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Asynchronous Broadcast-Based Convex

Optimization over a Network

Angelia Nedić

Abstract

We consider a distributed multi-agent network system where each agent has its own convex

objective function, which can be evaluated with stochastic errors. The problem consists of min-

imizing the sum of the agent functions over a commonly known constraint set, but without a

central coordinator and without agents sharing the explicit form of their objectives. We propose an

asynchronous broadcast-based algorithm where the communications over the network are subject to

random link failures. We investigate the convergence properties of the algorithm for a diminishing

(random) stepsize and a constant stepsize, where each agent chooses its own stepsize independently

of the other agents. Under some standard conditions on the gradient errors, we establish almost

sure convergence of the method to an optimal point for diminishing stepsize. For constant stepsize,

we establish some error bounds on the expected distance from the optimal point and the expected

function value. We also provide numerical results.

I. INTRODUCTION

The problem of minimizing of a sum of convex functions when each component function

is available (with stochastic errors) to a specific network agent is an important problem in the

context of wired and wireless networks [13], [14], [24], [28], [29]. These problems require

the design of optimization algorithms that are distributed and asynchronous, i.e., without a

central coordinator and without synchronized actions. Furthermore, the algorithms should

be obeying the local network structure in the sense that each agent can only use its own

objective function and can exchange some limited information with its local neighbors only.

In this paper, we propose an asynchronous distributed algorithm that uses the random

broadcast scheme [1] as a mechanism to distribute the operations over the network in an
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asynchronous manner. We investigate the convergence properties of the algorithm for a

diminishing stepsize and provide error bounds for a constant stepsize. We also provide a

numerical example. An asynchronous algorithm based on a random gossip scheme has been

proposed in [25] and analyzed for a scalar objective function and a diminishing stepsize.

The gossip scheme used in [25] requires establishing bidirectional communication links

between agent pairs and assumes reliable communications. However, wireless media is

inherently broadcast and establishing bidirectional communications creates a bottleneck. The

algorithm proposed in this present paper removes the need for bidirectional communications

by using a different scheme, namely random broadcast, to spread the information in the

network. Furthermore, unlike [25], we allow link failures to randomly occur in the agent

communications. Additionally, unlike [25], we also study a constant stepsize and provide

error bounds on the algorithm’s performance.

Another asynchronous algorithm for optimization over networks is the Markov incremen-

tal algorithm proposed in [13], [14] and further studied in [27]. This algorithm maintains a

single iterate sequence that is incrementally updated by one agent at the time. At a given

time, the agent (that has just updated the iterate) passes the iterate to a randomly selected

neighbor that performs the next update. The random selection of the neighbor is driven

by a Markov chain. As such the Markov incremental algorithm is very different from the

broadcast-based algorithm proposed in this paper, where each agent generates its own iterate

sequence. Furthermore, Markov incremental algorithm is not well adapted to wireless media

where the broadcasted information is available to all agents that can hear the broadcast.

Distributed consensus-based algorithms have been studied in [19], [18], [21], [26], [16],

[20], which rely on deterministic consensus schemes, except for [16] where a random

consensus scheme is considered. These algorithms have the following limitations in common:

(i) the algorithms are synchronous as all agents in the network update at the same time;

(ii) all agents in the network use the same stepsize value; (iii) the communication links

are always reliable (except for [16] where random link failures are allowed); (iv) agents

always communicate over bidirectional links. The broadcast-based algorithm discussed in

this paper overcomes all these limitations. In particular, through the use of a random

broadcast, the algorithm is totally asynchronous and allows a group of agents to update while

the other agents do not. The agents neither coordinate the stepsize values nor communicate
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bidirectionally. The communication links are not always reliable as they may randomly fail.

A very different distributed computational model has been proposed in [30] and also

discussed in [3], [31], [6], where the network objective function is available to each agent

and the aim is to distribute the processing by allowing each agent to update only a part of

the decision vector. Since we are dealing with a random broadcast scheme for consensus,

on a broader scale our work in this paper is related to the literature on distributed consensus

and averaging [30], [31], [3], [12], [22], [32], [15], [18], [21]. Also, since we are considering

(sub)gradient methods with stochastic errors, on a broader basis, our work is also related to

stochastic optimization literature [10], [11], [4], [7].

The contribution of our work in this paper is mainly in three directions. First, we use

broadcast model that allows for uncertainties in agent communications by accounting for

possible link failures. Second, our algorithm is asynchronous and allows the agents to

use uncoordinated stepsize values. Third, we study the convergence of the algorithm for

a diminishing (random) stepsize and provide error bounds for a constant stepsize. The

algorithm uses stochastic subgradients with a general model for the subgradient errors.

The rest of the paper is organized as follows. In Section II, we describe the problem of our

interest, present our algorithm and assumptions. In Section III, among other preliminaries,

we investigate the asymptotic properties of the agent disagreements. In Section IV, the

convergence properties of the algorithm are studied for a (stochastic) diminishing stepsize,

while in Section V we provide error bounds for a (deterministic) constant stepsize. We

provide some numerical results in Section VI and conclude with a summary in Section VII.

Notation. All vectors are viewed as column vectors, and ‖x‖ denotes the Euclidean norm

of a vector x. For a matrix A, the norm ‖A‖ is the matrix norm induced by the Euclidean

vector norm (i.e., ‖A‖ is the spectral norm given by ‖A‖ = max‖x‖=1 ‖Ax‖). We write xT

and AT to denote the transpose of a vector x and a matrix A, respectively. We use xi or

[x]i to denote the i-th component of a vector x. Similarly, for a matrix A, we write [A]ij or

Aij (or aij) to indicate its (i, j)-th component. We use 1 to denote the vector in R
m with

all entries equal to 1. The matrix A is stochastic when Aij ≥ 0 for all i, j and A1 = 1;

while it is doubly stochastic if both A and AT are stochastic. The cardinality of a set S

with finitely many elements is denoted by |S|. We use E[X] to denote the expected value

of a random variable X , and χE to denote the indicator function of a random event E.
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II. PROBLEM, ALGORITHM AND ASSUMPTIONS

We consider a network of m agents that are indexed by 1, . . . ,m; when convenient, we

denote the agent set by V = {1, . . . ,m}. We assume that the agents communicate over a

network with a static topology represented by an undirected graph (V, E ), where E is the

set of undirected links {i, j}. There are no self-loops in the graph ({i, i} /∈ E ), and we have

{i, j} ∈ E only if agents i and j can communicate with each other. We assume a wireless

communication medium where agents broadcast information over the network with possible

link failures. We are interested in solving the following problem over the network:

minimize f(x) ,

m
∑

i=1

fi(x)

subject to x ∈ X, (1)

where X is a subset of R
n and each fi is a function defined over the set X . The precise

assumptions on the set X and the functions fi will be stated in Section II-B. Problem (1)

is to be solved under the following restrictions on the network information: (1) Each agent

i knows only its own objective function fi and it can compute the (sub)gradients ∇fi with

stochastic errors; and (2) Each agent communicates and exchanges some information with

its local neighbors only. To solve the problem, we consider an asynchronous distributed

algorithm based on the broadcast consensus model of [1].

As a motivating example1 for the problem, we next discuss a distributed regression

problem over wireless sensor network [27]. Suppose m sensors are deployed to sense a time

invariant spatial field. Let ri,k be the measurement made by ith sensor at time slot k. Let si

be the location of the ith sensor. For each sensor i, let h(si; x) be a set of candidate models

for the spatial field that are selected based on a priori information and parameterized by x.

Thus, for each x, the candidate h(si, x) is a model for the measurement ri,k. The problem

in regression is to choose the best model among the set of candidate models based on the

collected measurements ri,k, i.e., to determine the value for x that best describes the spatial

field. In least squares regression, when the measurements ri,k are corrupted by i.i.d. noise,

the parameter value x∗ corresponding to the best model satisfies the following relation:

x∗ ∈ Argminx∈X limN→∞
∑m

i=1
1
N

∑N

k=1 (ri,k − h(si, x))2 . Under the i.i.d. noise assump-

tion for the measurements ri,k, the preceding limit exists and it is deterministic, leading to

1See [27] for another motivating example on distributed resource allocation over wireless network.
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Fig. 1. The node in the center of the circle is broadcasting. Solid links point to the neighbors that can hear

the broadcast. The dotted links point to the neighbors that do not hear the broadcast due to link failures. The

other agents are out of range and cannot hear the broadcast.

an equivalent problem of the following form: x∗ ∈ Argminx∈X

∑m

i=1 E
[

(Ri − h(si, x))2] .

In linear least squares regression, the models h(si, x), i = 1, . . . ,m, are linear in x and,

hence, each of the functions fi(x) = E
[

(Ri − h(si, x))2]
is convex in x.

A. Broadcast Optimization Algorithm

Given the agent connectivity graph (V, E ), we let N (i) denote the set of all neighbors

of agent i, i.e. N (i) = {j ∈ V | {i, j} ∈ E }. We assume that each link {i, j} ∈ E is

subject to a random failure. Each agent has its local clock that ticks at a Poisson rate of 1

independently of the clocks of the other agents. We note that the model and the analysis can

be easily extended to the case when the clocks have rates different from 1. At each tick of

its clock, agent i broadcasts its current iterate to its neighbors j ∈ N (i) (see Figure 1 for an

illustration of the broadcast). However, due to a possible link failure, neighbor j hears the

broadcasted information with probability pij and combines its own iterate with the received

iterate of agent i. Then, it adjusts its iterate along the negative (sub)gradient direction ∇fi

of its objective function, which is computed with stochastic errors.

As in [1], [8], [25], we find it easier to study the algorithm in terms of a single virtual

clock that ticks whenever any of the local Poisson clock ticks. Thus, the virtual clock ticks

according to a Poisson process with rate m. Let Zk be the time of the k-th tick of the global

Poisson clock. We think of time as discretized according to the intervals [Zk−1, Zk), i.e.,

this interval corresponds to timeslot k (also referred to as time k). We let xi
k−1 be agent i

iterate at timeslot k − 1. We assume that only one agent broadcasts at a time, and we let

Ik be the index of the agent that broadcasts at time k. Due to possible link failure, a subset
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Jk of the neighbors N (Ik) hear the broadcast; thus, each agent i ∈ Jk receives the iterate

xIk

k−1 from agent Ik. The new iterates are generated as follows: Agent Ik and agents i that

do not receive information from Ik do not update,

xi
k = xi

k−1 for i 6∈ Jk. (2)

Agents i ∈ Jk receive the estimate xIk

k−1 and update according to the following rule:

vi
k = βxIk

k−1 + (1 − β) xi
k−1,

xi
k = PX [vi

k − αi,k(∇fi(v
i
k) + ǫi

k)], (3)

where PX denotes the Euclidean projection on the set X , ∇fi(x) denotes the gradient (or

subgradient) of fi at x, and the vector ǫi
k is stochastic error in computing ∇fi(v

k
i ). The

scalar β ∈ (0, 1) is a weight and αi,k > 0 is a stepsize. The process is initialized with some

initial iterates xi
0 ∈ X , i ∈ V. Each vector xi

0 is random, and it is assumed to be independent

of all xj
0 for j 6= i and, also, independent of all the other random variables in the process.

Furthermore, it is assumed that both E[xi(0)] and E[‖xi(0)‖2] are finite.

We now summarize the broadcast algorithm of Eq. (3) in phases.

Initial Phase. Each agent i has the parameter β ∈ (0, 1) and an initial (random) vector

xi ∈ X . Each agent has a local clock that ticks at rate 1. All agents are initially sleeping.

Update Phase. A local clock of an agent i has ticked and the agent wakes up. Agent

i broadcasts its estimate xi and goes to sleep. Each neighbor ℓ ∈ N (i) of agent i

may receive xi with probability piℓ. A neighbor ℓ that receives the value xi updates its

estimate, as follows:

(1) Computes vℓ = βxi + (1 − β)xℓ and (an approximate) gradient g of ∇fi(v
i);

(2) Selects stepsize αℓ, computes xi = PX [vℓ − αig], and goes to sleep.

Sleeping Phase. No updates occur in the network until another agent wakes up.

The vector g in Update Phase corresponds to an erroneous gradient ∇fi(v
i
k) of Eq. (3).

We will consider two stepsize choices: (1) A random stepsize defined by the frequency of

the agent updates, αi,k = 1
Γk(i)

, where Γk(i) denotes the number of updates that agent i has

performed until time k, inclusively; and (2) A deterministic constant stepsize, αi,k = αi > 0

for all i and k. Observe that these stepsizes do not require any coordination of the agents.
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B. Assumptions

Here, we provide our basic assumptions on the underlying agent connectivity graph (V, E ),

the set X , and the agent objective functions fi and their (sub)gradient errors ǫi
k. We also

state some relations that are immediate consequences of our assumptions.

Assumption 1: The underlying communication graph (V, E ) is connected. The link failure

process is i.i.d., whereby at any time the link {i, j} ∈ E is functioning with probability

pij > 0 independently of the other links in the network.

Assumption 1 is crucial as it ensures that through the broadcast strategy the information

of each agent reaches every other agent frequently enough. This frequent “mixing” of the

agent information is necessary for the convergence of the agents’ estimates xi
k to a common

vector. However, to ensure that the common vector solves problem (1), some assumptions

are needed for the set X and the functions fi. We use the following.

Assumption 2: The set X ⊆ R
n is nonempty closed and convex. Each function fi is

defined and convex over an open set containing the set X .

By Assumption 2, each fi is continuous over the set X ([2], Proposition 1.4.6).

We do not assume differentiability of the functions fi. At points where the gradient does

not exist, we use a subgradient, which we denote also by ∇fi(x) to keep the notation simple.

A vector ∇g(x) is a subgradient of a function g at a point x in the domain of g (denoted

by dom g) if the following relation holds

∇g(x)T (y − x) ≤ g(y) − g(x) for all y ∈ dom g. (4)

By Assumption 2, for each i, a subgradient of fi(x) exists at each point x ∈ X (see [2],

Proposition 4.4.2). We make the following assumption on the subgradients.

Assumption 3: The subgradients of each function fi are uniformly bounded over the set

X , i.e., ‖∇fi(x)‖ ≤ C for some C > 0, and for all x ∈ X and i ∈ V.

Assumption 3 is satisfied for example when X is compact, or when each fi is a polyhedral

function (i.e., defined as a pointwise maximum of a finite collection of affine functions).

The bounded subgradient assumption allows us to relate the subgradients at a given point

v ∈ X with function values at a different point y ∈ X . In particular, by subgradient property

(4), it can be seen that for all i ∈ V ,

∇fi(v)T (v − x) ≥ fi(y) − fi(x) − C‖v − y‖ for any x, y, v ∈ X. (5)
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We now discuss the random errors ǫi
k in computing the subgradients ∇fi(x)T at points

x = vi
k. When dealing with these errors, we often make use of Hölder’s inequality

E

[

K
∑

i=1

|xT
i yi|

]

≤

√

√

√

√

K
∑

i=1

E[‖xi‖2]

√

√

√

√

K
∑

i=1

E[‖yi‖2], (6)

which holds for any (finite) collections {xi}K
i=1 and {yi}K

i=1 of random vectors with finite

second moments ([5], page 242).

We let Fk be the σ-algebra generated by the entire history of the algorithm up to time k,

Fk = {(xi
0, i ∈ V ); Iℓ, Jℓ, (ǫ

j
ℓ, j ∈ Jℓ); 1 ≤ ℓ ≤ k} for all k ≥ 1,

with F0 = {xi
0, i ∈ V }. We use the following assumptions on the stochastic errors.

Assumption 4: There is a scalar ν such that E[‖ǫi
k‖2 | Fk−1, Ik, Jk] ≤ ν2 with probability 1

for all i ∈ Jk and k ≥ 1.

Assumption 4 is a nonsmooth analog of the linear growth condition that is used in

stochastic gradient methods for differentiable functions with Lipschitz gradients [4], [7].

When X and each fi are convex, every vector vi
k is a convex combination of xj

k ∈ X

(see Eq. (3)), implying that vi
k ∈ X for all k and i. When in addition Assumptions 3 and 4

hold, by using E[‖x‖] ≤
√

E[‖x‖2] we can see that

E
[

‖∇fi(v
i
k) + ǫi

k‖2 | Fk−1, Ik, Jk

]

≤ (C + ν)2 for i ∈ Jk and k ≥ 1. (7)

We also use the following result of Robbins and Siegmund ([23], Chapter 2.2, Lemma 11).

Lemma 1: Let (Ω, F,P) be a probability space and F0 ⊂ F1 ⊂ . . . be a sequence of σ-

subfields of F. Let {dk}, {vk} and {wk} be Fk-measurable scalar random variables. Let {dk}
be bounded below uniformly, and let {vk} and {wk} be nonnegative with

∑∞
k=1 wk < ∞.

Also, let the following relation hold with probability 1,

E[dk+1 | Fk] ≤ (1 + qk)dk − vk + wk for all k ≥ 1,

where qk ≥ 0 are deterministic scalars such that
∑∞

k=1 qk < ∞. Then, with probability 1,

the sequence {dk} converges to some random variable and
∑∞

k=1 vk < ∞.

III. PRELIMINARIES

We discuss an alternative description of the algorithm that we extensively use later on. We

also study some limiting properties of the agents’ disagreements. The proofs of the results

are provided in Appendix.
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A. Alternative Representation of the Algorithm

We at first introduce some matrices to represent the broadcast-based algorithm in a more

convenient form. We then discuss few properties of these matrices that are instrumental in

the subsequent development. Define the matrix Wk for each k, as follows:

for i ∈ Jk : [Wk]i,i = 1 − β, [Wk]i,Ik
= β, [Wk]i,j = 0 else,

for i 6∈ Jk : [Wk]i,i = 1, [Wk]i,j = 0 else. (8)

Now, we can write the method (2)–(3) equivalently as follows: for all k ≥ 1 and i ∈ V ,

vi
k =

m
∑

j=1

[Wk]i,j xj
k−1,

xi
k = vi

k +
(

PX [vi
k − αi,k

(

∇fi(v
i
k) + ǫi

k

)

] − vi
k

)

χ{i∈Jk}, (9)

where χ{i∈Jk} is the indicator function of the event {i ∈ Jk}. Thus, when i updates at time

k, we have χ{i∈Jk} = 1 and xi
k is defined by the projection-based iterate adjustment. If agent

i does not update at time k, we have χ{i∈Jk} = 0 and xi
k = vi

k = xi
k−1.

Due to the construction and Assumption 1, the sequence {Wk} is i.i.d. For each k, the

random matrix Wk is stochastic (but not doubly stochastic), while the expected matrix E[Wk]

is doubly stochastic. This and some other properties of the matrices Wk are stated below.

Lemma 2: The weight matrices Wk of (8) are stochastic. Moreover, we have:

(a) Under Assumption 1, the expected weight matrix W̄ = E[Wk] is doubly stochastic;

in particular, it is given by W̄ = I − β

m
LΠ, where LΠ is the weighted Laplacian of

the weighted graph (V, E , Π) with Π being the probability matrix associated with the

reliabilities of the links in E , i.e., [LΠ]ii =
∑

j∈N (i) pij for all i ∈ V , while [LΠ]ij = −pij

for j ∈ N (i) and [LΠ]ij = 0 otherwise.

(b) The matrices Dk = Wk − 1
m
11

T Wk are i.i.d. and λ , λ1(E
[

DT
k Dk

]

) < 1, where

λ1(E
[

DT
k Dk

]

) denotes the largest eigenvalue of the matrix E
[

DT
k Dk

]

.

The following two relations are consequences of the stochasticity of Wk and the doubly

stochasticity of E[Wk], combined with the convexity of the norm and squared norm.

m
∑

i=1

E
[

‖vi
k − x‖2 | Fk−1

]

≤
m
∑

j=1

‖xj
k−1 − x‖2 for all x ∈ R

n and k ≥ 1, (10)

m
∑

i=1

E
[

‖vi
k − x‖ | Fk−1

]

≤
m
∑

j=1

‖xj
k−1 − x‖ for all x ∈ R

n and k ≥ 1. (11)
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B. Agent Disagreements

In this section, we provide some auxiliary results for the disagreement among the agents

on values xi
k. Our first result establishes some long term estimates for the stepsize αi,k =

1
Γk(i)

, based on a characterization of the number Γk(i). This characterization is important

as it allows us to remove some technical difficulties when dealing with cross-dependencies

between the randomness in the stepsize and the randomness of the iterative processes {xi
k}.

Define Ei,k = {i ∈ Jk}, which is the event that agent i updates at time k. The sequence

{Ik} is i.i.d. with uniform distribution over the set V . The link failure process is also i.i.d.

Thus, for each i, the events Ei,k are independent across time and have the same (time

invariant) probability distribution. Let γi denote the probability of event Ei,k, and note that

γi =
1

m

∑

j∈N (i)

pij for all i ∈ V, (12)

where pij > 0 is the probability that link {i, j} is functioning.

The following lemma gives long term estimates for the stepsize αi,k = 1
Γk(i)

.

Lemma 3: Let the graph (V, E ) have no isolated nodes and let pmin = min{i,j}∈E pij . Let

αi,k = 1
Γk(i)

for all k and i. Also, let q be a scalar such that 0 < q < 1/2. Then, there exists

a large enough k̃ = k̃(q, m) such that with probability 1 for all k ≥ k̃ and i ∈ V ,

αi,k ≤ 2

kγi

, α2
i,k ≤ 4m2

k2p2
min

,

∣

∣

∣

∣

αi,k −
1

kγi

∣

∣

∣

∣

≤ 2

k
3
2
−q p2

min

.

We now provide a lemma showing, among other relations, that the agent disagreement

on the vectors xi
k converges to zero with probability 1 when the stepsize is defined by the

relative frequency of the updates, i.e., αi,k = 1
Γk(i)

.

Lemma 4: Let Assumptions 1–4 hold. Let {xi
k}, i ∈ V , be the iterate sequences generated

by algorithm (9), and define ȳk = 1
m

∑m

j=1 xj
k for all k ≥ 0. Then, the following holds:

(a) When αi,k = 1
Γk(i)

, we have
∑∞

k=1
1
k
‖xi

k−1 − ȳk−1‖ < ∞ and limk→∞ ‖xi
k − ȳk‖ = 0

with probability 1 for each i = 1, . . . ,m.

(b) When αi,k = αi > 0, we have lim supk→∞
∑m

i=1 E[‖xi
k − ȳk‖] ≤ αmax

√
mdmax

1−
√

λ
(C + ν),

where αmax = max1≤j≤m αj, dmax = max1≤i≤m |E[J(i)] | and J(i) is the random set

of agents that update given that agent i broadcasts. The scalar λ < 1 is as given in

Lemma 2, while C and ν are as in Assumptions 3 and 4, respectively.

The expectation in the expression for dmax in part (b) of Lemma 4 is taken with respect to

the link reliability probabilities. The given bound captures the dependence of the deviations
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of xi
k from their current average ȳk in terms of the maximum stepsize and the communication

graph topology. The impact of the topology of the communication graph (V, E ) is captured

by the maximum expected number dmax of the agents updating at any time (under the link

failure probabilities) and the spectral radius λ of the matrix E
[

DT
k Dk

]

.

IV. CONVERGENCE RESULTS

Here, we investigate the convergence of the method for the stepsize αi,k = 1
Γk(i)

. We start

by establishing a special relation that is valid for this stepsize.

Lemma 5: Let Assumptions 1– 4 hold. Let {xi
k}, i ∈ V, be the iterate sequences generated

by algorithm (9) with αi,k = 1
Γk(i)

. Then, for any q ∈ (0, 1/2) there is a sufficiently large

k̃ = k̃(q, m), such that we have with probability 1, for all x ∈ X , k ≥ k̃ and i ∈ Jk,

E
[

‖xi
k − x‖2 | Fk−1, Ik, Jk

]

≤ (1 + ak)‖vi
k − x‖2 − 2

kγi

(fi(ȳk−1) − fi(x))

+
2mC

k pmin

‖vi
k − ȳk−1‖ +

2m

k pmin

‖E
[

ǫi
k | Fk−1, Ik, Jk

]

‖‖vi
k − x‖ +

(

4m2

k2 p2
min

+ ak

)

(C + ν)2.

where pmin = min{i,j}∈E pij , ak = 2

k
3
2−q p2

min

, ȳk = 1
m

∑m

j=1 xj
k, and γi is the probability that

agent i updates.

Proof: Let x ∈ X be arbitrary. From the definition of the method in (9) and the

nonexpansive property of the projection operation, we have for any k ≥ 1 and i ∈ Jk,

‖xi
k − x‖2 ≤ ‖vi

k − x‖2 − 2αi,k(∇fi(v
i
k) + ǫi

k)
T (vi

k − x) + α2
i,k‖∇fi(v

i
k) + ǫi

k‖2.

Writing αi,k = (αi,k − 1
kγi

) + 1
kγi

and using

∣

∣

∣αi,k − 1
kγi

∣

∣

∣ ≤ 2

k
3
2−q p2

min

(see Lemma 3), for k̃

sufficiently large, we obtain with probability 1 for all k ≥ k̃ and i ∈ Jk,

‖xi
k − x‖2 ≤ ‖vi

k − x‖2 − 2

kγi

(∇fi(v
i
k) + ǫi

k)
T (vi

k − x)

+
4

k
3
2
−q p2

min

|(∇fi(v
i
k) + ǫi

k)
T (vi

k − x)| + α2
i,k‖∇fi(v

i
k) + ǫi

k‖2.

Letting ak = 2

k
3
2−q p2

min

and using 2|(∇fi(v
i
k)+ ǫi

k)
T (vi

k −x)| ≤ ‖∇fi(v
i
k)+ ǫi

k‖2 +‖vi
k −x‖2,

we obtain

‖xi
k − x‖2 ≤ (1 + ak) ‖vi

k − x‖2 − 2

kγi

(∇fi(v
i
k) + ǫi

k)
T (vi

k − x)

+(α2
i,k + ak)‖∇fi(v

i
k) + ǫi

k‖2. (13)
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Since xj
k ∈ X for all j and k, by convexity of X it follows that ȳk−1 ∈ X for all k. By

the subgradient boundedness (Assumption 3) relation (5) holds, so that we have

∇fi(v
i
k)

T (vi
k − x) ≥ fi(ȳk−1) − fi(x) − C‖vi

k − ȳk−1‖.

By substituting the preceding estimate in (13), and using α2
i,k ≤ 4m2

k2 p2
min

(Lemma 3), we

obtain with probability 1 for all k ≥ k̃ and i ∈ Jk,

‖xi
k − x‖2 ≤ (1 + ak)‖vi

k − x‖2 − 2

kγi

(fi(ȳk−1) − fi(x))

+
2C

kγi

‖vi
k − ȳk−1‖ +

2

kγi

(ǫi
k)

T (vi
k − x) +

(

4m2

k2 p2
min

+ ak

)

∥

∥∇f(vi
k) + ǫi

k

∥

∥

2
.

Taking the conditional expectation on Fk−1, Ik and Jk jointly, and using the boundedness

of the subgradient norm and the noise ǫi
k (Eq. (7)), we obtain for k ≥ k̃ and i ∈ Jk,

E
[

‖xi
k − x‖2 | Fk−1, Ik, Jk

]

≤ (1 + ak)‖vi
k − x‖2 − 2

kγi

(fi(ȳk−1) − fi(x))

+
2C

kγi

‖vi
k − ȳk−1‖ +

2

kγi

E
[

(ǫi
k)

T (vi
k − x) | Fk−1, Ik, Jk

]

+

(

4m2

k2 p2
min

+ ak

)

(C + ν)2. (14)

We note that vi
k is completely determined given Fk−1, Ik, and Jk, so that

E
[

(ǫi
k)

T (vi
k − x) | Fk−1, Ik, Jk

]

≤ ‖E[ǫi
k | Fk−1, Ik, Jk] ‖ ‖vi

k − x‖. (15)

Substituting estimate (15) in relation (14) and using γi ≥ pmin

m
(cf. (12) and |N (i)| ≥ 1), we

have for k ≥ k̃ and i ∈ Jk,

E
[

‖xi
k − x‖2 | Fk−1, Ik, Jk

]

≤ (1 + ak)‖vi
k − x‖2 − 2

kγi

(fi(ȳk−1) − fi(x))

+
2C

kγi

‖vi
k − ȳk−1‖ +

2m

k pmin

‖E
[

ǫi
k | Fk−1, Ik, Jk

]

‖‖vi
k − x‖ +

(

4m2

k2 p2
min

+ ak

)

(C + ν)2.

The desired relation follows by using γi ≥ pmin

m
for γi in the coefficient of ‖vi

k − ȳk−1‖.

We now show the convergence of the algorithm.

Proposition 1: Let Assumptions 1–4 hold. Assume that the subgradient errors ǫi
k are such

that E[ǫi
k | Fk−1, Ik, Jk] = 0 for all k ≥ 1 and i ∈ Jk with probability 1. Let the sequences

{xi
k}, i ∈ V, be generated by method (9) with stepsize αi,k = 1

Γk(i)
. Assume that problem

(1) has a non-empty optimal set X∗. Then, the sequences {xi
k}, i ∈ V, converge to the same

random point in X∗ with probability 1.
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Proof: Let x∗ ∈ X∗ be arbitrary. Using x = x∗ in the relation of Lemma 5 and the

fact E[ǫi
k | Fk−1, Ik, Jk] = 0, we obtain with probability 1 for any q ∈ (0, 1/2), and for all

k ≥ k̃(q, m) and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ (1 + ak)‖vi
k − x∗‖2 − 2

kγi

(fi(ȳk−1) − fi(x
∗))

+
2mC

k pmin

‖vi
k − ȳk−1‖ +

(

4m2

k2 p2
min

+ ak

)

(C + ν)2,

with ak = 2

k
3
2−q p2

min

. Recall that when i 6∈ Jk, we have xi
k = vi

k, and by combining these two

cases with the fact that agent i updates with probability γi, we obtain with probability 1 for

any q ∈ (0, 1/2), and for all k ≥ k̃(q, m) and i ∈ V ,

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 + ak)E
[

‖vi
k − x∗‖2 | Fk−1

]

− 2

k
(fi(ȳk−1) − fi(x

∗))

+
2mC

k pmin

E
[

‖vi
k − ȳk−1‖ | Fk−1

]

+ γi

(

4m2

k2 p2
min

+ ak

)

(C + ν)2.

We next sum the preceding relations over all i ∈ V . Then, using f =
∑m

i=1 fi and relations

(10) and (11) (with x = x∗ and x = ȳk−1, respectively), we have with probability 1 for any

q ∈ (0, 1/2), any x∗ ∈ X∗, and for all k ≥ k̃(q, m),

E

[

m
∑

i=1

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 + ak)
m
∑

j=1

‖xj
k−1 − x∗‖2 − 2

k
(f(ȳk−1) − f(x∗))

+
2mC

k pmin

m
∑

j=1

‖xj
k−1 − ȳk−1‖ +

m
∑

i=1

γi

(

4m2

k2 p2
min

+ ak

)

(C + ν)2. (16)

Now, since 0 < q < 1
2

and ak = 2

k
3
2−q p2

min

, we have
∑∞

k=1 ak < ∞ and
∑∞

k=1

(

4m4

k2 p2
min

+ ak

)

<

∞. By Lemma 4, we have
∑∞

k=1
1
k

∑m

j=1 ‖xj
k−1 − ȳk−1‖ < ∞ with probability 1, implying

∑∞
k=1

2mC
k pmin

∑m

j=1 ‖xj
k−1− ȳk−1‖ < ∞ with probability 1. Furthermore, f(ȳk−1)−f(x∗) ≥ 0

for all k since ȳk−1 ∈ X for all k and x∗ is an optimal solution. Therefore, relation (16)

satisfies the conditions of Lemma 1 for k ≥ k̃. Hence, with probability 1, the sequence

{∑m

i=1 ‖xi
k − x∗‖2} converges for any x∗ ∈ X∗, and

∑

k=k̃
1
k

(f(ȳk−1) − f(x∗)) < ∞. The

latter relation implies

lim inf
k→∞

f(ȳk−1) = f(x∗) with probability 1. (17)

The relation limk→∞ ‖xi
k − ȳk‖ = 0 for all i ∈ V with probability 1 (Lemma 4), the

convergence of the sequence {∑m

i=1 ‖xi
k − x∗‖2} for any x∗ ∈ X∗ with probability 1, and

relation (17) imply by continuity of f that {ȳk} converges to a random point in the set X∗
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with probability 1. Since limk→∞ ‖xi
k − ȳk‖ = 0 with probability 1 for all i ∈ V , it follows

that each sequence {xi
k} converges to the same random point in X∗ with probability 1.

Our next result deals with the convergence of the method when the constraint set X is

bounded. In this case, the zero-mean condition on the subgradient errors of Proposition 1

can be replaced with a more general condition, as seen in the following proposition.

Proposition 2: Let Assumptions 1, 2 and 4 hold, and let the constraint set X be compact.

Assume that the subgradient errors ǫi
k are such that with probability 1 for some determin-

istic scalar sequence {µk}, we have ‖E[ǫi
k | Fk−1, Ik, Jk] ‖ ≤ µk for all k and i ∈ Jk, and

∑∞
k=1

µk

k
< ∞. Then, the optimal set X∗ of problem (1) is nonempty, and the sequences

{xi
k}, i ∈ V, converge to the same random point in the set X∗ with probability 1.

Proof: By Assumption 2, the function f is continuous over X (see the discussion

following Assumption 2). Since the set X is compact, the optimal set X∗ is nonempty.

Furthermore, the subgradients of each fi are bounded over X , and let C > 0 be such that

‖∇fi(x)‖ ≤ C for all x ∈ X and i ∈ V .

Let x∗ ∈ X∗ be arbitrary. Taking x = x∗ in Lemma 5 and using ‖E[ǫi
k | Fk−1, Ik, Jk] ‖ ≤

µk, we have for any q ∈ (0, 1/2), with probability 1, for all k ≥ k̃(q, m) and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ (1 + ak)‖vi
k−1 − x∗‖2 − 2

kγi

(fi(ȳk−1) − fi(x
∗))

+
2mC

k pmin

‖vi
k − ȳk−1‖ +

2m

k pmin

µk‖vi
k − x∗‖ +

(

4m2

k2 p2
min

+ ak

)

(C + ν)2,

where ak = 2

k
3
2−q p2

min

and ȳk = 1
m

∑m

j=1 xj
k. In view of vi

k =
∑m

j=1[Wk]i,j xj
k−1 with xj

k ∈ X

for all j and k, and the stochasticity of the matrix Wk, we have vi
k ∈ X for all i and k,

implying ‖vi
k − x∗‖ ≤ maxx,y∈X ‖x − y‖. Letting CX = maxx,y∈X ‖x − y‖, we thus obtain

with probability 1 for any x ∈ X∗,

‖vi
k − x∗‖ ≤ CX for any k ≥ 0 and i ∈ V .

Using the preceding two relations, and noting that xi
k = vi

k when i 6∈ Jk and that agent i

updates with probability γi, we can see that for any q ∈ (0, 1/2), with probability 1, for all

k ≥ k̃(q, m) and i ∈ V ,

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 + ak)E
[

‖vi
k−1 − x∗‖2 | Fk−1

]

− 2

k
(fi(ȳk−1) − fi(x

∗))

+
2mC

k pmin

E
[

‖vi
k − ȳk−1‖ | Fk−1

]

+
2m

k pmin

µkCX + γi

(

4m2

k2 p2
min

+ ak

)

(C + ν)2.
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By summing the preceding relations over i ∈ V , and using
∑m

i=1 E[‖vi
k − x∗‖2 | Fk−1] ≤

∑m

j=1 ‖xj
k−1−x∗‖2 and

∑m

i=1 E[‖vi
k − ȳk−1‖ | Fk−1] ≤

∑m

j=1 ‖xj
k−1− ȳk−1‖ (see (10)–(11)),

we have with probability 1 for any q ∈ (0, 1/2), x∗ ∈ X∗, and k ≥ k̃(q, m),

E

[

m
∑

i=1

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 + ak)
m
∑

j=1

‖xj
k−1 − x∗‖2 − 2

k
(f(ȳk−1) − f(x∗))

+
2mC

k pmin

m
∑

j=1

‖xj
k−1 − ȳk−1‖ +

2m2

k pmin

µkCX +
m
∑

i=1

γi

(

4m2

k2 p2
min

+ ak

)

(C + ν)2.

The result now follows by Lemma 1, relations
∑∞

k=1
1
k
µk < ∞ and

∑∞
k=1

2mC
k pmin

∑m

j=1 ‖xj
k−1−

ȳk−1‖ < ∞, and the line of analysis similar to the proof of Proposition 1.

V. ERROR BOUNDS

We now focus on a constant stepsize αi,k = αi, and we establish some limiting error

bounds assuming that the set X is compact. We consider the case when each fi is strongly

convex and the case the functions are just convex. We make use of the following result for

a scalar sequence, which is proved in Appendix.

Lemma 6: Let {dk} and{uk} be scalar sequences such that dk ≤ cdk−1 + uk−1 for all

k ≥ 1 and some scalar c ∈ (0, 1). Then, lim supk→∞ dk ≤ 1
1−c

lim supk→∞ uk.

Consider now the case when each function is strongly convex. In particular, let fi be

strongly convex over X with a constant σi > 0:

(∇fi(x) −∇fi(y))T (x − y) ≥ σi‖x − y‖2 for all x, y ∈ X.

In this case, the function f is strongly convex with constant σ =
∑m

i=1 σi and, therefore,

problem (1) has a unique solution. We establish an error bound on the expected distances

between the optimal solution and the agent iterates in the following proposition.

Proposition 3: Let Assumptions 1, 2 and 4 hold. Let the set X be bounded. Assume that

the subgradient errors ǫi
k are such that E[ǫi

k | Fk−1, Ik, Jk] = 0 with probability 1 for all

k ≥ 1 and i ∈ Jk. Let each function fi be strongly convex over the set X with a constant

σi. Let sequences {xi
k}, i ∈ V, be generated by method (9) with the stepsize αi,k = αi > 0

such that 2αiσi < 1 for all i ∈ V . Then, we have

lim sup
k→∞

m
∑

i=1

E
[

‖xi
k − x∗‖2

]

≤ ε

1 − c
+

2C

1 − c
α2

max

√
mdmax

1 −
√

λ
(C + ν),
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where x∗ is the optimal solution of problem (1), c = 1 − 2γmin minj αjσj , γmin = minj γj ,

αmax = maxi αi, dmax is the maximum expected number of agents that update at any time

as given in Lemma 4(b), and

ε = 2m∆α,σ (1 − γmin) C2
X + 2m∆α,γCCX + mαmax

(

max
ℓ

αℓγℓ

)

(C + ν)2.

Here, ∆α,σ = maxℓ αℓσℓ−minj αjσj , ∆α,γ = maxℓ αℓγℓ−minj αjγj , CX = maxx,y ‖x−y‖,

and C and ν are the bounds on the subgradient and subgradient error norms, respectively.

Proof: From the definition of the method in (9), the nonexpansive property of the

projection operation, and the zero mean assumption on the errors, we obtain for the optimal

point x∗, and any k and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ ‖vi
k − x∗‖2 − 2αi∇fi(v

i
k)

T (vi
k − x∗) + α2

i ‖∇fi(v
i
k) + ǫi

k‖2.

(18)

Adding and subtracting ∇fi(x
∗)T (vi − x∗), and using the strong convexity of fi, we have

∇fi(v
i
k)

T (vi
k − x∗) =

(

∇fi(v
i
k) −∇fi(x

∗)
)T

(vi
k − x∗) + ∇fi(x

∗)T (vi
k − x∗)

≥ σi‖vi
k − x∗‖2 + ∇fi(x

∗)T (vi
k − x∗).

We further have ∇fi(x
∗)T (vi

k − x∗) = ∇fi(x
∗)T (ȳk−1 − x∗) + ∇fi(x

∗)T (vi
k − ȳk−1), with

ȳk−1 = 1
m

∑m

j=1 xj
k−1. Thus, we obtain

∇fi(x
∗)T (vi

k − x∗) ≥ ∇fi(x
∗)T (ȳk−1 − x∗) − C ‖vi

k − ȳk−1‖,

where the inequality follows from ‖∇fi(x
∗)‖ ≤ C for all i. The preceding two relations

imply for all k ≥ 1 and all i ∈ Jk,

∇fi(v
i
k)

T (vi
k − x∗) ≥ σi‖vi

k − x∗‖2 + ∇fi(x
∗)T (ȳk−1 − x∗) − C ‖vi

k − ȳk−1‖.

Using the preceding estimate and the inequality

E
[

‖∇fi(v
i
k) + ǫi

k‖2 | Fk−1, Ik, Jk

]

≤ (C + ν)2

(see Eq. (7)), from relation (18), we obtain for all k ≥ 1 and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ (1 − 2αiσi)‖vi
k − x∗‖2 − 2αi∇fi(x

∗)T (ȳk−1 − x∗)

+2αiC‖vi
k − ȳk−1‖ + α2

i (C + ν)2.

When i 6∈ Jk, we have xi
k = vi

k by the definition of the method. Hence, for i 6∈ Jk,

‖xi
k − x∗‖2 = ‖vi

k − x∗‖2 = (1 − 2αiσi)‖vi
k − x∗‖2 + 2αiσi‖xi

k−1 − x∗‖2,
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where we also use the fact vi
k = xi

k−1 when agent i does not update. By combining the

preceding two relations, and using the indicator function χ{i∈Jk} of the event that agent i

updates at time k, we can see that for any any k ≥ 1 and i ∈ V ,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ (1 − 2αiσi)‖vi
k − x∗‖2 + 2αiσi‖xi

k−1 − x∗‖2
(

1 − χ{i∈Jk}
)

− 2αi∇fi(x
∗)T (ȳk−1 − x∗)χ{i∈Jk} + 2αiC‖vi

k − ȳk−1‖ + α2
i (C + ν)2χ{i∈Jk},

where we have also used ‖vi
k − ȳk−1‖χ{i∈Jk} ≤ ‖vi

k − ȳk−1‖. Taking the expectation

conditioned on the past Fk−1 and using the fact that agent i updates with probability γi

independently of the past, we obtain with probability 1 for all k ≥ 1 and i ∈ V ,

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 − 2αiσi)E
[

‖vi
k − x∗‖2 | Fk−1

]

+ 2αiσi‖xi
k−1 − x∗‖2 (1 − γmin)

−2αiγi∇fi(x
∗)T (ȳk−1 − x∗) + 2αiCE

[

‖vi
k − ȳk−1‖ | Fk−1

]

+ α2
i γi(C + ν)2,

where γmin = mini γi. Let ∆α,σ = maxℓ αℓσℓ−minj αjσj and ∆α,γ = maxℓ αℓγℓ−minj αjγj .

Note that by ‖∇fi(x
∗)‖ ≤ C, the fact xi

k, ȳk ∈ X for all i and k, and the compactness of

X , we can see that

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 − 2 min
s

αsσs)E
[

‖vi
k − x∗‖2 | Fk−1

]

+2

(

min
j

αjσj

)

(1 − γmin) ‖xi
k−1 − x∗‖2 + 2∆α,σ (1 − γmin) C2

X

−2

(

min
j

αjγj

)

∇fi(x
∗)T (ȳk−1 − x∗) + 2∆α,γCCX

+2αmaxCE
[

‖vi
k − ȳk−1‖ | Fk−1

]

+ α2
i γi(C + ν)2,

where CX = maxx,y∈X ‖x − y‖ and αmax = maxℓ αℓ.

We sum the preceding inequalities over all i ∈ V , and use
∑m

i=1 E[‖vi
k − x∗‖2 | Fk−1] ≤

∑m

j=1 ‖xj
k−1−x∗‖2 and

∑m

i=1 E[‖vi
k − ȳk−1‖ | Fk−1] ≤

∑m

j=1 ‖xj
k−1− ȳk−1‖ (see (10))–(11)),

to obtain with probability 1 for all k ≥ 1,

m
∑

i=1

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ (1 − 2 min
s

αsσs)
m
∑

j=1

‖xj
k−1 − x∗‖2

+2

(

min
j

αjσj

)

(1 − γmin)
m
∑

i=1

‖xi
k−1 − x∗‖2 + ε

−2

(

min
j

αjγj

) m
∑

i=1

∇fi(x
∗)T (ȳk−1 − x∗) + 2αmaxC

m
∑

j=1

‖xj
k−1 − ȳk−1‖,

where ε = 2m∆α,σ (1 − γmin) C2
X +2m∆α,γCCX +mαmax max αℓγℓ(C +ν)2. The last term

in ε is obtained by using
∑m

i=1 α2
i γi ≤ mαmax max αℓγℓ. Observe that

∑m

i=1 ∇fi(x
∗)T (ȳk−1−
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x∗) ≥ 0 since ȳk−1 ∈ X and x∗ is the optimal point of
∑m

i=1 fi(x) over x ∈ X . Thus, by

taking the total expectation, we obtain for all k ≥ 1,

m
∑

i=1

E
[

‖xi
k − x∗‖2

]

≤ c

m
∑

j=1

E
[

‖xj
k−1 − x∗‖2

]

+ ε + 2αmaxC

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

, (19)

where c = 1 − 2γmin minj αjσj . We have c ∈ (0, 1) since γmin ≤ 1 and 2αiσi < 1 for all i

(by our assumption). Thus, relation (19) satisfies Lemma 6, implying

lim sup
k→∞

m
∑

i=1

E
[

‖xi
k − x∗‖2

]

≤ ε

1 − c
+

2αmaxC

1 − c
lim sup

k→∞

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

.

The desired relation is obtained by using Lemma 4(b).

Proposition 3 provides an asymptotic error bound for the sum of the expected distances

between the optimal solution x∗ and the iterates of asynchronous broadcast-based algorithm

in the presence of random link failures. The bound captures the effects of the network

connectivity topology and the link failure probabilities (through γmin, λ and dmax), as well

as the objective function properties. Note that the error ε grows as m and the error term

2C
1−c

α2
max

√
mdmax

1−
√

λ
(C +ν) grows as

√
m in the number m of agents, provided that γmin and λ

do not depend on m. In this case, the limiting error grows as m in the number m of agents.

This will happen, for example, if the graph (V, E ) is full and the links are perfectly reliable

(i.e., pij = 1 for all {i, j} ∈ E ), which will imply that γmin = m−1
m

and dmax = m−1, while

λ ≤ 1 − β2 where β ∈ (0, 1) are weights as given in (3).

The result of Proposition 3 requires that each node selects a stepsize αi so that 2αiσi < 1,

which can be done since each node knows its strong convexity constant σi. Then, since

γi ∈ (0, 1) for all i, we have c = 1 − 2γmin mini αiσi < 1. Thus, the relation c ∈ (0, 1) can

be ensured globally over the network without any coordination among the agents.

To get additional insights into the result of Proposition 3, suppose that ∆α,σ = maxℓ αℓσℓ−
minj αjσj ≈ 0 (or γmin ≈ 1) and ∆α,γ = maxℓ αℓγℓ −minj αjγj ≈ 0. Substituting the value

for c, we obtain the following limiting error bound:

lim sup
k→∞

m
∑

i=1

E
[

‖xi
k − x∗‖2

]

≤ mαmax

2γmin

maxi αiγi

minj αjσj

(C+ν)2+
Cα2

max

γmin minj αjσj

√
mdmax

1 −
√

λ
(C+ν).

Note that the preceding error bound is proportional to αmax, implying that the error can be

small when all the agents use small stepsize values αi.

We next provide another error estimate that holds without requiring strong convexity.
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Proposition 4: Let Assumptions 1, 2 and 4 hold. Let the set X be bounded and the errors

ǫi
k be such that ‖E[ǫi

k | Fk−1, Ik, Jk] ‖ ≤ µ with probability 1 for all k ≥ 1, i ∈ Jk and for

a deterministic scalar µ > 0. Let the sequences {xi
k}, i ∈ V, be generated by method (9)

with stepsize αi,k = αi. Then, for the averaged iterates x̂i
t = 1

t

∑k

t=1 xi
k−1 we have

lim sup
t→∞

E
[

f(x̂i
t)
]

− f ∗ ≤ θ +

(

mC +
αmaxC

minℓ αℓγℓ

)

αmax

√
mdmax

1 −
√

λ
(C + ν) for all i ∈ V ,

θ = mCCX

(

maxℓ αℓγℓ

minj αjγj

− 1

)

+
m maxℓ αℓγℓ

2 minj αjγj

(

2µ CX + αmax(C + ν)2
)

,

where f ∗ is the optimal value of problem (1), CX = maxx,y∈X ‖x − y‖, αmax = maxi αi,

and dmax is the maximum expected number of agents updating as defined in Lemma 4(b).

Proof: Since X is compact, the optimal set X∗ is nonempty. Thus, from xi
k = PX [vi

k −
αi(∇fi(v

i
k) + ǫi

k)] for i ∈ Jk (see Eq. (9)), it follows for all k ≥ 1 and i ∈ Jk,

‖xi
k − x∗‖2 ≤ ‖vi

k − x∗‖2 − 2αi(∇fi(v
i
k) + ǫi

k)
T (vi

k − x∗) + α2
i ‖∇fi(v

i
k) + ǫi

k‖2.

By compactness of X , we have ‖∇fi(x)‖ ≤ C for all x ∈ X and all i, and some scalar C.

Taking the expectation conditional on Fk−1, Ik, and Jk, and using

E
[

‖∇fi(v
i
k) + ǫi

k‖2Fk−1, Ik, Jk

]

≤ (C + ν)2

(see Eq. (7)), we obtain with probability 1 for all k ≥ 1 and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ ‖vi
k − x∗‖2 − 2αi∇fi(v

i
k)

T (vi
k − x∗)

−2αiE
[

ǫi
k | Fk−1, Ik, Jk

]T
(vi

k − x∗) + α2
i (C + ν)2.

From approximate subgradient relation (5) it follows

∇fi(v
i
k)

T (vi
k − x∗) ≥ fi(ȳk−1) − fi(x

∗) − C‖vi
k − ȳk−1‖.

Furthermore, by the assumption on the mean of the error, we have

E
[

ǫi
k | Fk−1, Ik, Jk

]T
(vi

k − x) ≤ ‖E
[

ǫi
k | Fk−1, Ik, Jk

]

‖ ‖vi
k − x‖ ≤ µ‖vi

k − x‖.

Combining the preceding relations, we obtain with probability 1 for all k ≥ 1 and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤ ‖vi
k − x∗‖2 − 2αi(fi(ȳk−1) − fi(x

∗))

+2αiC‖vi
k − ȳk−1‖ + αi

(

2µ CX + αi(C + ν)2
)

,
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where CX = maxx,y∈X ‖x − y‖, which is finite since vi
k ∈ X and X is compact. Using

the indicator function of the event that agent i updates at the time k, from the preceding

relation we further obtain with probability 1 for all k ≥ 1 and i ∈ Jk,

E
[

‖xi
k − x∗‖2 | Fk−1, Ik, Jk

]

≤
(

‖vi
k − x∗‖2 − 2αi(fi(ȳk−1) − fi(x

∗))
)

χ{i∈Jk}

+2αiC‖vi
k − ȳk−1‖ + αi

(

2µ CX + αi(C + ν)2
)

χ{i∈Jk}. (20)

We combine relation (20) with xi
k = vi

k for i 6∈ Jk (see (9)). Since agent i updates with

probability γi independently of the past, we have with probability 1 for k ≥ 1 and i ∈ V ,

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ E
[

‖vi
k − x∗‖2 | Fk−1

]

− 2αiγi(fi(ȳk−1) − fi(x
∗))

+2αiCE
[

‖vi
k − ȳk−1‖ | Fk−1

]

+ αiγi

(

2µ CX + αi(C + ν)2
)

. (21)

Let ∆α,γ = maxℓ αℓγℓ − minj αjγj . Using |fi(ȳk−1) − fi(x
∗)| ≤ C‖ȳk−1 − x∗‖ ≤ CCX ,

which holds by the subgradient boundedness and the fact ȳk ∈ X , from (21) we see that

with probability 1 for all k ≥ 1 and i ∈ V ,

E
[

‖xi
k − x∗‖2 | Fk−1

]

≤ E
[

‖vi
k − x∗‖2 | Fk−1

]

− 2

(

min
j

αjγj

)

(fi(ȳk−1) − fi(x
∗))

+ 2∆α,γCCX + 2αmaxCE
[

‖vi
k − ȳk−1‖ | Fk−1

]

+ max
ℓ

αℓγℓ

(

2µ CX + αmax(C + ν)2
)

,

where αmax = maxi αi. We next sum the preceding inequalities over all i, and note that

f =
∑m

i=1 fi and f ∗ = f(x∗). By doing this and using relations (10)–(11) (with x = x∗

and x = ȳk−1, respectively) after taking the total expectation and rearranging the terms, we

obtain with probability 1 for all k ≥ 1,

2 min
j

αjγj E[f(ȳk−1) − f ∗] ≤
m
∑

j=1

E
[

‖xj
k−1 − x∗‖2

]

−
m
∑

i=1

E
[

‖xi
k − x∗‖2

]

+ 2m∆α,γCCX

+ 2αmaxC

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

+ m max
ℓ

αℓγℓ

(

2µ CX + αmax(C + ν)2
)

.

(22)

Next, we divide the preceding relation by 2 minj αjγj . We note that by convexity and the

boundedness of the subgradients of each fi, we have

f(xi
k−1)− f ∗ ≤ f(ȳk−1)− f ∗ +mC‖xi

k−1 − ȳk−1‖ ≤ f(ȳk−1)− f ∗ +mC

m
∑

i=1

‖xi
k−1 − ȳk−1‖.
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Thus, we obtain from (22) for all k ≥ 1 and i ∈ V ,

E
[

f(xi
k−1) − f ∗] ≤ 1

2 minj αjγj

(

m
∑

j=1

E
[

‖xj
k−1 − x∗‖2

]

−
m
∑

i=1

E
[

‖xi
k − x∗‖2

]

)

+θ +

(

mC +
αmaxC

minj αjγj

) m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

,

where θ = m∆α,γCCX

minj αjγj
+ m maxℓ αℓγℓ

2minj αjγj
(2µ CX + αmax(C + ν)2) . Using ∆α,γ = maxℓ αℓγℓ −

minj αjγj , the error θ can be written as:

θ = mCCX

(

maxℓ αℓγℓ

minj αjγj

− 1

)

+
m maxℓ αℓγℓ

2 minj αjγj

(

2µ CX + αmax(C + ν)2
)

.

By summing the preceding relations over k from k = 1 to k = t for some t ≥ 1, and then

averaging with respect to t, we obtain for any t ≥ 1 and i ∈ V ,

1

t

t
∑

k=1

E
[

f(xi
k−1) − f ∗] ≤ 1

2t minj αjγj

m
∑

j=1

E
[

‖xj
0 − x∗‖2

]

+θ +

(

mC +
αmaxC

minℓ αℓγℓ

)

1

t

t
∑

k=1

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

.

Letting t → ∞ and using the relation

lim sup
t→∞

1

t

t
∑

k=1

(

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

)

≤ lim sup
k→∞

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

,

we have for any i ∈ V ,

lim sup
t→∞

1

t

t
∑

k=1

E
[

f(xi
k−1) − f ∗] ≤ θ +

(

mC +
αmaxC

minℓ αℓγℓ

)

lim sup
k→∞

m
∑

j=1

E
[

‖xj
k−1 − ȳk−1‖

]

.

The estimate now follows by using Lemma 4(b) and convexity of the function f .

The error bound of Proposition 4 scales as m
√

m in the number m of agents, when dmax

and λ do not depend on m. As a consequence of Proposition 4, in view of f(xi
k)− f ∗ ≥ 0

(since xi
k ∈ X for all k and i) and Fatou’s lemma, it can be seen that for all i ∈ V ,

E

[

lim inf
k→∞

f(xi
k) − f ∗

]

≤ θ +

(

mC +
αmaxC

minj αjγj

)

αmax

√
mdmax

1 −
√

λ
(C + ν),

with θ = mCCX

(

maxℓ αℓγℓ

minj αjγj
− 1
)

+ m maxℓ αℓγℓ

2minj αjγj
(2µ CX + αmax(C + ν)2) . When the mean of

the errors ǫi
k are zero (corresponding to µ = 0) and the ratio maxℓ αℓγℓ

minj αjγj
is close to 1, the result

of Proposition 4 reduces to

lim sup
t→∞

E
[

f(x̂i
t)
]

− f ∗ ≤ m

2
αmax(C + ν)2 +

(

mC +
αmaxC

minj αjγj

)

αmax

√
mdmax

1 −
√

λ
(C + ν).
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This bound scales by order 5/2 less than the scaling of the bound for the distributed

(deterministic) consensus-based subgradient algorithm of [26], which scales at best as m4.

Specifically, in [26] it is shown that for consensus-based distributed algorithm (with zero

mean errors ǫi
k) the corresponding error bound on the difference in function values at the

time-averages of the agent iterates and the optimal value is given by (Theorem 5.4 in [26]):

mα(C + ν)2
(

9
2

+ 2mbβ

1−β

)

. Here, α is the constant stepsize common to all agents, and b and

β are some positive constants such that bβ

1−β
is of the order m2. Thus, random broadcast

algorithm has much better scaling of the asymptotic bound with the size m of the network.

VI. NUMERICAL RESULTS

We implement the broadcast-based algorithm for solving the following problem

min
x∈X

m
∑

i=1

fi(x) where fi(x) = E[(Ri − sT
i x)2] and X ⊆ R

2,

where si ∈ R
2 and Ri is a random noise. The set X is chosen to be the unit ball in R

2

centered at the origin (0, 0), while the vectors si are chosen randomly in X with the uniform

distribution. In the experiments, we have E[Ri] = 0.5 and E[R2
i ] = 1 for all agents i.

We implement the broadcast-based algorithm (3) over a network with 50 agents (m = 50)

for two network topologies, namely, a cycle and a wheel. In the cycle network, the agents

are connected to form a single undirected cycle, while in the wheel network, agent 1 is

connected to all the other agents i by undirected link {1, i}. In the experiments, all the links

are reliable, viz pij = 1 for all the links.

We evaluate the algorithm performance by carrying out 25 Monte-Carlo runs, each with

10,000 iterations, for both the diminishing and constant stepsize rules. The diminishing

stepsize for agent i is based on the number Γk(i) of times the agent updates by the given

time k. For each agent i, the constant stepsize value αi is generated randomly with the

uniform distribution on [0.001, 0.01], which is denoted by U(0.001, 0.01). Table ?? provides

the parameter values for the algorithm and the network topologies.

The algorithm performance is numerically evaluated by plotting the averaged values

(across the Monte-Carlo runs) of the network function objective f(x) =
∑m

i=1 fi(x) along

the iterates {xi
k} for randomly selected agents i. The results for the cycle network are shown

for 7 randomly (and uniformly) selected agents out of 50. The results for the wheel network
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TABLE I

ALGORITHM AND NETWORK PARAMETERS

Parameter Symbol Cycle Wheel

Mixing weight β 0.35 0.35

Maximum expected degree dmax 2 49

Diminishing stepsize αi
1

Γk(i)
1

Γk(i)

Constant stepsize αi U(0.001, 0.01) U(0.001, 0.01)

are given for the central agent (the one that is connected with all other agents) and for

another 6 agents randomly (uniformly) selected out of the remaining 49 (peripheral) agents.

The results for diminishing stepsize are shown in Figure 2, where the network function

objective f(x) =
∑m

i=1 fi(x) is plotted along the iterate sequences {xi
k} for randomly

selected agents i, as described above. The results are in compliance with the convergence

established in Proposition 1.

Fig. 2. Network objective f(x) evaluated along {xi
k}. The plot to the left is for the cycle network, while the plot to the

right is for the wheel network.

The asymptotic results for constant stepsize are shown in Figures 3 and 4, where the

network objective f(x) =
∑m

i=1 fi(x) is plotted for the cycle and the wheel network,

respectively. The function f(x) is evaluated along the averaged iterate sequences {x̂i
k} for

randomly selected agents i, as discussed earlier. The plots also compare the numerically

observed “asymptotic error” with the theoretical error bound predicted by Proposition 4.

As expected, Figures 3 and 4 indicate reaching an “asymptotic error” level. However, the

experimentally observed error level is by far less than the error bound of Proposition 4. This
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is no surprise since the error bound is for the worse case scenario that does not account for

any special properties that the functions fi may have aside from convexity.

Fig. 3. Network objective f(x) evaluated along {x̂i
k} for the cycle network. The plot to the left shows the function

values for different agents, while the plot to the right compares these values with the theoretical bound (on the log-scale).

Fig. 4. Network objective f(x) evaluated along {x̂i
k} for the wheel network. The plot to the left shows the function

values, while the plot to the right compares these values with the theoretical bound (on the log-scale).

VII. CONCLUSIONS

We have considered a convex problem of minimizing the sum of agents’ objective func-

tions over a common constraint set X , and proposed a broadcast-based optimization algo-

rithm suitable for solving the problem over a wireless network. We discussed the general
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case when agents evaluations of the (sub)gradients of their objective functions are erroneous

and studied the properties of the algorithm for a random diminishing stepsize and a constant

deterministic stepsize. We showed convergence with probability 1 to an optimal solution for

the diminishing stepsize, and established two error bounds for a constant stepsize. We have

also provided a numerical example.

APPENDIX

Proof: Lemma 2. Each matrix Wk is stochastic by the construction. Part (a) follows

from the structure of the weighted Laplacian LΠ, the weight rule used in the update (see (3)),

and from each agent i broadcasting with probability 1
m

. We next show the result in part (b).

For the matrix Dk = Wk − 1
m

11
T Wk we have

DT
k Dk =

(

W T
k − 1

m
11

T Wk

)(

Wk −
1

m
11

T Wk

)

= W T
k Wk −

1

m
W T

k 11
T Wk, (23)

where we use
(

1
m

11
T
)2

= 1
m

11
T . Consider the quadratic form zT

E
[

DT
k Dk

]

z for z ∈ R
m.

When z = c1 for some c ∈ R, from the stochasticity of Wk it is easily seen that

1
T
E
[

DT
k Dk

]

1 = 0. (24)

We next estimate the maximum of zT
E
[

DT
k Dk

]

z on the subspace of the vectors orthogonal

to 1. For any vector z such that zT
1 = 0, using (23) we have

zT
E
[

DT
k Dk

]

z = E
[

zW T
k Wkz

]

− 1

m
E
[

zT W T
k 11

T Wkz
]

≤ ‖z‖2 − 1

m
E
[

zT W T
k 11

T Wkz
]

,(25)

where the inequality follows by ‖Wkz‖2 ≤ ‖z‖2, which holds by the stochasticity of Wk.

Let LΠ be the weighted Laplacian of the weighted graph (V, E , Π), where Π is the

symmetric matrix with entries Πij = pij > 0 when {i, j} ∈ E and otherwise pij = 0

(recall pij is the probability that link {i, j} ∈ E is functioning). In this case, the weighted

Laplacian LΠ is symmetric and positive semidefinite (see [17], page 6), and therefore it has

m nonnegative eigenvalues 0 ≤ λ1(LΠ) ≤ λ2(LΠ) ≤ · · · ≤ λm(LΠ), which are repeated

according to their multiplicities. Since the graph (V, E ) is connected the smallest eigenvalue

is zero with multiplicity 1 (see [17], Proposition 2.3). Furthermore, since LΠ1 = 0, it follows

0 < λ2(LΠ) = min
{z∈Rm|zT 1=0, ‖z‖=1}

‖LΠz‖. (26)

Let W i be the expected matrix of weights corresponding to the event that agent i is

broadcasting, where the expectation is taken with respect to the link failure events for the

August 27, 2010 DRAFT



26

links {i, j} ∈ E with j ∈ N (i). Using the definition of the weighted Laplacian, we can

see that 1
T W i is given by 1

T W i = 1
T + β[LΠ]i, where [LΠ]i denotes the ith row of the

weighted Laplacian LΠ. Since each agent broadcasts with probability 1
m

, we have

1

m
E
[

W T
k 11

T Wk

]

=
1

m2

m
∑

i=1

(

1
T + β[LΠ]i

)T (

1
T + β[LΠ]i

)

.

Hence, for any z such that zT
1 = 0, we have

1

m
zT

E
[

W T
k 11

T Wk

]

z =
1

m2

m
∑

i=1

β2 ([LΠ]iz)2 .

Since [LΠ]i is the ith row of the weighted Laplacian LΠ, we have
∑m

i=1 ([LΠ]iz)2 = ‖LΠz‖2,

implying 1
m

zT
E
[

W T
k 11

T Wk

]

z = β2

m2 ‖LΠz‖2. Therefore, from (25) we have

max
{z|zT 1=0}

zT
E
[

DT
k Dk

]

z ≤ ‖z‖2 − β2

m2
min

{z|zT 1=0}
‖LΠz‖2 =

(

1 − β2

m2
λ2

2(LΠ)

)

‖z‖2,

where the last inequality follows by relation (26). Hence, from the preceding relation and

equality (24), we conclude that λ1(E
[

DT
k Dk

]

) ≤ 1 − β2

m2 λ2
2(LΠ) < 1.

Proof: Lemma 3. Note that Γk(i) =
∑k

t=1 χEi,t
, where Ei,t is the event that agent

i updates at time t and χEi,t
is the indicator function of the event Ei,t. Since the events

{χEi,t
} are i.i.d. with mean E

[

χEi,t

]

= γi for each i ∈ V , by the law of iterated logarithms

(see [9], pages 476–479), we have for any q > 0, with probability 1,

lim
k→∞

|Γk(i) − kγi|
k

1
2
+q

= 0 for all i ∈ V.

Thus, for sufficiently large k̃ (depending on q and m), we have

|Γk(i) − kγi|
k

1
2
+q

≤ 1

m2
for all k ≥ k̃ and i ∈ V , (27)

implying that with probability 1 for all i ∈ V and k ≥ k̃,

Γk(i) ≥ kγi −
1

m2
k

1
2
+q =

(

k
1
2
−qγi −

1

m2

)

k
1
2
+q.

For q < 1/2, the term k
1
2
−qγi tends to infinity as k increases. Thus, we can choose a larger

k̃ (if needed) so that with probability 1 we have

k
1
2
−qγi −

1

m2
≥ 1

2
k

1
2
−qγi for all k ≥ k̃ and i ∈ V .

By combining the preceding two relations, we obtain Γk(i) ≥ 1
2
kγi with probability 1 for

k ≥ k̃ and i ∈ V . Therefore, for any q ∈ (0, 1/2) we have with probability 1,

1

Γk(i)
≤ 2

kγi

for all k ≥ k̃ and i ∈ V , (28)
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thus showing the first relation of the lemma in view of αi,k = 1
Γk(i)

.

Since agent i updates with probability γi = 1
m

∑

j∈N (i) pij (cf. (12)), it follows

γi ≥
1

m

(

min
{i,j}∈E

pij

)

|N (i)| ≥ 1

m

(

min
{i,j}∈E

pij

)

, (29)

where the last inequality follows from |N (i)| ≥ 1 (since the graph (V, E ) has no isolated

node). By letting pmin = min{i,j}∈E pij , and using αi,k = 1
Γk(i)

and (28)–(29), we obtain

with probability 1 α2
i,k ≤ 4m2

k2p2
min

for all k ≥ k̃ and i ∈ V .

We now consider

∣

∣

∣
αi,k − 1

kγi

∣

∣

∣
. We have with probability 1 for all k ≥ k̃ and i ∈ V ,

∣

∣

∣

∣

αi,k −
1

kγi

∣

∣

∣

∣

=
1

kγi

1

Γk(i)
|kγi − Γk(i)| ≤

2

k2γ2
i

|kγi − Γk(i)| ,

where the inequality follows by (28). From relations (27) and (29), we obtain with proba-

bility 1, for all k ≥ k̃ and i ∈ V ,
∣

∣

∣

∣

αi,k −
1

kγi

∣

∣

∣

∣

≤ 2m2

k2 p2
min

1

m2
k

1
2
+q =

2

k
3
2
−q p2

min

.

Proof: Lemma 4. We will consider coordinate-wise relations, by defining the vector

zℓ
k ∈ R

m as the vector with entries [xi
k]ℓ, i = 1, . . . ,m. From the definition of the method

in (9), we have

zℓ
k = Wk zℓ

k−1 + ζℓ
k for ℓ = 1, . . . , n, and all k ≥ 1, (30)

where ζℓ
k ∈ R

m is a vector with coordinates [ζℓ
k]i given by

[ζℓ
k]i =

[

PX [vi
k − αi,k

(

∇fi(v
i
k) + ǫi

k

)

] − vi
k

]

ℓ
if i ∈ Jk and otherwise [ζℓ

k]i = 0. (31)

Furthermore, note that [ȳk]ℓ is the average of the entries of the vector zℓ
k, i.e.,

[ȳk]ℓ =
1

m
1

T zℓ
k for all k ≥ 0. (32)

From now on, let ℓ ∈ {1, . . . , n} be an arbitrary, but fixed coordinate index. By relations

(30) and (32), we have [ȳk]ℓ = 1
m

(

1
T Wkz

ℓ
k−1 + 1

T ζℓ
k

)

for all k, implying

zℓ
k − [ȳk]ℓ1 =

(

Wk −
1

m
11

T Wk

)

zℓ
k−1 +

(

I − 1

m
11

T

)

ζℓ
k,

where I denotes the identity matrix. By Lemma 2, the matrices Wk are stochastic, so that

Wk1 = 1. Thus
(

Wk − 1
m

11
T Wk

)

1 = 0, implying
(

Wk − 1
m

11
T Wk

)

[ȳk−1]ℓ1 = 0. Hence,

zℓ
k − [ȳk]ℓ1 = Dk(z

ℓ
k−1 − [ȳk−1]ℓ1) + Mζℓ

k for all k ≥ 1, (33)
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where Dk = Wk − 1
m

11
T Wk and M = I − 1

m
11

T . By taking the norm and then, the

expectation conditioned on the past history, from the preceding relation we have for k ≥ 1,

E
[

‖zℓ
k − [ȳk]ℓ1‖ | Fk−1

]

≤ E
[

‖Dk(z
ℓ
k−1 − [ȳk−1]ℓ1)‖ | Fk−1

]

+ E
[

‖Mζℓ
k‖ | Fk−1

]

. (34)

We estimate the term E
[

‖zℓ
k − [ȳk]ℓ1‖ | Fk−1

]

by using the fact the matrix Wk is inde-

pendent of the past history Fk−1, as follows:

E

[

∥

∥Dk(z
ℓ
k−1 − [ȳk−1]ℓ1)

∥

∥

2 | Fk−1

]

≤ λ‖zℓ
k−1 − [ȳk−1]ℓ1‖2, (35)

where λ = ‖E
[

DT
k Dk

]

‖ and λ < 1 (Lemma 2). Using E[‖x‖] ≤
√

E[‖x‖2], we obtain

E
[∥

∥Dk(z
ℓ
k−1 − [ȳk−1]ℓ1)

∥

∥ | Fk−1

]

≤
√

λ‖zℓ
k−1 − [ȳk−1]ℓ1‖ for all k ≥ 1. (36)

We next estimate the second term in (34). The matrix M = I − 1
m

11
T is a projection

matrix (it projects on the subspace orthogonal to the vector 1), so that ‖M‖2 = 1, implying

that ‖Mζℓ
k‖2 ≤ ‖ζℓ

k‖2 for all k. Using this and the definition of ζℓ
k in (31), we obtain

‖Mζℓ
k‖2 ≤

∑

i∈Jk

∣

∣

[

PX [vi
k − αi,k

(

∇fi(v
i
k) + ǫi

k

)

] − vi
k

]

ℓ

∣

∣

2
. (37)

At this point the proofs for parts (a) and (b) for the (random) stepsize αi,k = 1
Γk(i)

and the

constant stepsize αi,k = αi are different, and we consider them separately.

(a) Using the relation vi
k ∈ X , the nonexpansive property of the projection operation, and

α2
i,k ≤ 4m2

k2 (holding by Lemma 3), from inequality (37) we obtain with probability 1, for

all i, for large enough k̃ and all k ≥ k̃,

∥

∥Mζℓ
k

∥

∥

2 ≤
∑

i∈Jk

α2
i,k‖∇fi(v

i
k) + ǫi

k‖2 ≤ 4m2

k2 p2
min

∑

i∈Jk

∥

∥∇fi(v
i
k) + ǫi

k

∥

∥

2
.

Since the subgradients are bounded and the error norms are bounded (cf. Assumptions 3

and 4), we have E

[

‖∇fi(v
i
k) + ǫi

k‖
2 | Fk−1, Ik, Jk

]

≤ (C + ν)2 for i ∈ Jk (see Eq. (7)),

implying by |Jk| ≤ m that

E

[

∥

∥Mζℓ
k

∥

∥

2 | Fk−1

]

≤ 4m3

k2 p2
min

(C + ν)2. (38)

By inequality E[‖x‖] ≤
√

E[‖x‖2], we obtain for all k ≥ k̃ with probability 1,

E
[∥

∥Mζℓ
k

∥

∥ | Fk−1

]

≤ 2m
√

m

k pmin

(C + ν). (39)
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By relations (36) and (39), from inequality (34) we have for all k ≥ k̃,

E
[

‖zℓ
k − [ȳk]ℓ1‖ | Fk−1

]

≤
√

λ‖zℓ
k−1 − [ȳk−1]ℓ1‖ +

2m
√

m

k pmin

(C + ν).

Therefore, with probability 1 we have for k ≥ k̃,

1

k
E
[

‖zℓ
k − [ȳk]ℓ1‖ | Fk−1

]

≤ 1

k − 1
‖zℓ

k−1 − [ȳk−1]ℓ1‖

−1 −
√

λ

k
‖zℓ

k−1 − [ȳk−1]ℓ1‖ +
2m

√
m

k2 pmin

(C + ν),

where 1 −
√

λ > 0 since λ ∈ (0, 1). By Lemma 1, it follows that

∑

k=k̃

1

k
‖zℓ

k−1 − [ȳk−1]ℓ1‖ < ∞ with probability 1, (40)

implying that
∑∞

k=1
1
k
‖zℓ

k−1 − [ȳk−1]ℓ1‖ < ∞ with probability 1, for any ℓ = 1, . . . , n.

This and the definition of zℓ
k, being zℓ

k = ([x1
k]ℓ, . . . , [x

m
k ]ℓ)

T , implies that
∑∞

k=1
1
k
‖xi

k−1 −
ȳk−11‖ < ∞ for all i, with probability 1.

We next prove that limk→∞ ‖zℓ
k − [ȳk]ℓ1‖ = 0 with probability 1. As a consequence of

relation (40), it follows that lim infk→∞ ‖zℓ
k − [ȳk]ℓ1‖ = 0 with probability 1. To complete

the proof, we only need to prove almost sure convergence of ‖zℓ
k − [ȳk]ℓ1‖ as k → ∞.

By taking the square norm in (33) and then, the expectation conditioned on the past and

using Hölder’s inequality (6), we obtain for all k,

E
[

‖zℓ

k − [ȳk]ℓ1‖2 | Fk−1

]

≤ E
[

‖Dk(zℓ

k−1
− [ȳk−1]ℓ1)‖2 | Fk−1

]

+ E

[

∥

∥Mζℓ

k

∥

∥

2 | Fk−1

]

+2
√

E
[

‖Dk(zℓ

k−1
− [ȳk−1]ℓ1)‖2 | Fk−1

]

√

E

[

∥

∥Mζℓ

k

∥

∥

2 | Fk−1

]

.

Combining the relations in (35) and (38) with the preceding inequality, with probability 1

we obtain for all k ≥ k̃,

E
[

‖zℓ
k − [ȳk]ℓ1‖2 | Fk−1

]

≤ λ‖zℓ
k−1 − [ȳk−1]ℓ1‖2 +

4m3

k2 p2
min

(C + ν)2

+
√

λ‖zℓ
k−1 − [ȳk−1]ℓ1‖

2m
√

m

k pmin

(C + ν).

Taking into account that λ < 1 and
∑∞

k=k̃
1
k
‖zℓ

k−[ȳk]ℓ1‖ < ∞ with probability 1 (see Eq. (40)),

we can apply the supermartingale convergence result of Lemma 1 to conclude that ‖zℓ
k −

[ȳk]ℓ1‖ converges with probability 1 for any ℓ = 1, . . . , n. This, and the relation zℓ
k =

([x1
k]ℓ, . . . , [x

m
k ]ℓ) imply that ‖xi

k − ȳk1‖ converges with probability 1 for every i.
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(b) Let αi,k = αi > 0. From relation (33), we have for ℓ = 1, . . . , n and k ≥ 1,

‖zℓ
k − [ȳk]ℓ1‖2 ≤ ‖Dk(z

ℓ
k−1 − [ȳk−1]ℓ1)‖2 + ‖Mζℓ

k‖2 + 2‖Dk(z
ℓ
k−1 − [ȳk−1]ℓ1)‖ ‖Mζℓ

k‖.

By summing these relations over ℓ = 1, . . . , n, and then taking the expectation and using

Hölder’s inequality (6), we obtain for all k ≥ 1,

n
∑

ℓ=1

E
[

‖zℓ

k − [ȳk]ℓ1‖2
]

≤





√

√

√

√

n
∑

ℓ=1

E
[

‖Dk(zℓ

k−1
− [ȳk−1]ℓ1)‖2

]

+

√

√

√

√

n
∑

ℓ=1

E
[

‖Mζℓ

k
‖2
]





2

.

Using the estimates in (35) and (37), with αi,k = αi, we see that

n
∑

ℓ=1

E
[

‖Dk(z
ℓ
k−1 − [ȳk−1]ℓ1)‖2

]

≤ λ

n
∑

ℓ=1

‖zℓ
k−1 − [ȳk−1]ℓ1‖2,

n
∑

ℓ=1

E
[

‖Mζℓ
k‖2
]

≤ E

[

E

[

∑

j∈Jk

α2
i ‖∇fi(v

i
k) + ǫi

k‖2 | Fk−1, Ik, Jk

]]

≤ α2
maxdmax(C + ν)2,

where αmax = maxi αi, dmax = max1≤i≤m |E[J(i)] |, and we use relation (7) in the last

inequality. In the definition of dmax, the set J(i) is the random set of agents that update

given that agent i broadcasts, and the expectation is taken with respect to the link failure

probabilities. Letting uk =
√

∑n

ℓ=1 E
[

‖zℓ
k − [ȳk]ℓ1‖2

]

from the preceding three relations,

we obtain for all k ≥ 1,

uk ≤
√

λ uk−1 +
√

dmax (C + ν) ≤ · · · ≤
√

λk u0 + αmax

√
dmax

1 −
√

λ
(C + ν).

Since λ < 1 by Lemma 2, it follows

lim sup
k→∞

uk ≤ αmax

√
dmax

1 −
√

λ
(C + ν). (41)

Using zℓ
k = ([x1

k]ℓ, . . . , [x
m
k ]ℓ)

T , we see that

uk =

√

√

√

√

n
∑

ℓ=1

E
[

‖zℓ
k − [ȳk]ℓ1‖2

]

=

√

√

√

√

m
∑

i=1

E[‖xi
k − ȳk‖2]. (42)

Furthermore, by Hölder’s inequality (6), we have

m
∑

i=1

E
[

‖xi
k − ȳk‖

]

≤ √
m

√

√

√

√

m
∑

i=1

E[‖xi
k − ȳk‖2]. (43)

By (41)–(43), we obtain lim supk→∞
∑m

i=1 E[‖xi
k − ȳk‖] ≤ αmax

√
mdmax

1−
√

λ
(C + ν).
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Proof: Lemma 6. From the given relation fordk and uk−1, we can see by induction

(on k) that dk ≤ ckd0 +
∑k−1

t=0 ck−t−1ut for all k ≥ 1. Since c ∈ (0, 1), it follows that

lim supk→∞ dk ≤ lim supk→∞
∑k−1

t=0 ck−t−1ut. Thus, it remains to show that

lim sup
k→∞

k
∑

t=0

ck−tut ≤
1

1 − c
lim sup

t→∞
ut. (44)

Let γ = lim supk→∞ uk. If γ = +∞, the relation is satisfied. Let ǫ > 0 be arbitrary but

small and let M > 0 be large. Define a = γ + ǫ if γ is finite and a = −M if γ = −∞.

Choose index K large enough so that uk ≤ a for all k ≥ K. We then have for k ≥ K,

k
∑

t=0

ck−tut =
K
∑

t=0

ck−tut +
k
∑

t=K+1

ck−tut ≤ max
0≤s≤K

us

K
∑

t=0

ck−t + a

k
∑

t=K+1

ck−t.

Since
∑k

t=K+1 ck−t ≤ 1
1−c

and
∑K

t=0 ck−t ≤ ck−K

1−c
, it follows that

∑k

t=0 ck−tut ≤
(max0≤s≤K us)

ck−K

1−c
+ a

1−c
for all k ≥ K. Thus, lim supk→∞

∑k

t=0 ck−tut ≤ a
1−c

, and

relation (44) follows by the definition of a.
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