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Asynchronous cellular logic network as a co-processor

for a general-purpose massively parallel array
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ABSTRACT

This paper demonstrates an implementation of an asynchronous cellular processor array that facilitates binary trigger-wave

propagations, extensively used in various image-processing algorithms. The circuit operates in a continuous-time mode,

achieving high operational performance and low-power consumption. An integrated circuit with proof-of-concept array

of 24×60 cells has been fabricated in a 0.35µm three-metal CMOS process and tested. Occupying only 16×8µm2

the binary wave-propagation cell is designed to be used as a co-processor in general-purpose processor-per-pixel arrays

intended for focal-plane image processing. The results of global operations such as object reconstruction and hole filling

are presented. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ongoing research on massively parallel processor

arrays [1–5] proves that they can be efficiently utilized for

low-level image processing, due to a high degree of data

parallelism and the locality of the required computations.

The fine-grain parallelism of low-level image-processing

algorithms is particularly suited to processor-per-pixel

architectures [6–9]. These devices often integrate photo-

sensors and pixel-processors on a single ‘vision chip’,

providing image acquisition and pre-processing front-end

and reducing the computational power requirements on the

rest of the computer vision system.

The majority of pixel-parallel processor arrays operate

according to a single-instruction multiple data (SIMD)

paradigm, which has been demonstrated to be effective

for operations where the resulting pixel value is explicitly

expressed as a function of its bounded neighbourhood [10].

However, restricting the application range of such

devices only to low-level image-processing algorithms

results in a bottleneck during an off-chip data transmis-

sion, as the output result of low-level pre-processing

algorithms is represented by the image of the same size

as the input image. In contrast, medium-level processing

algorithms reduce the initial image information to a set

of more abstract descriptors (e.g. area, perimeter, coor-

dinates, etc.). Thus, execution of such algorithms on a

chip would lead to a significant reduction of the output

data. As opposed to low-level processing, a number of

medium-level image-processing operations (e.g. object

reconstruction, distance transform, hole filling and other

morphological and segmentation routines) involve global

data flow across pixel network. These operations can

be represented as an iterative process, where a pixel

value, while determined as a function of local neigh-

bourhood on each iteration, implicitly depends on the

entire array of pixels. The meaningful processing during

each iteration is typically carried out only in a limited

number of ‘active’ pixels, at a front of a propagating

wave of activity (a flood-filling or a grass-fire algo-

rithm is the classical examples of this process). Geodesic

reconstruction, illustrated in Figure 1, is one of the exam-

ples of employing such wave propagations in image

processing. When implemented on a fully parallel,

synchronous processor-per-pixel SIMD array, such algo-

rithm requires many iterative steps (O(N2) for N×N

Copyright © 2010 John Wiley & Sons, Ltd.
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Figure 1. Geodesic reconstruction of the selected binary object: (a) input image (mask); (b) initial state; (c)–(g) the progress of

wave-propagating activity; and (h) reconstructed object. The processing is required only in the wave-front pixels at the boundary of

expanding marked region.

image) executed concurrently on all N×N processors, and

therefore it has a high computational cost (and corre-

spondingly inefficient use of hardware and high-power

consumption). In order to optimize global operations

on cellular processor arrays, it is necessary to look for

approaches alternative to SIMD [11–14].

In order to increase the speed and efficiency of global

operations, one should either introduce a very complex

network of global interconnections or optimize the flow

through the network of locally interconnected cells.

The first approach becomes very difficult for a physical

realization, since the sizes of processed images (and corre-

spondingly the complexity of interconnections in processor

arrays) are continuously increasing, whereas the number

of routing layers, available for interconnections, is limited.

The second approach, based on local communication

only, yields itself better to a VLSI implementation. In

case of iterative wave-propagating algorithms a promising

approach involves local triggering of processor cells by

their neighbours, so that they only perform the required

computations when the results of computations in their

neighbouring cells become available. As the timing of

the entire operation is data driven, asynchronous method-

ologies can be employed. Apart from speeding up the

propagations, asynchronous execution provides savings in

power consumption as only active ‘wave-front’ pixel cells

perform the actual processing, whereas others remain in

the idle mode.

Global operations and cellular wave computing have

been considered in the context of cellular nonlinear

networks (CNNs) [15]. Application examples of grey-scale

and binary trigger-wave propagations implemented using

the CNN paradigm have been proposed [16, 17]. However,

the classical CNNs have proven to be impractical for

hardware implementation. A number of processor-per-

pixel array architectures, designed specifically for asyn-

chronous data-flow processing, have been presented in the

literature, including the work on grey-scale morphology

[13], segmentation [14], skeletonization [18] and rank-order

filtering [19]. However, the algorithm-specific designs

not only have a limited functionality, but also occupy

relatively large silicon area, which is the major drawback

when used as a co-processor for a general-purpose cellular

processor array. Therefore, it is important to identify the

global operation that is extensively used in the computer

vision and has a simple hardware realization. Binary

propagations (Figure 1) can be efficiently employed for

basic object reconstruction and hole filling [20] as well as a

component of more complex algorithms such as watershed

segmentation [21] and convexity analysis. For example, in

pixel-parallel implementation of retinal vessel tree extrac-

tion [22], discrete binary hole filling operation contributes

30% to the overall processing time. In order to explore the

benefits of using an asynchronous sub-network within a

general-purpose processor-per-pixel cellular array, we have

designed a general-purpose asynchronous/synchronous

processor array [23]. We have also implemented an asyn-

chronous cellular logic array (ACLA) [20] chip as a

proof-of-concept design for the evaluation of the actual

performance of asynchronous processing. This paper is an

extended version of the work presented in [24] and reports

the experimental results obtainedwith this implementation.

2. PROCESSOR ARRAY

ARCHITECTURE

Limited functionality and restriction on programmability

make asynchronous cellular logic networks not very

suitable for general-purpose image processing. There-

fore, we propose a vision chip architecture that adopts

omni-synchronous approach, thus benefiting in terms of

programmability and versatility while in the SIMD mode

(discrete-time, synchronous operation) and achieving the
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Figure 2. Asynchronous/synchronous processor array architecture—sub-networks with separate data flows.

maximum performance in global operations when config-

ured as a single combinatorial circuit (continuous-time,

asynchronous operation).

The system consists of an array of processing elements

(PE), placed in a four-connected rectangular grid. Every PE

is a simple digital processor with arithmetic and logic unit

(ALU) and general-purpose registers. Eight 8-bit registers

and an accumulator in the ALU enable every PE to store

64 bits of data. The PE operates as a datapath with register-

transfer operations controlled by an instruction word.

Operating in the SIMD mode, all PEs execute the same

instruction broadcast by a central controller.

Simple synchronous digital architecture of the cell facil-

itates all arithmetic and logic operations, thus enabling effi-

cient execution of most of the low-level image-processing

algorithms. In order to extend functional capabilities of the

array from local to global operations, every cell is endowed

with a simple functional unit, called propagation chain,

which provides a tool for binary trigger-wave propagations

across the entire array, controlled by ‘flag’ and ‘mask’

indicators. Structurally, these asynchronous units can be

considered as a separate sub-network (Figure 2) and this

asynchronous network has been implemented as a separate

chip for detailed evaluation of the performance and power

characteristics.

It should be noted that the proposed architecture contains

further mechanisms for asynchronous data transfers and

operations as outlined in [23]; however, the discussion of

these is outside the scope of this paper. In the following

sections we focus on the ACLA part of the proposed archi-

tecture and its prototype silicon implementation.

3. ACLA—OPERATION PRINCIPLES

The operation of every cell in the asynchronous sub-

network is based on a Boolean function that is fundamental

to geodesic reconstruction. Let us consider a four-connected

rectangular grid of cells and let us assign two Boolean

values y and m to each cell. The value y corresponds to the

initial pixel value (Figure 1(a)) or mask (‘1’—foreground,

‘0’—background). The value m corresponds to the current

state of the pixel (‘1’—pixel is marked, ‘0’—unmarked),

which describes the dynamic behaviour of the array.

The process of reconstruction is carried out by iterative

calculation in each cell of the following Boolean function:

m= (mN ∨mS∨mW ∨mE∨mI )y (1)

where mI is the initial state (Figure 1(b)) and mN , mS,

mW and mE correspond to current states of four nearest

neighbours. At the end of this global operation all pixels

of initially marked objects are marked. This operation has

been illustrated in Figure 1.

In order to provide further control over the propagation,

it is possible to constrain interconnection locally in every

cell, so that the final function is as follows:

m= (cNmN∨cSmS∨cWmW ∨cEmE∨mI )y (2)

where (cN , cS, cW , cE) is a locally stored interconnec-

tion mask vector. In this way we achieve reconfigurable

topology, i.e. the direction of the propagation is constrained

by local data in every pixel. Such amodification enables the

usage of binary trigger-wave propagations in the algorithms

that process 8-bit grey-scale image data. The example

of employing this operation in watershed transformation

can be found in [21]. Further applications of controlled

propagations in image processing have been demonstrated

in [7, 14, 20].

4. IMPLEMENTATION

We have fabricated a proof-of-concept chip that incorpo-

rates an array of cells, which execute operations described
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Figure 3. (a) Network connectivity of the ACLA chip and (b) shift-register data I/O organization in the ACLA chip.
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in the previous section in an asynchronous manner. The

array is organized according to a rectangular grid arrange-

ment of 24×60 cells with each cell interconnected to its

four neighbours (Figure 3(a)). The architecture of each cell

is presented in Figure 4.

The idea of the ACLA cellular processor array is that

each cell would be combined with a sensor and a general-

purpose processor; therefore, it is assumed that the input

to the ACLA array would be pixel-parallel (Figure 2).

However, since the test chip has been designed without a

sensor part, a serial mechanism for data input/output was

introduced. Each cell contains memory elements for input

and output data, which are connected in a serial manner

(Figure 3(b)). From this perspective the array acts as two

24×60-bit shift-registers (for input and output). The input

register is constructed by chaining flip-flops FF1 and FF2

from each cell (Figure 4) in a snake-like pattern so that the

output of the FF2 is connected to the input of the FF1 in

the next cell (Figure 3(b)). The flip-flop FF1 is used for

storing the input mask and the flip-flop FF2 for the initial

state. The output mechanism is built in a similar way. The

input and output memory is controlled by separate clocks

clk1 and clk2, correspondingly.

The propagation chain cell, which implements

Equation 1, is shown in Figure 5. Its circuitry is based on

domino logic. Both input mask and initial state are stored

locally and applied to the inputs y andmI , correspondingly.

Initially, outputs of all cells in the asynchronous network

(node m) are discharged by applying logic ‘1’ to the input

d, and the storage node X is precharged in every cell by

Int. J. Circ. Theor. Appl. (2010) © 2010 John Wiley & Sons, Ltd.
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setting the input p into logic ‘0’. After the initial steps are

taken, signals p and d are withdrawn and the propagation

is initiated by setting the go signal (Figure 4) to logic ‘0’

so that the inverted value of the initial state is applied to

the input mI. In order to eliminate static power dissipation,

it is important to make sure that the mask signal (in the

current setup go signal) is not applied at the same time

as p and d signals. By discharging the node X the value

y is applied to the output m, thus triggering four neigh-

bouring cells (if y= ‘1’), and so on. This operation finishes

when all pixels of the object defined by y and marked

by mI are selected (m= ‘1’). An example of propagation

chain with local control over neighbourhood connectivity,

described by Equation 2, is presented in Figure 6. After

the propagation is complete (or during the propagation to

capture the intermediate data for experimental purposes),

the result is latched into the output flip-flop FF3. The input

cap (Figure 4) is used as a select signal for a multiplexer,

so that after the result is stored, the input of the flip-flop

Figure 7. Microphotograph of the ACLA chip.

FF3 is connected to the output of the same flip-flop in the

neighbouring cell to enable shifting out the result.

The chip, shown in Figure 7 is fabricated in a 0.35�m

three-metal layer CMOS process by austriamicrosystems.

The size of the cell is 25×25�m2, of which the propagation

chain cell comprises only 16×8�m2. The layout of the cell

is illustrated inFigure 8. Such a small sizemakes it attractive

to incorporate this circuit as a co-processor to a general-

purpose processing cell. In the processor array reported in

Int. J. Circ. Theor. Appl. (2010) © 2010 John Wiley & Sons, Ltd.
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Figure 8. Cell layout.

[23] such asynchronous propagation unit occupies only 1%

of the 100×117�m2 cell area. It should be emphasized that

in the vision chip it is essential to ensure that the effect

of photo-induced leakage currents does not lead to false

triggering. Therefore, additional shielding has been applied

to all nodes that discharge nodem and precharge/discharge

node X. The latter also improves the protections against

signal coupling.

5. RESULTS AND DISCUSSION

The fabricated circuit has been evaluated in a test system

consisting of an FPGA (generation of control signals and

managing support devices) and standard test equipment

(logic analyzer, pulse generator, oscilloscope, etc.). Correct

operation and performance of the ACLA chip have been

verified by varying the delay (with resolution step of 5 ps)

between the falling edge of the go signal (initiates the prop-

agation) and the rising edge of the clock clk2 (latches the

state of the array). In this way the state of the array can be

captured during the propagation. The output data showed

that the average processing time per cell is approximately

0.48 ns, which is consistent with post-layout simulation

results (Figure 9).

The results of processing are presented in Figure 10.

To illustrate the operation of the circuit, the results were

captured at various stages during the propagation. Sweeping

the time between the go signal and the clk2 signal, multiple

captures were performed, and the grey-level of a pixel in

the sampled images plotted in Figure 10 corresponds to

the number of 1’s and 0’s captured in that pixel, across

all capture runs at the corresponding sample time. It is

interesting to notice that the shape of the propagation front

has a spherical rather than a diamond shape. The reason

for this phenomenon is the increased speed of switching

of the OR gate in the propagation chain circuit (Figure 5)

when triggered by several neighbours simultaneously.

Owing to some clock distribution issues not all the pixels

in the array are accessible and therefore test images are

smaller than the original size of the fabricated array. While

transistor mismatch and parasitic capacitance may lead to

slight differences in propagation speed across the array,

the observed effect is very small and in either case, the

result of the basic reconstruction/hole filling operation is

not dependant on the propagation speed uniformity.

On an equivalent SIMD array (with one clock cycle

per iteration) the cell’s processing time of 0.48ns corre-

sponds to a 2.08GHz clock. Interpolating this result to

a 256×256 image, the frame processing time becomes

31.5�s (the worst case, N×N iterations, although typically

a smaller number could be used), which enables processing

binary images at 31×103 images/sec and faster. Consid-

ering real-time computer vision applications, this allows

performing more than 1000 geodesic reconstructions on

a 256×256 frame at a frame rate of 30 frames/second.

Many propagations can be therefore performed within a

single video frame, for example to implement multiple

object reconstructions, or use propagations extensively as

a component of more complex image-processing opera-

tions [21]. Generally, the propagation time depends on

the strength of switching transistors MG and MP, oper-

ating voltage and parasitic capacitance of interconnection

wires. Considering the latter two characteristics to be

fixed, one should consider the trade-off between cell size

and the speed of the asynchronous operation. The total

energy consumed by triggered pixel during propagation

is 0.4pJ. The power consumption is primarily contributed

by discharging/precharging of gate and drain parasitic

capacitances and coupling wire capacitance in the node m.

While processing images at 31×103 frames per second,

the power consumption contribution of each cell during

asynchronous processing is 12.7nW, which would result

in 0.83mW for a 256×256 array. The main contribution

to power consumption, however, is made by driving global

signals p and d. Based on measurement results during the

propagation when all the cells are triggered, the extracted

total energy consumed by a cell including the initial

setup is 11.39pJ. For 256×256 array performing 31×103

propagations per second this would result in total power

consumption of 21.1mW. The latter figure does not include

the contribution of I/O pads.

The performance of the ACLA chip could be favourably

compared with arrays that provide similar facilities [7, 25].

The maximum throughput during asynchronous operation

for the NSIP [7] chip is reported to be 4×106 frames per

second, which corresponds to approximately 2ns delay per

cell. Taking into account that the cell size is 118×118�m2

and the design was fabricated in 0.8�m process, the delay

can be scaled down to approximately 0.87ns. In the case of

the chip reported in [25], the propagation delay per cell is

4ns (however, this chip benefits from threshold capabilities

and applies a 3×3 mask to the eight-connected neighbour-

hood in every pixel).
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Figure 9. Simulation of the propagating activity—the voltages at nodes m of several cells (y01-y03:y11-y13) during propagation

initiated from the cell y03.

Figure 10. Global operations implemented on the ACLA chip: (a) wave propagation (sample rate 2 ns); (b) object reconstruction

(sample rate 1.8 ns); and (c) hole filling (sample rate 5 ns).
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6. CONCLUSIONS

An implementation of an asynchronous cellular array has

been presented. The designed array combines small cell

area, high processing speed and low-power consumption.

The performance and power characteristics of the circuit

have been evaluated and indicate that it can be efficiently

used as a co-processor in a processor-per-pixel array in

order to enable global operations at minimum hardware

cost. The size of the asynchronous part of the circuit is

16×8�m2 in 0.35�m technology, which is a small fraction

of a typical cellular processor array cell area. the current

development of a vision chip in 0.18�m process indicates

that the area of the ACLA cell with additional control over

the pixel network discussed in Section III is only 84.8 �m2.

By scaling the cell size down and improving the strength

of the driving transistors in the propagation chain, the

simulated propagation delay is 0.22ns. Digital architecture

of the asynchronous unit suggests that it is comfortably

scalable to even finer technologies, though attention has

to be paid to higher leakage off-currents for below 90nm

processes or below. The ongoing research on this topic

concentrates on the integration of the asynchronous prop-

agation architecture into general-purpose pixel-parallel

processor arrays, and on the development of a new recon-

figurable architecture of the general-purpose processing

cell that would facilitate asynchronous processing utilizing

the same circuitry that is used during the synchronous

operation.
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