
Asynchronous and Fully Self-Stabilizing
Time-Adaptive Majority Consensus

Janna Burman1, Ted Herman2, Shay Kutten1?, and Boaz Patt-Shamir3

1 Dept. of Industrial Engineering & Management
Technion, Haifa 32000, Israel.

bjanna@tx.technion.ac.il, kutten@ie.technion.ac.il
2 Dept. of Computer Science

University of Iowa, Iowa City, Iowa 52242, USA.
herman@cs.uiowa.edu

3 Dept. of Electrical Engineering
Tel-Aviv University, Tel Aviv 69978, Israel.

boaz@eng.tau.ac.il

Abstract. We study the scenario where a batch of transient faults hits
an asynchronous distributed system by corrupting the state of some f
nodes. We concentrate on the basic majority consensus problem, where
nodes are required to agree on a common output value which is the input
value of the majority of them. We give a fully self-stabilizing adaptive al-
gorithm, i.e., the output value stabilizes in O(f) time at all nodes, for any
unknown f . Moreover, a state stabilization occurs in time proportional
to the (unknown) diameter of the network. Both upper bounds match
known lower bounds to within a constant factor. Previous results (stated
for a slightly less general problem called “persistent bit”) assumed the
synchronous network model, and that f < n/2.

1 Introduction

We consider protocols that can withstand state-corrupting faults that flip the
bits of the volatile memory in a system arbitrarily. A system that reaches a
legitimate state starting from an arbitrary state is called self-stabilizing [14]
or fully self-stabilizing.4 The stabilization time is the time that elapses since the
protocol starts executing (with arbitrary states at the corrupted nodes) until the
system reaches a legal state. Classical self-stabilizing protocols were designed to
minimize worst-case stabilization time regardless of the number of nodes whose
state was corrupted by the faults. More recently, it has been recognized that
if the faults hit only a few nodes, then a much faster stabilization is possible,
see e.g. [25, 2, 29, 30]. In [29, 30] a system is called time-adaptive or fault-local

? This research was partially supported by the Israel Science Foundation (Grant
4005/02)

4 We use the qualifier “fully” to emphasize that the state can be arbitrarily corrupted.
We mention some weaker forms of stabilization later.

if its stabilization time is proportional to the number of nodes whose state was
corrupted.

The Majority Consensus problem is a basic problem in distributed comput-
ing: each node has an input, and it is required that the output at each node
stabilizes to the majority of these inputs. In this paper it is assumed that the
input can be changed by transient faults, by the environment, or by the stabiliz-
ing algorithm. This problem is a simple form of the general consensus problem
[20], which is fundamental to fault tolerant distributed applications.

Our results. We present a fully self-stabilizing, optimal time-adaptive solution
for the majority consensus problem for asynchronous networks. The output of
our algorithm stabilizes in time proportional to f , the number of nodes hit by
faults. The state stabilization time is proportional to the network diameter. In
other words, our algorithm is optimal in both output and state stabilization
(see [29]). These properties hold even in the case that f ≥ n/2 (where n is the
number of nodes). This should be contrasted with previous results that were
only for f < n/2.

As a corollary, our solution solves the Persistent Bit problem [30, 29] when-
ever such a solution is possible. “Persistent Bit” is the task of remembering the
value of a replicated bit in the face of state corruptions. The time adaptive solu-
tion in [29] was only for synchronous networks, while we solve it time adaptively
for asynchronous networks.

The algorithm utilizes some known techniques, namely the self-stabilizing
synchronization [6] and the power-supply method [1]. We use a new version
of the power-supply method. The time-adaptivity we prove for power-supply is
stronger than the self-stabilization proven in [1]; this new property may be useful
for other applications of power supply.

For simplicity, we present the algorithm as one maintaining only 0/1 values,
but it can easily be adapted for any range of values.

Related Work. The study of self-stabilizing protocols was initiated by Dijkstra
[14]. Reset-based approaches to self-stabilization are described in [27, 3, 7, 6, 16,
5]. One of the main drawbacks of this approach is that the detection mechanism
triggers a system-wide reset in the face of the slightest inconsistency. Fast sta-
bilization of the output variables are demonstrated in a number of algorithms
[26, 24, 2, 22, 4, 11, 32, 8]. Some general methods to achieve time adaptivity are
discussed in [29, 17, 21]. The distinction between output stabilization and state
stabilization (see definitions in Sec. 2) is used and discussed in a number of
papers [29, 31, 15, 25, 23].

We use the self stabilizing synchronizer with a counter (sometimes called
phase clock) of [6]. Other phase clocks in the literature, such as [10, 18, 13, 23],
may also be useful.

Papers most closely related to our work are [6, 25, 2, 29, 30, 22, 11, 32]. A pre-
liminary brief announcement [28] at the PODC’98 symposium announces results
that appear in the current paper.

Paper organization. In Sec. 2, we formalize the model and introduce a few no-
tations. In Sec. 3, we present the problems and explain the overall structure of
the solution. The new algorithm is presented in Sec. 4 and 5 dealing with output
and state stabilization respectively.

2 Model and Notations

System Model. The system topology is represented by an undirected graph G =
(V,E), where nodes represent processors and edges represent communication
links. The number of the nodes is denoted by n = |V |. The diameter of the
graph is denoted by diam. We assume that there is a known upper bound
on the diameter of the network, denoted by D. This upper bound serves only
for the purpose of having finite space protocols. For i ∈ V , we define N(i) =
{j | (i, j) ∈ E}, called the neighbors of i. We do not assume that the set of edges
in the network is known in advance, i.e., algorithms are required to work on any
topology. We consider an asynchronous message passing network model. In a
message passing network, processors may exchange values only by transmitting
packets. In our model, a packet consists of a set of messages. The packet delivery
time can be arbitrary, but for the purpose of time analysis only, we assume that
each packet is delivered in at most one time unit.

The number of packets that may be in transit on any link in each direction
and at the same time is bounded by some parameter B (independent of the
network size). We adopt this assumption from [1]; it is necessary, as shown in
[19], for solving problems in a self-stabilizing manner. For simplicity, we assume
that B = 1, i.e., there is at most one outstanding packet on each link at any given
time (see [7] for more details). A packet may contain any number of messages.
Each message contains information (a node identity and more) related to some
specific node. In our algorithm, we distinguish between two types of messages,
called strong and weak (Sec. 4.1). Each node maintains two buffers for each link:
one for the incoming packets and another one for the outgoing packets. Each
buffer contains at most one message for each type and for each node: for each
type and node, only the most recent message is stored in the buffer (cf. [1]). If
a new message arrives, the previous one is discarded.

We adopt the usual definitions of the following: a local state of a node (an
assignment of values to the local variables and the location counter); a global
state of a system of nodes (the cross product of the local states of its constituent
nodes, plus the contents of the links); the semantics of protocol actions (possi-
ble atomic steps and their associated state changes); an execution sequence of
protocol P (a possibly infinite sequence of global states in which each element
follows from its predecessor by execution of a single atomic step of P).

Fault Model. We follow the terminology of [29]. We assume that each protocol
has a legality predicate over the set of global states. Informally, a legal global state
of our protocol is a state in which the protocol is ready to get a new batch of
faults in the sense that following these faults the protocol satisfy all its claimed

execution properties (in particular, time adaptivity; as for state stabilization,
our protocol stabilizes from any finite number of faults that occur anytime). A
formal definition of the legality predicate of our protocol is deferred to the full
paper. A faulty node is defined as in [6]. We define two global states: a start
state s0 that exists at time t0 = 0, right after the faults hit, and a reference
state s−1, where s−1 is legal; a node is called faulty if its local state is different
in s0 and s−1. Note that every part of the state (except for the ID of the node)
can be changed by the adversary and this is considered a fault. Without loss
of generality, a fault that corrupts a packet over a link is considered a fault in
the node that receives that packet eventually. A fault number is the number of
faulty nodes at the start state s0.

A protocol is called f-stabilizing if starting from a state with fault number at
most f , it reaches a legal state eventually and remains in a legal state thereafter.
A protocol is called self-stabilizing or fully self-stabilizing if it is f -stabilizing for
f = n. We distinguish between output stabilization and state stabilization: output
stabilization is said to occur once the externally observable portion of the state
becomes (and stays) legal, and state stabilization is said to occur when the entire
state becomes (and stays) legal. The maximum number of time units that takes
to reach the state stabilization (respectively, output stabilization) is called the
state stabilization time of the protocol (resp., output stabilization time). If the
output stabilization time of an algorithm depends only on the fault number then
the algorithm is said to be fault local, or time-adaptive.

Typographical Convention. Protocol variables are represented using teletype
font, with a subscript indicating the node in which the variable is located.
For example, disti denotes the “distance” variable at node i, whose value may
be arbitrary. Graph properties are represented using a boldface font, as in
dist(i, j), which denotes the true distance in the graph between nodes i and j.

3 The Majority Consensus Problem

A node is said to be internally legal if its local state can be reached in an
execution with no faults.

Our main target is the following problem.

Definition 1. In the Majority Consensus problem, each node has an input bit
that can be changed by the environment and an externally observable output bit.
The bits satisfy the following requirements.

– Eventual Agreement: eventually, all output and input bits must be equal.
– Majority Consensus: If there is a majority of internally legal nodes having a

common value b in all the input and output bits at the start state, then the
eventual common value of all the output and input bits is b.

Let us also define the Persistent Bit problem that was dealt with previously
in [30, 29]. In this problem, each node has an input bit that can be changed by the

environment and an externally observable output bit. It is assumed that all input
bits were assigned a common value b, and then a fault may have occurred. The
“Eventual Agreement” requirement is identical to that of the Majority Consensus
problem. However, the Persistence requirement (which replaces the “Majority
Consensus” requirement) is that all output and input bits eventually stabilize
to the original value b. It is not hard to see that Persistence is impossible if
f ≥ n/2. In the case of f < n/2, the Persistent Bit problem can be reduced
to the Majority Consensus problem, since in this case there is a majority of
non-faulty nodes in the start state.

In [29], an algorithm was presented for which the following result was proven.

Theorem 1. There exists a protocol for the Persistent Bit problem in the
synchronous network model such that if the local states of f < n/2 of the nodes
are changed arbitrarily, then the output bits are restored everywhere in O(f) time
units, and the state stabilization occurs in O(diam) time units, where diam
denotes the actual unknown diameter of the network.

Here we prove the following strictly stronger result.

Theorem 2. There exists a protocol for the Majority Consensus problem in
the asynchronous network model such that if the local states of f ≤ n of the nodes
are changed arbitrarily, then the output bits stabilize everywhere in O(f) time
units, and the state stabilization occurs in O(diam) time units, where diam
denotes the actual unknown diameter of the network.

As explained above, a solution to the majority consensus problem is a solution
to the persistent bit problem. Thus, the improvement in our result is twofold:
first, the algorithm presented here is for the strictly weaker model of asyn-
chronous communication; and second, our algorithm can withstand any number
of faults (i.e. it is fully self-stabilizing for the majority consensus problem).

3.1 Overview of the protocol

The high-level structure of the new protocol is identical to that of the algorithm
presented in [29]. The protocol has two parts: the output stabilization (OS) pro-
tocol and the input fixing (IF) protocol. The input is given replicated at all the
nodes. Then, if faults corrupt a minority of the input bits, they can be repaired
by adopting the value of the majority. Here, if the majority is corrupted, the cor-
rect minority is brought to agree with the majority if a majority exists for some
input value in internally legal nodes. Otherwise, the protocol chooses some legal
value - the same at all the nodes. To perform this repair, the input bit of each
node is disseminated to all the other nodes using a protocol called power-supply
regulated broadcast (PS-RB) [29]. The (externally observable) output bit is com-
puted at each node by taking the majority of the values received by PS-RB.
For the input fixing part we design an algorithm that works independently from
the output stabilization algorithm and stabilizes the input bits to legal values in
O(diam) time units.

While the high-level structure of the solution resembles the one in [29], com-
ponent sub-protocols had to be changed. First, OS was changed because of the
asynchrony. In [29], the propagation of broadcasted input values was slowed
down. The idea was to allow fault detection messages to catch up with faulty
broadcast messages and stop them. Slowing down is easy in a synchronous model:
say, by forwarding slow messages every other clock “tick” (called pulse). This
method cannot be used in asynchronous systems. Instead, we use the Power Sup-
ply technique [1]. This change enables the use of OS in asynchronous networks.
No change to OS was needed to ensure full stabilization, i.e., to allow for the
case f ≥ n/2. This is because, even if f ≥ n/2, the new Input Fixing makes sure
that complete state stabilization occurs in O(diam) and hence, in O(n) time.
Note that for f ≥ n/2, the time adaptivity requirement is vacuous since in that
case, f = Θ(n), and hence, an output stabilization time of O(n) is good enough.

Second, the new IF is a fully-stabilizing protocol for any f . To design the
IF algorithm, we first construct a fully-stabilizing algorithm which solves the
case of f ≤ n for the synchronous network model. We then combine it with the
self-stabilizing synchronizer to make it work in the asynchronous network model.
Such a use of a synchronizer was not possible for OS, since known synchronizers
are not time adaptive. The use of a synchronizer is possible for IF, since IF
cannot be time adaptive anyway [29].

4 Output Stabilization

4.1 The Output Stabilization protocol

The main tool of the OS protocol is that each node has faithful replicas of all
input values in the system. These replicas, called estimates, are used to compute
the local output bit by a majority rule. For now, assume that for f < n/2,
input bits at non-faulty nodes never change (we prove this later). Under this
assumption, it is sufficient for time-adaptivity that (1) in O(f) time all unfaithful
estimates (those damaged by the faults) disappear, and (2) at each node there
are at least f +1 (a majority) faithful estimates of non-faulty nodes. In this way,
after O(f) time, the majority vote at each node outputs the original value that
was at the nodes at the reference state s−1 before the faults (Theorem 3).

In the case that f ≥ n/2, the output stabilization is achieved in two stages:
first, input bits of all nodes stabilize (by the IF protocol) in O(diam) time (Sec.
5); second, output bits stabilize to the common value of the input bits (by the
OS protocol) in O(diam) time too (Theorem 4).

We now introduce some terms used in the following description of the OS
protocol. The term estimate is used to describe not only the replica of some
input value, but also any other broadcast piece of information (like distance or
parent pointer values used by PS-RB). Given a node k ∈ V, an estimate is said
to be faithful w.r.t. k if: (1) it is an input value estimate and its value is identical
to the input value that is broadcast by the source k, or (2) it is a distance or
a parent pointer estimate and its value conforms with the graph properties. An

erased estimate means an estimate the value of which is its default value, e.g. ⊥
is a default value for an input bit estimate (null and ∞ are the default values
of parent pointer and distance estimates (resp.)). An unfaithful estimate is one
that is both not faithful and not erased. The term unfaithful message/node w.r.t
k refers to a message/node that contains an unfaithful estimate for node k.

Let us explain the mechanism of the OS protocol. As in the algorithm pre-
sented in [29], to disseminate the input values through the system in the reg-
ulated manner, OS builds a Bellman-Ford (BF) [9] minimal hop spanning tree
rooted at each node, which is “regulated” by the power-supply technique as ex-
plained below. Thus, each node r ∈ V maintains multiple (n) BF trees: one tree
to broadcast its own input value and the rest n − 1 trees for participating in
broadcasts of other nodes’ input values. The invocation of the algorithm that
builds such a spanning tree is independent from those that build the other trees.
We term this algorithm power-supply regulated broadcast (PS-RB). The following
description of OS applies to one PS-RB tree, rooted at some node r.

A fault can create at some node i an unfaithful estimate of the input of r.
Moreover, a careless protocol could have disseminated the unfaithful estimate
to other nodes, causing them to behave as if they were faulty too. This would
have rendered time adaptive stabilization impossible. To avoid that situation,
the power supply technique presented in [1] is used to regulate the broadcast of
the input values. That is, the OS algorithm uses two types of messages: strong
and weak. Each node i sends to its neighbors a set of weak messages periodically.
Each weak message contains node’s current estimates for every other node. Weak
messages are not forwarded. The goal of the exchange of weak messages is to
detect faults in nodes’ states as fast as possible by detecting an inconsistency
in states of neighbors. An inconsistency (w.r.t. node r) in some node i 6= r is
checked by evaluating the local predicate inconsisi,p(r) (given in Fig. 1) whenever
a message (either weak or strong) arrives from neighbor p ∈ N(i) (Def. 4). The
predicate is local in the sense that it is computed only on variables of node
i, and variables of its neighbors, received by messages from them. When an
inconsistency w.r.t. r is detected at node i, i initiates a reset wave. This is a
broadcast wave that is forwarded over the subtree (for r’s broadcast) rooted at
i. The reset erases all the estimates of r and r’s tree structure (the subtree rooted
at i) as it goes. Note that a reset in r’s tree does not harm the other trees in the
same nodes.

Strong messages are generated originally by each PS-RB tree root r to broad-
cast its own input value. They are the only messages that can propagate esti-
mates of a particular root r. A strong message of r propagates from the broadcast
tree root r to the leaves. To “adopt” new estimates for r, the following must hap-
pen for node i: (a) i must receive two identical consecutive strong messages (m1

and m2) containing these new estimates; (b) m1 and m2 must arrive on the
same path from r; (c) weak messages received from the same neighbor p on that
path in between m1 and m2 must be consistent in the sense that they do not
cause the local predicate cand inconsisi,p(r) (given in Fig. 1) to be true. Node i
that receives a candidate estimate (in a strong massage) for the first time, does

not propagates this estimate. Instead, i “consumes” that strong message and
initiates a reset wave down the tree. Only on the second receive of the same can-
didate estimate, node i can “adopt” and propagate this estimate. Note that new
estimate “adoption” can occur only if the explained above Constrains (a)-(b)
holds true.

The described mechanism ensures that unfaithful strong messages eventually
disappear from the network, since: (a) strong messages cannot flow in a cycle
(Obs. 2 [1]), (b) although nodes can forward unfaithful strong messages, no node
can generate such messages, and (c) the number of unfaithful strong messages
is reduced by each node that “consumes” it. This, in turn, prevents unfaithful
strong messages from propagating unfaithful estimates too far. Thus, a reset
wave eliminates the effect of unfaithful estimates on the majority function as
fast as possible (in O(f) time). Meanwhile, in O(f) time too (for f < n/2),
a majority (at least f + 1) of faithful (and correct) input value estimates of
non-faulty nodes arrive (by the broadcast of faithful strong messages) and are
“adopted” by each node i. Now, the majority function outputs a legal value at
each i.

Pseudo-code for the output stabilization is presented in Fig. 2. Definitions
for the pseudo-code are presented separately in Fig. 1. For every pair of nodes
i, j, vali[j] is the current estimate of node i for the input value of node j, and
vali[i] is the input value of node i. The majority function ignores the ⊥ values
and outputs 0 in the case of a tie. Variable disti[j] is the current estimate of
i for the shortest distance from i to j. Variable pari[j] is the current estimate
of i for the parent pointer to the neighbor leading to j on the shortest path.
Variables with the prefix cand are used to store candidate values for newly
arrived estimates in strong messages. Strongi,p(j) and Weaki,p(j) are strong
and weak messages received at node i from neighbor p and contain estimates
for node j. Each message contains three elements: an identity of a node j, an
estimate for the input value of node j and an estimate for the shortest distance
between p and j.

4.2 Analysis of the Output Stabilization protocol

To analyze the OS part of the new algorithm we use the structure of the analysis
used for the synchronous algorithm in [29]. To benefit from the work that was
already performed, we conform to definitions, notations and the proof sequence
as much as possible while emphasizing the differences. First, we concentrate on
proofs of the output stabilization for the case of f < n/2.

Since the regulated broadcast on any BF tree in the system works inde-
pendently of the others, we consider a single representative tree rooted at a
non-faulty node j. For the case of f < n/2, trees rooted at faulty nodes are
ignored, since they can distribute an arbitrary value.

Definition 2. Let i ∈ V . The depth of i is depth(i) def= max {dist(i, j) | j ∈ V }.

Definition 3. Let j ∈ V , and fix a global state.

– A node i is faithful with respect to j 6= i if (vali[j] = valj [j]) ∧ (disti[j] = dist(i, j))
and there exist path of nodes (x1 = j, x2, ..., xl, i), such that xl = pari[j] and
the length of the path is dist(i,j).

– A node i is faithful w.r.t. itself if disti[i] = 0 and pari[i] = null.
– A strong or a weak message (j, value, dist) is faithful w.r.t. j if the following

condition holds: (value = valj [j]) ∧ (dist = dist(i, j)).

Definition 4. Let j, i ∈ V such that i 6= j and fix a global state.

– Let p ∈ N(i). Node i is inconsistent with p with respect to j if Predicate
inconsisi,p(j, valp[j], distp[j]), given in Fig. 1 holds true.

– A node i is inconsistent w.r.t. j if for some p ∈ N(i) inconsisi,p(j) holds.

Note that there is a subtle, but important, difference between the definition of
the inconsistency between nodes i and p (Def. 4) and the definition of Predicate

Constants
V : the set of nodes
D : an upper bound on diam
N(i) : the set of neighbors of i

State for node i
(* local estimates and candidates for the local estimates *)

vali[V], cand vali[V] : array of {0, 1,⊥}, except for vali[i] that is in {0, 1}
pari[V], cand pari[V] : array of N(i) ∪ {null}
disti[V], cand disti[V] : array of {1, . . . ,D} ∪ {∞}
outputi ∈ {0, 1}

Messages at node i (* received from p ∈ N(i) with estimates for node v *)

Weaki,p(v), Strongi,p(v) ∈ { [V, {0, 1,⊥} , {1, . . . ,D} ∪ {∞}] }

Shorthand (* value and dist are estimates for node j received from p ∈ N(i) *)
inconsisi,p(j, value, dist) ≡ inconsisi,p(j) ≡

≡ [i 6= j] ∧
[
(value 6= vali[j] ∧ p = pari[j]) ∨

(dist + 1 < disti[j]) ∨
(dist + 1 6= disti[j] ∧ p = pari[j]) ∨
(pari[j] = null ∧ disti[j] 6=∞) ∨
(pari[j] 6= null ∧ disti[j] =∞) ∨
(pari[j] = null ∧ disti[j] =∞ ∧ vali[j] 6= ⊥) ∨ pari[j] /∈ N(i)

]
cand inconsisi,p(j, value, dist) ≡ cand inconsisi,p(j) ≡
(* obtained by applying the inconsisi,p(j) on node i variables with prefix cand *)

is candidatei,p(j, value, dist) ≡ (cand vali[j] = value 6= ⊥) ∧
(cand disti[j] = dist + 1 ∧ dist 6=∞) ∧ (cand pari[j] = p)

Fig. 1. Definitions at node i.

Procedure send weak() (* sending a set of weak messages *)

for each j ∈ V do
Send [j, vali[j], disti[j]] as a weak message to N(i)

Upon receiving Strongi,p(v) ≡ (v, msg value, msg dist) message:

(* the following is executed atomically *)
pari[i]← null, disti[i]← 0 (* i is the root of its tree *)
if inconsisi,p(Strongi,p(v)) then

if is candidatei,p(Strongi,p(v)) then

vali[v]← msg value
pari[v]← p
disti[v]← msg dist + 1
Send [v, vali[v], disti[v]] as a strong message to N(i)

else (* new information received *)
cand vali[v]← msg value
cand pari[v]← p
cand disti[v]← msg dist + 1
vali[v]←⊥ (* generate reset on inconsistency *)
pari[v]← null

disti[v]←∞
Send [v, vali[v], disti[v]] as a weak message to N(i)

else (* if consistent, just forward *)
if p = pari[v] then

Send [v, vali[v], disti[v]] as a strong message to N(i)

outputi ← majority {vali[j] | j ∈ V }

Upon receiving Weaki,p(v) ≡ (v, msg value, msg dist) message:

(* the following is executed atomically *)
pari[i]← null, disti[i]← 0 (* i is the root of its tree *)
if inconsisi,p(Weaki,p(v)) then (* generate reset on inconsistency *)

vali[v]← ⊥
pari[v]← null

disti[v]←∞
Send [v, vali[v], disti[v]] as a weak message to N(i)

if cand inconsisi,p(Weaki,p(v)) then
cand vali[v]← ⊥
cand pari[v]← null

cand disti[v]←∞

Do forever: (* each iteration of the loop executes atomically *)

pari[i]← null, disti[i]← 0 (* i is the root of its tree *)
Send [i, vali[i], disti[i]] as a strong message to N(i)
send weak()

Fig. 2. Code for output stabilization at node i.

inconsisi,p(j). The predicate is computed by the algorithm, hence it uses the
variables of i and the values of the message received from p, in the buffer of
i. On the other hand, Def. 4 applies to the variables of i versus the variables
of p. The algorithm at i cannot access the variables of p, so it cannot know
immediately whether i and p are inconsistent. However, in at most an additional
(fault-free) time unit, an additional weak message that is originated in p arrives
at i and the true inconsistency may be detected.

We ignore the case of inconsistency w.r.t. the node itself, since it is easy to
see that the algorithm ensures a permanent consistency in this case (see the first
two actions in the Do forever loop and in the procedures dealing with the receive
of weak and strong messages in Fig. 2).

The importance of the following property of PS-RB is that it holds even
before stabilization. A similar lemma was used also in [29] for the synchronous
algorithm. The proof is deferred to the full paper.

Lemma 1. Let i, j ∈ V , and let t ≥ t0(= 0). Assume that no faults occur in the
time interval [0, t]. Then, at time t + 1, disti[j] ≥ min(t,dist(i, j)).

The following lemma implies that faithful estimates of input values that do
not change, are established quickly.

Lemma 2. Let i, j ∈ V , and let t ≥ 0. If valj [j] does not change in a (fault-
free) time interval [0, 3t+3], then for every node i with dist(i, j) ≤ t, i is faithful
w.r.t j at time 3t + 3.

Proof Sketch: By induction on t. The basis for t = 0 is trivial. For the induction
step we assume that the lemma holds for some t = k. We now prove the lemma
for t = k + 1. Let xk+1 be a node, such that dist(xk+1, j) = k + 1.

Starting at a time (at 3k + 3), some neighbor xk becomes faithful w.r.t j
by the induction hypothesis. This xk provides faithful w.r.t. j distance estimate
value k. Thus, starting at time (3k + 3) + 1, any distance estimate, which is
higher than k + 1, cannot be “adopted” at xk+1. This is correct due to the BF
minimal hop tree construction scheme used by the algorithm. See the definition
of predicate inconsisxk+1,xk

(j) (Fig.1). Moreover, by Lemma 1, starting at time
k + 2, distxk+1 [j] ≥ k + 1. This implies the following:
(*) Starting at time (3k + 3) + 1, distxk+1 [j] = k + 1 is the only candidate
distance estimate value that can be “adopted” at xk+1.

If starting at time (3k + 3) + 1, node xk+1 adopts (faithful) estimates from
some node zk, such that dist(zk, j) = k, then the lemma holds by the induction
hypothesis (and the assumption that this is a fault free interval). Let us assume,
by way of contradiction, that at some time after (3k + 3) the estimates at node
xk+1 are not faithful w.r.t. j. Consider the first time τ > 3k + 3 that this
happens. First, note that if just before time τ , node xk+1 is not consistent w.r.t.
j then xk+1 resets it variables for the tree of j. Hence, at time τ , node xk+1

adopts unfaithful estimates from some node y, such that disty[j] = disty > k.
On the other hand, if just before time τ node xk+1 does not reset its estimates,
then there exists a neighbor y such that xk+1 is consistent with y w.r.t. j. As

before, by our assumption that the estimates are unfaithful, and by the induction
hypothesis, disty[j] = disty > k.

By Lemma 1, starting at time disty + 1 (> k + 1), disty[j] > k. If xk+1

either adopts estimates from y, or is consistent with y w.r.t. j, it follows that
distxk+1 [j] = disty + 1 > k + 1. However, this is impossible by statement (*)
above. A contradiction.

Let us now describe the ideas behind the following lemma Lem. 3 informally.
Note that if a node v0 is inconsistent w.r.t. some j, then v0 resets its estimates
for j. Unfortunately, it is possible for a node to be unfaithful w.r.t. j, while
not being inconsistent. For example, consider an unfaithful w.r.t. j node v1 that
is a neighbor of v0, such that parv1

[j] = v0, distv1 [j] = distv0 [j] + 1, and
valv1 [j] = valv0 [j]. (Moreover, assume that distv0 [j] is the smallest among
the distances estimates for j received from v1’s neighbors.). Clearly, node v1 is
consistent with v0 w.r.t. j. Hence, no resetting of the estimates for j will take
place until different estimates are received.

We say that v0 and v1 are in an unfaithful parent chain (w.r.t. j). The def-
inition of a parent chain is deferred to the full paper. It takes into account the
facts that the chain can change in time, and that it can be based on cand par,
cand val, and cand dist, not just on par, val, and dist.

The first crucial observation is that the maximum length of an unfaithful
parent chain immediately after the faults is O(f). Moreover, the first node v0

in an unfaithful parent chain is always inconsistent, hence it leaves the parent
chain within O(1) time, since it resets its estimates for j. Every child of v0 (in
the tree of j) now becomes a first node in an unfaithful parent chain, and hence
inconsistent. Thus, it leaves the parent chain in O(1) time, and so forth.

The second observation is that the number of unfaithful w.r.t. j strong mes-
sages in buffers or over links of the parent chain immediately after the faults is
O(f) too. Moreover, no new unfaithful w.r.t j strong messages can be created
(unless additional faults occur), since j is the only node who can generate its
strong messages. Moreover, for a node not in the parent chain to join a parent
chain, the number of unfaithful strong messages must decrease by one (the first
such message to be received by such a node is consumed, not forwarded; this is
the essence of Power Supply). The end result is that some nodes may join and
leave a chain several times. Nevertheless, the total number of such joins (total
over of all the nodes, for a given chain) is bounded by O(f). Moreover, the total
number of nodes’ joins, plus the original length of the chain is O(f).

Finally, it is easy to observe that chains cannot merge, nor can a chain contain
a cycle at any given time. The end result of these three observations is that an
unfaithful parent chain disappears in O(f) time. The above argument is used in
the proof of the following lemma. The formal proof is deferred to the full paper.

Lemma 3. Let i ∈ V be any node. Let j ∈ V be non-faulty, and assume that
valj [j] does not change for t ≥ 3 ·min(depth(i) + 1, f + 1) time (since a start
state s0 in t0 = 0). Assume that no faults occur in the time interval [0, t]. Then,
at time t, we have that vali[j] ∈ {valj [j],⊥}.

We note that one of the main by-products of the lemma’s proof is the basic
property of the power supply: unfaithful estimates are forwarded only a few
times (depending on f). The dependence on f , we prove, is required for the
time-adaptive solution. Although [1] concentrated on the worst case stabilization
time complexities (rather than time adaptivity), the proofs of [1] already hints
of time adaptivity.

We can now prove that the output stabilizes quickly, provided that the non-
faulty input bits remain fixed (we prove this in Theorem 5, [12]). The proof
follows directly from the last two lemmas.

Theorem 3. Starting from an arbitrary state with a fault number f < n/2, if
non-faulty input values do not change, then starting at time min(3·diam, 6f)+3
the output stabilizes, i.e., all output values are equal to the input values of non-
faulty nodes.

The following theorem implies the required output stabilization time in the
case of f ≥ n/2, provided that input values stabilize in O(diam) time (Sec. 5).
The proof is easily implied by Lemma 2.

Theorem 4. Starting from an arbitrary state with a fault number f ≤ n, if input
values do not change, then starting at time 3 · diam + 3 the output stabilizes,
i.e., all output values are equal to the majority value of the input values.

The complete state stabilization time of PS-RB is larger than O(f). We have
shown above that this does not harm the O(f) output stabilization time. We
note that the complete stabilization time of PS-RB is O(diam) [1]. Hence, this
does not harm the state stabilization time of the combined OS-IF algorithm
either.

5 Input Fixing and Full Stabilization

Due to lack of space, we only give a brief outline of the IF protocol. For the
details, see the extended version of this abstract ([12]). First, consider the Input
fixing protocol of [29]. Recall that every node has two variables. The output
variable must stabilize quickly, and hence it may change its value several times
before stabilization (see [29]). The input variable, on the other hand, retains its
value for a long time. In [29] it was corrected by the algorithm only when it was
certain that this correction will not change a correct value to an incorrect one.

To ensure that a correct value will not be changed “too soon,” [29] uses the
assumption that only a minority of the processes are faulty. When coming to
ensure the full stabilization, we need to change the input fixing protocol such
that the reliance on a correct majority is removed. (The changes of the output
stabilization described in Sec. 4 were due only to the asynchronous network
model and assume an appropriate behavior of the IF.) The new IF protocol
with the adaptation for the case of f ≥ n/2 is given below.

Suppose that the majority of the nodes suffered faults, such that the input
value in the majority was changed to some new value maj. The first idea is

to view nodes with input = maj as correct nodes, and then use the output
stabilization algorithm as is. The idea above needs some refinements, though.
For example: had maj really been the value of a correct node v, then the output
(not just the input) at v would have also equaled maj at the start state. We
addressed this point (together with some related points) by being more careful
in the definition of the Majority Consensus requirement (Def. 1) and requiring
a node to be internally legal (Sec. 3) to be considered a part of the majority.

The main difficulty is raised by the need to ensure the assumption used in
Sec. 4 that if the input value at a node is the majority value, then it is not
changed, or, more precisely, it is assumed that this value is not changed for a
sufficiently long time.

The new Input Fixing protocol ensures this property even when the majority
input value belongs to faulty nodes. First, we use a self stabilizing synchronizer,
which allows us to design the new IF for synchronous networks and than adopt
this solution to work in asynchronous networks as desired. (Recall that Input
Fixing cannot be time adaptive anyway [29], so a non-adaptive synchronizer
does not harm its time complexity.) We then use a self stabilizing phase clock
algorithm: this is a kind of a synchronizer that also keeps and advances a counter
of the passing time.5 Moreover, the phase clock algorithm ensures that time
counter values at different nodes differ by at most the nodes’ distance. Now, if
a node either fixes its input, or finds an inconsistency, it resets its time counter
to zero, and so do all the other nodes within diameter time. On the other hand,
in order to fix an input, the time counter value must be much larger than the
diameter. Hence, a long time passes (after the resetting) with no node fixing its
input. Actually, this is somewhat more involved: after fixing its input, a node
does not reset the counters immediately, but rather continues counting for a long
time and only then resets, to give the other nodes the opportunity to reach the
maximum of their counters and fix their inputs too.

References

1. Y. Afek and A. Bremler-Barr. Self-stabilizing unidirectional network algorithms by
power-supply. In the 8th SODA, pp. 111-120, 1997.

2. Y. Afek and S. Dolev. Local stabilizer. In Proceedings of the 5th Israel Symposium
on Theory of Computing and Systems, June 1997.

3. Y. Afek, S. Kutten, and M. Yung. Memory-efficient self-stabilization on general
networks. In the 4th WDAG, pp. 15-28, 1990.

4. A. Arora and H. Zhang. LSRP: Local stabilization in shortest path routing. In
IEEE-IFIP DSN, 2003.

5. A. Arora and M. G. Gouda. Distributed reset. IEEE Transactions on Computers,
43:1026-1038, 1994.

6. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time
optimal self-stabilizing syncronization. In the 25th STOC, pp. 652-661, 1993.

5 Indeed, we use two synchronizers; but we use only the phase clock property of the
phase clock synchronizer. We do not use it as a synchronizer.

7. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In the 32nd FOCS, pages 268-277, Oct. 1991.

8. J. Beauquier and T. Hérault. Fault Local Stabilization : the shortest path tree. In
SRDS’02, pp. 62-69, 2002

9. D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cliffs,
New Jersey, second edition, 1992.

10. C. Boulinier, F. Petit, V. Villain. When graph theory helps self-stabilization. In
the 23rd PODC, pp. 150-159, 2004

11. A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved BGP Convergence via Ghost
Flushing. In IEEE J. on Selected Areas in Communications, 22:1933–1948, 2004.

12. J. Burman, T. Herman, S. Kutten, and B. Patt-Shamir. Asynchronous and
Fully Self-Stabilizing Time-Adaptive Majority Consensus (extended version),
http://tx.technion.ac.il/∼bjanna/.

13. J. M. Couvreur, N. Francez, and M. Gouda. Asynchronous unison. In the
ICDCS’92, pp. 486-493, 1992.

14. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. In Comm.
ACM, 17(11):643-644, November 1974.

15. S. Dolev, M. Gouda, and M. Schneider. Memory requirements for silent stabiliza-
tion. In the 15th PODC, pp. 27-34, 1996.

16. S. Dolev and T. Herman. SuperStabilizing Protocols for Dynamic Distributed
Systems. Chicago Journal of Theoretical Computer Science, 4, pp. 1-40, 1997.

17. S. Dolev and T. Herman. Parallel composition of stabilizing algorithms. In WSS99
Proc. 1999 ICDCS Workshop on Self-Stabilizing Systems, pp. 25-32, 1999.

18. S. Dolev. Self-Stabilization. The MIT Press, 2000.
19. S. Dolev, A. Israeli, and S. Moran. Resource bounds for self stabilizing message

driven protocols. In the 10th PODC, pp. 281-294, 1991.
20. M. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus

with one faulty process. J. ACM 32, 2, pages 374-382, Apr. 1985.
21. C. Genolini and S. Tixeuil. A lower bound on dynamic k-stabilization in asyn-

chronous systems. In SRDS’02, pp. 211-221, 2002.
22. T. Herman. Observations on time-adaptive self-stabilization. Technical Report TR

97-07.
23. T. Herman. Phase clocks for transient fault repair. IEEE Transactions on Parallel

and Distributed Systems, 11(10):1048-1057, 2000.
24. S. Ghosh and A. Gupta. An exercise in fault-containment: self-stabilizing leader

election. Inf. Proc. Let., 59:281-288, 1996.
25. S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-

stabilizing algorithms. In the 15th PODC, 1996.
26. S. Ghosh, A. Gupta, and S. V. Pemmaraju. A fault-containing self-stabilizing al-

gorithm for spanning trees. J. Computing and Information, 2: 322-338, 1996.
27. S. Katz and K. Perry. Self-stabilizing extensions for message-passing systems. In

the 10th PODC, 1990.
28. S. Kutten and B. Patt-Shamir. Asynchronous time-adaptive self stabilization. In

the 17th PODC, p. 319, 1998.
29. S. Kutten and B. Patt-Shamir. Time-Adaptive self-stabilization. In the 16th

PODC, pp. 149-158, 1997.
30. S. Kutten and D. Peleg. Fault-local distributed mending. In the 14th PODC, 1995.
31. G. Parlati and M. Yung. Non-exploratory self-stabilization for constant-space

symmetry-breaking. In 2nd ESA, pp. 26-28, 1994.
32. H. Zhang, A. Arora, Z. Liu. A Stability-Oriented Approach to Improving BGP

Convergence. In SRDS’04, pp. 90-99, 2004.

