
L.M. Camarinha-Matos et al. (Eds.): DoCEIS 2012, IFIP AICT 372, pp. 143–150, 2012.
© IFIP International Federation for Information Processing 2012

Asynchronous-Channels and Time-Domains Extending
Petri Nets for GALS Systems

Filipe Moutinho and Luís Gomes

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Portugal
UNINOVA – CTS, Portugal

{fcm,lugo}@uninova.pt

Abstract. A specific class of Petri nets was extended with Asynchronous-
Channels (ACs) and Time-Domains (TDs) to support Globally-Asynchronous
Locally-Synchronous (GALS) systems’ modeling, analysis and implementation.
This non-autonomous class of Petri nets is targeted to support the development
of automation and embedded systems using a model-based development
approach. It benefits from a tool chain framework previously developed,
covering the whole development flow, from specification to hardware and
software deployment. With the extended Petri net class is possible to model
GALS systems, and use the specification to generate the corresponding state
space supporting the behavior verification and providing valuable information
for implementation.

Keywords: GALS embedded systems, Model-based development, Petri nets.

1 Introduction

With the increase in the number of requirements, embedded systems are becoming
larger and more complex. Synchronous specifications are widely used in hardware
and software systems development due to simplicity in the verification and synthesis
processes. Using software platforms it is common not to reach the desired processing
performance, requiring a full or a partially hardware implementation. In hardware,
large synchronous designs with the need for high clock frequencies are complex to
develop. This can occur because it is difficult to make a proper clock tree
distribution, and the signal propagation time may be higher than the clock period.
High power consumption and Electromagnetic Interference (EMI) are also common
problems of large synchronous circuits, that can be minimized with the use multiple
synchronous components. In software, multiple components also enables the number
of clocks (processor clock ticks per second) reduction and as a consequence power
consumption reduction. Distributed embedded systems are a possible solution for
complex embedded system; also allowing the reuse of old previously designed
components.

Globally-Asynchronous Locally-Synchronous (GALS) systems proposed in [1] are
intrinsically distributed systems and combine advantages of synchronous systems
with asynchronous systems. Synchronous systems are easier to develop and rely on a
set of available tools. On the other hand, asynchronous systems are faster, with lower

144 F. Moutinho and L. Gomes

power consumption and higher performance. In GALS systems, each local component
is synchronous with a local clock tick, which determines its evolution; as each
component has a different clock domain, the global system is asynchronous.
Interaction can occur through asynchronous wrappers, such as those proposed in [2].

Petri net classes have been proposed by several authors to develop embedded
systems through a model-based development approach. The Input-Output Place-
Transition (IOPT) Petri net [3] is one of those classes, with an available tool
framework allowing: (1) models edition; (2) models partition [4] (producing a set of
synchronous sub-models interconnected through synchronous communication
channels and supporting the application of hardware-software co-design techniques in
embedded systems design); (3) automatic generation of the state space for properties
verification; (4) automatic generation of C and VHDL codes for implementing system
controllers; (5) the generation of Graphical User Interfaces.

However, since we need to face distributed implementation and to accommodate
different time domains associated with the components of the GALS system, it is
necessary to handle asynchronous communication between components, where
specific asynchronous wrappers can be used to assure robust communication. As the
IOPT net class does not allow GALS systems specification, the following research
question appear: How to specify GALS systems using the IOPT net class, in order to
verify GALS systems properties, to support behavior verification and to obtain the
required information for components and asynchronous wrappers implementation?

This paper presents an extension to the IOPT net class, introducing Asynchronous-
Channels (ACs) and Time-Domains (TDs), making possible the specification of
GALS systems through the extended IOPT net class. From this specification it is
possible to generate the associated state space. Properties verification through the
state space will help to determine if the models specify the desired behavior and to
obtain required information to implement components and asynchronous wrappers.

2 Contribution to Value Creation

Using a model-based development approach to embedded systems, together with its
implementation as a GALS system, enables the design and implementation of more
complex systems, better documented, in less time, in a more automatic way, and
benefiting from reusability of models and code. In this sense, the model-based
development approach and this work in particular contribute with added value for the
system development. In addition, the system when implemented as a GALS system,
instead of being implemented as a global synchronous system, might have less EMI
and power consumption. To develop reliable systems is required to guarantee the
proper behavior of the embedded system, where this work gives an important
contribution, extending the IOPT net class with the ability of specifying GALS
systems, supporting its documentation, verification and implementation.

3 Related Work

GALS embedded systems development presents greater challenges when compared to
synchronous embedded systems development, making the development method even
more crucial in the final system quality, time-to-market, reusability, etc. Model-based

 Asynchronous-Channels and Time-Domains Extending Petri Nets for GALS Systems 145

development approaches proposed by several authors (such as in [5, 6, 7, 8, 9]) in the
recent years, for embedded systems development, may be an appropriate approach in
the development of GALS systems.

Some authors, like in [10], proposed textual languages for GALS systems
specification and verification, while others (such as in [11, 12]) used graphical-based
descriptions. In [11], the Place/Transition net class (P/T nets, an autonomous Petri net
class) [13] is extended with localities. It is used to model and make the behavioral
analysis of GALS systems. Localities are assigned to transitions, making them part of
specific components of the GALS system.

The IOPT net class [3] extended with ACs and TDs is considered in this work to
support the complete development flow of GALS systems, and not only system
specification and verification, like in [11]. The IOPT net class was chosen based on its
characteristics that make it suitable for modeling automation and embedded systems.
It benefits from availability of a tool chain framework, used in this work to support
model edition, partitioning, properties verification and automatic generation of C and
VHDL codes for implementing GALS system components. In [14], the IOPT net class
(not extended) was used to specify GALS systems, where a set of sub-models was
used to specify a set of components, and the interaction between components was
modeled through single places. The use of IOPT nets as was done in [14] has two
limitations: (1) it is not possible to use two (separate) sub-models to specify a single
component; and (2) single places between components do not allow the specification
of asynchronous communication between components, as the maximal step execution
within each component, separately, is not assured.

4 The IOPT Petri Net Class

The IOPT net [3] is a class of Petri nets that extends the well known P/T net class [13]
with inputs, outputs and a set of additional characteristics. Inputs are used to model
the interaction between the environment and the system (making this class non-
autonomous); outputs are used to represent system actions in the environment. IOPT
nets have synchronous execution (the system evolution takes place at specific instants
of time controlled by a clock tick) and a maximal-step executable semantics, which
means that all enabled and ready transitions at a specific instant of time will fire. A
transition is enabled when the number of tokens in places from incoming arcs are
equal or bigger than the weight of the corresponding arc connecting the place to the
transition. A transition is ready when its guard is true and all input events occur.

In order to benefit from Model Driven Architecture (MDA – an initiative from
Object Management Group) artifacts and infrastructure, an IOPT Ecore representing
IOPT models was proposed in [15].

A distributed embedded system with (two) components in interaction can be
specified through an IOPT net model. Fig. 1 (at the left and at the center) presents two
distinct ways to do it. But in both is not possible to specify components with distinct
time domains, disabling GALS systems specifications. In addition, the synchronous
channel (see [4]) of the left model considers a zero time delay between T1 and T2
firing, making it unsuitable to specify GALS components interaction. Furthermore,
using a specification through events, like in the center model, the output event #Z and
the input event #A should be related, but in IOPT net it is not possible to do it.

146 F. Moutinho and L. Gomes

Fig. 1. A Petri net with a synchronous channel (left), a Petri net with a two components
interacting through events (center), and a GALS system model using AC and TDs (right)

5 ACs and TDs Extending the IOPT Net Class

Introducing a new annotation attribute referring the Time-Domain (TD) of each node
of the IOPT net (places and transitions) it is possible to associate each node to a
specific component. In addition, replacing in left model of Fig. 1 the synchronous
channel, or in center model of Fig. 1 the communication events, by an Asynchronous-
Channel (AC), the right model of Fig. 1 is obtained. Each AC (represented by a
dashed arrow with a cloud in the middle) has a specific TD.

All nodes of an IOPT net model, directly or indirectly connected through arcs to a
transition of a specific component, must belong to the same component of the
transition. In the right model of Fig. 1, nodes P1, T1 and P2 belong to component one
with TD 1 (td:1), nodes P3, T2 and P4 belong to component two with TD 2 (td:2),
and the AC named ac.T1.T2 has TD 3 (td:3).

5.1 Definition

An AC always connects two transitions with two different TDs. One transition is the
master and sends events to the other transition (the slave), events pass through the
AC. In right model of Fig. 1, T1 is the master transition and belongs to component
one with TD 1 (td:1), T2 is the slave transition and belongs to component two with
TD 2 (td:2). An IOPT Petri net extended with ACs and TDs can be defined by

()TDsACsIOPTGALSIOPT ,,2 = , (1)

where: (1) an IOPT Petri net is defined as in [3]; (2) ACs are a set of Asynchronous-
Channels; and (3) TDs are a set of time domains.

()oscoeieisgpriorityweightTestweightMTAATPIOPT ,,,,,,,,,,,= . (2)

()TTACs ×⊆ . (3)

()sm ttAC ×⊆ . (4)

actp TDSTDsTDsTDs ∪∪= . (5)

mt is the master and st is the slave, such that () () ()smsm ttTtTt ≠∧∈∧∈ .

INPTDsp →: , INTTDst →: , and INACsTDsac →: .

 Asynchronous-Channels and Time-Domains Extending Petri Nets for GALS Systems 147

The IOPT Ecore proposed in [15] was extended in order to include ACs and TDs.
Fig. 2 presents the new package extending the IOPT Ecore. Two annotations were
inserted: (1) the AsynchronousChannel and the TimeDomain. An IOPT net Page can
have one or more AsynchronousChannels. An AsynchronousChannel has a
TimeDomain and links one master transition to one slave transition. Master and slave
transitions must belong to different components (with different time domains). When
modeling GALS systems, IOPT net Nodes belong to specific GALS components
(identified by its time domain).

Fig. 2. Asynchronous-Channels package extending IOPT net Ecore

5.2 AC Executable Semantics

Considering Fig. 1 (right), each time the master transition fires, an event is sent to the
slave transition through the AC. The time spent between master and slave transition
(always different from zero, contrary to what happens in the synchronous channels)
depends on the AC TD. The proposed executable semantics considers that the slave
component consumes the received events in the next execution tick.

The executable semantics of ACs can be described using IOPT nets, in two distinct
(and equivalent) ways (Fig. 3): in the left model, using synchronous channels [4]
(represented by dashed arrows between transitions); or in the right model using a test
arc (represented by a line with an arrow in the middle) between a place and a
transition (also known as read arc). In both models: (1) each time master transition
fires tokens are inserted in P5; (2) transition T4 models asynchronous nature of the
channel, with the specific TD of the AC (td:3), it consumes tokens from P5 and insert
tokens in P6; (3) in the next clock tick cycle of component two with TD 2 (td:2),
tokens are removed from P6 through T5 (left) or T3 (right) and T2 if enabled, fires.
Using one of the models of Fig. 3 to describe the behavior of ACs, it will be possible
to analyze the generated state space, getting through the maximal bound of AC places
(P5 or P6), the buffer length of the communication channels implementing the ACs.
This information is very important for a robust implementation of the whole system.

Fig. 3. AC model using synchronous channels (left) and AC model using a test arc (right)

148 F. Moutinho and L. Gomes

6 Validation

An IOPT net editor supporting ACs and TDs was developed as a textual editor
automatically generated from the extended Ecore in Eclipse Modeling Framework
(EMF). This editor guarantees well-formed models in fully concordance with the
IOPT Ecore metamodel. A set of examples was used to validate the proposed ACs
and TDs. Due to space limitations, in this paper is presented a very simple one,
modeling a manufacturing system with one machine and two conveyor belts. Each
conveyor belt feeds the machine with one type of components, two components are
needed to build a piece. Output signals #M1 and #M2 make the conveyor belts move.
Two sensors (input events #S1 and #S2) detect components arriving. After
components arrive, output event #Build is generated by the system controller, putting
the machine to work. Input event #Done indicates the end of machine building
process.

The system was first specified through a (centralized) IOPT net. After the model
edition and translation into Petri Net Markup Language (PNML) format, the model
from the manufacturing system, was divided into three sub-models using the net split
tool [4], in order to implement the distributed controller with three components: (1)
component C1 controlling the machine, (2) component C2 controlling one conveyor
belt, and (3) component C3 controlling the second conveyor belt.

In order to move away from synchronous paradigm, and include different time
domains for the generated components, synchronous channels were replaced by the
proposed ACs and each IOPT Petri net node was associated with one TD (one
component of the GALS system). The GALS system model of the distributed
manufacturing system is presented in Fig. 4.

The generated PNML [15] was used to feed the state space generator tool for
GALS systems based on the algorithm proposed in [16], which generates state spaces
from IOPT models of GALS systems, allowing property verification of the behavior
of the global GALS system (including each component behavior and its interaction).

Fig. 4. The IOPT Petri net model with ACs and TDs modeling a GALS system

From the state space and performing queries, was verified that the system has the

desired properties: no deadlocks; the machine build a new piece when both
components are available; etc. It was also verified that the maximal bound of all

 Asynchronous-Channels and Time-Domains Extending Petri Nets for GALS Systems 149

places of the IOPT net is one, which means that the length of implementation registers
and wrapper buffers is equal to one. Due to space limitation is not possible to present
the generated state space and the performed queries. VHDL code for hardware and C
code for software implementations were automatically generated from the PNML file
to implement each GALS system component, using the tools [17, 18].

7 Conclusions and Future Work

With the proposed ACs and TDs extending IOPT nets it is possible to specify GALS
systems behavior. This class is used in a model-based development approach to verify
GALS systems properties, supporting behavior verification and implementation.

The proposed extension was validated with several examples, where GALS
systems were initially modeled: (1) with a set of models specifying a set of
components, interacting through events; or (2) with one centralized model and then
partitioned using the net splitting operation, and interacting through synchronous
channels. In both approaches models rely on a synchronous paradigm, which means
that all components have to be synchronous within the same clock domain. The TDs
and ACs proposed in this paper allowed the development of distributed
implementations with components at different clock domains, and its interaction.

The new tool used to generate the global state space of GALS systems modeled
through extended IOPT nets (with ACs and TDs) will be publicly available in the near
future. The generated state space allows properties verification of the entire system
(as if it is a single synchronous system). The tool will have a comprehensive interface
allowing queries on the state space, and will be integrated in the tool chain framework
currently under development, including a new graphical editor supporting ACs and
TDs edition.

Acknowledgment. The first author work is supported by a Portuguese FCT
(Fundação para a Ciência e a Tecnologia) grant, ref. SFRH/BD/62171/2009.

References

1. Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems, Ph.D. Thesis:
Stanford University (1984)

2. Bormann, D.S., Cheung, P.Y.K.: Asynchronous wrapper for heterogeneous systems. In:
International Conference on Computer Design, ICCD (1997)

3. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net
Class and Associated Tools. In: Proceedings of the 5th IEEE International Conference on
Industrial Informatics (INDIN 2007), Vienna, Austria (2007)

4. Costa, A., Gomes, L.: Petri net partitioning using net splitting operation. In: Proceedings of
the 7th IEEE International Conference on Industrial Informatics, Cardiff, UK (2009)

5. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-Based Development of
Embedded Systems. In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426,
p. 298. Springer, Heidelberg (2002)

150 F. Moutinho and L. Gomes

6. De Niz, D., Bhatia, G., Rajkumar, R.: Model-Based Development of Embedded Systems:
The SysWeaver Approach. In: Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, Washington, DC, USA (2006)

7. Borcsok, J., Chaaban, W., Schwarz, M., Sheng, H., Sheleh, O., Batchuluun, B.: An
automated software verification tool for model-based development of embedded systems
with Simulink. In: XXII International Symposium on Information, Communication and
Automation Technologies (ICAT 2009), Bosnia (2009)

8. Bunse, C., Gross, H.G., Peper, C.: Applying a model-based approach for embedded system
development. In: Proceedings of the 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, Washington, DC, USA (2007)

9. Gomes, L., Fernandes, J.: Behavioral Modeling for Embedded Systems and Technologies:
Applications for Design and Implementation. IGI Global’s (2009)

10. Carloni, L.P., Sangiovanni-Vincentelli, A.L.: A formal modeling framework for deploying
synchronous designs on distributed architectures, in In FMGALS: Formal Methods for
Globally Asynchronous Locally Asynchronous Architecture. Elsevier, (2003)

11. Kleijn, H., Koutny, M., Rozenberg, G.: Processes of Petri nets with localities, Technical
Report CS-TR-941, School of Computing Science, Newcastle upon Tyne, UK (2006)

12. Suhaib, S., Mathaikutty, D., Shukla, S.K.: Dataflow architectures for GALS. Electronic
Notes in Theoretical Computer Science 200, 33–50 (2008)

13. Reisig, W.: Petri nets: an introduction. Springer-Verlag New York, Inc., NY (1985)
14. Moutinho, F., Gomes, L., Barbosa, P., Barros, J.P., Ramalho, F., Figueiredo, J., Costa, A.,

Monteiro, A.: Petri Net Based Specification and Verification of Globally-Asynchronous-
Locally-Synchronous System. In: Camarinha-Matos, L.M. (ed.) Technological Innovation
for Sustainability. IFIP AICT, vol. 349, pp. 237–245. Springer, Heidelberg (2011)

15. Ribeiro, J., Moutinho, F., Pereira, F., Barros, J.P., Gomes, L.: An Ecore based Petri net
Type Definition for PNML IOPT Models. In: INDIN 2011 - 9th IEEE International
Conference on Industrial Informatics, Caparica, Lisbon, Portugal (2011)

16. Moutinho, F., Gomes, L.: State Space Generation Algorithm for GALS Systems Modeled
by IOPT Petri Nets. In: 37th Annual Conf. of the IEEE Industrial Electr. Society, Australia
(2011)

17. Gomes, L., Rebelo, R., Barros, J., Costa, A., Pais, R.: From Petri net models to C
implementation of digital controllers. In: Proceedings of the ISIE 2010 - IEEE
International Symposium on Industrial Electronics, Bari, Italy (2010)

18. Gomes, L., Costa, A., Barros, J., Lima, P.: From Petri net models to VHDL
implementation of digital controllers. In: 33rd Annual Conf. of IEEE Industrial Electr.
Society, Taiwan (2007)

	Asynchronous-Channels and Time-Domains Extending Petri Nets for GALS Systems
	Introduction
	Contribution to Value Creation
	Related Work
	The IOPT Petri Net Class
	ACs and TDs Extending the IOPT Net Class
	Definition
	AC Executable Semantics

	Validation
	Conclusions and Future Work
	References

