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Abstract. A specific class of Petri nets was extended with Asynchronous-
Channels (ACs) and Time-Domains (TDs) to support Globally-Asynchronous 
Locally-Synchronous (GALS) systems’ modeling, analysis and implementation. 
This non-autonomous class of Petri nets is targeted to support the development 
of automation and embedded systems using a model-based development 
approach. It benefits from a tool chain framework previously developed, 
covering the whole development flow, from specification to hardware and 
software deployment. With the extended Petri net class is possible to model 
GALS systems, and use the specification to generate the corresponding state 
space supporting the behavior verification and providing valuable information 
for implementation. 
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1 Introduction 

With the increase in the number of requirements, embedded systems are becoming 
larger and more complex. Synchronous specifications are widely used in hardware 
and software systems development due to simplicity in the verification and synthesis 
processes. Using software platforms it is common not to reach the desired processing 
performance, requiring a full or a partially hardware implementation. In hardware, 
large synchronous designs with the need for high clock frequencies are complex to 
develop.  This can occur because it is difficult to make a proper clock tree 
distribution, and the signal propagation time may be higher than the clock period. 
High power consumption and Electromagnetic Interference (EMI) are also common 
problems of large synchronous circuits, that can be minimized with the use multiple 
synchronous components. In software, multiple components also enables the number 
of clocks (processor clock ticks per second) reduction and as a consequence power 
consumption reduction. Distributed embedded systems are a possible solution for 
complex embedded system; also allowing the reuse of old previously designed 
components. 

Globally-Asynchronous Locally-Synchronous (GALS) systems proposed in [1] are 
intrinsically distributed systems and combine advantages of synchronous systems 
with asynchronous systems. Synchronous systems are easier to develop and rely on a 
set of available tools. On the other hand, asynchronous systems are faster, with lower 
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power consumption and higher performance. In GALS systems, each local component 
is synchronous with a local clock tick, which determines its evolution; as each 
component has a different clock domain, the global system is asynchronous. 
Interaction can occur through asynchronous wrappers, such as those proposed in [2]. 

Petri net classes have been proposed by several authors to develop embedded 
systems through a model-based development approach. The Input-Output Place-
Transition (IOPT) Petri net [3] is one of those classes, with an available tool 
framework allowing: (1) models edition; (2) models partition [4] (producing a set of 
synchronous sub-models interconnected through synchronous communication 
channels and supporting the application of hardware-software co-design techniques in 
embedded systems design); (3) automatic generation of the state space for properties 
verification; (4) automatic generation of C and VHDL codes for implementing system 
controllers; (5) the generation of Graphical User Interfaces. 

However, since we need to face distributed implementation and to accommodate 
different time domains associated with the components of the GALS system, it is 
necessary to handle asynchronous communication between components, where 
specific asynchronous wrappers can be used to assure robust communication. As the 
IOPT net class does not allow GALS systems specification, the following research 
question appear: How to specify GALS systems using the IOPT net class, in order to 
verify GALS systems properties, to support behavior verification and to obtain the 
required information for components and asynchronous wrappers implementation? 

This paper presents an extension to the IOPT net class, introducing Asynchronous-
Channels (ACs) and Time-Domains (TDs), making possible the specification of 
GALS systems through the extended IOPT net class. From this specification it is 
possible to generate the associated state space. Properties verification through the 
state space will help to determine if the models specify the desired behavior and to 
obtain required information to implement components and asynchronous wrappers. 

2 Contribution to Value Creation 

Using a model-based development approach to embedded systems, together with its 
implementation as a GALS system, enables the design and implementation of more 
complex systems, better documented, in less time, in a more automatic way, and 
benefiting from reusability of models and code. In this sense, the model-based 
development approach and this work in particular contribute with added value for the 
system development. In addition, the system when implemented as a GALS system, 
instead of being implemented as a global synchronous system, might have less EMI 
and power consumption. To develop reliable systems is required to guarantee the 
proper behavior of the embedded system, where this work gives an important 
contribution, extending the IOPT net class with the ability of specifying GALS 
systems, supporting its documentation, verification and implementation. 

3 Related Work 

GALS embedded systems development presents greater challenges when compared to 
synchronous embedded systems development, making the development method even 
more crucial in the final system quality, time-to-market, reusability, etc. Model-based 
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development approaches proposed by several authors (such as in [5, 6, 7, 8, 9]) in the 
recent years, for embedded systems development, may be an appropriate approach in 
the development of GALS systems. 

Some authors, like in [10], proposed textual languages for GALS systems 
specification and verification, while others (such as in [11, 12]) used graphical-based 
descriptions. In [11], the Place/Transition net class (P/T nets, an autonomous Petri net 
class) [13] is extended with localities. It is used to model and make the behavioral 
analysis of GALS systems. Localities are assigned to transitions, making them part of 
specific components of the GALS system. 

The IOPT net class [3] extended with ACs and TDs is considered in this work to 
support the complete development flow of GALS systems, and not only system 
specification and verification, like in [11]. The IOPT net class was chosen based on its 
characteristics that make it suitable for modeling automation and embedded systems. 
It benefits from availability of a tool chain framework, used in this work to support 
model edition, partitioning, properties verification and automatic generation of C and 
VHDL codes for implementing GALS system components. In [14], the IOPT net class 
(not extended) was used to specify GALS systems, where a set of sub-models was 
used to specify a set of components, and the interaction between components was 
modeled through single places. The use of IOPT nets as was done in [14] has two 
limitations: (1) it is not possible to use two (separate) sub-models to specify a single 
component; and (2) single places between components do not allow the specification 
of asynchronous communication between components, as the maximal step execution 
within each component, separately, is not assured. 

4 The IOPT Petri Net Class 

The IOPT net [3] is a class of Petri nets that extends the well known P/T net class [13] 
with inputs, outputs and a set of additional characteristics. Inputs are used to model 
the interaction between the environment and the system (making this class non-
autonomous); outputs are used to represent system actions in the environment. IOPT 
nets have synchronous execution (the system evolution takes place at specific instants 
of time controlled by a clock tick) and a maximal-step executable semantics, which 
means that all enabled and ready transitions at a specific instant of time will fire. A 
transition is enabled when the number of tokens in places from incoming arcs are 
equal or bigger than the weight of the corresponding arc connecting the place to the 
transition. A transition is ready when its guard is true and all input events occur. 

In order to benefit from Model Driven Architecture (MDA – an initiative from 
Object Management Group) artifacts and infrastructure, an IOPT Ecore representing 
IOPT models was proposed in [15]. 

A distributed embedded system with (two) components in interaction can be 
specified through an IOPT net model. Fig. 1 (at the left and at the center) presents two 
distinct ways to do it. But in both is not possible to specify components with distinct 
time domains, disabling GALS systems specifications. In addition, the synchronous 
channel (see [4]) of the left model considers a zero time delay between T1 and T2 
firing, making it unsuitable to specify GALS components interaction. Furthermore, 
using a specification through events, like in the center model, the output event #Z and 
the input event #A should be related, but in IOPT net it is not possible to do it. 



146 F. Moutinho and L. Gomes 

 

Fig. 1. A Petri net with a synchronous channel (left), a Petri net with a two components 
interacting through events (center), and a GALS system model using AC and TDs (right) 

5 ACs and TDs Extending the IOPT Net Class 

Introducing a new annotation attribute referring the Time-Domain (TD) of each node 
of the IOPT net (places and transitions) it is possible to associate each node to a 
specific component. In addition, replacing in left model of Fig. 1 the synchronous 
channel, or in center model of Fig. 1 the communication events, by an Asynchronous-
Channel (AC), the right model of Fig. 1 is obtained. Each AC (represented by a 
dashed arrow with a cloud in the middle) has a specific TD. 

All nodes of an IOPT net model, directly or indirectly connected through arcs to a 
transition of a specific component, must belong to the same component of the 
transition. In the right model of Fig. 1, nodes P1, T1 and P2 belong to component one 
with TD 1 (td:1), nodes P3, T2 and P4 belong to component two with TD 2 (td:2), 
and the AC named ac.T1.T2 has TD 3 (td:3). 

5.1 Definition 

An AC always connects two transitions with two different TDs. One transition is the 
master and sends events to the other transition (the slave), events pass through the 
AC. In right model of Fig. 1, T1 is the master transition and belongs to component 
one with TD 1 (td:1), T2 is the slave transition and belongs to component two with 
TD 2 (td:2). An IOPT Petri net extended with ACs and TDs can be defined by 

( )TDsACsIOPTGALSIOPT ,,2 =  , (1)

where: (1) an IOPT Petri net is defined as in [3]; (2) ACs are a set of Asynchronous-
Channels; and (3) TDs are a set of time domains. 

( )oscoeieisgpriorityweightTestweightMTAATPIOPT ,,,,,,,,,,,=  . (2)

( )TTACs ×⊆  . (3)

( )sm ttAC ×⊆  . (4)

actp TDSTDsTDsTDs ∪∪=  . (5)

mt  is the master and st  is the slave, such that ( ) ( ) ( )smsm ttTtTt ≠∧∈∧∈ . 

INPTDsp →: , INTTDst →: , and INACsTDsac →: . 



 Asynchronous-Channels and Time-Domains Extending Petri Nets for GALS Systems 147 

The IOPT Ecore proposed in [15] was extended in order to include ACs and TDs. 
Fig. 2 presents the new package extending the IOPT Ecore. Two annotations were 
inserted: (1) the AsynchronousChannel and the TimeDomain. An IOPT net Page can 
have one or more AsynchronousChannels. An AsynchronousChannel has a 
TimeDomain and links one master transition to one slave transition. Master and slave 
transitions must belong to different components (with different time domains). When 
modeling GALS systems, IOPT net Nodes belong to specific GALS components 
(identified by its time domain). 

 

 

Fig. 2. Asynchronous-Channels package extending IOPT net Ecore 

5.2 AC Executable Semantics 

Considering Fig. 1 (right), each time the master transition fires, an event is sent to the 
slave transition through the AC. The time spent between master and slave transition 
(always different from zero, contrary to what happens in the synchronous channels) 
depends on the AC TD. The proposed executable semantics considers that the slave 
component consumes the received events in the next execution tick. 

The executable semantics of ACs can be described using IOPT nets, in two distinct 
(and equivalent) ways (Fig. 3): in the left model, using synchronous channels [4] 
(represented by dashed arrows between transitions); or in the right model using a test 
arc (represented by a line with an arrow in the middle) between a place and a 
transition (also known as read arc). In both models: (1) each time master transition 
fires tokens are inserted in P5; (2) transition T4 models asynchronous nature of the 
channel, with the specific TD of the AC (td:3), it consumes tokens from P5 and insert 
tokens in P6; (3) in the next clock tick cycle of component two with TD 2 (td:2), 
tokens are removed from P6 through T5 (left) or T3 (right) and T2 if enabled, fires. 
Using one of the models of Fig. 3 to describe the behavior of ACs, it will be possible 
to analyze the generated state space, getting through the maximal bound of AC places 
(P5 or P6), the buffer length of the communication channels implementing the ACs. 
This information is very important for a robust implementation of the whole system. 

 

      

Fig. 3. AC model using synchronous channels (left) and AC model using a test arc (right) 
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6 Validation 

An IOPT net editor supporting ACs and TDs was developed as a textual editor 
automatically generated from the extended Ecore in Eclipse Modeling Framework 
(EMF). This editor guarantees well-formed models in fully concordance with the 
IOPT Ecore metamodel. A set of examples was used to validate the proposed ACs 
and TDs. Due to space limitations, in this paper is presented a very simple one, 
modeling a manufacturing system with one machine and two conveyor belts. Each 
conveyor belt feeds the machine with one type of components, two components are 
needed to build a piece. Output signals #M1 and #M2 make the conveyor belts move. 
Two sensors (input events #S1 and #S2) detect components arriving. After 
components arrive, output event #Build is generated by the system controller, putting 
the machine to work. Input event #Done indicates the end of machine building 
process. 

The system was first specified through a (centralized) IOPT net. After the model 
edition and translation into Petri Net Markup Language (PNML) format, the model 
from the manufacturing system, was divided into three sub-models using the net split 
tool [4], in order to implement the distributed controller with three components: (1) 
component C1 controlling the machine, (2) component C2 controlling one conveyor 
belt, and (3) component  C3 controlling the second conveyor belt. 

In order to move away from synchronous paradigm, and include different time 
domains for the generated components, synchronous channels were replaced by the 
proposed ACs and each IOPT Petri net node was associated with one TD (one 
component of the GALS system). The GALS system model of the distributed 
manufacturing system is presented in Fig. 4. 

The generated PNML [15] was used to feed the state space generator tool for 
GALS systems based on the algorithm proposed in [16], which generates state spaces 
from IOPT models of GALS systems, allowing property verification of the behavior 
of the global GALS system (including each component behavior and its interaction). 

 

Fig. 4. The IOPT Petri net model with ACs and TDs modeling a GALS system  

 
From the state space and performing queries, was verified that the system has the 

desired properties: no deadlocks; the machine build a new piece when both 
components are available; etc. It was also verified that the maximal bound of all 



 Asynchronous-Channels and Time-Domains Extending Petri Nets for GALS Systems 149 

places of the IOPT net is one, which means that the length of implementation registers 
and wrapper buffers is equal to one. Due to space limitation is not possible to present 
the generated state space and the performed queries. VHDL code for hardware and C 
code for software implementations were automatically generated from the PNML file 
to implement each GALS system component, using the tools [17, 18]. 

7 Conclusions and Future Work 

With the proposed ACs and TDs extending IOPT nets it is possible to specify GALS 
systems behavior. This class is used in a model-based development approach to verify 
GALS systems properties, supporting behavior verification and implementation. 

The proposed extension was validated with several examples, where GALS 
systems were initially modeled: (1) with a set of models specifying a set of 
components, interacting through events; or (2) with one centralized model and then 
partitioned using the net splitting operation, and interacting through synchronous 
channels. In both approaches models rely on a synchronous paradigm, which means 
that all components have to be synchronous within the same clock domain. The TDs 
and ACs proposed in this paper allowed the development of distributed 
implementations with components at different clock domains, and its interaction. 

The new tool used to generate the global state space of GALS systems modeled 
through extended IOPT nets (with ACs and TDs) will be publicly available in the near 
future. The generated state space allows properties verification of the entire system 
(as if it is a single synchronous system). The tool will have a comprehensive interface 
allowing queries on the state space, and will be integrated in the tool chain framework 
currently under development, including a new graphical editor supporting ACs and 
TDs edition. 
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