0(X ′) +

K−1∑
k=1

rk

σ(k)∑
q=0

dk,q(X ′) logq r
]

+ φrem,K(X ′, r) , φrem,K ∈ H̃s+K(M )N (B.3.7)

with N –vector coefficientsd0 , dk,q in C∞(E )N . Here, the vector∆ is defined as
(δ1, · · · , δN)� and for anyµ ∈ R , rµ+∆ is understood as the diagonalN × N matrix

rµ+∆ := diag
{

rµ+δ1 , . . . , rµ+δN
}

. (B.3.8)

Remark B.3.3 (i) In [Es1, Ch.26], it is proved that the asymptotics ofφ has no logarithmic
term in its leading summand, and in [ChkDu1] the more explicit formula (B.3.7) is proved.

(ii) It is possible to extend hypothesis(HB2) to certain cases whereb(X ′) is not diagonal-
izable: then we assume that we have a canonical JORDAN decomposition with aC∞(E )
dependence. This implies in particular that the geometrical multiplicities are constant along
E . Then it is proved in [ChkDu1] that there holds a decomposition like (B.3.7), with explicit
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logarithmic terms in the leading summand of the asymptotics. This means that the condition
(HB2) is necessary and sufficient so that logarithms are absent in the leading summand of
the asymptotic of a solution (B.3.7).

(iii) It is possible to get the first term of the asymptotic expansion without the smoothness
properties onK and δj , but the further terms are not available so far, see [ChkDu1].

B.4 ASYMPTOTICS OF ΨDE – SYMBOLS WITH CONTINUITY PROPERTY

Here are the conditions which ensure that logarithms disappear from the entire asymp-
totics (B.3.7). These conditions apply to thefull symbol

∑
j≥0 aj(X

′,X n ; ξ′, ξn) :

(HB4)

{
∀X ′ ∈ E , ∀j ∈ N0, ∀α′ ∈ N

n−1
0 , m ∈ N0,

(∂m
X n

∂α′
ξ′ aj)(X

′, 0 ; 0,−1) = (−1)j+|α′|(∂m
X n

∂α′
ξ′ aj)(X

′, 0 ; 0, +1) .

We note that the above condition implies that

∀β ∈ N
n
0 , (∂β

X
∂α′

ξ′ aj)(X
′, 0 ; 0,−1) = (−1)j+|α′|(∂β

X
∂α′

ξ′ aj)(X
′, 0 ; 0, +1) . (B.4.1)

On the other hand, concerning the principal symbol, the above condition implies that

apr(X
′, 0 ; 0,−1) = apr(X

′, 0 ; 0, +1),

whence for allX ′ ∈ E , b(X ′) = Id . Thus condition(HB4) implies conditions(HB2) and
(HB3) .

The main result about asymptotics without logarithmic terms within the Wiener–Hopf
approach are formulated in Theorem B.4.1.

Theorem B.4.1 Let a(X ; ξ) be a classical symbol(B.3.1) of order ν > −2 and let its
homogeneous componentsa0(X ; ξ) , a1(X ; ξ), . . . satisfy the continuity property(HB4) on
the boundaryE . Let s be a Sobolev exponent such that

ν

2
− 1

2
< s <

ν

2
+

1

2
. (B.4.2)

Let φ ∈ H̃s(M )N be a solution of the equationa(X ; DX )φ = g where the right hand side
g is C∞(M )N (1) , the solution has the following asymptotic expansion for any integer
K > 0

φ =
K−1∑
k=0

r
ν
2
+kχ(r)dk(X ′) + φrem,K , φrem,K ∈ H̃s+K(M )N , (B.4.3)

where theN –vectorsdk , k = 0, 1, . . . belong toC∞(E ) .

(1) If the requirementg ∈ C∞(M )N is relaxed intog ∈ H(∞,s−ν+K),κ(M )N for an integerK > 0 and
κ ≥ K , we still obtain the asymptotics (B.4.3) for the same valueK .
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We postpone the proof of the theorem until§B.7.

The assumptions of Theorem B.4.1 hold for the boundaryΨDE (B.2.8) and (B.2.9) cor-
responding to the BVP (A.1.1). This follows from the following theorem.

Theorem B.4.2 The symbols of the boundaryΨDE (B.2.8)of order ν = 1 and (B.2.9)of
order ν = −1 are positive definite and satisfy the continuity property(HB4) . Moreover, for
any volume dataf ∈ C∞

0 (Rn+1) , the right hand sides of equations(B.2.8)and(B.2.9)are
in C∞(M )N , and equations(B.2.8)and(B.2.9)have unique solutionsϕ ∈ H̃s(M )N and
ψ ∈ H̃s−1(M )N , respectively, for anys ∈ (0, 1) . Thus asymptotics(B.4.3)hold for these
solutions.

Proof. We quote [ChkDu1, CoSt1, DuNaSh1, DuWe1] for the proofs of positive defi-
niteness of the symbols and unique solvability (also in more general spaces) ofΨDE (B.2.8)
and (B.2.9) and concentrate on the proof of the continuity property (B.4.1).

In [ChkDu1, Example 1.17] it is proved that the symbols of both equations (B.2.8) and
(B.2.9) are classical(2) and the components of the asymptotic representation of the symbols
have the following form

W (X ; ξ) = W0(X ; ξ) + W1(X ; ξ) + · · · + Wj(X ; ξ) + · · · ,

V (X ; ξ) = V0(X ; ξ) + V1(X ; ξ) + · · · + Vj(X ; ξ) + · · · ,

where the homogeneous componentsWj(X ; ξ) and Vj(X ; ξ) (of orders1− j and −1− j
respectively) are generated by an explicit symbolW and V respectively

Wj(X ; ξ) =
∑

|α|−|β|= j≥0
2β≤α

aα,β(X ) ξβ∂α
ξ W(X ; ξ) , (B.4.4)

Vj(X ; ξ) =
∑

|α|−|β|= j≥0
2β≤α

aα,β(X ) ξβ∂α
ξ V (X ; ξ) , (B.4.5)

where the sums are finite since|α| − |β| = j and 2β ≤ α imply 2|β| ≤ |α| ≤ 2nj , and
where the matricesaα,β(X ) haveC∞(M ) coefficients.

The generating symbolsW , V are defined forX ∈ M and ξ ∈ R
n as follows – the

contourL+ is the same as in (B.2.4) and the JacobianJκ(X
′) as in Definition A.4.1(vi):

W(X ; ξ) :=

∫
L+

T
(
X ;Jκ(X ) (ξ, τ)

)
L−1

(
Jκ(X ) (ξ, τ)

)�
T

(
X ;Jκ(X ) (ξ, τ)

)�
dτ

(B.4.6)

V (X ; ξ) :=

∫ ∞

−∞
L−1

(
Jκ(X ) (ξ, τ)

)
dτ . (B.4.7)

(2) In [ChkDu1, Example 1.17] is considered the restriction of aΨDOon R
n+1 with a classical symbol onto

the smooth surfaceM of codimension 1 and proved that the restricted operator is again a classicalΨDO;
explicit formulae for the components of the asymptotic expansion of the symbol are indicated.
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In particular, the principal symbolsWpr(X ; ξ) = W0(X ; ξ) and Vpr(X ; ξ) = V0(X ; ξ) both
have the following coefficient

a0,0(X ) :=
Γκ(X )

2π det Dκ(X )
,

where Γκ(X ) is the Gram determinant of the local coordinate diffeomorphismsκ .

Since the elliptic differential operatorL(Dx) in (A.1.1) is supposed to behomogeneous
of degree2 , its symbolL(ξ, ξn+1) is even

∀ξ = (ξ, ξn+1) ∈ R
n+1, L(−ξ,−ξn+1) = L(ξ, ξn+1).

As a consequence, with the change of variableτ 	→ −τ in integrals (B.4.6) and (B.4.7), we
find that the generating symbolsV and W are even(3)

∀X ∈M , ∀ξ ∈ R
n, V (X ,−ξ) = V (X , ξ) and W(X ,−ξ) = W(X , ξ).

Therefore, as a consequence of formulas (B.4.6) and (B.4.7), for allX ∈M , for all λ ∈ R ,
for all integersj, m = 0, 1, . . . and all multiindicesα′ ∈ N

n−1
0 , there holds

(∂m
X n

∂α′
ξ′ Wj)(X

′, 0 ; 0,−λ) = (−1)j+|α′|(∂m
X n

∂α′
ξ′ Wj)(X

′, 0 ; 0, λ) ,

(∂m
X n

∂α′
ξ′ Vj)(X

′, 0 ; 0,−λ) = (−1)j+|α′|(∂m
X n

∂α′
ξ′ Vj)(X

′, 0 ; 0, λ) .

B.5 ΨDE IN DIMENSION 1

Before we start the proof of the main theorem B.4.1, we want to explain the principal
mechanism responsible for the absence of logarithmic terms by presenting the result in a very
simple situation, namely the case of a scalar elliptic pseudodifferential equation with constant
coefficients on the half-lineR+ . This simple one-dimensional situation allows us to stay free
of many of the technical difficulties of the higher-dimensional case and to concentrate on the
essential feature, namely the role of the continuity condition for the asymptotic expansion of
the symbol. We can show in this case that a natural generalization of this condition is not
only sufficient, but also necessary for the absence of logarithmic terms in the asymptotics of
the solution. The class of operators considered here can be larger than the one obtained from
the 2D crack problem.

We need the following well-known Fourier transform of distributions supported in the
positive half-line, see for instance [Es1]. Byχ+ and χ− we denote the characteristic func-
tions of R+ and R− , respectively.

Lemma B.5.1 (i) Ft→λ

(
χ+(t) tµ−1e−τt

)
= Γ(µ)ei π

2
µ(λ + iτ)−µ, τ > 0

(3) For this, we use in particular that any contour integral of the integrand in (B.4.6) surrounding all the roots
τ of det L

(
Jκ(X ′) (ξ, τ)

)
= 0 , is zero, which allows to replace in (B.4.6)L+ by L−.
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(ii) Ft→λ

(
χ+(t) log t tµ−1e−τt

)
= (λ + iτ)−µ

(
c log(λ + iτ) + d

)
with c = −Γ(µ) ei π

2
µ and d = d

dµ

(
Γ(µ) ei π

2
µ
)

.

Another crucial result concerns the additive decomposition of homogeneous distribu-
tions into “plus” and “minus” terms.

Lemma B.5.2 Let a+ , a− , γ ∈ C . Then

(i) If γ �∈ Z , we have the representation

(
a+χ+(t) + a−χ−(t)

)
|t|γ =

a− − e−iπγa+

eiπγ − e−iπγ
(t + i0)γ − a− − eiπγa+

eiπγ − e−iπγ
(t − i0)γ .

(ii) γ ∈ Z , we have the representation

(
a+χ+(t) + a−χ−(t)

)
|t|γ = a+ (t + i0)γ +

(−1)γa− − a+

2iπ

(
(t + i0)γ log(t + i0)

− (t − i0)γ log(t − i0)
)
.

PROOF. It suffices to use the identities

(t−+i0)γ = χ+(t) tγ + χ−(t) e−+ iπγ|t|γ

log(t−+i0) = χ+(t) log t + χ−(t)
(
log |t|−+iπ

)
.

Let a ∈ C∞(R; C) be a classical elliptic symbol of orderν ∈ R with constant coef-
ficients, i.e.a(ξ) �= 0 for all ξ ∈ R , and a has an asymptotic expansion in homogeneous
terms

a(ξ) ∼
∞∑

j=0

aj(ξ) with ∀j ∈ N, ∀t > 0, ∀ξ ∈ R, aj(tξ) = tν−jaj(ξ) . (B.5.1)

In one dimension, homogeneous functions are determined by two values:

aj(ξ) =
(
a+

j χ+(ξ) + a−
j χ−(ξ)

)
|ξ|ν−j. (B.5.2)

From the ellipticity follows thata+

0 a−
0 �= 0 , and we can define

λ =
a−

0

a+

0

∈ C.

By p+a(D)u we denote the restriction of

a(D)u(x) := F−1
ξ →x a(ξ) (Fu)(ξ)

to the half-lineR+ .
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Theorem B.5.3 Let a be a classical elliptic symbol of orderν as above, and letδ ∈ C ,
s ∈ R be chosen such that

e2iπδ = λ and
ν

2
+ Re δ − 1

2
< s <

ν

2
+ Re δ +

1

2
(B.5.3)

and ν
2

+ δ �∈ {−1,−2, . . .} . Let u ∈ H̃s(R+) be solution of

p+a(D)u = g on R+ (B.5.4)

with g ∈ C∞(R+) ∩ Hs−ν(R+) . Thenu has an asymptotic expansion asx → 0 :

u(x) ∼
∑
k≥0

qk∑
q=0

ckq x
ν
2
+δ+k logq x .

This asymptotic expansion for any suchu is free of logarithms, i.e.qk = 0 for all k ≥ 0 ,
if and only if the following condition(HB5) is satisfied

(HB5) ∀j ≥ 0, a−
j = (−1)jλa+

j .

Note that, reduced to the case of dimension1 with scalar operators, condition(HB5) is
a generalization of condition(HB4) which corresponds to takingλ = 1 .

PROOF. (i) We first show the sufficiency of condition(HB5) .

If (HB5) is satisfied, then we can write

a(ξ) = a0(ξ) q(ξ), (B.5.5)

where q(ξ) has an asymptotic expansion of the form

q(ξ) ∼ 1 +
∑
j≥1

qj ξ−j with qj =
a+

j

a+

0

. (B.5.6)

Thus q is a symbol ofrational type.

For a0 we find the factorization

a0(ξ) = a+

0 (ξ + i0)
ν
2
+δ (ξ − i0)

ν
2
−δ . (B.5.7)

Let us introduce the correspondingC∞(R) symbol

a∞(ξ) = a+

0 (ξ + i)
ν
2
+δ (ξ − i)

ν
2
−δ . (B.5.8)

Then we have the global representation of the symbola as the product

a(ξ) = a∞(ξ) q∞(ξ) (B.5.9)

with a symbol of rational type

q∞(ξ) ∼ 1 +
∑
j≥1

q∞j (ξ + i)−j . (B.5.10)
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Formula (B.5.9) is deduced from identities (B.5.5) – (B.5.7) by Taylor expansion atξ + i =
∞ , which allows to expand the functions

ξ−j,
(ξ + i0

ξ + i

) ν
2
+δ

and
(ξ − i0

ξ − i

) ν
2
−δ

in negative powers of(ξ + i) .

There is also an expansion for

q−∞ ∼ 1

q∞(ξ)
∼ 1 +

∑
j≥1

q−∞
j (ξ + i)−j (B.5.11)

so thatq∞ q−∞ is a symbol of order−∞ .

The following result is well known from Eskin’s version [Es1] of the Wiener-Hopf method:

Proposition B.5.4 For h ∈ Hs−ν(R+) , the equation

p+a∞(D)v = h (B.5.12)

has a unique solutionv ∈ H̃s(R+) . This solution is given by

v = (D + i)−
ν
2
−δp+(D − i)−

ν
2
+δ[a+

0 ]−1h̃, (B.5.13)

where h̃ ∈ Hs−ν(R) is an extension ofh to the whole line.

For K ∈ N and h ∈ Hs−ν+K(R+) , this solutionv has the asymptotic expansion

v(x) =
K−1∑
k=0

χ+(x) x
ν
2
+δ+k e−xdk + vrem,K(x) (B.5.14)

with the remaindervrem,K ∈ H̃s+K(R+) given by

vrem,K = (D + i)−
ν
2
−δ−kp+(D − i)−

ν
2
+δ+k[a+

0 ]−1h̃, (B.5.15)

and the coefficientsdk by

dk =
e−i π

2
( ν
2
+δ+k+1)

Γ(ν
2

+ δ + k + 1)

(
(D − i)−

ν
2
+δ+k

(
[a+

0 ]−1h̃
))

(0) . (B.5.16)

Let now u ∈ H̃s(R+) be a solution of (B.5.4). ForK ∈ N , let v be defined by

v = qK(D)u with qK(ξ) = 1 +
K−1∑
j=1

q∞j (ξ + i)−j. (B.5.17)

Note that(D + i)−j is a convolution operator with kernel(−i)j

(j−1)!
xj−1 e−x χ+(x) , cf Lemma
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B.5.1(i). Thus v ∈ H̃s(R+) , and v is solution of

p+a∞(D)v = g − p+a∞(D)
(
q∞(D) − qK(D)

)
u =: h ∈ Hs−ν+K(R+) .

Thereforev has the expansion (B.5.14), and we can recover the expansion of

u ≡ q−∞(D)
(
v + (q∞(D) − qK(D))u

)
(modC∞) (B.5.18)

≡ q−K(D)v (mod H̃s+K(R+)) with q−K(ξ) = 1 +
K−1∑
j=1

q−∞
j (ξ + i)−j

by simply integrating (B.5.14):

(D + i)−j
[
χ+(x) x

ν
2
+δ+k e−x

]
= (−1)j Γ(ν

2
+ δ + k + 1)

Γ(ν
2

+ δ + k + j + 1)
χ+(x) x

ν
2
+δ+k+j e−x ,

(B.5.19)
except if ν

2
+ δ + k ∈ {−1,−2, . . . ,−j} , where logarithms will appear.

Thus we obtain the asymptotics ofu up to regularity H̃s+K(R+) , and since we assumed
that ν

2
+ δ is not a negative integer, no logarithm will appear. We have shown that condition

(HB5) implies that the asymptotics ofu is free of logarithms.

(ii) Let us show the converse. We assume that the equality in(HB5) is violated for some
j ≥ 1 . Let M be the first suchj , so that

a(ξ) = a0(ξ) qM(ξ) + aM+1(ξ) (B.5.20)

with

qM(ξ) = 1 +
M−1∑
j=1

qjξ
−j +

(
q+

Mχ+(ξ) + q−
Mχ−(ξ)

)
|ξ|−M

and aM+1(ξ) = O
(
|ξ|−M−1

)
as |ξ| → ∞ .

We will show that there existg ∈ Hs−ν+M+1(R+) and u ∈ H̃s(R+) solution of (B.5.4) such
that

u(x) = c0χ+(x) x
ν
2
+δ + cMχ+(x) x

ν
2
+δ+M log x near x = 0. (B.5.21)

The question of regularity ofg = p+a(D)u is local at x = 0 . We can therefore stay within
the framework of (quasi-)homogeneous distributions and homogeneous symbols, discard
lower order terms such asaM+1(ξ) , and replaceξ−j by (ξ + i0)−j .

Since the Fourier transform ofχ+(x) xγ is c(ξ + i0)−1−γ , and the Fourier transform of
χ+(x) xγ log x is (ξ + i0)−1−γ(c log(ξ + i0) + d) , see Lemma B.5.1, we shall construct the
Fourier transformû of u in the form

û(ξ) = (ξ+i0)−
ν
2
−δ−1+ ĉM(ξ+i0)−

ν
2
−δ−M−1 log(ξ+i0)+d̂M(ξ+i0)−

ν
2
−δ−M−1. (B.5.22)

We shall show that there existŝcM �= 0 (hencecM �= 0 ) such that

p+a0(D)qM(D)u ∈ Hs−ν+M+1
loc (R+). (B.5.23)
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Since there holdsp+(D − i0)
ν
2
−δ(1 − p+) = 0 , we have the identities

p+a0(D)qM(D)u = p+a+

0 (D − i0)
ν
2
−δ (D + i0)

ν
2
+δ qM(D)u

= p+a+

0 (D − i0)
ν
2
−δ p+ (D + i0)

ν
2
+δ qM(D)u .

Therefore, if we prove thatp+(D + i0)
ν
2
+δqM(D)u belongs toH

s− ν
2
−δ+M+1

loc (R+) , we have
proved (B.5.23).

Consider therefore the Fourier transformw(ξ) of (D + i0)
ν
2
+δqM(D)u if û has the form

(B.5.22):

w(ξ) = (ξ + i0)
ν
2
+δqM(ξ)û(ξ) (B.5.24)

= ĉM(ξ + i0)−M−1 log(ξ + i0) +
(
q+

Mχ+(ξ) + q−
Mχ−(ξ)

)
|ξ|−M(ξ + i0)−1 + wM(ξ)

where

wM(ξ)=
M−1∑
j=0

qj (ξ+i0)−j−1+d̂M (ξ+i0)−M−1+ĉM log(ξ+i0)O
(
|ξ|−M−2

)
+O

(
|ξ|−M−2

)
.

Thus we can discardwM , becausep+F
−1wM is sufficiently regular.

Now we use the additive decomposition, see Lemma B.5.2, forξ �= 0 :(
q+

Mχ+(ξ) + q−
Mχ−(ξ)

)
|ξ|−M(ξ + i0)−1 = q+

M(ξ + i0)−M−1 + (B.5.25)

1

2iπ

(
(−1)Mq−

M − q+

M

)(
(ξ + i0)−M−1 log(ξ + i0) − (ξ − i0)−M−1 log(ξ − i0)

)
.

The only non-regular contribution top+F
−1w comes from the term

(ξ + i0)−M−1 log(ξ + i0)
[
ĉM +

1

2iπ

(
(−1)Mq−

M − q+

M

)]
.

This term is absent if

ĉM +
1

2iπ

(
(−1)Mq−

M − q+

M

)
= 0. (B.5.26)

We see that the possibility of havinĝcM �= 0 together with condition (B.5.26) is a conse-
quence of the violation of equality(HB5) for j = M . The proof is complete.

B.6 AUXILIARY RESULTS ON ΨDO

We need some results for pseudodifferential operators (ΨDO) of one variable acting on
functions ofn variables, and also the connection betweenΨDO in n variables and reduced
ΨDO in one variable. The suitable function spaces were introduced in Section B.1. Here,
we only need the “model” domain for the boundary ofM , that is R

n
+ = R

n−1 × R+ with
coordinatesx = (x′, xn) and dual coordinatesξ = (ξ′, ξn) .

The following lemma is a particular case of Theorem 1.11 and Lemma 2.9 in [ChkDu1].
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Lemma B.6.1 Let the symbolb = b(x; ξn) satisfy∂α
x ∂k

ξn
b(x; ξn) = O

(
|ξn|ν−k

)
as |ξn| →

∞ for all k ∈ N0 , α ∈ N
n
0 , x ∈ R

n , ξn ∈ R . Let κ ∈ N0 , s ∈ R . Then the pseudodif-
ferential operatorb(x; Dn) is bounded between anisotropic Bessel potential spaces:

b(x; Dn) : H(∞,s),κ(Rn) −→ H(∞,s−ν),κ(Rn). (B.6.1)

If, in addition, supp b(x, ·) is compact, for allx ∈ R
n , then the operatorb(x; Dn) is a

smoothing operator:
b(x; Dn) : H(∞,s),κ(Rn) −→ C∞(Rn) (B.6.2)

PROOF. It is easy to check that the operator

b(x; Dn) : H(µ,s),κ(Rn) −→ H(µ−σ(ν),s−ν),κ(Rn). (B.6.3)

is bounded, where

σ(ν) :=

{
0 for ν > 0 ,
|ν| for ν < 0 .

In fact, the boundedness (B.6.3) follows from the Mikhlin–Hörmander theorem on multipli-
ers since

∀|α| ≤ n , ∀ξ = (ξ′, ξn) ∈ R
n , ξα∂α

ξ

[〈ξ′〉µ−σ(ν)〈ξ〉s−ν〈ξ〉ν
〈ξ′〉µ〈ξ〉s

]
≤ 1 .

The boundedness (B.6.1) is a consequence of (B.6.3).

As for (B.6.2), it follows from (B.6.1) because the symbolb satisfies∂α
x ∂k

ξn
b(x; ξn) =

O
(
|ξn|ν−k

)
for arbitrary ν < 0 .

The following lemma generalizes Eskin’s Wiener-Hopf technique from the scalar one-
dimensional case, see Proposition B.5.4, to systems of multidimensional pseudodifferential
equations.

Lemma B.6.2 Let us consider the principal partapr of the symbola in (B.3.1) with the
ellipticity condition (HB1) . We introduce

a∞(x′; ξn) := 〈ξn〉νapr(x
′, 0; 0, +1) . (B.6.4)

Let s , ν ∈ R such that ν
2
− 1

2
< s < ν

2
+ 1

2
, κ ∈ N0 . Then the system of equations

p+a∞(x′; Dn)u = g, g ∈ H(∞,s−ν),κ(Rn
+)N , (B.6.5)

where p+ is the restriction fromR
n to R

n
+ , has a unique solutionu ∈ H̃(∞,s),κ(Rn

+)N ,
represented by the formula

u = (Dn + i)−
ν
2 χ+(Dn − i)−

ν
2 [apr(x

′, 0; 0, 1)]−1g , (B.6.6)

where χ+(xn) is the characteristic function of the half spaceR
n
+ ⊂ R

n .
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For arbitrary K ∈ N , K ≤ κ , and g ∈ H(∞,s−ν+K),κ(Rn
+) this solution has the

following asymptotic expansions

u(x′, xn) =
K−1∑
k=0

x
ν
2
+k

n e−xndk(x′) + urem,K(x′, xn), urem,K ∈ H̃(∞,s+K),κ(Rn
+)N

=
K−1∑
k=0

x
ν
2
+k

n dk
0(x

′) + u0
rem,K(x′, xn) , u0

rem,K ∈ H̃(∞,s+K),κ(Rn
+)N .

with the C∞(Rn−1) coefficients

dk(x′) :=
e−

π
2
i( ν

2
+k+1)

Γ
(

ν
2

+ k + 1
)(

(Dn − i)−
ν
2
+k[apr((x

′, 0; 0, 1)]−1g
)
(x′, 0) , (B.6.7)

and

dk
0(x

′) :=
k∑

�=0

(−1)k−�

(k − +)!
d �(x′), k = 1, . . . , M.

For the proof see [ChkDu1, Lemma 2.6]. Note that, by its mere definition,a∞ satisfies itself
condition (HB4) .

The following Lemma B.6.3 will serve for the evaluation of the terms and the remainders
in the Taylor expansions which will provide the next Lemma B.6.4.

Lemma B.6.3 Let b(x; D) be aΨDO such that for an integerm ∈ N its symbol satisfies
b(x; ξ) = xm

n b̆(x; ξ) with b̆ in the classSν
cl(R

n
+ × R

n) . We suppose that, moreover, there

exists an integerk ∈ N0 such that∂α
x ∂γ

ξ b̆(x; ξ) = O
(
|ξ′|k−|γ′||ξn|ν−k−γn

)
for all α and

γ = (γ′, γn) ∈ N
n . Then for all µ , s ∈ R and κ ≥ m , b(x; D) is bounded between the

spaces:
b(x; D) : H(µ,s),κ(Rn) −→ H(µ−k,s+k+m−ν),κ−m(Rn). (B.6.8)

Lemma B.6.4 Let j ∈ N0 and let us consider the homogeneous partaj of degreeν − j
of the symbola in (B.3.1). For any K ∈ N , there holds the expansion of the symbolaj

aj(x; ξ) =
∑

m+|γ′|≤K−1

xm
n (ξ′)γ′

ăj; m,γ′(x′; sgn ξn) ξ−j−|γ′|
n |ξn|ν + aj; rem,K (B.6.9)

with ăj ;m,γ′(x′; ω) = 1
m!

1
γ′! ω

j+|γ′|∂m
xn

∂γ′

ξ′ aj(x
′, 0; 0, ω) , x′ ∈ R

n−1 , ω = −+1 , and aj ;rem,K

bounded between the spaces

aj ;rem,K(x; D) : H(∞,s),∞(Rn)N −→ H(∞,s+K−ν),∞(Rn)N . (B.6.10)

If condition (HB4) holds, thenăj ;m,γ′(x′; ω) = ăj ;m,γ′(x′) does not depend onω .
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PROOF. The Taylor formula, applied atxn = 0 , and then at|ξn|−1ξ′ = 0 , gives:

aj(x
′, r; ξ′, ξn) =

K−1∑
m=0

xm
n

m!
(∂m

xn
aj)(x

′, 0; |ξn|−1ξ′, sgn ξn)|ξn|ν−j+ xK
n a

(1)
j; rem,K(x; ξ)

=
K−1∑
m=0

xm
n

m!

K−1−m∑
|γ′|=0

|ξn|ν−j−|γ′| (ξ
′)γ′

(γ′)!
(∂m

xn
∂γ′

ξ′ aj)(x
′, 0; 0, sgn ξn)

+ aj; rem,K(x; ξ) ,

where the remainder can be written as

aj;rem,K(x; ξ) = xKa
(1)
j;rem,K(x; ξ) +

K−1∑
m=0

xm
n a

(2)
j;rem,m,K−m(x′; ξ),

where xK
n a

(1)
j;rem,K satisfies the assumptions of Lemma B.6.3 withm = K and k = 0 , and

xm
n a

(2)
j;rem,m,K−m with m = m and k = K − m . Taking µ = ∞ and κ = ∞ , we obtain

the lemma.

A standard Taylor expansion of the function〈ξn〉ν at ξn = −+∞ yields the following
expansion of the symbola∞ (B.6.4):

Lemma B.6.5 Let us consider the symbola∞ defined in(B.6.4). For any integerK ∈ N ,
there holds the expansion

a∞(x′; ξn) =
∑

j≤K−1

ă∞
j (x′) ξ−j

n |ξn|ν + a∞
rem,K(x′; ξn) (B.6.11)

with ă∞
0 (x′) = a0(x

′, 0; 0, +1) , ă∞
j (x′) = cja0(x

′, 0; 0, +1) with cj ∈ R , and a∞
rem,K is a

bounded operator between the spaces

a∞
rem,K(x′; Dn) : H(∞,s),∞(Rn)N −→ H(∞,s+K−ν),∞(Rn)N . (B.6.12)

B.7 PROOF OF THE MAIN THEOREM OF PART B

We are going to prove Theorem B.4.1. Let us start by reformulation of the conditions of
equation (B.3.2): we consider

φ ∈ H̃(µ,s),κ(M )N such that a(X ; DX )φ = g, with g ∈ H(µ,s−ν),κ(M )N (B.7.1)

for arbitrary −∞ < µ ≤ ∞ . In [ChkDu1, Theorem 1.12] it is proved that the system
(B.3.2) is Fredholm (or is uniquely solvable) if and only if the system (B.7.1) is Fredholm
(is uniquely solvable) and these equations have equal dimensions of kernels and cokernels.

Since the assertion is local, we can suppose that our domain is the half–spaceR
n
+ , and

all functions and symbols are compactly supported in the variablex ∈ R
n
+ . We recall that

x = (x′, xn) and its dual variable isξ = (ξ′, ξn) .
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Homogeneous symbols and the kernels of the correspondingΨDO with negative order
have singularities at0 . Multiplying them by a functionχ0 ∈ C∞(R) , where χ0(ξn) = 0
for |ξn| < 1 and χ0(ξn) = 1 for |ξn| > 2 we cut the singularity off. The perturbation
operator is smoothing:[I − χ0(Dn)]ϕ ∈ C∞

0 (Rn) for arbitrary ϕ ∈ H(∞,µ),κ(Rn) (see
Lemma (B.6.1)), and will be ignored. Although we do not write the cut off function, we
suppose it is present and forget about singularities of symbols atξn = 0 .

SinceC∞
0 (Rn

+)N ⊂ H(∞,s−ν+M+1),∞(Rn
+)N , for any M ∈ N0 , it is sufficient to derive

the asymptotics for a solution of equation (B.7.1). Relying on the expansion of the classical
symbol a(x; ξ) :

a =
M∑

j=0

aj + arem,M+1 , (B.7.2)

aj ∈ Sν−j
hom(Rn

+ × R
n)N×N , arem,M+1 ∈ Sν−M−1

cl (Rn
+ × R

n)N×N

we will apply induction onM , starting with the caseM = 0 .

For M = 0 , the equation (B.7.1) (withM = R
n
+ , as agreed) is written in the following

equivalent form
p+a

∞(x′; Dn)φ = g∞ , (B.7.3)

wherea∞(x′; ξn) is defined in (B.6.4) and

g∞ := g − arem,1(x; Dx)φ − [a0(x; Dx) − a∞(x′; Dn)]φ .

We observe

(i) The remainderarem,1(x; Dx) : H(∞,s),∞(Rn)N −→ H(∞,s+1−ν),∞(Rn)N is bounded.

(ii) Lemma B.6.4 forj = 0 , K = 1 gives that

a0(x; ξ) = a0(x
′, 0; 0, sgn ξn) |ξn|ν + a0 ; rem,1(x, ξ)

with a0;rem,1(x; Dx) : H(∞,s),∞(Rn)N −→ H(∞,s+1−ν),∞(Rn)N bounded.

(iii) Lemma B.6.5 forj = 0 , K = 1 gives that

a∞(x; ξn) = a0(x
′, 0; 0, +1) |ξn|ν + a∞

rem,1(x, ξn)

with a∞
rem,1(x; Dn) : H(∞,s),∞(Rn)N −→ H(∞,s+1−ν),∞(Rn)N bounded.

Condition (HB4) yields that a0(x
′, 0; 0, sgn ξn) = a0(x

′, 0; 0, +1) , thereforea0 − a∞ =
a0 ; rem,1 − a∞

rem,1 . We deduce fromφ ∈ H(∞,s),∞(Rn)N , that

g∞ ∈ H(∞,s+1−ν),∞(Rn)N . (B.7.4)

Invoking Lemma B.6.2 we derive the expansion (B.4.3) forK = 1 :

φ = φ0 + φrem,1, φ0(x
′, xn) = d0(x′)x

ν
2
n e−xn , (B.7.5)

d0 ∈ C∞(Rn−1)N , φrem,1 ∈ H̃(∞,s+1),∞(Rn
+)N .
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Now let M ≥ 1 and suppose we have proved

φ =
M−1∑
k=0

φk + φrem,M , φk(x
′, xn) := dk(x′)x

ν
2
+k

n e−xn , (B.7.6)

dk ∈ C∞(Rn−1)N , φrem,M ∈ H̃(∞,s+M),∞(Rn
+)N .

It can be proved thatφk ∈ H̃(∞,s+k),∞(Rn
+)N , becauseν

2
− s > −1

2
, see [ChkDu1, (2.30)].

Then the right hand sideg∞ of equation (B.7.3) can be represented as follows

g∞ = g1
rem,M+1 −

M∑
j=1

M−j∑
k=0

p+aj(x; Dx)φk

−
M−1∑
k=0

p+[a0(x; Dx) − a∞(x′; Dn)]φk , (B.7.7)

where

g1
rem,M+1 = g − p+arem,M+1(x; Dx)φ

−
M∑

j=1

p+aj(x; Dx)φrem,M−j+1

− p+[a0(x; Dx) − a∞(x′; Dn)]φrem,M .

It is clear from the arguments used for the stepM = 0 that g1
rem,M+1 belongs to the space

H(∞,s−ν+M+1),∞(Rn
+)N .

We now use the expansion (B.6.9) withK = M +1− j − k for the termaj(x; Dx)φk ,
and the expansion (B.6.11) withK = M + 1 − k for the terma∞(x′; Dn)φk . Taking into
account that condition(HB4) holds, we obtain

g∞ = g2
rem,M+1 −

M−1∑
k=0

∑
j, m, γ′

0<j+m+|γ′|≤M−k

bj; m,γ′(x; Dx) φk , (B.7.8)

where g2
rem,M+1 belongs toH(∞,s−ν+M+1),∞(Rn

+)N and

bj; m,γ′(x; ξ) = xm
n (ξ′)γ′

b̆j; m,γ′(x′) ξ−j−|γ′|
n |ξn|ν ,

with b̆j; m,γ′(x′) defined forx′ ∈ R
n−1 as follows

b̆j; m,γ′(x′) :=

{
ăj; m,γ′(x′) if m + |γ′| �= 0 ,

ăj; 0,0(x
′) − ă∞

j (x′) if m = 0, γ′ = 0 .
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Now we use formula (B.6.6) Lemma B.6.2 to invert the operatora∞(x′; Dn) , and from
equation (B.7.3)p+a

∞(x′; Dn)φ = g∞ with the expansion (B.7.8) ofg∞ , we find

φ =
M−1∑
k=0

∑
j, m, γ′

0<j+m+|γ′|≤M−k

(Dn + i)−
ν
2 p+(Dn − i)−

ν
2 ă−1

0 (x′)bj; m,γ′(x; Dx) φk (B.7.9)

+
[
p+(a∞(x′; Dn)

]−1
g2

rem,M+1 ,

where ă0(x
′) = apr(x

′, 0; 0, 1) . Recalling Lemma B.5.1(i), and using a Taylor expansion at
ξn = ∞ , we find the following,cf (B.7.6) for theφk :

Fxn→ξn [φk(x
′, xn)] = Fxn→ξn

[
x

ν
2
+k

n dk(x′)e−xn

]
= (ξn + i)−

ν
2
−k−1e

π
2
( ν
2
+k+1)i Γ(ν

2
+ k + 1)dk(x′)

=
M∑

q=0

dkq(x′)(ξn + i0)−
ν
2
−k−q−1 + (ξn + i)−

ν
2
−M−q−2 dk

rem,M(x′) . (B.7.10)

and the last summand is ignored in the sequel because it contributes into the smooth remain-
der term. From (B.7.9) and (B.7.10), we see that modulo a remainderφ1

rem;M+1 in the space
H(∞,s+M+1),∞(Rn

+)N , φ is a finite sum of termsϕ which have the generic form

ϕ = (Dn + i)−
ν
2 ψ with (B.7.11)

ψ = p+(Dn − i)−
ν
2 ă−1

0 (x′) h(x) with (B.7.12)

h = xm
nFξ→x

{
(ξ′)γ′

b̆(x′) ξ−�
n |ξn|ν ×Fx′→ξ′

[
d(x′)

]
(ξn + i0)−

ν
2
−q−1

}
, (B.7.13)

for m , + , q ∈ N0 , γ′ ∈ N
n−1 , and b̆ ∈ C∞(Rn−1)N×N , d ∈ C∞(Rn−1) . Let us study

h first:

h(x) = xm
n b̆(x′)

[
(i∂x′)γ′

d
]
(x′) ×Fξn→xn

{
(ξn + i0)−

ν
2
−q−1 ξ−�

n |ξn|ν
}

= d1(x
′)Fξn→xn

{
∂m

ξn

[
(ξn + i0)

ν
2
−q−�−1θν(ξn)

]}
, (B.7.14)

with d1(x
′) := (−i)mb̆(x′)

[
(i∂x′)γ′

d
]
(x′) ∈ C∞(Rn−1)N , where we have used the for-

mula,cf Lemma B.5.2,

|t|σ = θσ(t) (t + i0)σ with θσ(t) = χ+(t) + e−iπσχ−(t). (B.7.15)

We note that although we have taken derivatives∂m
ξn
|ξn|σ , δ –functions do not appear due

to cut off functions (see the beginning of the proof).

Inserting expression (B.7.14) ofh into (B.7.12) we find that

ψ(x) = p+Fξn→xn

{
(ξn − i)−

ν
2 ă−1

0 (x′)Fxn→ξn

[
h(x′, xn)

]}
= p+Fξn→xn

{
(ξn − i)−

ν
2 (ξn + i0)

ν
2
−q−�−m−1θν(ξn)

}
d2(x

′) , (B.7.16)
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with d2(x
′) = că−1

0 (x′)d1(x
′) ∈ C∞(Rn−1)N . By representing the function(ξn − i)−

ν
2 as

a Taylor series in(ξn − i0)−
ν
2
−p , cf (B.7.10), and applying the equality

(ξn − i0)−
ν
2
−p θν(ξn) = (ξn + i0)−

ν
2
−p , p = 0, 1, . . .

(see (B.7.15)), we get

ψ(x) =
M∑

p=0

Fξn→xn

{
(ξn + i0)−q−�−m−p−1

}
d2,p(x

′) + ψrem,M+1(x) , (B.7.17)

with d2,p ∈ C∞(Rn−1)N and ψrem,M+1 ∈ H̃(∞,s− ν
2
+M+1),∞(Rn

+)N . The restriction op-
erator p+ in front in (B.7.16) was eliminated since the Fourier transform of the analytic
function is supported onR+ .

From (B.7.9) – (B.7.17) we find

φ(x) =
M−1∑
k=0

(Dn + i)−
ν
2Fξn→xn

{
(ξn + i0)−k−1

}
d3,k(x

′) +
[
p+a

∞(x′; Dn)
]−1

g3
rem,M+1

=
M−1∑
k=0

Fξn→xn

{
(ξn + i)−

ν
2 (ξn + i0)−k−1

}
d3,k(x

′) +
[
p+a

∞(x′; Dn)
]−1

g3
rem,M+1.

By transforming(ξn + i0)−k−1 into (ξn + i)−k−1 as above, and using the asymptotics of[
p+a

∞(x′; Dn)
]−1

g3
rem,M+1 from Lemma B.6.2, we finally obtain the desired expansion

φ(x) =
M−1∑
k=0

x
ν
2
+k

n e−xn dk(x′) + φrem,M+1(x) , (B.7.18)

with φrem,M+1 ∈ H(∞,s+M+1),∞(Rn
+)N , and dk ∈ C∞(Rn−1)N . The theorem is proved.

B.8 SPATIAL ASYMPTOTICS OF SOLUTIONS TO BVP

We have already described the first two steps of the analysis of asymptotics by the
Wiener–Hopf method:(i) the reduction to aΨDE (A.3.1) on the boundary,(ii) the asymp-
totics of the solution of thisΨDE. There remains to derive the spatial asymptotics of the
solution u to BVP (A.1.1), represented by the formula (B.2.5),u = Nf +D [u]−V [Tu] ,
if we know the asymptotics of the densities[u] or [Tu] . Note, that sincef ∈ C∞

0 (Rn+1) ,
the summandNf only contributes to the regular part ofu .

Therefore, we only need to apply either the single layer potentialV , or the double layer
potentialD to a function φ defined onM , the asymptotic expansion of which being of
the form (B.4.3).

Thus, let us by denote byA either the single layer potentialV , or the double layer
potential D , see (B.2.6), associated with an homogeneous elliptic second orderN × N
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systemL(Dx) in R
n+1 with constant real coefficients(4) . Let q be the order ofA ( q =

−1 if A = V and q = 1 if A = D ). We consideru defined onΩ by

u(x) = A φ(x) , supp φ ⊂M , x ∈ Ω . (B.8.1)

For anyX ′ ∈ E , let τ1(X
′), . . . , τ�(X

′) be all different roots of the polynomial equation

det L
(
Iκ(X ′)(0, 1, τ)

)
= 0 , Im τ < 0. (B.8.2)

We recall that(0, 1, τ) represents the value of the dual variableξ = (ξ′, ξn, ξn+1) and that
Iκ(X ′) is the Jacobian of the local coordinate diffeomorphismκ , cf Definition A.4.1.

We assume that it is possible to enumerateτ1(X
′), . . . , τ�(X

′) so that

(HB6) The multiplicities n1, . . . , n� of τ1(X
′), . . . , τ�(X

′) are constant onE .

Therefore theτm are C∞(E ) .

Since L is a N × N elliptic system of order2 , there holds

n1 + . . . + n� = N

and since its coefficients are real, the roots of equation (B.8.2) withIm τ > 0 are the
conjugate of theτm(X ′) . Let for X ′ ∈ E and m = 1, . . . , + the angular functionsψm,−+

be defined as

ψm,−1(X
′, θ) := cos θ + τm(X ′) sin θ , ψm,+1(X

′, θ) := cos θ + τm(X ′) sin θ . (B.8.3)

Theorem B.8.1 Let φ be a N -vector function onM with the following infinite asymp-
totics without logarithms:∃µ ∈ R , ∀K > 0

φ =
K−1∑
k=0

rµ+kχ(r)dk(X ′) + φrem,K , dk ∈ C∞(E )N , φrem,K ∈ H̃µ+K(M )N .

We assume thatµ is not an integerand that theN × N second order systemL satisfies
hypothesis(HB6) . Let A denote either the single or the double layer potential associated
with L and q its order, and letu be defined onΩ by A φ .

Then for arbitrary K ∈ N , the potential–type functionu has in local cylindrical coor-
dinates(X ′, r, θ) the following asymptotic expansion free of logarithms as well

u =
�∑

m=1

∑
ω=−+1

χ(r)

[
nm−1∑
j=0

rµ−q sinjθ ψµ−q−j
m,ω (X ′, θ) d j

m,ω(X ′) (B.8.4)

+

K+q−1∑
k=1

p(m,k)∑
j=0

∑
|α|≤N(m,k)

rµ−q+k ψµ−q−j+k
m,ω (X ′, θ) sinα1θ cosα2θ dk,j,α

m,ω (X ′)

]
+ urem,K

where urem,K ∈ Hµ+K
loc (Rn+1)N and the coefficientsd j

m,ω and d j,k,α
m,ω are C∞(E ) .

(4) Here we restrict consideration to the potential operators related to a second order system. For more general
results we quote [ChkDu1] and the forthcoming paper: R.Duduchava, W.Wendland, Asymptotics of solutions
to Agmon–Douglis–Nirenberg systems.
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The proof is a direct adaptation of proofs in [ChkDu1, ChkDu2].

As a straightforward corollary of Theorems B.4.2 and B.8.1 combined with

• formulas (B.2.8) and (B.2.10) for Neumann conditions,

• formulas (B.2.9) and (B.2.11) for Dirichlet conditions,

we obtain:

Theorem B.8.2 Let the N × N second order systemL satisfy hypotheses(HA1) , (HA2)
and (HB6) . Then any solutionu of BVP(A.1.1) with f ∈ C∞

0 (Rn+1) has the following
asymptotic expansion in local cylindrical coordinates(X ′, r, θ)

u =
�∑

m=1

∑
ω=−+1

χ(r)

[
nm−1∑
j=0

r
1
2 sinjθ ψ

1
2
−j

m,ω (X ′, θ) d j
m,ω(X ′) (B.8.5)

+
K−1∑
k=1

p(m,k)∑
j=0

∑
|α|≤N(m,k)

r
1
2
+k ψ

1
2
+k−j

m,ω (X ′, θ) sinα1θ cosα2θ dk,j,α
m,ω (X ′)

]
+ urem,K

where urem,K ∈ HK
loc(R

n+1)N and the coefficientsd j
m,ω and d j,k,α

m,ω are C∞(E ) .

For the particular case of isotropic elasticity we have to deal with the Lamé equation

L(Dx)u = µ∆u + (λ + µ) grad divu = f , f ∈ C∞
0 (R3) . (B.8.6)

Equation (B.8.2) has one triple rootτ1 = −i and for the singular functions (B.8.3) we get

ψ1,−1(θ) = eiθ and ψ1,1(θ) = e−iθ.

The asymptotics of the displacementu(x) has the form

u(X ′, r, θ) =
∑

ω=−+1

[ 2∑
j=0

r
1
2 sinjθeiω( 1

2
−j)θ d j

ω(X ′) (B.8.7)

+
K−1∑
k=1

pk∑
j=0

∑
|α|≤Nk

r
1
2
+keiω( 1

2
−j+k)θ sinα1θ cosα2θ dk,j,α

ω (X ′)
]

+ urem,K(X ′, r, θ) .

The stressT (x, Dx)u(x) has a similar asymptotics as the displacement, starting with the
exponentr−

1
2 instead ofr

1
2 .



Part C. The Mellin approach

C.1 GENERAL EDGE ASYMPTOTICS

In our second approach, we are considering the boundary value problem (A.1.1) as a
special case of boundary value problems on domains with edges. For such problems, the
method of Mellin transformation is a well-developed technique that allows precise descrip-
tions of the solutions in the neighborhood of the edge.

The general description of solutions of problems like (A.1.1) on a wedge originates from
KONTRATIEV’s work [Ko1] and was developed in the subsequent works [MaPl1, MaRo1,
NaPl1] and [Da1, CoDa1], among other contributions. As a preparation for our proof on the
absence of logarithm, we are going to explain the general edge structure in the framework of
the above papers.

We keep the local cylindrical coordinates(X ′, r, θ) around the edgeE , see Defini-
tion A.4.1. As this will be of constant use, we introduce the notationy for the two normal
cartesian coordinates(X n,X n+1) , which will be also alternatively denoted by(y1, y2) . Let
us consider as domain for the boundary value problem the wedgeWω = E × Γω where Γω

is the plane sector{y ∼ (r, θ) | θ ∈ (−ω, ω)} of opening2ω . Let ∂−+Γω be the two sides
of Γω . They correspond to the two sides∂−+Wω of Wω . The situation which is the aim of
our investigation corresponds to takingω = π .

But for a while, let us consider the more general case of an ellipticN × N system
L = (Lk�) of order 2d complemented by two setsB−+ of m := dN boundary conditions
on ∂−+Wω . The general framework of edge asymptotics demands a supplementary condition
of ellipticity along the edge, see [MaPl1, MaRo1]. A natural way to satisfy this condition
is to suppose that(L, B−, B+) is associated with a coercive formb on Hd , see [Da1], as
stated in Part A (but now with order2d and more general boundary conditions).

Thus, let us consideru solution in Hd(Wω)N of the following boundary value problem
with a right hand sidef ∈ C∞(W ω)N

{
Lu = f in Wω

γ−+B−+u = 0 on ∂−+Wω.
(C.1.1)

The solutionu has an infinite edge asymptotics, mainly determined by the expansion of the
problem (L, B−, B+) in “homogeneous components”(Lj, Bj

−, Bj
+) , j ≥ 0 , with respect to

the variablesy normal to the edgeE .

In the coordinates(X ′, y) ∈ E ×Γω , the systemL has variable coefficients, in general.
We write it with the notationL = L(X ′, y; ∂X ′ , ∂y) . For any X ′ ∈ E , let L0[X ′] be the
principal part of the operatorL(X ′, 0; 0, ∂y) . We denote similarly the boundary operators in
local coordinates byB−+ (X ′, r; ∂X ′ , ∂y) and their principal parts iny = 0 by B0

−+
[X ′] .

35
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For eachX ′ fixed in E , thesingular exponentsassociated withX ′ are the complex
numbersλ such that there exists non-zero solutionsψ = ψ(θ) to the problem{

L0[X ′](rλψ) = 0 in Γω

γ−+B0
−+
[X ′](rλψ) = 0 on ∂−+Γω.

(C.1.2)

In general, due to the dependency onX ′ of the coefficients of(L0, B0
−+
) , the setΛ[X ′] of

such λ a priori varies withX ′ ∈ E , see [MaRo1, CoDa1].

The Ansatz for solutions in the formrλψ(θ) has a close relation with theMellin trans-
form which allows a diagonalization of(L0, B0

−+
)[X ′] for eachX ′ . Let us recall the Mellin

transformλ 	→ M(f)(λ) of a function f defined onR+ :

M(f)(λ) =

∫ ∞

0

rλf(r)
dr

r
.

We have the formulaM(r∂rf)(λ) = λM(f)(λ) which is the foundation of the Mellin
symbolic calculus. Thus the Mellin symbolλ 	→ A0[X ′](λ) of problem (C.1.2) is defined
after writing L0 and B0

−+
in cylindrical coordinates as

r−2dL 0[X ′](θ; r∂r, ∂θ) and r
−ρ−+ ,hB0

−+ ,h[X
′](θ; r∂r, ∂θ) (h = 1, . . . , m),

(where ρ−+ ,h = deg B−+ ,h ) by

A0[X ′](λ) : H2d(−ω, ω)N −→ L2(−ω, ω)N × C
2m

ϕ 	−→
(
L 0[X ′](λ, ∂θ)ϕ , γ−+B

0
−+
[X ′](λ, ∂θ)ϕ

)
.

For eachX ′ ∈ E , λ 	→ A0[X ′](λ)−1 is meromorphic inC and the set of its poles isΛ[X ′] .

It is possible to classify the singularities occurring in the asymptotics of a solutionu of
(C.1.1) in (i)Leading singularitiesand (ii)Shadow singularities.

(i) The leading singularities s0 of u are directly obtained from the Mellin transform
λ 	→ M(f)[X ′](λ) of f (5) via the Mellin symbolA0[X ′] of problem (C.1.2) by the
inverse Mellin formula

s0(X ′, y) =
1

2iπ

∫
γ0

rµ
[
A0[X ′](µ)

]−1
M(r2df , 0, 0)[X ′](µ) dµ, (C.1.3)

where the0 in (f , 0, 0) stand for the zero boundary conditions andγ0 is a suitable
contour surrounding the polesλ ∈ Λ[X ′] in the right half planeRe λ > d − 1 . (6)

(5) Defined byM(f)[X ′](λ, θ) =
∫ ∞
0

rλf(X ′, y) dr
r as a natural extension of the formula onR+ .

(6) More precisely, for anyK ∈ N we obtain the contribution moduloO
(
rK

)
to the infinite asymptotic

series by using a contour which surrounds the (finite set of) polesλ ∈ Λ[X ′] ∪ N contained in the strip
d − 1 < Re λ ≤ K .
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(ii) Theshadow singularitiesrequire for their definition the Taylor expansion of the coef-
ficients of L and B−+ with respect toy : Let

L =
∑

|i|+|k|≤2d

+i,k(X ′, y) ∂i
X

′ ∂k
y and B−+ ,h =

∑
|i|+|k|≤ρ−+ ,h

bi,k

−+ ,h(X
′, y) ∂i

X
′ ∂k

y

be the expressions ofL and B−+ . Then for j ∈ N we define

Lj[X ′] :=
∑
|i|≤2d

∑
|k|−|β|=2d−j

∂β
y +i,k(X ′, 0)

yβ

β!
∂i
X

′ ∂k
y

Bj

−+ ,h[X
′] :=

∑
|i|≤ρ−+ ,h

∑
|k|−|β|=ρ−+ ,h−j

∂β
y bi,k

−+ ,h(X
′, 0)

yβ

β!
∂i
X

′ ∂k
y .

Let Aj[X ′] denote the triple(Lj[X ′], Bj

−+
[X ′]) . Then the shadow singularitiess1, . . . ,

sp are recursively defined as

sp(X ′, y) = − 1

2iπ

∫
γ0+p

rµ
[
A0[X ′](µ)

]−1
M

(
rβ(f p, gp

−+
)
)
[X ′](µ) dµ , (C.1.4)

with (f p, gp

−+
) = A1sp−1 + · · · + Aps0 .

Here β is the collection of degrees(2d, . . . , 2d, ρ−+ ,1, . . . , ρ−+ ,m) and rβ(f , g
−+
) is a

condensed notation for(r2df , rρ−,1g−,1, . . . , r
ρ−,mg−,m, rρ+,1g+,1, . . . , r

ρ+,mg+,m) .

Then the sums0 + s1 + . . . + sp + . . . gives the asymptotics ofu as r → 0 .

In the most general case, the structure of thesp is quite difficult to describe because of
the possible change of multiplicities in the singular exponentsλ[X ′] , see [CoDa1, CoDa3].
If hypotheses are made to avoid any change of multiplicity, see [MaRo1], eachsp can
be decomposed into elementary terms of the formc(X ′) rλ(X ′)+p logqr ϕ(X ′, θ) . Thus we
obtain the following expansion in local cylindrical coordinates: For anyK ∈ N

u =
∑

Re λ+p≤K

q(λ,p)∑
q=0

j(λ,p,q)∑
j=1

cλ,p,q
j (X ′) rλ(X ′)+p logqr ϕλ,p,q

j (X ′, θ) + urem,K . (C.1.5)

The exponentsλ(X ′) belong to Λ[X ′] ∪ N and their real part is> d − 1 . The coeffi-
cients cλ,p,q

j are C∞ functions onE and depend onf . The remainderurem,K satisfies

∂βurem,K = O(rK−|β|+1/2) as r → 0 for any multi-indexβ ∈ N
n+1
0 . The ϕλ,p,q

j are angu-
lar N -component vector functions inC∞([−ω, ω]×E ) and depend only on the domainΩ
and the operators(L, B) .

The log r terms come either from non-trivial JORDAN chains in A0[X ′]−1 , or from
resonances betweenA0[X ′]−1 and the Mellin transformsM(r2df , 0, 0)[X ′] , see (C.1.3), or
M

(
rβA1sp−1 + · · ·

)
[X ′] , see (C.1.4).
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C.2 CRACK ASYMPTOTICS , FIRST RESULTS

From now on, we concentrate on the situation of a crack, i.e. when the openingω is π ,
and when thesame boundary conditionsare applied on both sides of the crack, i.e.B−+ = B .
Thus the boundary conditions are denoted byB = (B1, . . . , Bm) and the order ofBh is
ρh , h = 1, . . . , m . The boundary problem takes then the form{

Lu = f in Wπ

γ−+Bu = 0 on ∂−+Wπ,
(C.2.1)

where we assume thatf ∈ C∞
0 (Rn+1) .

In this situation there holds

∀X ′ ∈ E , Λ[X ′] =
{

k
2

; k ∈ Z
}
. (C.2.2)

This has been known for a long time for the Laplace operator, see [Gr1]. It is proved for
elasticity systems in [DuWe1], for general second order Petrovskii-elliptic systems (such as
thermoelasticity or electroelasticity for example) in [ChkDu1, ChkDu2], for general scalar
elliptic Dirichlet problems of order2m in [Koz1], and finally in the general framework of
Agmon-Douglis-Nirenberg elliptic systems in [CoDa4].

Therefore the assumptions on the constant multiplicity of the singular exponents are
satisfied and expansion (C.1.5) holds withλ(X ′) = k

2
. This clear separation of the spectrum

allows a decomposition of leading singularitys0 in (quasi-)homogeneous elementary parts
Φ0

λ for λ of the form λ = k
2

according to:

Φ0
λ[X

′] =
1

2iπ

∫
γ(λ)

rµ A0[X ′](µ)−1 M(r2df , 0, 0)[X ′](µ) dµ, (C.2.3)

where γ(λ) is the circle with centerλ and radius1
4

.

Definition C.2.1 If Φ0 is defined by a residue formula like (C.2.3) on the circleγ(λ) , we
call sequence of shadowsassociated withΦ0 , the infinite sequenceΦp , p ≥ 1 , defined by

Φp[X ′] = − 1

2iπ

∫
γ(λ)+p

rµ A0[X ′](µ)−1 M
(
rβ11r∈[0,1](A

1Φp−1 + · · · + ApΦ0)
)
[X ′](µ) dµ .

(C.2.4)
Here γ(λ) + p is the contour aroundλ + p translated fromγ(λ) and 11r∈[0,1] is the char-
acteristic function inr of the interval [0, 1] .

By linearity, we obtain that a decomposition ofs0 in a sum ofΦ0
λ provides the corre-

sponding decomposition of the shadowsp in a sum Φp
λ , where (Φp)p is the sequence of

shadows associated withΦ0
λ . Therefore, from now on we only consider elementary leading

singularities of the form (C.2.3) and their sequence of shadows.

The result of [CoDa4, Thms 5.2 & 5.3] gives moreover:
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(i) In the leading singularitiesthe non-integer exponentsk + 1
2

have nolog r terms and

the corresponding basis of singular functions
(
rk+1/2 ϕ

k+1/2
j

)
j

has the dimensionm .

(ii) Let ρmax := max{ρ1, . . . , ρm} . For any integerλ ≥ ρmax , the functionsrλϕλ
j (θ)

are polynomials in the variables(y1, y2) . Moreover the shadows of polynomials are
polynomials.

Therefore:

(i) For an exponentλ = 1
2

+ k , the elementary leading singularities have the form

Φ0
λ[X

′] =
m∑

j=1

cj(X
′) rk+1/2 ϕ

k+1/2
j (X ′, θ) cj ∈ C∞(E ) . (C.2.5)

(ii) For a positive integerλ ≥ ρmax , Φ0
λ is a finite sum of terms of the formc(X ′)ψ(y)

with smooth c and polynomialψ (homogeneous of degreeλ ). Moreover, the se-
quence of shadowsΦp

λ associated withΦ0
λ have a similar structure with homogeneous

polynomials of degreeλ + p .

As a consequence, we have obtained the statement of Proposition A.4.2.

But, when λ = 1
2

+ k , since λ + p = 1
2

+ k + p is a singular exponent, i.e. a pole of
A0[X ′]−1 , we should expect resonances inside the integrand of the shadowsΦp

λ , between
M

(
rβA1Φp−1 + · · ·

)
[X ′] and A0[X ′]−1 , i.e. poles of order> 1 , which would yield log r

factors. We are going to prove that, in fact, there are no resonances.

C.3 “C AYLEY ” REPRESENTATION FORMULAE

Our method is a direct continuation of [CoDa2] where “Cayley representation formulae”
are introduced to describe the angular behavior (inθ ) of the singular functions. Its is shown
there that any singularity can be expressed by combination of two fundamental types of
functions which, using the complex writingζ of the cartesian variablesy = (y1, y2)

ζ = y1 + iy2 = reiθ ,

can be written as, for anyλ ∈ C , ζ ∈ C with ζ �∈ R
− , and α ∈ C with |α| < 1 :

(αζ + ζ)λ and (ζ + αζ)λ.

The above functions have to be interpreted in the following way:

(αζ + ζ)λ = ζλ
(
1 + α

ζ

ζ

)λ

and (ζ + αζ)λ = ζλ
(
1 + α

ζ

ζ

)λ

, (C.3.1)

which means in polar coordinatesr > 0 , θ ∈ (−π, π) :

(αζ + ζ)λ = rλe−iθλ
(
1 + α e2iθ

)λ
and (ζ + αζ)λ = rλeiθλ

(
1 + α e−2iθ

)λ
. (C.3.2)
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The action of a partial differential operatorQ(∂1, ∂2) on (αζ + ζ)λ and (ζ +αζ)λ exhibits
its Cayley symbolsQ+(α) and Q−(α) as follows:

Q+(α) := Q
(
α + 1, i(α − 1)

)
and Q−(α) := Q

(
1 + α, i(1 − α)

)
and there holds, ifQ is homogeneous of degreeq{

Q(∂y) (αζ + ζ)λ = Pq(λ)(αζ + ζ)λ−qQ+(α)

Q(∂y) (ζ + αζ)λ = Pq(λ)(ζ + αζ)λ−qQ−(α),

where Pq(λ) is the polynomial of degreeq , λ(λ − 1) · · · (λ − q + 1) .

Let us fix X ′ ∈ E . Let L−+ [X ′](α) be the two Cayley symbols ofL0[X ′] and B−+ [X ′]
those of B0[X ′] . We have the following formulas, valid for anyα ∈ C , which are the
matrix version of the above ones: letq ∈ C

N be a vector, there holds{
L0[X ′](∂y)

{
(αζ + ζ)λq

}
= P2d(λ)(αζ + ζ)λ−2d L+[X ′](α)q

L0[X ′](∂y)
{
(ζ + αζ)λq

}
= P2d(λ)(ζ + αζ)λ−2d L−[X ′](α)q.

(C.3.3)

These Cayley symbols allow to describe for anyX ′ and λ the spaceZ[X ′](λ) of the
homogeneous functionsv of degreeλ , solutions of the equation without boundary condi-
tions

L0[X ′]v = 0.

Due to the ellipticity of the operatorL0[X ′] , the equationsdet L−+ [X ′](α) = 0 have m
roots inside the unit disc|α| < 1 , counting multiplicity, andno roots on the unit circle
|α| = 1 . Let us denote

α−
1 [X ′], . . . , α−

m− [X ′], α+

1 [X ′], . . . , α+

m+
[X ′] (C.3.4)

the distinct roots ofdet L−[X ′] and det L+[X ′] inside the unit disc.

For a while let us assume that these roots are simple (i.e.m−+ = m ). Thus, letq−+

�
[X ′] ∈

C
N be non-zero elements of the kernelsker L−+ (α−+

�
) , and for any (non-integer)λ ∈ C let

us define theN -component functions

w+

� [X ′](λ) := (α+

� [X ′]ζ + ζ)λ q+

� [X ′] and w−
� [X ′](λ) := (ζ + α−

� [X ′]ζ)λ q−
� [X ′].

Formulas (C.3.3) give immediately that these functions solve the equationL0[X ′]v = 0 ,
thus belong toZ[X ′](λ) .

As proved in [CoDa2, Th. 2.1], these2m functions form a basis of the spaceZ[X ′](λ)
and, moreover, we obtain “stable” expressions ofw−+

�
[X ′](λ) with respect to the parameter

X
′ without the assumptions that the rootsα+

� [X ′] are simple, by using contour integrals
in α around the discDδ of radius with δ < 1 such thatDδ contains all rootsα−+

�
[X ′] :
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There existsN -component polynomials of degreed− 1 in α depending smoothly onX ′ ,
denotedq−+

�
[X ′](α) for + = 1, . . . , m , which define a basis

{
w−+

�
[X ′]

}
of Z[X ′](λ) :

w+

� [X ′](λ) =

∫
|α|=δ

(αζ + ζ)λ L+[X ′](α)−1q+

� [X ′](α) dα

w−
� [X ′](λ) =

∫
|α|=δ

(ζ + αζ)λ L−[X ′](α)−1q−
� [X ′](α) dα.

(C.3.5)

This basis allows the construction of a2m × 2m matrix N [X ′](λ) whose inverse has
the same poles as the inverse of the Mellin symbolA[X ′](λ)−1 : For this let us introduce
W[X ′](λ) the N × 2m matrix the 2m columns of which are

w+

1 [X ′](λ), . . . ,w+

m[X ′](λ), w−
1 [X ′](λ), . . . ,w−

m[X ′](λ).

Let us recall thatB0[X ′] is the m×N matrix of the principal parts of the boundary op-
eratorsB(X ′, 0; 0, ∂y) . Let g−+ be the trace operators (acting onhomogeneous functions) (7)

g−v = v
∣∣
r=1 and θ=−π

and g+v = v
∣∣
r=1 and θ=π

.

Thecharacteristic matrixof the problem is then the2m × 2m scalar matrix given by

N [X ′](λ) =

(
g−B0[X ′]
g+B0[X ′]

)
W[X ′](λ).

The formula describing
[
A0[X ′](µ)

]−1
involves a right inverse to the operatorL0 on ho-

mogeneous functions of degreeλ (i.e. without boundary conditions) and the inverse of the
matrix N [X ′](λ) allows the correction of boundary conditions.

Let H
λ be the space ofN -component vector functions homogeneous of degreeλ

on the plane sectorΓπ . And let f 	→ v = R[X ′](λ)f be a solution operator of the
problem L0[X ′]v = f , acting from H

λ−2d into H
λ . According to [CoDa2], it is possible

to construct such an operator withC∞ regularity in X ′ and analytic dependency inλ .

Our first representation theorem for the inverse symbolA0[X ′]−1 is the following, see
[CoDa2, Th. 4.4], – We write it directly for the Mellin integrandrµ

[
A0[X ′](µ)

]−1
in view

of application in formulas (C.2.3) and (C.2.4):

Theorem C.3.1 Let R[X ′](λ) be a right inverse toL0[X ′] , acting from H
λ−2d into H

λ .
We have for anyX ′ ∈ E , µ ∈ C and any(F , G−+ ) ∈ L2(−π, π)N × C

m × C
m :

rµ
[
A0[X ′](µ)

]−1(
F , G−+

)
=

R[X ′](µ)
(
rµ−2d

F
)

+

W[X ′](µ)N [X ′](µ)−1
(

G−+ − g−+B0[X ′] R[X ′](µ)
(
rµ−2d

F
))

.

(C.3.6)

(7) The degree of homogeneity and the trace onr = 1 completely determine an homogeneous function: Ifv
is homogeneous of degreeµ and V := v

∣∣
r=1

, then v(r, θ) = rµ
V (θ) .
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Formula (C.3.6) will be applied recursively to special subsets of triples(F , G−+ ) which
have the property to be the traces (inr = 1 ) of homogeneous functions representable by
Cayley integrals like (C.3.5):

Definition C.3.2 For any λ ∈ C , let us denote byHλ
0 the subspace of homogeneousN -

component functionsf ∈ H
λ which admit a representation as:

f =

∫
|α|=δ

(αζ + ζ)λ q+(α) dα +

∫
|α|=δ

(ζ + αζ)λ q−(α) dα (C.3.7)

with N -component vectorsq−+ meromorphic inα (and without pole in the annulusδ ≤
|α| ≤ 1 ). Such a representation is madeuniqueif we assume that theq−+ are holomorphic
outside the unit disc and tend to0 as |α| → ∞ .

We can define a special solution operatorR0[X
′](λ) acting on the subspaceHλ−2d

0

into H
λ
0 : For f ∈ H

λ−2d
0 represented by (C.3.7) with the uniqueness constraint, we define

R0[X
′](λ)f by

R0[X
′](λ)f = P2d(λ)−1

∫
|α|=δ

(αζ + ζ)λ L+[X ′](α)−1q+(α) dα

+P2d(λ)−1

∫
|α|=δ

(ζ + αζ)λ L−[X ′](α)−1q−(α) dα.
(C.3.8)

The vector function obviously belongs toHλ
0 and if P2d(λ) �= 0 , formulae (C.3.3) give

immediately thatL0[X ′] R0[X
′](λ) f = f .

C.4 REPRESENTATION OF SINGULARITIES

We start from the expression (C.2.3) of the leading singularityΦ0 . The function

(X ′, µ) 	→ M(r2df , 0, 0)[X ′](µ)

is C∞(E ) in X
′ and analytic inµ in the disc δλ encircled by the contourγ(λ) . Us-

ing the representation (C.3.6) with analyticF and zeroG−+ , we find that the only pole of

rµ
[
A0[X ′](µ)

]−1
M(r2df , 0, 0)[X ′](µ) inside δλ is µ = λ and that there holds

Φ0[X ′] =
1

2iπ

∫
γ(λ)

W[X ′](µ)N [X ′](µ)−1 ψ0[X ′](µ) dµ (C.4.1)

with a 2m -component vector function(X ′, µ) 	→ ψ0[X ′](µ) which is C∞ in X
′ and ana-

lytic in µ . Since the pole ofN (µ)−1 is of order1 , see [CoDa4], and since by construction,
the columns ofW[X ′](µ) belong to the special spaceHλ

0 of homogeneous functions, we
have obtained
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Lemma C.4.1 The leading singular functionX ′ 	→ Φ0[X ′] is C∞(E ) with values inH
λ
0 ,

which means that there existsN -component vectorsq−+

0
[X ′](α) meromorphic inα and

C∞ in X
′ such that

Φ0[X ′] =

∫
|α|=δ

(αζ + ζ)λ q+

0 [X ′](α) dα +

∫
|α|=δ

(ζ + αζ)λ q−
0 [X ′](α) dα. (C.4.2)

The first shadow singularityΦ1 is given by

Φ1[X ′] = − 1

2iπ

∫
γ(λ)+1

rµ
[
A0[X ′](µ)

]−1
M

(
11r∈[0,1](r

βA1Φ0)
)
[X ′](µ) dµ . (C.4.3)

The following lemmas give that the structure ofA1Φ0 is compatible with representations of
the type (C.3.7).

Lemma C.4.2 Let λ ∈ C . For any j ∈ N , the operatorLj acts fromC∞(E , Hλ
0) into

C∞(E , Hλ+j−2d
0 ) .

PROOF. The operatorLj is a linear combination withC∞(E ) coefficients of terms of the
form yβ ∂i

X
′ ∂δ

y with |δ| − |β| = 2d − j . The derivative∂i
X

′ acts only on the coefficients
depending onX ′ and do not change the angular structure, so we may discard it. We are left
with yβ ∂δ

y , which we can write as a linear combination of terms

ζβ1 ζβ2 ∂δ1
ζ

∂δ2
ζ

with δ1 + δ2 − β1 − β2 = 2d − j.

It is clear that it suffices to prove that for anyδ1 , δ2 , β1 and β2 with δ1 + δ2 − β1 − β2 =
2d− j , and for any functionq(α) meromorphic inα , there existsq′(α) also meromorphic
in α such that

ζβ1 ζβ2 ∂δ1
ζ

∂δ2
ζ

∫
|α|=δ

(αζ + ζ)λ q(α) dα =

∫
|α|=δ

(αζ + ζ)λ+j−2d q′(α) dα.

We have

∂δ1
ζ

∂δ2
ζ

∫
|α|=δ

(αζ + ζ)λ q(α) dα = c

∫
|α|=δ

αδ1(αζ + ζ)λ−|δ| q(α) dα.

With the equalityζ = (αζ + ζ) − αζ , we transformζβ1 ζβ2 into a linear combination of
terms of the formζγ1(αζ + ζ)γ2 . Thus we are left with integrals of the form∫

|α|=δ

ζn(αζ + ζ)λ+j−2d−n q(α) dα.

As ∂n
α(αζ + ζ)λ+j−2d = c ζn(αζ + ζ)λ+j−2d−n , we integrate by partsn times in the above

integral and obtain the result.

In the same way, we obtain the corresponding result for the trace operators:
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Lemma C.4.3 Let λ ∈ C . For any j ∈ N0 the operatorBj acts fromC∞(E , Hλ
0) into

C∞(E , Hλ+j−ρ
0 ) , where H

λ−ρ
0 is the space ofm -component functions homogeneous of

degree(λ − ρ1, . . . , λ − ρm) with Cayley representation like(C.3.7).

Let us return to (C.4.3). Let(F
1, G

1
−+
)[X ′] be the traces onr = 1 of A1[X ′]Φ0[X ′] . We

have

M
(
11r∈[0,1](r

βA1Φ0)
)
[X ′](µ) =

1

µ − (λ + 1)
(F

1, G
1
−+
)[X ′].

By Lemma C.4.2,rλ+1−2d
F

1[X ′](θ) belongs toC∞(E , Hλ+1−2d
0 ) : There existsq−+ [X ′]

such that

rλ+1−2d
F

1[X ′] =

∫
|α|=δ

(αζ + ζ)λ+1−2d q+[X ′](α) dα+

∫
|α|=δ

(ζ + αζ)λ+1−2d q−[X ′](α) dα.

We define forµ ∈ C the following elementf 1
0[X

′](µ) ∈ H
µ−2d
0 :

f 1
0[X

′](µ) :=

∫
|α|=δ

(αζ + ζ)µ−2d q+[X ′](α) dα +

∫
|α|=δ

(ζ + αζ)µ−2d q−[X ′](α) dα.

Of course,f 1
0[X

′](λ + 1) = rλ+1−2d
F

1[X ′] . Let us denote

f 1[X ′](µ) := rµ−2d
F

1[X ′] − f 1
0[X

′](µ).

It is clear that in the representation formula (C.3.6), we may take as right inverse ofrµ−2d
F

1 ,

R0[X
′](µ)

(
f 1

0[X
′](µ)

)
+ R[X ′](µ)

(
f 1[X ′](µ)

)
,

instead ofR[X ′](µ)
(
rµ−2d

F
1
)

. Therefore we have the following decomposition in four parts
of the integrand of (C.4.3):

rµ
[
A0[X ′](µ)

]−1
M

(
11r∈[0,1](r

βA1Φ0)
)
(µ) =

1

µ − (λ + 1)

(
rµ

[
A0[X ′](µ)

]−1
(F

1, G
1
−+
)
)

=
1

µ − (λ + 1)

(
U1 + U2 + U3 + U4

)
(µ).

(C.4.4)
where

U1(µ) = R[X ′](µ) f 1[X ′](µ),

U2(µ) = R0[X
′](µ) f 1

0[X
′](µ),

U3(µ) = W[X ′](µ)N [X ′](µ)−1
(
−g−+B0[X ′] R[X ′](µ) f 1[X ′](µ)

)
,

U4(µ) = W[X ′](µ)N [X ′](µ)−1
(

G
1
−+
− g−+B0[X ′] R0[X

′](µ) f 1
0[X

′](µ)
)
.

Coming back to (C.4.3), we have to compute the contour integral

Φ1[X ′] = − 1

2iπ

∫
γ(λ)+1

1

µ − (λ + 1)

(
U1 + U2 + U3 + U4

)
(µ) dµ.
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Let us compute the residue inµ = λ + 1 of each of the four terms.

(i) As f 1[X ′](λ + 1) = 0 , the residue of
(
µ − (λ + 1)

)−1
U1(µ) is 0 .

(ii) The residue of
(
µ − (λ + 1)

)−1
U2(µ) is equal to U2(λ + 1) , which coincides with

R0[X
′](λ + 1) f 1

0[X
′](λ + 1) , therefore belongs toHλ+1

0 .

(iii) As f 1[X ′](λ+1) = 0 , the pole of
(
µ− (λ+1)

)−1
U3(µ) is of order1 , and the residue

is a linear combination of thew−+

�
[X ′](λ + 1) , therefore belongs toHλ+1

0 .

(iv) Finally, the pole of
(
µ − (λ + 1)

)−1
U4(µ) in λ + 1 is, a priori, of order2 :

1

2iπ

∫
γ(λ)+1

W[X ′](µ)
N [X ′](µ)−1

µ − (λ + 1)

(
G

1
−+
− g−+B0[X ′] R0[X

′](µ) f 1
0[X

′](µ)
)

dµ. (C.4.5)

The term (C.4.5) is itself the sum of an element ofH
λ+1
0 , cf. (iii) , and of

1

2iπ

∫
γ(λ)+1

W[X ′](µ)
N [X ′](µ)−1

µ − (λ + 1)

(
G

1
−+
−g−+B0[X ′] R0[X

′](λ+1)
(
rλ+1−2d

F
1
))

dµ. (C.4.6)

By constructionG
1
−+

is the couple of tracesg−+B1[X ′]Φ0[X ′] . Therefore

G
1
−+
− g−+B0[X ′] R0[X

′](λ + 1)
(
rλ+1−2d

F
)

= g−+Ψ1[X ′] ,

where
Ψ1[X ′] := B1[X ′]Φ0[X ′] − B0[X ′] R0[X

′](λ + 1)
(
L1[X ′]Φ0[X ′]

)
.

The m -component functionΨ1[X ′] belongs toC∞(E , Hλ+1−ρ
0 ) by virtue of Lemmas C.4.2

and C.4.3. Gathering the results forΦ1 , we have obtained

Lemma C.4.4 The first shadow singularityΦ1[X ′] is the sum ofΦ1
0[X

′] which belongs to
C∞(E , Hλ+1

0 ) and of Φ1
1 :

Φ1
1 :=

1

2iπ

∫
γ(λ)+1

W[X ′](µ)
N [X ′](µ)−1

µ − (λ + 1)

(
g−+Ψ1[X ′]

)
dµ, (C.4.7)

where Ψ1[X ′] belongs toC∞(E , Hλ+1−ρ
0 ) .

C.5 THE RELATION OF COMPATIBILITY

Our aim is to show that the coefficient in front of the term(µ−(λ+1))−2 in the Laurent
expansion of(µ − (λ + 1))−1N [X ′](µ)−1

(
g−+Ψ1[X ′]

)
is zero. As N [X ′](µ)−1 has its a

pole of order1 in λ + 1 , the necessary and sufficient condition for this coefficient to be
zero is that

g−+Ψ1[X ′] ∈ rgN [X ′](λ + 1), (C.5.1)

which is the “relation of compatibility”.
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Lemma C.5.1 Let λ be of the form 1
2

+ k with k ∈ Z . Let X ′ ∈ E . Then the range
of N [X ′](λ) is the subspace of the(b1

−, . . . , bm
− , b1

+, . . . , bm
+ ) which satisfybh

− = −bh
+ for

h = 1, . . . , m .

PROOF. Let us fix X ′ and let us drop it in the notations. In the case when the rootsα−+

�
are

distinct, according to [CoDa4,§3], N (µ) has the general structure, bym × m blocks:

N (µ) =

(
E(µ) 0

0 E(µ)

) (
e−iπµB+ −e−iπµB−

−e−iπµB+ e−iπµB−

) (
F +(µ) 0

0 F−(µ)

)
,

where E(µ) is a diagonal matrix everywhere invertible except on a finite number of inte-
gers, F −+ (µ) are everywhere invertible and the two matricesB−+ are invertible, due to the
ellipticity of the boundary value problem, see [CoDa4,§4]. The statement of the lemma for
µ = λ is straightforward in this case. The general case where theα−+

�
are not supposed

distinct is obtained by perturbation.

Lemma C.5.2 Let λ be of the form1
2

+ k with k ∈ Z . Let Ψ belong to H
λ−ρ
0 . Then

g−Ψ = −g+Ψ .

PROOF. Let Ψh denote the components ofΨ , for h = 1, . . . , m . The componentΨh

belongs toH
λ−ρh
0 , which means that there exists functionsp−+

h
meromorphic inα and such

that

Ψh =

∫
|α|=δ

(αζ + ζ)λ−ρh p+

h(α) dα +

∫
|α|=δ

(ζ + αζ)λ−ρh p−
h (α) dα.

It remains to compute the tracesg−+ of Ψh . We use the formulae

(αζ + ζ)µ = ζµ
(
1 + α

ζ

ζ

)µ

and (ζ + αζ)µ = ζµ
(
1 + α

ζ

ζ

)µ

.

There holds (since|α| < 1 )

ζµ = reiµθ, ζµ = re−iµθ,
(
1 + α

ζ

ζ

)µ

= (1 + αe2iθ)µ,
(
1 + α

ζ

ζ

)µ

= (1 + αe−2iθ)µ

Whence

g−Ψh = ei(λ−ρh)π

∫
|α|=δ

(1 + α)λ−ρhp+

h(α) dα + e−i(λ−ρh)π

∫
|α|=δ

(1 + α)λ−ρhp−
h (α) dα

g+Ψh = e−i(λ−ρh)π

∫
|α|=δ

(1 + α)λ−ρhp+

h(α) dα + ei(λ−ρh)π

∫
|α|=δ

(1 + α)λ−ρhp−
h (α) dα

As λ = 1
2

+ k , we have obtained the lemma.

The consequence of Lemmas C.5.1 and C.5.2 forΦ1[X ′] is now clear: (C.5.1) holds.
Therefore the functionΨ1

1[X
′] defined in (C.4.7) also belongs toC∞(E , Hλ+1

0 ) . Which
means that, finally, the first shadow singularityΦ1[X ′] belongs toC∞(E , Hλ+1

0 ) , i.e. satis-
fies at its degree of homogeneity exactly the same property asΦ0[X ′] , see Lemma C.4.1.
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The proof of this property can be immediately generalized to the following:

Proposition C.5.3 Let λ ∈ C of the form 1
2

+ k with integer k . Let F [X ′](r, θ) belong
to C∞(E , Hλ−2d

0 ) and G−+ [X ′](r) be the traces onθ = −+π of a m -component vector

function Ψ[X ′] ∈ C∞(E , Hλ−ρ
0 ) . Then theN -component functionΦ[X ′] defined as

Φ[X ′] =
1

2iπ

∫
γ(λ)

rµ
[
A0[X ′](µ)

]−1
M

(
11r∈[0,1](r

2dF, rρG)
)
[X ′](µ) dµ

belongs toC∞(E , Hλ
0) .

Therefore, with the help of Lemmas C.4.2 and C.4.3, we see that the procedure for the
analysis of the successive shadowsΦ2, . . . , Φp is recursive. Therefore for allp ∈ N0 , Φp

belong toC∞(E , Hλ+p
0 ) and, thus, do not contain any logarithmic term.

C.6 ABSENCE OF LOGARITHMS , GENERAL RESULTS

Examining the arguments of the proofs of Lemmas C.4.1 to C.4.3 and Proposition C.5.3,
we can see that, in fact, the result we have proved does not use any ellipticity in the edge vari-
able X ′ ∈ E , only the smooth dependency. In the next statement, we select the hypotheses
which are sufficient to obtain our result on the absence of logarithms in shadow singularities:

Hypothesis C.6.1Let X ′ 	→ (L0, B0)[X ′] be C∞(E ) with values in the spaceOp2d,ρ
Ell (R2)

of (N ×N) elliptic systems homogeneous of order2d with constant coefficients inR2 ,
with complementing boundary conditions homogeneous of degreeρ = (ρ1, . . . , ρm) with
constant coefficients. The Mellin symbol of(L0, γ−+B0)[X ′] is denoted byA0[X ′] with γ−

and γ+ the traces on{(y1, y2) | y1 < 0} from below and from above respectively.
For any j ∈ N , let X ′ 	→ (Lj, Bj)[X ′] be a matrix-function with coefficientsLj

k,�[X
′]

and Bj
h,�[X

′] , C∞(E ) with values in the space of operators

Op2d−j(R2) for Lj
k,� and Opρh−j(R2) for Bj

h,�,

where for p ∈ Z , Opp(R2) is defined as the space of finite linear combinations with
C∞(E ) coefficients of partial differential operators of the formyβ∂i

X
′∂δ

y with |δ|−|β| = p .
We denote the triple(Lj, γ−+Bj)[X ′] by Aj[X ′] .

The proofs of Lemmas C.4.1 to C.4.3 and Proposition C.5.3 then yield

Theorem C.6.2 Let (Lj, Bj)j≥0 be a sequence of operators satisfying HypothesisC.6.1.
Let λ = 1

2
+ k with k ∈ Z and let γ(λ) be the circle with centerλ and radius 1

4
. With

the function(X ′, µ) 	→ (F , G−+ )[X ′](µ) supposed to beC∞(E ) in X
′ and analytic inµ ,

with values inL2(−π, π)× C
m × C

m , we define the following leading singularity, which is
a generalization of(C.2.3):

Φ0[X ′] =
1

2iπ

∫
γ(λ)

rµ
[
A0[X ′](µ)

]−1
(F , G−+ )[X ′](µ) dµ,
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and its sequence of shadows(Φp[X ′])p according to DefinitionC.2.1. Then, for any integer
p ≥ 0 , Φp[X ′] belongs toC∞(E , Hλ+p

0 ) . In particular Φp[X ′](r, θ) can be written in the
form rλ+pψ(X ′, θ) with ψ ∈ C∞(E × [−π, π]) ⊗ C

N .

In fact this statement extends to the wider class of Agmon–Douglis–Nirenberg systems
with covering boundary conditions:

Hypothesis C.6.3Let N ∈ N , σ = (σ1, . . . , σN) , τ = (τ1, . . . , τN) ,

m = 1
2
(σ1 − τ1 + . . . + σN − τN)

and ρ = (ρ1, . . . , ρm) . Let X ′ 	→ (L0, B0)[X ′] be C∞(E ) with values in the space
Opσ,τ ,ρ

ADN (R2) of (N×N) Agmon–Douglis–Nirenberg elliptic systems homogeneous of or-
der σk − τ� with constant coefficients inR2 , with complementing boundary conditions
homogeneous of degreeρh − τ� with constant coefficients.

For any j ∈ N , let X ′ 	→ (Lj, Bj)[X ′] =: Aj[X ′] be a matrix-function with coefficients
Lj

k,�[X
′] and Bj

h,�[X
′] , C∞(E ) with values in the space of operators

Opσk−τ�−j(R2) for Lj
k,� and Opρh−τ�−j(R2) for Bj

h,�,

with Opp(R2) as in Hypothesis C.6.1.

The Mellin transform and the Cayley representation can be used with the same success in
the framework of Agmon–Douglis–Nirenberg systems, see [CoDa2, CoDa4], which allows
to obtain:

Theorem C.6.4 Let (Lj, Bj)j≥0 be a sequence of operators satisfying HypothesisC.6.3.
Let λ = 1

2
+ k , γ(λ) and (F , G−+ )[X ′](µ) be as in TheoremC.6.2. We define the following

leading singularity:

Φ0[X ′] =
1

2iπ

∫
γ(λ)

rµ−τ
[
A0[X ′](µ)

]−1
(F , G−+ )[X ′](µ) dµ,

and its sequence of shadows(Φp[X ′])p by an obvious modification of DefinitionC.2.1, with
β = (σ1, . . . , σN , ρ1, . . . , ρm, ρ1, . . . , ρm) and µ replaced withµ − τ as above.

Then Φp[X ′] is homogeneous of multi-degreeλ + p − τ , i.e. its j -th componentΦp
j

satisfiesΦp
j [X

′](r, θ) = rλ+p−τjψj(X
′, θ) with ψj ∈ C∞(E × [−π, π]) .

We obtain as a corollary (and a generalization of Theorem A.4.3) that the asymptotics
along a crack edge of the solutions of Agmon–Douglis–Nirenberg systems associated with
coercive bilinear forms contain no logarithmic term:

Corollary C.6.5 Let (L, B) be an (N×N) Agmon–Douglis–Nirenberg elliptic system of
order σk − τ� with smooth coefficients inRn+1 , with complementing boundary conditions
homogeneous of degreeρh − τ� with smooth coefficients. Let us assume that(L, B) is
associated with a coercive bilinear form. Letρmax := max{ρ1, . . . , ρm} . Any solutionu
of problem(C.2.1) (with a smooth right hand sidef ) which belongs toHs−τ (Wπ) with
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s ≥ ρmax has the following asymptotic expansion asr → 0 : For any integerK > k0

u =
m∑

j=1

c0
j(X

′) r
1
2
+k0−τψ0

j(X
′, θ) +

K∑
k=k0+1

j(k)∑
j=1

ck
j (X

′) r
1
2
+k−τ ψk

j (X
′, θ) (C.6.1)

+ ureg,K + urem,K ,

where k0 is the smallest integer such that1
2

+ k0 > s − 1 . The regular partureg,K is in
C∞(Rn+1) . The remainderurem,K belongs toCK+1−τ (W π) and is flat of orderK − τ
near E .

C.7 ANGULAR DESCRIPTION OF SINGULAR FUNCTIONS

For simplicity, let us go back to the situation where Hypothesis C.6.1 is satisfied and let
us considerΦ0[X ′] like in Theorem C.6.2, as well as its sequence of shadows(Φp[X ′])p .
Theorem C.6.2 tells us thatΦp[X ′] belongs toC∞(E , Hλ+p

0 ) , which means that there exist
meromorphicα 	→ q−+ [X ′](α) (with C∞(E ) dependence onX ′ ) such that

Φp[X ′] =

∫
|α|=δ

(αζ + ζ)λ+p q+[X ′](α) dα +

∫
|α|=δ

(ζ + αζ)λ+p q−[X ′](α) dα .

But, in fact, the vector-functionsq−+ [X ′] are notarbitrary meromorphic functions in the unit
disc: their poles belong to the set of the roots

{
α−+

�
[X ′]

}
�=1,...,m−+

, cf (C.3.4).

As a consequence, as we are going to show, it is possible to give amodular representation
of the Φp[X ′] , if we assume

(HC1) The multiplicities n−+

�
of α−+

�
[X ′] are constant onE .

Let α[X ′] denote the set
{
(α−+

�
[X ′], n−+

�
)
}

of the roots with their multiplicities.

Definition C.7.1 Under hypothesis(HC1) , for any µ ∈ C and p ∈ N , let us denote by
C∞(E , Hµ

α, p) the subspace of homogeneous functionsf [X ′] ∈ Hµ which admit a represen-
tation as:

f [X ′] =

∫
|α|=δ

(αζ + ζ)µ q+[X ′](α) dα +

∫
|α|=δ

(ζ + αζ)µ q−[X ′](α) dα (C.7.1)

where the functionsq+[X ′] and q−[X ′] are meromorphic inα , C∞ in X
′ , with poles

only in the rootsα+

� [X ′] of order ≤ pn+

� and α−
� [X ′] of order ≤ pn−

� respectively. Let
C∞(E , Hµ

α, p) be the spaceC∞(E , Hµ
α, p) ⊗ C

N .

With these definitions, we have the following properties

(i) By (C.3.5), the kernel elementsw−+

�
(µ) belong toC∞(E , Hµ

α, 1) .
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(ii) The definition (C.3.8) ofR0 gives us that for anyµ ∈ C and anyp ∈ N

R0 acts from C∞(E , Hµ−2d
α, p ) into C∞(E , Hµ

α, p+1).

(iii) The proof of Lemma C.4.2 yields that for anyµ ∈ C and anyp ∈ N

Aj acts from C∞(E , Hµ
α, p) into C∞(E , Hµ+j−2d

α, p ) × C∞(E , Hµ+j−ρ
α, p ).

Revisiting the proofs of Lemma C.4.1 and Proposition C.5.3 we obtain

Theorem C.7.2 Under the assumptions of TheoremC.6.2and under hypothesis(HC1) , for
any p ∈ N0 the edge singular functionsΦp belong toC∞(E , Hλ+p

α, p+1) .

Since there holds for anyµ ∈ C , for any α and α0 ∈ C

(αζ + ζ)µ = (α0ζ + ζ)µ +
∑
k≥1

cµ,k (α − α0)
kζk(α0ζ + ζ)µ−k

(ζ + αζ)µ = (ζ + α0ζ)µ +
∑
k≥1

cµ,k (α − α0)
kζk(ζ + α0ζ)µ−k,

any functionΦ in C∞(E , Hµ
α, p) has a representation as

Φ =

m+∑
�=1

pn+
� −1∑

k=0

ζk
(
α+

� [X ′]ζ + ζ
)µ−k

c+

k,�[X
′] +

m−∑
�=1

pn−
� −1∑

k=0

ζk
(
ζ + α−

� [X ′]ζ
)µ−k

c−
k,�[X

′],

with C∞(E ) coefficientsc−+

k,�
. As a corollary of Theorem C.7.2 we obtain

Corollary C.7.3 Under the assumptions of TheoremC.6.2and under hypothesis(HC1) , for
any p ∈ N0 the edge singular functionsΦp have representations as

Φp[X ′] =

m+∑
�=1

(p+1)n+
� −1∑

k=0

ζk
(
α+

� [X ′]ζ + ζ
)λ+p−k

cp,+
k,� [X ′] (C.7.2)

+

m−∑
�=1

(p+1)n−
� −1∑

k=0

ζk
(
ζ + α−

� [X ′]ζ
)λ+p−k

cp,−
k,� [X ′], cp,−+

k,�
∈ C∞(E ) .

Let us denote byΨ�,ω for ω = −+1 the fundamental functions

Ψ�,+(X ′, r, θ) = α+

� [X ′]ζ + ζ and Ψ�,−(X ′, r, θ) = ζ + α−
� [X ′]ζ .

The comparison with the fundamental angular functions introduced in (B.8.3) is quite simple:
Since, if L is real,

τ� =
i(α+

� − 1)

α+

� + 1
and τ � =

i(1 − α−
� )

α−
� + 1

,
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there holds

Ψ�,ω(r, θ) = (α� + 1) r ψ�,ω(θ), + = 1, . . . , nω
� , ω = −+1,

and conditions(HB6) and (HC1) are two formulations of the same assumption.

Coming back to the expansion (C.7.2), we note that theN -component vector functions

dp
�,+(X ′, y) :=

(p+1)n+
� −1∑

k=0

ζkΨ
(p+1)n+

� −1−k

�,+ (X ′, y) cp,+
k,� [X ′]

dp
�,−(X ′, y) :=

(p+1)n−
� −1∑

k=0

ζkΨ
(p+1)n−

� −1−k

�,− (X ′, y) cp,−
k,� [X ′]

are polynomial iny , thereforeC∞(Rn+1) , and there holds

Φp[X ′] =
∑

ω=−+1

mω∑
�=1

Ψ
λ−(p+1)(nω

� −1)

�,ω (X ′, y) dp
�,ω(X ′, y). (C.7.3)

If condition (HA3) holds (i.e. if n−+

� = 1 , + = 1, . . . , m ) (C.7.3) takes the simpler form

Φp[X ′] =
∑

ω=−+1

mω∑
�=1

Ψλ
�,ω(X ′, y) dp

�,ω(X ′, y), (C.7.4)

which means that the singular factorsΨλ
�,ω do not depend onp .

As a final consequence of formulas (C.7.3) and (C.7.4), we obtain “modular representa-
tions” of the solutions of elliptic BVP in the domainΩ = R

n+1 \M :

Theorem C.7.4 Let the hypotheses(HA1) , (HA2) and (HC1) be satisfied.
(i) Any solutionu of the boundary value problem(A.1.1) with smooth right hand sidef
has the following asymptotic expansion asr → 0 : For any integerK ≥ 0

u =
∑

ω=−+1

mω∑
�=1

Ψ
1
2
−(K+1)(nω

� −1)

�,ω (X ′, y) d
[K]
�,ω (X ′, y) + ureg,K + urem,K , (C.7.5)

where the vector-coefficientsd [K]
�,ω are C∞(Rn+1) and the regular partsureg,K and urem,K

are as in PropositionA.4.2.
(ii) If the multiplicities nω

� are all equal to 1 , cf hypothesis(HA3) , then u admits the
global decomposition

u =
∑

ω=−+1

m∑
�=1

Ψ
1
2
�,ω(X ′, y) d∞

�,ω(X ′, y) + ureg,∞ , (C.7.6)

where all vector-coefficientsd∞
�,ω and ureg,∞ are C∞(Rn+1) .
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Remark C.7.5 The multiplicities nω
� are in fact the order of the poles of the inverse of the

Cayley symbolLω(α)−1 in αω
� . They can be smaller than the total multiplicity ofαω

� . An
example for this is the case of isotropic elasticity inR

3 where L−+ (α)−1 have 0 as only
pole, but the multiplicity is2 (and not3 ). The fundamental functionsΨ�,ω are simply

Ψ+ = ζ = (y1 − iy2) and Ψ− = ζ = (y1 + iy2),

and expansion (C.7.5) takes the form, compare with [ChkDu2]

u = ζ
1
2
−(K+1) d [K]

+ (X ′, y) + ζ
1
2
−(K+1) d [K]

− (X ′, y) + ureg,K + urem,K , (C.7.7)

with C∞(Rn+1)N coefficientsd
[K]

−+
.
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