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Abstract

We consider a distributed multi-agent network system where each agent has its own convex
objective function, which can be evaluated with stochastic errors. The problem consists of min-
imizing the sum of the agent functions over a commonly known constraint set, but without a
central coordinator and without agents sharing the explicit form of their objectives. We propose an
asynchronous broadcast-based algorithm where the communications over the network are subject to
random link failures. We investigate the convergence properties of the algorithm for a diminishing
(random) stepsize and a constant stepsize, where each agent chooses its own stepsize independently
of the other agents. Under some standard conditions on the gradient errors, we establish almost
sure convergence of the method to an optimal point for diminishing stepsize. For constant stepsize,
we establish some error bounds on the expected distance from the optimal point and the expected

function value. We also provide numerical results.

I. INTRODUCTION

The problem of minimizing of a sum of convex functions when each component function
is available (with stochastic errors) to a specific network agent is an important problem in the
context of wired and wireless networks [13], [14], [24], [28], [29]. These problems require
the design of optimization algorithms that are distributed and asynchronous, i.e., without a
central coordinator and without synchronized actions. Furthermore, the algorithms should
be obeying the local network structure in the sense that each agent can only use its own
objective function and can exchange some limited information with its local neighbors only.

In this paper, we propose an asynchronous distributed algorithm that uses the random

broadcast scheme [1] as a mechanism to distribute the operations over the network in an
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asynchronous manner. We investigate the convergence properties of the algorithm for a
diminishing stepsize and provide error bounds for a constant stepsize. We also provide a
numerical example. An asynchronous algorithm based on a random gossip scheme has been
proposed in [25] and analyzed for a scalar objective function and a diminishing stepsize.
The gossip scheme used in [25] requires establishing bidirectional communication links
between agent pairs and assumes reliable communications. However, wireless media is
inherently broadcast and establishing bidirectional communications creates a bottleneck. The
algorithm proposed in this present paper removes the need for bidirectional communications
by using a different scheme, namely random broadcast, to spread the information in the
network. Furthermore, unlike [25], we allow link failures to randomly occur in the agent
communications. Additionally, unlike [25], we also study a constant stepsize and provide
error bounds on the algorithm’s performance.

Another asynchronous algorithm for optimization over networks is the Markov incremen-
tal algorithm proposed in [13], [14] and further studied in [27]. This algorithm maintains a
single iterate sequence that is incrementally updated by one agent at the time. At a given
time, the agent (that has just updated the iterate) passes the iterate to a randomly selected
neighbor that performs the next update. The random selection of the neighbor is driven
by a Markov chain. As such the Markov incremental algorithm is very different from the
broadcast-based algorithm proposed in this paper, where each agent generates its own iterate
sequence. Furthermore, Markov incremental algorithm is not well adapted to wireless media
where the broadcasted information is available to all agents that can hear the broadcast.

Distributed consensus-based algorithms have been studied in [19], [18], [21], [26], [16],
[20], which rely on deterministic consensus schemes, except for [16] where a random
consensus scheme is considered. These algorithms have the following limitations in common:
(1) the algorithms are synchronous as all agents in the network update at the same time;
(i1) all agents in the network use the same stepsize value; (iii) the communication links
are always reliable (except for [16] where random link failures are allowed); (iv) agents
always communicate over bidirectional links. The broadcast-based algorithm discussed in
this paper overcomes all these limitations. In particular, through the use of a random
broadcast, the algorithm is totally asynchronous and allows a group of agents to update while

the other agents do not. The agents neither coordinate the stepsize values nor communicate
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bidirectionally. The communication links are not always reliable as they may randomly fail.

A very different distributed computational model has been proposed in [30] and also
discussed in [3], [31], [6], where the network objective function is available to each agent
and the aim 1is to distribute the processing by allowing each agent to update only a part of
the decision vector. Since we are dealing with a random broadcast scheme for consensus,
on a broader scale our work in this paper is related to the literature on distributed consensus
and averaging [30], [31], [3], [12], [22], [32], [15], [18], [21]. Also, since we are considering
(sub)gradient methods with stochastic errors, on a broader basis, our work is also related to
stochastic optimization literature [10], [11], [4], [7].

The contribution of our work in this paper is mainly in three directions. First, we use
broadcast model that allows for uncertainties in agent communications by accounting for
possible link failures. Second, our algorithm is asynchronous and allows the agents to
use uncoordinated stepsize values. Third, we study the convergence of the algorithm for
a diminishing (random) stepsize and provide error bounds for a constant stepsize. The
algorithm uses stochastic subgradients with a general model for the subgradient errors.

The rest of the paper is organized as follows. In Section II, we describe the problem of our
interest, present our algorithm and assumptions. In Section III, among other preliminaries,
we investigate the asymptotic properties of the agent disagreements. In Section IV, the
convergence properties of the algorithm are studied for a (stochastic) diminishing stepsize,
while in Section V we provide error bounds for a (deterministic) constant stepsize. We
provide some numerical results in Section VI and conclude with a summary in Section VII.
Notation. All vectors are viewed as column vectors, and ||z|| denotes the Euclidean norm
of a vector z. For a matrix A, the norm ||A|| is the matrix norm induced by the Euclidean
vector norm (i.e., || Al| is the spectral norm given by || A|| = max, =1 ||Az|)). We write 27
and A” to denote the transpose of a vector x and a matrix A, respectively. We use z; or
[z]; to denote the i-th component of a vector x. Similarly, for a matrix A, we write [A];; or
A;; (or a;;) to indicate its (¢, j)-th component. We use 1 to denote the vector in R™ with
all entries equal to 1. The matrix A is stochastic when A;; > 0 for all 7,5 and A1 = 1;
while it is doubly stochastic if both A and AT are stochastic. The cardinality of a set S
with finitely many elements is denoted by |S|. We use E[X] to denote the expected value

of a random variable X, and g to denote the indicator function of a random event F.
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II. PROBLEM, ALGORITHM AND ASSUMPTIONS

We consider a network of m agents that are indexed by 1,...,m; when convenient, we
denote the agent set by V' = {1,...,m}. We assume that the agents communicate over a
network with a static topology represented by an undirected graph (V, &), where & is the
set of undirected links {4, j}. There are no self-loops in the graph ({i,:} ¢ &), and we have
{i,j} € & only if agents i and j can communicate with each other. We assume a wireless
communication medium where agents broadcast information over the network with possible
link failures. We are interested in solving the following problem over the network:

m
minimize f(z) = Z fi(z)
=1

subject to reX, ' (D)

where X is a subset of R"” and each f; is a function defined over the set X. The precise
assumptions on the set X and the functions f; will be stated in Section II-B. Problem (1)
is to be solved under the following restrictions on the network information: (1) Each agent
1 knows only its own objective function f; and it can compute the (sub)gradients V f; with
stochastic errors; and (2) Each agent communicates and exchanges some information with
its local neighbors only. To solve the problem, we consider an asynchronous distributed
algorithm based on the broadcast consensus model of [1].

As a motivating example' for the problem, we next discuss a distributed regression
problem over wireless sensor network [27]. Suppose m sensors are deployed to sense a time
invariant spatial field. Let 7; ;, be the measurement made by it" sensor at time slot k. Let s;
be the location of the 7" sensor. For each sensor i, let h(s;; x) be a set of candidate models
for the spatial field that are selected based on a priori information and parameterized by x.
Thus, for each x, the candidate h(s;, x) is a model for the measurement r; ;. The problem
in regression is to choose the best model among the set of candidate models based on the
collected measurements r; x, i.e., to determine the value for x that best describes the spatial
field. In least squares regression, when the measurements r; ;, are corrupted by i.i.d. noise,
the parameter value x* corresponding to the best model satisfies the following relation:
z* € Argmingex Imy_oo Yoy + SV (rix — h(s;,x))? . Under the i.i.d. noise assump-

tion for the measurements r; j, the preceding limit exists and it is deterministic, leading to

'See [27] for another motivating example on distributed resource allocation over wireless network.
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Fig. 1. The node in the center of the circle is broadcasting. Solid links point to the neighbors that can hear
the broadcast. The dotted links point to the neighbors that do not hear the broadcast due to link failures. The

other agents are out of range and cannot hear the broadcast.

an equivalent problem of the following form: z* € Argmin,cx S E[(R; — h(si, 7))?] -
In linear least squares regression, the models A(s;,z), ¢ = 1,...,m, are linear in = and,

hence, each of the functions f;(z) = E[(R; — h(s;, x))Q] is convex in z.

A. Broadcast Optimization Algorithm

Given the agent connectivity graph (V, &), we let N'(i) denote the set of all neighbors
of agent i, ie. N(i) = {j € V| {i,j} € &}. We assume that each link {i,j} € & is
subject to a random failure. Each agent has its local clock that ticks at a Poisson rate of 1
independently of the clocks of the other agents. We note that the model and the analysis can
be easily extended to the case when the clocks have rates different from 1. At each tick of
its clock, agent ¢ broadcasts its current iterate to its neighbors j € N (i) (see Figure 1 for an
illustration of the broadcast). However, due to a possible link failure, neighbor j hears the
broadcasted information with probability p;; and combines its own iterate with the received
iterate of agent 7. Then, it adjusts its iterate along the negative (sub)gradient direction V f;
of its objective function, which is computed with stochastic errors.

As in [1], [8], [25], we find it easier to study the algorithm in terms of a single virtual
clock that ticks whenever any of the local Poisson clock ticks. Thus, the virtual clock ticks
according to a Poisson process with rate m. Let Z;, be the time of the k-th tick of the global
Poisson clock. We think of time as discretized according to the intervals [Z; 1, Zy), i.e.,
this interval corresponds to timeslot k (also referred to as time k). We let z%_, be agent i
iterate at timeslot £ — 1. We assume that only one agent broadcasts at a time, and we let

I}, be the index of the agent that broadcasts at time k. Due to possible link failure, a subset
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Jy of the neighbors A/(I;) hear the broadcast; thus, each agent i € J, receives the iterate
xék_ , from agent /. The new iterates are generated as follows: Agent [, and agents ¢ that

do not receive information from /;; do not update,
vt =12,  forid Jy. )
Agents i € J; receive the estimate :U,Ij_ , and update according to the following rule:
Ufc = ﬁxi’il + (1 - ﬁ) '172—17
z), = Px[vp — air(Vfi(vy) + €], 3)

where Py denotes the Euclidean projection on the set X, V f;(x) denotes the gradient (or
subgradient) of f; at z, and the vector € is stochastic error in computing V f;(vF). The
scalar 3 € (0,1) is a weight and o ;, > 0 is a stepsize. The process is initialized with some
initial iterates xé € X, 1 € V. Each vector xé is random, and it is assumed to be independent
of all xé for 5 # ¢ and, also, independent of all the other random variables in the process.
Furthermore, it is assumed that both E[z*(0)] and E[||z*(0)||?] are finite.

We now summarize the broadcast algorithm of Eq. (3) in phases.

Initial Phase. Each agent i has the parameter § € (0, 1) and an initial (random) vector
x' € X. Each agent has a local clock that ticks at rate 1. All agents are initially sleeping.
Update Phase. A local clock of an agent ¢ has ticked and the agent wakes up. Agent
i broadcasts its estimate x' and goes to sleep. Each neighbor ¢ € A(i) of agent i
may receive x' with probability p;,. A neighbor ¢ that receives the value x’ updates its
estimate, as follows:

(1) Computes v* = Bz + (1 — B)a* and (an approximate) gradient g of V f;(v');

(2) Selects stepsize ay, computes z° = Py[v’ — a;g], and goes to sleep.

Sleeping Phase. No updates occur in the network until another agent wakes up.

The vector g in Update Phase corresponds to an erroneous gradient V f;(vi) of Eq. (3).

We will consider two stepsize choices: (1) A random stepsize defined by the frequency of

the agent updates, o, = ﬁ(i), where ['x(7) denotes the number of updates that agent i has

performed until time k, inclusively; and (2) A deterministic constant stepsize, o, = o; > 0

for all 7+ and k. Observe that these stepsizes do not require any coordination of the agents.
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B. Assumptions

Here, we provide our basic assumptions on the underlying agent connectivity graph (V, &),
the set X, and the agent objective functions f; and their (sub)gradient errors €;. We also
state some relations that are immediate consequences of our assumptions.

Assumption 1: The underlying communication graph (V, &) is connected. The link failure
process is i.i.d., whereby at any time the link {i,j} € & is functioning with probability
pi; > 0 independently of the other links in the network.

Assumption 1 is crucial as it ensures that through the broadcast strategy the information
of each agent reaches every other agent frequently enough. This frequent “mixing” of the
agent information is necessary for the convergence of the agents’ estimates x% to a common
vector. However, to ensure that the common vector solves problem (1), some assumptions
are needed for the set X and the functions f;. We use the following.

Assumption 2: The set X C R”™ is nonempty closed and convex. Each function f; is
defined and convex over an open set containing the set X.

By Assumption 2, each f; is continuous over the set X ([2], Proposition 1.4.6).

We do not assume differentiability of the functions f;. At points where the gradient does
not exist, we use a subgradient, which we denote also by V f;(z) to keep the notation simple.
A vector Vg(x) is a subgradient of a function g at a point x in the domain of ¢ (denoted

by dom g) if the following relation holds
Vg(x) (y —2) < gly) — g(z) for all y € dom g. 4)

By Assumption 2, for each i, a subgradient of f;(z) exists at each point x € X (see [2],
Proposition 4.4.2). We make the following assumption on the subgradients.

Assumption 3: The subgradients of each function f; are uniformly bounded over the set
X, ie., ||Vfi(x)]| < C for some C > 0, and for all x € X and i € V.

Assumption 3 is satisfied for example when X is compact, or when each f; is a polyhedral
function (i.e., defined as a pointwise maximum of a finite collection of affine functions).
The bounded subgradient assumption allows us to relate the subgradients at a given point
v € X with function values at a different point y € X. In particular, by subgradient property
(4), it can be seen that for all : € V/,

Vi)' (v —=) > fily) - filz) = Cllv -yl forany z,y,v € X. (5)
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We now discuss the random errors € in computing the subgradients V f;(x)” at points

x = v}. When dealing with these errors, we often make use of Holder’s inequality

K K K
E [Z I:r?yill <UD CEllll?) o D Elllvill?, 6)
=1 i=1 =1

which holds for any (finite) collections {z;}%, and {y;}’X, of random vectors with finite

second moments ([5], page 242).
We let ;. be the o-algebra generated by the entire history of the algorithm up to time £,

Fo={(xh, i € V)1, Jo,(€),j € Jp); 1<L<Ek}  forall k>1,

with Fy = {z}, i € V'}. We use the following assumptions on the stochastic errors.
Assumption 4: There is a scalar v such that E[||eL||? | Fx_1, Ik, Ji] < v* with probability 1
for all 7 € J, and k > 1.
Assumption 4 is a nonsmooth analog of the linear growth condition that is used in
stochastic gradient methods for differentiable functions with Lipschitz gradients [4], [7].
When X and each f; are convex, every vector v,i 1S a convex combination of xi c X
(see Eq. (3)), implying that vi € X for all k and i. When in addition Assumptions 3 and 4
hold, by using E[||z|]] < /E[||x||?] we can see that

E[IVfi(v}) + €lI* | Foor, Ins Ji] < (C+v)?  fori€ Jy and k > 1. (7

We also use the following result of Robbins and Siegmund ([23], Chapter 2.2, Lemma 11).
Lemma 1: Let (£, F,P) be a probability space and Fy C F; C ... be a sequence of o-
subfields of F. Let {d}, {vx} and {wy} be F)-measurable scalar random variables. Let {d }
be bounded below uniformly, and let {v,} and {wy} be nonnegative with >~ wy, < oo.

Also, let the following relation hold with probability 1,
Eldks1 | Fi] < (14 qr)dy — vg + wy, for all k > 1,
where ¢, > 0 are deterministic scalars such that 220:1 qr < oco. Then, with probability 1,

the sequence {dj} converges to some random variable and .-, v, < oc.

III. PRELIMINARIES

We discuss an alternative description of the algorithm that we extensively use later on. We
also study some limiting properties of the agents’ disagreements. The proofs of the results

are provided in Appendix.
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A. Alternative Representation of the Algorithm

We at first introduce some matrices to represent the broadcast-based algorithm in a more
convenient form. We then discuss few properties of these matrices that are instrumental in

the subsequent development. Define the matrix W), for each £, as follows:

for i € J, : Wilii=1—=08,  [Wilin, =08, [Wilij =0 else,
for 7 ¢ Jk . [Wk]z,z = 1, [Wk]i,j =0 else. (8)
Now, we can write the method (2)—(3) equivalently as follows: for all K > 1 and 7 € V,
v = [Wilij wh_y,
j=1
), = v+ (Px[vy — air (Vfilvp) + €.)] = vk) Xgiesys €)

where Xyics,) 18 the indicator function of the event {i € Jy}. Thus, when i updates at time

k, we have x(ics,y = 1 and z! is defined by the projection-based iterate adjustment. If agent

i does not update at time k, we have xf;cs3 = 0 and z, = v} = x}_,.

Due to the construction and Assumption 1, the sequence {W}} is i.i.d. For each k, the
random matrix W/, is stochastic (but not doubly stochastic), while the expected matrix E[WW}]
is doubly stochastic. This and some other properties of the matrices IV, are stated below.

Lemma 2: The weight matrices W}, of (8) are stochastic. Moreover, we have:

(a) Under Assumption 1, the expected weight matrix W = E[W,] is doubly stochastic;
in particular, it is given by W = I — % L1, where Ly is the weighted Laplacian of
the weighted graph (V, &, 11) with II being the probability matrix associated with the
reliabilities of the links in &, i.e., [Luli = D jcpr;) iy forall i € V, while [Lnli; = —py;
for j € N (i) and [Ly];; = 0 otherwise.

(b) The matrices D), = W), — L117W), are iid. and A £ X\ (E[D]'D;]) < 1, where
M (E[D{Dy]) denotes the largest eigenvalue of the matrix E[D] Dy].

The following two relations are consequences of the stochasticity of W and the doubly

stochasticity of E[W}], combined with the convexity of the norm and squared norm.

E[llv, — z||* | Foor] < Z |zl _, — |2 forall z € R" and £ > 1,  (10)

i j=1

=1
> E[llvg, — @[l | Fer SZka - forall z € R and k> 1.  (11)

i=1
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10

B. Agent Disagreements

In this section, we provide some auxiliary results for the disagreement among the agents

on values x}. Our first result establishes some long term estimates for the stepsize «;; =

ﬁ’ based on a characterization of the number I';(7). This characterization is important

as it allows us to remove some technical difficulties when dealing with cross-dependencies
between the randomness in the stepsize and the randomness of the iterative processes {x% }.

Define E;; = {i € Ji}, which is the event that agent ¢ updates at time k. The sequence
{I)} is i.i.d. with uniform distribution over the set V. The link failure process is also i.i.d.
Thus, for each i, the events F;; are independent across time and have the same (time

invariant) probability distribution. Let «; denote the probability of event £, and note that

1 .
= > py  forallieV, (12)
JEN ()
where p;; > 0 is the probability that link {7, j} is functioning.

The following lemma gives long term estimates for the stepsize o = ﬁ(l)
Lemma 3: Let the graph (V. &) have no isolated nodes and let py,i, = ming; jyce p;;. Let

Qi = ﬁ(z) for all k and . Also, let ¢ be a scalar such that 0 < ¢ < 1/2. Then, there exists

a large enough k = k(g,m) such that with probability 1 for all k >k and i € V,
, _ Am? 1 2
o —_ _.
Ty ik > 2p2 kvi| — k%—qpfnin

We now provide a lemma showing, among other relations, that the agent disagreement

o <

Q) —

on the vectors zi converges to zero with probability 1 when the stepsize is defined by the

relative frequency of the updates, i.e., a; ) = ﬁ(l)

Lemma 4: Let Assumptions 1-4 hold. Let {z%}, i € V, be the iterate sequences generated
by algorithm (9), and define y;, = % 27:1 xi for all £ > 0. Then, the following holds:

(a) When «a; = , we have Y7 & [|@)_ — Fr—1]| < oo and limy .o ||z}, — Gk[ = 0

1
Ly (4)
with probability 1 for each e =1,...,m.

(b) When «;; = oy > 0, we have limsup,_,.o > " E[||z} — Uxll] < tmax Vlrfcfr/“f" (C+v),

where upax = Maxi<j<m @, dmax = MaXi<;<y, |[E[J(7)] | and J(i) is the random set

of agents that update given that agent ¢ broadcasts. The scalar A < 1 is as given in
Lemma 2, while C' and v are as in Assumptions 3 and 4, respectively.
The expectation in the expression for d,,. in part (b) of Lemma 4 is taken with respect to

the link reliability probabilities. The given bound captures the dependence of the deviations
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of . from their current average g in terms of the maximum stepsize and the communication
graph topology. The impact of the topology of the communication graph (V, &) is captured
by the maximum expected number d,,,, of the agents updating at any time (under the link

failure probabilities) and the spectral radius A of the matrix E [D%Dk].

I'V. CONVERGENCE RESULTS

Here, we investigate the convergence of the method for the stepsize o, = We start

( )T
by establishing a special relation that is valid for this stepsize.

Lemma 5: Let Assumptions 1-4 hold. Let {x}, i € V, be the iterate sequences generated

by algorithm (9) with «; ) = Then, for any ¢ € (0,1/2) there is a sufficiently large

1
L@
k= k( m), such that we have with probability 1, for all x € X, k > kand i € Jj,

. ‘ 5
Elllzy, — 2l | Faor, Ia, Ji) < (1+ an)||vp — 2]|* = ki (fi(Fk-1) = fi(z))
2mC . om . i A2
* o 0k = Gl 4 = B[ | For, Ty ] o — o] + ( - ) (C +v)2

2 g =15 2], and v; is the probability that

where prin = ming jyees pij, ar =
agent ¢ updates.
Proof: Let x € X be arbitrary. From the definition of the method in (9) and the

nonexpansive property of the projection operation, we have for any £ > 1 and 7 € Jy,

lrk — 2l < Jlo = 2l* = 2000 (V fi(vi) + )" (0k — 2) + o[V filvi) + il

Qi — L (see Lemma 3), for k

Writing a; ;= (i — %) + % and using o

k:2q

rﬂln

sufficiently large, we obtain with probability 1 for all k> k and i € J,,

(Vfilvp) + )" (vh — @)

ok — 2l* < o —l* -

/w
4 i i i
+W [(Vfi(v}) + €)" (v, — x)| + a?,kvaz‘(Uk) + e l1%.
Letting a;, = k%j — and using 2|(V f;(v}) + )" (vi, — x)| < |V fi(v)) + € )|* + l|vg, — ]|,
pmin
we obtain
2}, — 2 < (L+a) |lvp — | - H (Vfi(vp) + &) (v, — x)
+(a z’,k"‘ak)vai( ) + € (13)
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Since x{c € X for all 5 and k, by convexity of X it follows that 3, € X for all k. By

the subgradient boundedness (Assumption 3) relation (5) holds, so that we have

Vfi(wi) " (v = 2) = fi(Gsr) = filz) = Cllvg, = Gra.

By substituting the preceding estimate in (13), and using O‘?,k < W (Lemma 3), we

mln

obtain with probability 1 for all £ > kand i € Jy,

k=2l < (14 @)k =l = 1 (i) = fil)
20 . 2 i 4m
+22 = el + 7 (07 0k~ )+ (e o) 900 +

Taking the conditional expectation on Fj_i, I and J; jointly, and using the boundedness

of the subgradient norm and the noise .s}‘€ (Eq. (7)), we obtain for k > kand i€ Ik

2 _
ki (fi(yk—l) - fz(l"))

; ; dm
E[(ek)T(vk — (E) | Fre1, 1y, Jk} + (/{72 5

mm

Ellzl — 2l* | Foor, I, Ji] < (1+ ap)l|vg — ]| -

2C B 2 2

k‘% ||Uk yk—l” + k’%

We note that v}, is completely determined given Fj,_q, I, and Jj, so that

_|_

+ ak) (C + )2 (14)

E[(e)" (vi = 2) | Fioer, T k] < |6 | Fiomr, I, Tl || M0 — - (15)

Substituting estimate (15) in relation (14) and using y; > =i (cf. (12) and [NV (i) > 1), we
have for k > kandic Ji,

E ek =l | Ficrs o] < (14 g =l = 2 (hlior) = (@)

2C _ 2m i i Am?2
o ok = Bl o e | Bt ] ek = ol + () (€402

The desired relation follows by using ~; > £2» for +; in the coefficient of ||v} — Fx—1[|. W

We now show the convergence of the algorithm.

Proposition 1: Let Assumptions 1-4 hold. Assume that the subgradient errors €, are such
that E[e} | Fx_1, I, Ji) = 0 for all k > 1 and i € J;, with probability 1. Let the sequences
{xi}, i € V, be generated by method (9) with stepsize «; ) = ﬁ Assume that problem
(1) has a non-empty optimal set X *. Then, the sequences {z%}, i € V, converge to the same

random point in X* with probability 1.
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Proof: Let z* € X* be arbitrary. Using = x* in the relation of Lemma 5 and the
fact E[e} | Fx—1, Ix, Jx] = 0, we obtain with probability 1 for any ¢ € (0,1/2), and for all
k> l%(q,m) and i € J,

3 * 7 * 2 — *
Elllz — 27 | Foers Loy Jk] < (1 + a)||vj, — 2*|]? — o (fi(Ur—1) — fi(x"))
2mC . ' 4m?
+kpmin ”Uk - ykilH " (k2 12111n " ak) (C i V)27

2
k2~

with a;, = . Recall that when i & J;, we have z} = v}, and by combining these two

Pmin

cases with the fact that agent ¢ updates with probability ~;, we obtain with probability 1 for
any ¢ € (0,1/2), and for all k > k(¢q,m) and i € V,

Eflzk —2"lI* | Fier] < (14 an)E[llog — 2*|1* | Frea] — 2 Filg) — i)

k
2mC ; _ 4_m2
[ E[llve — k-1l | Fra] + v (k2 5 ak> (C +v)2

n’llIl

+

We next sum the preceding relations over all < € V. Then, using f = ", f; and relations
(10) and (11) (with z = z* and x = ¥,_1, respectively), we have with probability 1 for any
q € (0,1/2), any z* € X*, and for all k > k(q, m),

E Z Iy, — 2] | ﬂ—ll < (1+a) Z [ 2 (f @—1) = f(27))

2

QmC dm
i ankl i 1u+2%(k22 +ak)<0+u> (16)

min . I’l’lll’l

Now, since 0 < ¢ < 5 and ar =

,wehave > ° ap <ocoand ) -, <k2 — + ak>
co. By Lemma 4, we have > ;7| + ijl |1 _, — r_1]| < oo with probability 1, 1mply1ng

Y orey ;;fn > |]_, —Fr_1]| < co with probability 1. Furthermore, f(7x_1)— f(z*) >0

—q .2
2 Pmin

for all k since y,_; € X for all k£ and z* is an optimal solution. Therefore, relation (16)

satisfies the conditions of Lemma 1 for & > k. Hence, with probability 1, the sequence

{3 |lzi, — 2*||*} converges for any z* € X*, and >, _; 1+ (f(¥k—1) — f(z*)) < oc. The

latter relation implies
lilzn inf f(gr—1) = f(a¥) with probability 1. (17)

The relation limy .., ||z — gx|| = 0 for all i € V with probability 1 (Lemma 4), the
convergence of the sequence {) " ||z} — 2*||*} for any z* € X* with probability 1, and

relation (17) imply by continuity of f that {g;} converges to a random point in the set X*
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with probability 1. Since limy_., [|z% — 7| = 0 with probability 1 for all < € V, it follows
that each sequence {z%} converges to the same random point in X* with probability 1. ®

Our next result deals with the convergence of the method when the constraint set X is
bounded. In this case, the zero-mean condition on the subgradient errors of Proposition 1
can be replaced with a more general condition, as seen in the following proposition.

Proposition 2: Let Assumptions 1, 2 and 4 hold, and let the constraint set X be compact.
Assume that the subgradient errors €} are such that with probability 1 for some determin-
istic scalar sequence {u}, we have ||E[e} | Fr_1, I, Ji] || < p for all k and i € Ji, and
> heq B < oo. Then, the optimal set X* of problem (1) is nonempty, and the sequences
{zi}, i € V, converge to the same random point in the set X* with probability 1.

Proof: By Assumption 2, the function f is continuous over X (see the discussion
following Assumption 2). Since the set X is compact, the optimal set X™* is nonempty.
Furthermore, the subgradients of each f; are bounded over X, and let C' > 0 be such that
IVfi(x)]| < C forall z € X and i € V.

Let * € X* be arbitrary. Taking z = z* in Lemma 5 and using ||E[e} | Fy_1, I, Ji] || <
{1x» we have for any ¢ € (0,1/2), with probability 1, for all k > k(g,m) and i € Jj,
2 () — )
, P

. . 4m
,ukH"U]lC — T || + (W + ak) (O + 1/)2’

Elllz, — (1 | Fom, I J] < (1 + aw)||vj_y — 27> —
2mC 2m
Ve = U1l +

+kpmin kpmin

_ 2 YR | m.o g ; i \m J ; J
where a; = Py and gy, = ;. D5, 3. In view of vj, = 30 Wl with 23 € X

—q
min

for all j and k, and the stochasticity of the matrix W}, we have v, € X for all ¢ and £,
implying ||v, — 2*|| < max, yex ||z — yl|. Letting C'y = max, ,ex ||z — y||, we thus obtain

with probability 1 for any x € X*,
v — 2*|| < Ox forany k>0 and ¢ € V.

Using the preceding two relations, and noting that i = vi when i € J; and that agent i
updates with probability ~;, we can see that for any ¢ € (0,1/2), with probability 1, for all
k> /%(q,m) and i €V,

; * 7 * 2 — *
Efllay, — 2" I* | Fima] < X+ ap)E[lvjy — 2| | Faa] - 7 ilie-1) = fila"))
2mC . 2m 4m?
kpmin E|:Hvk B ykilH ’ Fkil] * kpmin IUkCX * v <k2 pr2nin M ak) (C " l/)z‘

August 27, 2010 DRAFT



15

By summing the preceding relations over ¢ € V, and using >, E[[|lvi — 2*||? | Fr—1] <
S oy —7(1* and 327 Efllog = Geall | Fea] < 325 oy — G| (see 10)-1D)),
we have with probability 1 for any ¢ € (0,1/2), z* € X*, and k > k(q, m),

EID llah =2 |P | Fea | < (T4 ar) Y lwgy — "> — 7 (@) = f(=7))
i=1 j=1

2mC o= 2m? “ 4m?
+ 27 — Ukl + 1iCx + Yi (— + ak) (C+ V)Q-
k Pmin ]z_; ol k Pmin ZZ_; k2 p?nin

The result now follows by Lemma 1, relations Y | ¢ u, < coand Y232, 2mE 570 |l | —

Uk—1]| < 0o, and the line of analysis similar to the proof of Proposition 1. [ ]

V. ERROR BOUNDS

We now focus on a constant stepsize «;j; = «;, and we establish some limiting error
bounds assuming that the set X is compact. We consider the case when each f; is strongly
convex and the case the functions are just convex. We make use of the following result for
a scalar sequence, which is proved in Appendix.

Lemma 6: Let {d;} and{u;} be scalar sequences such that d < cdy_1 + ug_; for all
k > 1 and some scalar ¢ € (0,1). Then, limsup,_ ., dy < 1= limsup,_,, us.

Consider now the case when each function is strongly convex. In particular, let f; be

strongly convex over X with a constant o; > O:
(Vfi(z) = Vfi(y) (z —y) > aillz —y[|*  forall z,y € X.

In this case, the function f is strongly convex with constant ¢ = )" o; and, therefore,
problem (1) has a unique solution. We establish an error bound on the expected distances
between the optimal solution and the agent iterates in the following proposition.

Proposition 3: Let Assumptions 1, 2 and 4 hold. Let the set X be bounded. Assume that
the subgradient errors € are such that E[el | F_y, Ii, Jy] = 0 with probability 1 for all
k > 1 and i € J;. Let each function f; be strongly convex over the set X with a constant
o;. Let sequences {z}, i € V, be generated by method (9) with the stepsize ;= a; > 0
such that 2«;0; < 1 for all ¢+ € V. Then, we have

20 5 VMmdpax

limsupz Efllz} — 2] < . R e (C+v),
=1

k— 00 —-c l-c 11—\
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where x* is the optimal solution of problem (1), ¢ = 1 — 2, Min; @0, Ymin = min; 75,
Omax = MAax; o, dmax 18 the maximum expected number of agents that update at any time

as given in Lemma 4(b), and
e =2mAy s (1 — Ymin) C% + 2mA, ,CCx + Mamax (mlgx O&[Yg) (C + )2

Here, A, , = max, ayoy—min; a;0;, A, , = maxy apy, —min; a;7y;, Cx = max,, ||z —yl|,
and C' and v are the bounds on the subgradient and subgradient error norms, respectively.

Proof: From the definition of the method in (9), the nonexpansive property of the
projection operation, and the zero mean assumption on the errors, we obtain for the optimal

point z*, and any k£ and i € J,

Elllzy, = 2(1° | Faor, I, Ji] < Mok = 27[1* = 200V fi(w) " (v}, — 27) + of IV fi(vp) + €[
(18)

Adding and subtracting V f;(z*)T (v' — z*), and using the strong convexity of f;, we have

V@D (v~ ) = (VA = VAE)) (0 ) + Vi) (0] - o)
> ooy, — 2| + V fi(a")" (v, — 27).

We further have V f;(z*)T (v — 2*) = Vf;(2") (Jp_1 — 2*) + Vi (") (v — Jx_1), with

Yool = % Z;n:l xi_l. Thus, we obtain
Vi) (v — 2%) > Vfi(z*) (o1 — &) — C||vj, — Gl

where the inequality follows from ||V fi(z*)|| < C for all i. The preceding two relations
imply for all £ > 1 and all ¢ € Jy,

Vfi(wi) (v, = 2%) 2 aillvy, — 2|* + V fi(e™) (k1 — 27) = Cllog = G-
Using the preceding estimate and the inequality
E[IVfi(0}) + €l | Feor, T Je] < (C +v)?
(see Eq. (7)), from relation (18), we obtain for all £ > 1 and ¢ € J,

Elllet, — 21 | Facry Iy ] < (1= 20509 ||og, — 2*)1* = 205V £ (27) T (Goy — 2¥)
+2a,~C’||v,i — U1l + a?(C’ + V)Q.

When i € J;,, we have xi = vi by the definition of the method. Hence, for i & J,
i k|12 z_*2_1_2 i k|2 Qi i ]2
|2} — 2" = llog — 27" = (1 = 20409 [Jog, — 2" ||° + 20|y — 27|17,
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where we also use the fact v; = zi |, when agent ¢ does not update. By combining the
preceding two relations, and using the indicator function Xy, of the event that agent 7
updates at time k, we can see that for any any £ > 1 and i € V,
Ellleh — 2(1* | Faors I, Ji] < (1= 20500) [l — 2*[|* + 20i0i]|af_y — 2*[* (1 — Xgiean))
=20,V fi(a")" (Gr-1 = 2)Xgiesy + 200C v = G || + 03 (C + v)Xiesys

where we have also used [|v}, — Ux—1]|Xfies,; < ||vp — Ur—1]|. Taking the expectation

conditioned on the past F;_; and using the fact that agent ¢ updates with probability ~;

independently of the past, we obtain with probability 1 for all £k > 1 and ¢ € V,
Ell2h — 27 | Fio] < (1 - 2000,)E[llof — 2”17 | Fecs] + 20012y — 2] (1 = i)
=207,V fi(2*)" (Gr—1 — 2*) + 20, CE[||v}, — Ger || | Foor] 4+ f7(C +v)?,
where Vi, = min; ;. Let A, , = maxy ayop—min; ojo; and A, , = max, agye—min; a;y;.

Note that by ||V f;(z*)]] < C, the fact x%, ¢, € X for all 7 and k, and the compactness of

X, we can see that

Elllzy — 2*|° | Fima] < (11— 2msinozsas)E[||U/,iC — z*|]? | Fri]
+2 { mina;o; | (1= Ymin) 17,1 = 27 + 2800 (1 = i) Cx
-2 mjin ay; | Vi) (ge-1 — 2°) + 2A,,CCx
20 CE [0}, — G || | Fror] + ady:(C +v),

where C'x = max, yex || — y|| and apmax = max, .

S gy —2*)|* and 327 Ellvf — Groll | Fret] < S0 2y —Faa | (see (10)—(11)),
to obtain with probability 1 for all £ > 1,

m

We sum the preceding inequalities over all 7 € V, and use Y ;| E[||vj, — 2*[]* | Fr_1] <

m
g — oI | Fia] < (1—2minayon) - oy — |
j=1

i—1
+2 (minaje, ) (1= 2 >l el 42
=2 (o) S VAE s =) + 200 C Y s =
i= i=
where £ = 2mA, ; (1 — Ymin) Cx +2mA, ,CCx + Mamax max v, (C + )2 The last term
in € is obtained by using " | a?7; < Mumax max ayye. Observe that > 0" V fi(@*) T (Gp—1—
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x*) > 0 since §;—1 € X and z* is the optimal point of » " fi(x) over x € X. Thus, by
taking the total expectation, we obtain for all £ > 1,
Z Efllz, — 2] < CZ E[Hxi_l —**] +e+ 2amaXCZ E[Hxi_l — Jeall] . (19)
i=1 j=1 j=1
where ¢ = 1 — 27y, min; ajo;. We have ¢ € (0,1) since yin < 1 and 2cy0; < 1 for all i
(by our assumption). Thus, relation (19) satisfies Lemma 6, implying

€ 20000 C'

IIZHSUPZE [E—| } —c+ T—o hinsupZE |xk 1 — Uk 1|H
—oo T —00 =1
The desired relation is obtained by using Lemma 4(b). [ ]

Proposition 3 provides an asymptotic error bound for the sum of the expected distances
between the optimal solution z* and the iterates of asynchronous broadcast-based algorithm
in the presence of random link failures. The bound captures the effects of the network
connectivity topology and the link failure probabilities (through vin, A and d,..), as well

as the objective function properties. Note that the error £ grows as m and the error term

2C 2 Vmdmax
l1—c max |_ f

do not depend on m. In this case, the limiting error grows as m in the number m of agents.

(C'+v) grows as v/m in the number m of agents, provided that ~,,;, and

This will happen, for example, if the graph (V, &) is full and the links are perfectly reliable
(i.e., pi = 1 for all {i,j} € &), which will imply that v,,;, = mT_l and d., = m—1, while
A < 1— 3% where 3 € (0,1) are weights as given in (3).

The result of Proposition 3 requires that each node selects a stepsize «; so that 2«0, < 1,
which can be done since each node knows its strong convexity constant o;. Then, since
v € (0,1) for all i, we have ¢ = 1 — 27, min; a;0; < 1. Thus, the relation ¢ € (0,1) can
be ensured globally over the network without any coordination among the agents.

To get additional insights into the result of Proposition 3, suppose that A, , = maxy oo —
min; ojo; ~ 0 (0r Ymin ~ 1) and A, , = max, ayy, — min; a;;7y; ~ 0. Substituting the value

for ¢, we obtain the following limiting error bound:

MOUnax MAX; OV Ca? .. Vmdmax
hmsupz [z} — 2] < i (C+v)*+ (C+v).

k—o0 - 2’len mln] Q05 “Vmin minj ;0 1-— \/X
Note that the preceding error bound is proportional to ay,.y, implying that the error can be
small when all the agents use small stepsize values «;.

We next provide another error estimate that holds without requiring strong convexity.
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Proposition 4: Let Assumptions 1, 2 and 4 hold. Let the set X be bounded and the errors
e be such that ||E[e} | Fr_1, Ik, Ji] || < o with probability 1 for all k¥ > 1, i € J; and for
a deterministic scalar ;1 > 0. Let the sequences {x%}, i € V, be generated by method (9)
with stepsize «; ;. = ;. Then, for the averaged iterates &} = %Zle xi_, we have

Ckl’naXC( ) amax V mdmax
ming oy 1—V\

(20 Cx 4 Qmax(C +v)?)

(C+v)forallieV,

t—o00

limsupE[f(&})] — f* < 0+ <m0+

HZmCCX(

max, gy, 1) N mmaxy oYy

min; oy, 2min; a;;

where f* is the optimal value of problem (1), Cx = max, yex ||z — ||, (max = max; o,
and d,,.x is the maximum expected number of agents updating as defined in Lemma 4(b).
Proof: Since X is compact, the optimal set X* is nonempty. Thus, from z, = Px[v} —

a;i(V fi(vh) + €b)] for i € J;, (see Eq. (9)), it follows for all k£ > 1 and i € Jj,
2}, — 2" ||* < v — 2*|1* = 205(V fi(v}) + )" (v, — =) + aF [V fi(w},) + ][>

By compactness of X, we have ||V f;(x)|| < C for all x € X and all ¢, and some scalar C.

Taking the expectation conditional on Fj_1, I, and Ji, and using
E[IVfi(v}) + €l *Ficr, I, Ji] < (C +v)?
(see Eq. (7)), we obtain with probability 1 for all £ > 1 and i € Ji,

Ellley = 2[1* | Facrs Iy i) < log = 2¥)1* = 200V fi(v}) " (v, — 2%)
_QO‘iE[ﬁi | Fre—1, I, Jk]T (v — %) + a2 (C + v)2.

From approximate subgradient relation (5) it follows
Vfi(wi) " (v, = %) > fi(Gr—1) — filz®) = Clloj, — G -
Furthermore, by the assumption on the mean of the error, we have
Efeh | Faor Dy Ji] " (0 = 2) < [E[h | Fior, T J] N Iof — 2l < el — .
Combining the preceding relations, we obtain with probability 1 for all £ > 1 and ¢ € J,

Eflleh — 2[1* | Frers I Ji] < Mlvg — 27[1° = 205(filGr-1) — fi2™))
+20;0v), — G|l + i (20 Cx + u(C +v)?),
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where C'y = max, ey ||z — yl||, which is finite since v, € X and X is compact. Using
the indicator function of the event that agent ¢ updates at the time k, from the preceding

relation we further obtain with probability 1 for all £ > 1 and ¢ € J,

Ellley — 2" 1* | Frers I, Ji] < (Il — 271 = 200 (filGe—1) — fila™))) Xieay
+20;C|v}, = i1 || + i (20 Cx + ai(C + v)?) X{ies,}- (20)
We combine relation (20) with 952 = v} for i & Ji (see (9)). Since agent 7 updates with

probability 7; independently of the past, we have with probability 1 for £ > 1 and ¢ € V,

Elllz, — 27I1* [ Fa-r] < Efllvp — 2" I* | Frea] — 2007 (fi(Fi-1) — fil2™))
+20;CE[||v}, = G| | Frc1] + ivi (20 Cx + i (C +v)?) . (21

Let A, = maxy apy, — min; o;y;. Using | f;(gk—1) — fi(z")| < C||gp—1 — z*|| < CCx,
which holds by the subgradient boundedness and the fact gy, € X, from (21) we see that
with probability 1 for all £ > 1 and 7 € V,

€[k o | Foct] < Elok =1 | i) =2 (miney ) (lon) = i)
+2A,,CCx + QOszCE[Hv,iC — Yr—1]| | ]—'k,l} + max ey (2/L Cx 4 max(C + V)2> ,
where o, = max; o;. We next sum the preceding inequalities over all 7, and note that
f=>" fiand f* = f(z*). By doing this and using relations (10)—(11) (with z = z*

and x = y,_1, respectively) after taking the total expectation and rearranging the terms, we

obtain with probability 1 for all £ > 1,

2min o, ELf (1) = £ < D2 Elllady = a*l17] = D Ellaf = 2 [2) 4 2ma, CCx
j=1 i=1
+ 200 C Z E[||a:i71 — gk_lH} + mmax oy (2u Cx + Qmax (C + Z/)Z) .
j=1
(22)
Next, we divide the preceding relation by 2min; o;;. We note that by convexity and the

boundedness of the subgradients of each f;, we have

F@o) = < @) = +mClah_y = G|l < f@r-1) = FT+mC Y [lwh_y — Grall.
=1
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Thus, we obtain from (22) forall k > 1andz €V,

i * 1 - J * S i *
E[f(z}_,)— ] < Smin; a7y, (JZIE[H%_l — a*|?] —;E[H% —x Hﬂ)

+0+(m0+ i )ZE 2ty = Grall]

min; o;7y;

mAq ~CCx m maxy ayye

where 0 = —
min; a;y; 2min; a;y;

(21 Cx + amax (C +1v)?) . Using A, , = max, apy, —

min; «;;, the error § can be written as:

0 =mCCx ( (2u Cx 4 max(C + 1/)2) .

maxy Oipye 1) + mmaxy G’y
min; o;7; 2min; a;;
By summing the preceding relations over k£ from k =1 to k =t for some ¢t > 1, and then

averaging with respect to ¢, we obtain for any ¢ > 1 and 7 € V,

- J o x||2
ZE xkl } = thln]a]%jzlE |x0 xH]

amax ]. m . B
o (m“ m) ;ZZE[Hxi_l — Jall].

k=1 j=1
Letting ¢ — oo and using the relation

limsup — Z (Z E[Hxi—l - gklM> < hinSUPZ E[Hxi—l - ?71971’” )
k=1 \j=1 — =1

t—o0

we have for any ¢+ € V,

1 .
limsup;ZE[f(%_l)—f*} < 6+ (mC+ hmsupZE [ 1l -

ming Oé[‘)/g) koo
The estimate now follows by using Lemma 4(b) and convexity of the function f. [ ]
The error bound of Proposition 4 scales as m+/m in the number m of agents, when ;.
and )\ do not depend on m. As a consequence of Proposition 4, in view of f(xi) — f* >0
(since x}c € X for all k£ and 7) and Fatou’s lemma, it can be seen that for all : € V,
maxC Y\ CmaxV/Mdmax
min; %%‘) 11—V
with § = mCCx <w — 1) + BV (D)) Oy + pax(C' + 1)?) . When the mean of

ming; a;y; 2min; ajy;

E[hgg)lff(x}f) — f*] <0+ <m0+ (C+v),

the errors €, are zero (corresponding to ;1 = 0) and the ratio miﬁ%—w is close to 1, the result
J =31

of Proposition 4 reduces to

limsup E[f(2})] — f* < %(xmax(C +v)?+ (mC +

t—o0

UmaxC ) OmaxV Mmax
min;a;7; ) 1—V/A
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This bound scales by order 5/2 less than the scaling of the bound for the distributed
(deterministic) consensus-based subgradient algorithm of [26], which scales at best as m?.
Specifically, in [26] it is shown that for consensus-based distributed algorithm (with zero
mean errors €.) the corresponding error bound on the difference in function values at the
time-averages of the agent iterates and the optimal value is given by (Theorem 5.4 in [26]):

ma(C + v)? (% + M) Here, « is the constant stepsize common to all agents, and b and

1-8
(3 are some positive constants such that % is of the order m?. Thus, random broadcast

algorithm has much better scaling of the asymptotic bound with the size m of the network.

VI. NUMERICAL RESULTS

We implement the broadcast-based algorithm for solving the following problem

mini fi(z)  where fi(z) =E[(R; — sTr)% and X C R?
1=1

reX 4

where s; € R? and R; is a random noise. The set X is chosen to be the unit ball in R?
centered at the origin (0, 0), while the vectors s; are chosen randomly in X with the uniform
distribution. In the experiments, we have E[R;] = 0.5 and E[R?] = 1 for all agents 1.

We implement the broadcast-based algorithm (3) over a network with 50 agents (m = 50)
for two network topologies, namely, a cycle and a wheel. In the cycle network, the agents
are connected to form a single undirected cycle, while in the wheel network, agent 1 is
connected to all the other agents ¢ by undirected link {1,4}. In the experiments, all the links
are reliable, viz p;; = 1 for all the links.

We evaluate the algorithm performance by carrying out 25 Monte-Carlo runs, each with
10,000 iterations, for both the diminishing and constant stepsize rules. The diminishing
stepsize for agent 7 is based on the number I';(7) of times the agent updates by the given
time k. For each agent i, the constant stepsize value «; is generated randomly with the
uniform distribution on [0.001, 0.01], which is denoted by U(0.001, 0.01). Table ?? provides
the parameter values for the algorithm and the network topologies.

The algorithm performance is numerically evaluated by plotting the averaged values
(across the Monte-Carlo runs) of the network function objective f(x) = > ", fi(x) along
the iterates {z%} for randomly selected agents i. The results for the cycle network are shown

for 7 randomly (and uniformly) selected agents out of 50. The results for the wheel network
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TABLE 1

ALGORITHM AND NETWORK PARAMETERS

Parameter Symbol Cycle Wheel
Mixing weight 16 0.35 0.35
Maximum expected degree Amax 2 49
. . . . . X 1 1
Diminishing stepsize Q; 0] Y0
Constant stepsize o U(0.001, 0.01) | U(0.001, 0.01)

are given for the central agent (the one that is connected with all other agents) and for
another 6 agents randomly (uniformly) selected out of the remaining 49 (peripheral) agents.

The results for diminishing stepsize are shown in Figure 2, where the network function
objective f(x) = >, fi(x) is plotted along the iterate sequences {z} for randomly
selected agents ¢, as described above. The results are in compliance with the convergence

established in Proposition 1.

' ————
TEr T - T T — — Central Agent
— fgent 1 === Peripheral Agant 1
===fgent 2 B3| v Paripheral Agent 27
e fnent 3 = = Peripharal Agent 3
— hgen 4 Peripheral Agent 4
70;' == Agent5] 2 i e

—— Paripheral Ageni 5]

— At G

-

Function Eror Bound
§ 8

Function Error Bound

[ 2000 0 000 B00D 10000 [5} 2000 4000 000 B00C 10000
Neration Ieration

Fig. 2. Network objective f(z) evaluated along {z}}. The plot to the left is for the cycle network, while the plot to the

right is for the wheel network.

The asymptotic results for constant stepsize are shown in Figures 3 and 4, where the
network objective f(x) = >, f;(x) is plotted for the cycle and the wheel network,
respectively. The function f(x) is evaluated along the averaged iterate sequences {%} for
randomly selected agents 7, as discussed earlier. The plots also compare the numerically
observed “asymptotic error” with the theoretical error bound predicted by Proposition 4.
As expected, Figures 3 and 4 indicate reaching an “asymptotic error” level. However, the

experimentally observed error level is by far less than the error bound of Proposition 4. This

August 27, 2010 DRAFT



24

is no surprise since the error bound is for the worse case scenario that does not account for

any special properties that the functions f; may have aside from convexity.

Theoratical v Numerical arror bound
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Fig. 3. Network objective f(x) evaluated along {&%} for the cycle network. The plot to the left shows the function

values for different agents, while the plot to the right compares these values with the theoretical bound (on the log-scale).
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Fig. 4. Network objective f(x) evaluated along {#%} for the wheel network. The plot to the left shows the function

values, while the plot to the right compares these values with the theoretical bound (on the log-scale).

VII. CONCLUSIONS

We have considered a convex problem of minimizing the sum of agents’ objective func-
tions over a common constraint set X, and proposed a broadcast-based optimization algo-

rithm suitable for solving the problem over a wireless network. We discussed the general
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case when agents evaluations of the (sub)gradients of their objective functions are erroneous
and studied the properties of the algorithm for a random diminishing stepsize and a constant
deterministic stepsize. We showed convergence with probability 1 to an optimal solution for
the diminishing stepsize, and established two error bounds for a constant stepsize. We have

also provided a numerical example.

APPENDIX

Proof: Lemma 2. Each matrix W), is stochastic by the construction. Part (a) follows
from the structure of the weighted Laplacian Ly, the weight rule used in the update (see (3)),
and from each agent ¢ broadcasting with probability % We next show the result in part (b).
For the matrix Dy, = W), — = 117, we have

DID, = (WkT — % 11ka> <Wk — % 11ka) = WIW, — %nglTWk, (23)
where we use (= 11T)2 = L1117 Consider the quadratic form z"E[D{ Dy] = for = € R™.

When z = c1 for some c € R, from the stochasticity of W}, it is easily seen that
1"E[D} D] 1 =0. (24)

We next estimate the maximum of 27 E [D,{Dk} z on the subspace of the vectors orthogonal

to 1. For any vector z such that 271 = 0, using (23) we have
1 1

Z"E[D{ Dy] z = E[zW[Wyz] — —E[Z"TW[11"Wyz] < ||2|]* — = E[z"TW,][11"W;2] ,25)
m m

where the inequality follows by ||[Wz||? < ||z||%, which holds by the stochasticity of Wj.
Let Ly be the weighted Laplacian of the weighted graph (V,&,II), where II is the
symmetric matrix with entries II;; = p;; > 0 when {i,j} € & and otherwise p;; = 0
(recall p;; is the probability that link {7, j} € & is functioning). In this case, the weighted
Laplacian Ly is symmetric and positive semidefinite (see [17], page 6), and therefore it has
m nonnegative eigenvalues 0 < A\;(Ly) < Ao(Lp) < -+ < A\yu(Ly), which are repeated
according to their multiplicities. Since the graph (V, &) is connected the smallest eigenvalue

is zero with multiplicity 1 (see [17], Proposition 2.3). Furthermore, since L1 = 0, it follows

0< )\Q(LH) = min HLHZH (26)
(2€R™ [T 1=0, ||2||=1}

Let W' be the expected matrix of weights corresponding to the event that agent i is

broadcasting, where the expectation is taken with respect to the link failure events for the
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links {i,j} € & with j € N(i). Using the definition of the weighted Laplacian, we can
see that 17TV is given by 17W* = 17 + B[Ly];, where [Lp]; denotes the ith row of the

weighted Laplacian L. Since each agent broadcasts with probability %, we have
1 T14T 1 ¢ T T T
—EW W] = — Zl (1" + B[Luls)” (1" + B[Lul;) -
Hence, for any z such that 271 = 0, we have
JEWI11TW,] 2 = —252 ([Lliz)?

Since [Ly); is the ith row of the weighted Laplacian Ly, we have 37" ([Ln]i2)” = || Luz|%,

implying L 2TE[WI11TW,] 2 = Z—Z | Liiz||*. Therefore, from (25) we have

2 2
L STEDED s < P - 2 i el = (1 2 0gm ) el

where the last inequality follows by relation (26). Hence, from the preceding relation and

equality (24), we conclude that A\ (E[Df Dy]) <1 — 2—22 Aa(Lp) < 1. n

Proof: Lemma 3. Note that T'y(i) = Y, , XE,,, Where I;, is the event that agent

i updates at time ¢ and xg,, is the indicator function of the event F;;. Since the events

{x&,,} are ii.d. with mean E[X Et] = ry,; for each 7 € V, by the law of iterated logarithms

(see [9], pages 476-479), we have for any g > 0, with probability 1,
Lo Ikl = ki

; =0 forall s € V.
k—o0 k2t

Thus, for sufficiently large k (depending on ¢ and m), we have

k(i) = kol _

T S forall k> kand i€V, 27)
2 m

implying that with probability 1 for all i € V and k > Fk,
1 1
Tp(i) > by — —5 k27 = (qu% - —> ko,
m m?

For ¢ < 1/2, the term k:%_q%- tends to infinity as k increases. Thus, we can choose a larger

k (if needed) so that with probability 1 we have
1 -
By = > Lpitey, forallk>andie V.
m
By combining the preceding two relations, we obtain I'y (i) > %k% with probability 1 for

k >k and i € V. Therefore, for any ¢ € (0,1/2) we have with probability 1

< forall k> kandieV, (28)

(i) = kv
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thus showing the first relation of the lemma in view of «; ) = ﬁ(l)
— 1

Since agent ¢ updates with probability v, = = > jen(i) Pij (cf. (12)), it follows

¥ > % ({}1}}1&3 pij> N (2)| > % <{1r51}1£g pij) , (29)
where the last inequality follows from [N (i)| > 1 (since the graph (V&) has no isolated
node). By letting pni, = ming j1es pij» and using o, = Fkl(l.) and (28)—(29), we obtain
with probability 1 a2, < lprm forall k >k and i € V.

We now consider

Gk — %‘ We have with probability 1 for all k > k and i € V,

1 11 _ 2
Qik — 7—

= ki — T(i)| < ——5 [kvi — Ti(i)]

where the inequality follows by (28). From relations (27) and (29), we obtain with proba-
bility 1, for all £ > kand i€ V,

2m2 i k%+q — 2

k Prin M k2 Pnin

]
Proof: Lemma 4. We will consider coordinate-wise relations, by defining the vector
zt € R™ as the vector with entries [z¢];, i = 1,...,m. From the definition of the method

in (9), we have
2 =Wyze +¢  for{=1,...,n, and all k > 1, (30)
where (f € R™ is a vector with coordinates [(]; given by
(il = [Pxlv, — i (Vfilvp) + €)] —vi], ifi€ Jp and otherwise [(;]; = 0. (31)
Furthermore, note that [g;], is the average of the entries of the vector z,‘;, 1.€.,
[Tile = % 17z, forall k > 0. (32)

From now on, let £ € {1,...,n} be an arbitrary, but fixed coordinate index. By relations

(30) and (32), we have [g], = L+ (17 W,z _, + 17¢;) for all k, implying
1 1
¢ s T ¢ T\ -t
— 1 = W,——11"W +I——11
2~ [0l ( "Tm k) %=1 ( m ) Gk

where [ denotes the identity matrix. By Lemma 2, the matrices W), are stochastic, so that

Wil = 1. Thus (W, — L 117W}) 1 = 0, implying (W}, — L 117W}) [g4—1],1 = 0. Hence,
2t — [Gk]el = Di(2_; — [Gr—1]el) + M} for all k> 1, (33)
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where D, = Wy, — £ 117W, and M = I — 117, By taking the norm and then, the

expectation conditioned on the past history, from the preceding relation we have for k£ > 1,

Efll2r, =[Gl | Far] < E[IDw(zimy = Bl | Faoa] + E[IMGI | Fima] - G4

We estimate the term E[| zf, — [§x]¢1|| | Fx_1] by using the fact the matrix W, is inde-

pendent of the past history Fj_;, as follows:
E[[1Du(t 1 = B leD) | Fi] < Misfs = il I, (35)
where A = |[E[D{ D] || and A <1 (Lemma 2). Using E[||z|] < v/E[|[z]]?], we obtain
E[|De(zt_1 — [Gea)eD)|| | Fici] < VAlzooy — [Gea)el]|  forall k> 1. (36)

We next estimate the second term in (34). The matrix M = [ — % 117 is a projection
matrix (it projects on the subspace orthogonal to the vector 1), so that || M|? = 1, implying

that || M¢F||* < ||¢E||? for all k. Using this and the definition of ¢f in (31), we obtain

i i i i1 |2
IM¢|1? < Z | [Px[vy = air (Vfilvp) + €)1 = vi] | (37)
i€k
At this point the proofs for parts (a) and (b) for the (random) stepsize v, = and the

constant stepsize «; j, = «; are different, and we consider them separately.
(a) Using the relation v}, € X, the nonexpansive property of the projection operation, and

e < 4m (holding by Lemma 3), from inequality (37) we obtain with probability 1, for
all i, for large enough % and all k > k,

3G < 3 a2l V) + P < g — S IV + el
i€y Prin i€Jy,
Since the subgradients are bounded and the error norms are bounded (cf. Assumptions 3
and 4), we have E[HVfi(v,i) Fe|? fk_l,fk,Jk} < (C+v)? for i € J, (see Eq. (7)),
implying by |Jx| < m that
E|[[ptl” | | < % (C+v)”. (38)

min

By inequality E[||z||] < v/E[[|z]|?], we obtain for all k > k with probability 1

e[t | Fit] < 2 (0 0) (39)
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By relations (36) and (39), from inequality (34) we have for all £ > /;:,

2m+/m
- (C+v).

Elllzt — led]] | Fiot] < VN|zby — [Ge-1]el] +

Therefore, with probability 1 we have for £ > /;:,

1 1
% Elllzr — [Grled ]l | Fra] < 1 zk-1 — [Gr—a]el]]

11—V, , 2my/m

25—t — [Tr—1]ed]| +

(C+v),

k k pmll’l
where 1 — v/\ > 0 since \ € (0,1). By Lemma 1, it follows that
1
> Euzﬁ,l — [Gr-1]el|| < co  with probability 1, (40)

k=F

implying that > .7, 1 [lzf_; — [Uk—1]¢1]| < oo with probability 1, for any ¢ = 1,...,n
This and the definition of zj, being z; = ([ile, ..., [x]]¢)", implies that > 77 | & ||z} | —
Ur—11]| < oo for all 4, with probability 1.

We next prove that limy, .o |25 — [Jx]¢1]| = 0 with probability 1. As a consequence of
relation (40), it follows that liminf ... ||2f — [gx]¢1]| = O with probability 1. To complete
the proof, we only need to prove almost sure convergence of ||zf — [7x]e1]| as k — oo.

By taking the square norm in (33) and then, the expectation conditioned on the past and
using Holder’s inequality (6), we obtain for all &,

E[llsf — elell? | Fea] < E[ID(hoy = [eoaleDI? | Fooa] +E[[| M) | Fi]

42 [ElIDA(Ey — e JeDIP | ] (€Mt | 7]

Combining the relations in (35) and (38) with the preceding inequality, with probability 1

we obtain for all k > £,
m3

Efllz;, — [0l | Fic1] < Mlzioy — Wl + 55— 7 (C +v)?
o
SV = ) 5 (),

Taking into account that A < 1 and Y% ; + |2, —[Ui]e1]| < co with probability 1 (see Eq. (40)),
we can apply the supermartingale convergence result of Lemma 1 to conclude that ||z}, —
[x]¢1|| converges with probability 1 for any ¢ = 1,...,n. This, and the relation zf =

([x})e, - - -, [25"]¢) imply that ||z} — g 1|| converges with probability 1 for every i.
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(b) Let o, = a;; > 0. From relation (33), we have for / =1,...,n and k > 1,

2 = [G)eXl* < 1wz = [Fe-aleD I + MG + 20 Di (21 — [Gre-ale D) MG

By summing these relations over £ = 1,... n, and then taking the expectation and using

Holder’s inequality (6), we obtain for all £ > 1,

2
> Elll=r — ale)] <\JZE IDw(zh—y — [Fr-a]eD)]?] + \JZE MGl )
{=1 {=1 {=1

Using the estimates in (35) and (37), with o; ;, = o, we see that

n

> E[IDr(ztoy = [FaaleD)]’] S)‘ZHZk 1= el

(=1

E|:||MC]€|| [ LZ QG [V fi(vp) + ll” | Fieor, L, Jk]] < 0] max (C + 1),

/=1 ey

where oy = max; @, dpax = Maxi<i<m |E[J(7)] |, and we use relation (7) in the last
inequality. In the definition of d,,.y, the set J(i) is the random set of agents that update

given that agent 7 broadcasts, and the expectation is taken with respect to the link failure

probabilities. Letting uj, = \/ >v1 E[ll2f — [gk]e1||?] from the preceding three relations,
we obtain for all k£ > 1,

/ \/dmax
ukS )\uk—1+ dmaX(C—FV)S"'SNUO—f—OCmaX (O+V)

1—

5

Since A < 1 by Lemma 2, it follows

S

(C+v). (41)

limsup ug < ozmax

k—o0

: 4 m
Using z;, = ,[z7]e)”, we see that

3

EV5Y
E[ll2k — [mele1]”] JZEMZ%P]- (42)

=1 =1

Furthermore, by Holder’s inequality (6), we have

S TE[lla — all] < vim | D Elllg - all?)- (43)
i=1 =1

By (41)—(43), we obtain limsup,_,.. > i"; E[|lz} — Uk]]] < cmax mdmax (C+v). ]

August 27, 2010 DRAFT



31

Proof: Lemma 6. From the given relation ford; and u;_;, we can see by induction

(on k) that d, < c*dy + Zf:_ol =1y, for all k& > 1. Since ¢ € (0,1), it follows that

lim supy,_, ., di < limsup,_, Zf;ol c*~t=1y;. Thus, it remains to show that
k
lim sup Z Fty, < lim sup ;. (44)
k—oo 10 l—c -

Let v = limsup,_,, ux. If v = 400, the relation is satisfied. Let ¢ > 0 be arbitrary but
small and let M > 0 be large. Define a = v + € if v is finite and @ = —M if v = —o0.
Choose index K large enough so that u; < a for all £ > K. We then have for k > K,

k K k K k
F by, = &ty &ty < max u Ftta &t
Since S5, 7t < b and S Mt < 45 it follows that U8 Ftu, <
(maxoes<r ts) G + 12 for all & > K. Thus, limsup,_. S ¢t < %, and
relation (44) follows by the definition of a. [ |
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