
Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 1

Asynchronous Circuit Principles and a Survey of
Associated Design Tools

Ney L. V. Calazans∗, Marcos L. L. Sartori†
∗Independent Researcher, Brazil

†Pontifı́cia Universidade Católica do Rio Grande do Sul - Porto Alegre, Brazil
nlvcalazans@gmail.com, marcos.sartori@acad.pucrs.br

Abstract—Planning and implementing a semiconductor inte-
grated circuit is a highly complex process. Although physical
limits seem to be approaching, it currently follows a growing
evolutionary path. As deep submicron technologies evolve to-
wards perhaps even sub-nano geometries, the design process
complicates accordingly. Once subtle in higher geometry nodes,
some effects become relevant or even dominant. Examples are
effects that tamper the reliability of wires, such as crosstalk, or
the adequate behaviour of gates, such as the increasing sensitivity
to single event effects. Design techniques must thus also evolve,
to provide a wide range of tools to handle new effects during
the integrated circuit design and test processes. This tutorial
covers one set of design techniques that is often overlooked,
but which can reveal themselves instrumental in coping with
the mentioned technology evolution, the use of clockless or
asynchronous circuits. The tutorial is divided into three parts:
first it introduces a metamodel for the digital circuit design
process, enabling to reason about distinct design styles; second,
it covers the main principles of asynchronous circuit design,
differentiating it from mainstream circuit design techniques
such as conventional synchronous design; the third and last
part presents a set of tools and systems that can be employed
to effectively design asynchronous circuits, with emphasis on
material that can be used to produce manufacturable circuits
and systems, often associated to commercial integrated circuit
synthesis, implementation and test tools and frameworks.

I. INTRODUCTION

The evolution of the technology for semiconductor manu-
facturing nodes in the last half century is astonishing. If in the
beginning of years 70´s of the previous century the state of
the art was around a 10µm feature size, the world now sees
designs being sent for fabrication in 3nm (and soon 2nm)
technology nodes. Also, recent researches indicate it is feasible
to consider the availability of 1nm nodes for industrial use in
a near future [1].

In tandem with this evolution, problems to employ such new
technologies defying both design companies and designers.
Designing latest node chips is very hard and very costly, with
integrated circuit (IC) mask sets reaching a cost of dozens
of US$ millions and designs ending up by costing several
hundreds of US$ millions. Also, to deal with newer node
design complexity, designers must rely much more intensively
on electronic design automation (EDA), but these are quite
behind in addressing all features and added complexities of
new nodes. Consequently, state of the art chip design and man-
ufacturing is an asset limited in reach to a handful of design
houses and just to a few manufacturers, even considering the
whole planetary scope.

In advanced technology nodes there are several relevant
circuit parameters which are hard to predict and or control,
including but not restricted to: manufacturing faults, design
variability, yield rate for good dies. Also, as nodes evolve,

models to compute the longevity of circuits must be constantly
enhanced. Nonetheless, the range of commercial technologies
available for fabrication widens, since older technology nodes
continue to occupy certain market niches, because their use
continues to be economically advantageous. For example,
commercial ICs using a 180nm or even a 250nm technology
are still designed and commercialised. Note that this corre-
sponds to feature sizes two orders of magnitude or more larger
than what is available in state-of-the-art nodes. Many other
technology choices are there in between.

Another design dimension to consider is that newer features
intervene as the technology node shrinks. Thus, decisions
to use features unavailable in older technologies add up to
the design process. For instance, transitioning from 45nm or
32nm to smaller feature sizes enables a change in the way
transistors are to be designed, forcing the abandonment of
pure CMOS bulk technologies in favour of the more advanced
technologies. Examples of the latter are FinFET and FDSOI.
As another example of design choice unavailable before, there
is the possibility to employ multiple transistor types in a same
or in alternate designs for a given technology node. This starts
to be available for technologies around the 130nm feature
size node. In this and subsequent nodes there are choices of
for example transistors with distinct threshold voltages, that
enable to better control device characteristics such as speed
and/or current leakage.

Within the context of the discussed technological scenarios,
adopting the synchronous digital circuit design paradigm is
one of the reasons behind the rapid development of the VLSI
industry, due to the enhanced productivity it enables for IC
designers. This paradigm reduces design complexity, through
the use of a global control signal called clock dictating all event
sequencing in the circuit. A synchronous designer can ignore
wire and gate delays during several of the design phases, as
long as the logic path between each pair of storage elements
always takes less time than the clock period. Unfortunately,
distributing a clock signal across a complex IC is challenging
today, due to the exponential growth of integration capabilities,
among other factors. Albeit there are different techniques and
EDA support to automatically generate the clock distribution,
the required circuitry may take something from 30% to 50%
of the total power in synchronous circuits [2]. This is further
complicated by the inevitable delay uncertainties caused by
data dependencies and process, voltage and temperature (PVT)
variations. To cope with these, synchronous designs rely on
the addition of delay margins to the clock signal, which
translates to performance losses, and can require tuning the
operating voltage, further adding power overheads [3], [4].
Asynchronous design, on the other hand, does not rely on
global timing assumptions and treat time as a continuous

Digital Object Identifier 10.29292/jics.v17i3.677

2 CALAZANS & SARTORI: Asynchronous Design Principles and Survey

variable such that synchronisation and sequencing of events
take place locally, between communicating entities [5].

A set of relevant issues for available technology nodes
include energy efficiency and robustness. Energy efficiency
is easy to define and measure. Approaching design robustness
requires more insight. Investigating design robustness in detail
is outside the scope of this tutorial, but Calazans et al. have
recently described ways on how the use of asynchronous de-
sign can be beneficial to improve robustness in [6]. Interested
readers can refer to this publication for more on robust design
using asynchronous circuits.

This tutorial covers two aspects of asynchronous circuits.
The first is to describe the main principles underlying the de-
sign of asynchronous circuits, showing that the umbrella name
asynchronous circuits encompasses a large set of completely
distinct and/or complementary digital design techniques, hav-
ing in common a single assumption of not using one or only
small set of synchronising signals usually denominated clocks.
The second aspect is a limited vision about usable methods
and tools to deal with the design of asynchronous circuits.
The focus here is on covering only a mainstream set of tools
and systems available (often as open source) to design such
circuits. Most of these intrinsically rely on commercial design
automation frameworks such as Cadence and/or Synopsys and
tweek these to make the frameworks deal with asynchronous
circuits idiosyncrasies while automatically generating circuits.

The rest of this tutorial comprises four sections. Section II
provides a metamodel called digital circuit design template
(DCDT), useful for analysing digital circuit design process
models. This enables confronting, on common grounds, the
panoply of current and future digital design techniques asyn-
chronous or not. Section III next introduces a main set of
principles and concepts behind asynchronous circuit design
styles, sometimes using the DCDT metamodel as a reasoning
to explain similarities and divergences of distinct design pro-
cesses. Section IV discusses a selected set of relevant state-of-
the-art design tools for asynchronous design. Finally, the paper
ends with Section V, where a few conclusions on the subject,
a process helped by some references to recent examples.
In these, asynchronous design achieves better results than
synchronous counterparts, producing effective digital circuits
in selected, relevant application niches.

II. A METAMODEL FOR THE DIGITAL DESIGN PROCESS

Digital design currently enables composing billions of logic
gates into working circuits with a large set of functionalities
to process information in fast and accurate ways. To handle
the huge amount of gates and wires that finally implement a
powerful circuit requires effective disciplines to manage the
design process complexity. These disciplines involve devising
efficient methods for combining very simple devices (e.g. logic
gates) into basic modules, methods for abstracting modules,
methods for interfacing modules and methods to reuse com-
ponents with a given complexity, to cite only a few of the
techniques involved. To organise the way a digital circuit is
planned, it is useful to introduce the concept of a digital
circuit design template. The concept is an evolution of the
Asynchronous Circuit Template definition, first proposed by
Moreira in [7]. It enables to reason about how a digital circuit
can be systematically implemented, organising the design
process with a set of encompassing design abstractions that can
be naturally mapped to any set of specific design techniques
used for digital circuit design. The concept definition below
is illustrated by the diagram of Figure 1.

Definition 1 (Digital Circuit Design Template (DCDT)). A
digital circuit design template (DCDT) is a metamodel
composed by two entities: a design style and a channel. The
design style comprises two sub-entities, a set of cells and
an architecture. The channel, in turn, is also a composition
of two sub-entities, a communication link and a protocol.
Cells in the set of cells are the basic blocks available to
build circuits (e.g. the logic gates of a standard cell library),
while the architecture is a set of rules for combining cells
into valid circuit configurations. A communication link may
be as simple as a wire connecting a pair of gates, or it can be
a much more elaborate interconnection structure. A protocol
establishes how information must flow in communication links
and must be defined in accordance to the set of cells and the
template architecture rules.

Fig. 1. A diagram illustrating the digital circuit design template concept.

To enable readers to appreciate the usefulness of the DCDT
metamodel, it will be fitted to the very well known syn-
chronous register-transfer level (RTL) digital design template.
Later, this baseline modelling of a familiar template is com-
pared to asynchronous design templates, which enables to
better embrace the similarities and differences among syn-
chronous and asynchronous digital design processes.

The basic way to model a known template using the
DCDT metamodel consists simply in mapping the template
characteristics to the the metamodel four entities, which for
the synchronous RTL template gives:

1) The set of cells for synchronous RTL design can be
mapped to the set of logic gates finally used to design
a circuit. Even if the circuit behaviour and structure
is often captured using hardware description languages
(HDL) such as Verilog or VHDL, there is always an
underlying library which, to support synchronous RTL
design, is most often composed by combinational gates
and sequential elementary components such as flip-flops.
Of course, other design implementation options such as
Field-Programmable Gate Arrays (FPGAs) may add to
these a set of technology-dependent cells such as LUTs,
carry-chains, etc.

2) The architecture for synchronous RTL design implies
three set of rules: (i) rules to interconnect gates, form-
ing functional combinational logic (CL) modules, able
to transform data; (ii) rules to interconnect functional
modules inputs and outputs to registers (or primary in-
puts/outputs); (iii) rules to connect registers to functional
modules (or primary inputs/outputs).

3) The communication link for synchronous RTL relies
on the assumption that: (i) wires encode information,
being somehow ordered to represent digital numbers; (ii)
besides, a special wire (or more generally a clock value
distribution structure usually called clock tree) controls
the flow of data everywhere in the circuit.

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 3

4) Finally, the protocol for synchronous RTL design is
the widespread synchronous protocol, stating that when
the clock ticks (i.e. transitions in one of two possible
directions, from 0 to 1 or from 1 to 0, respectively
defining either clock rising edge or falling edge sensitive
synchronous templates), every register in the circuit po-
tentially gets new data (exceptions can of course apply).

The above modelling exercise shows the DCDT metamodel
modularity enables describing multiple templates, either some
very close to the popular synchronous RTL template or others
very different from it. For example, if instead of acting on only
one clock edge (as most synchronous designs do) a circuit is
defined to act on both clock edges, a new template arises (say
synchronous, double edge sensitive), that requires at least a
different set of cells and certainly a distinct set of architectural
rules. Other templates from the literature can also be seen
as possible to model with DCDT, e.g. synchronous two-
phase design, latch-based (instead of flip-flop-based) design,
or clock-skew tolerant design [8]. Exercising such metamodel
mappings is left as exercise to readers.

It is important to assess how to deal with the DCDT meta-
model for describing asynchronous design templates. In fact,
the variety of such templates is quite large, and there is none
among them that matches the popularity of the synchronous
RTL template. The question arises as to what can/must change
in DCDT entities when these are used to model asynchronous
design templates. The answer goes from almost no change to
basically everything, depending on the template. The closer to
synchronous an asynchronous design template is, the easier
it is for synchronous designers to understand it, and the
easier it is to use synchronous electronic design automation
(EDA) tools in the process of designing such circuits, both
of which are clear advantages. The other side of the coin
reveals that the farther an asynchronous design template is
from synchronous design, the better is the potential to achieve:
(i) power efficiency; (ii) robustness to variations, to single
event effects (SEEs) and to technology migration; (iii) graceful
circuit ageing and reduced electromagnetic interference and
resistance to side channel attacks (SCA).

To conclude this Section it is worth to exemplify how
each DCDT entities/sub-entities vary for asynchronous design
templates. Summarizing:

1) The set of cells for asynchronous design templates is
often distinct from simple Boolean gates and simple flip-
flops, frequently employing additional or simply different
gates, such as C-elements and/or NCL gates [9], multi-
rail pseudo-dynamic gates [10], etc.

2) The architecture for asynchronous design templates is
often very different, since a new set of rules apply to
generate data transformations and to synchronise opera-
tions. Fundamentally, the device interconnection rules are
substituted to enable implement local handshake opera-
tions (see the channel sub-entities description below).

3) The communication link for asynchronous design tem-
plates is usually defined based on two possible informa-
tion encoding schemes, one identical to the one used in
synchronous data representation and another based on en-
coding information with some form of delay-insensitivity
property, more expensive but more robust than the former
scheme.

4) The protocol for asynchronous design templates is again
widely different from those in synchronous protocols,
given the absence of global or semi-global control signals
and depending of the encoding scheme choice.

Fig. 2. Simplified linear pipeline circuit structure using (a) synchronous
and (b) asynchronous designs. Blocks CLi represent combinational logic,
R represent registers, and CTRL indicates control logic. Adapted from [11].

III. ASYNCHRONOUS CIRCUITS DESIGN PRINCIPLES

Most synchronous circuits rely on the assumption that the
value on the inputs of all its registers will only be sampled
at the rising (or/and falling) edge of the clock signal. Refer
to Figure 2(a) to notice that in a classic linear pipeline this
enables to define timing constraints for the maximum delay
in combinational logic paths, which must be typically smaller
than the clock period. Using synchronous design techniques
allows ignoring gate and wire delays, as long as clock timing
constraints are respected. In other words, combinational logic
is allowed to switch as it computes data during, say, the
interval between two consecutive rising clock edges, but the
logic outputs must be stable and correct at each such edge.
Having this simple model for circuit design is possible only
because the clock is a global and periodic signal, i.e. its
edges only occur at specific and known points in time, and
occur simultaneously (this is an assumption) at every point
where required. Hence, in synchronous circuits, events will
only take place at specific moments; time can thus be treated
as a discrete variable.

A look at the alternative, Figure 2(b) shows that in asyn-
chronous circuits there is no such thing as a single clock to si-
multaneously signal data validity on the inputs of all registers.
Here, events can happen at any moment, and time must, quite
often, be regarded as a continuous variable. Asynchronous de-
signers rely on local handshake protocols for communication
and synchronisation, and on different design templates to build
circuits, each with its own specific assumptions about gate and
wire delays [5].

Asynchronous design templates can be broadly classified in
two main families: bundled-data (BD) [12] and self-timed [13].
Using the DCDT metamodel, the main distinction leading to
this classification relies in the DCDT Channel entity, where
communication links and protocols differ widely across BD
and self-timed templates. Refer to Figure 3 to note that the
design of a BD circuit is similar to a synchronous one; the
difference is that BD relies on carefully matching the delay of
data path combinational logic blocks and controlling registers
to the delays in the control block that generates a local clock,
rather than employ a single, global clock signal.

Communication and synchronisation in BD circuits are
accomplished through some handshake protocol, the more
common choices being 4-phase, return to zero (RTZ) proto-
cols [5]. Again using the DCDT concepts, the channel protocol
characteristics provide a way to classify asynchronous design
templates. Data representation in BD circuits follows the same

4 CALAZANS & SARTORI: Asynchronous Design Principles and Survey

Reg 1 Reg 2

Ctrl 1 Ctrl 2
D1

D2
Req

Ack

Logic

U9

U8U10

reset_i

phase_select_i

req_i
en

D Q
full_reg

A A ZZ

Reg 0

Ctrl 0

Multiplicand

Multiplier

Shift-and-Add
Logic

Reg 1 Reg 8
Product

.........

Ctrl 1 Ctrl 8
Ack

Req

EnEn

Fig. 3. Example of a typical BD asynchronous pipeline fragment, with
delay elements explicitly represented as D1 and D2 on request (Req) and
acknowledge (Ack) paths on the control part of the circuit; blocks Ctrli
represent the local stage controllers. Blocks Regi are data path registers and
the Logic cloud represents combinational data processing between pipeline
temporal barriers (the registers).

Boolean encoding used in synchronous circuits1. This means
that according to DCDT BD and synchronous design share
a same channel communication link type. Also, unlike what
happens in synchronous circuits, controllers are local and
usually comprise just a few logic gates. An illustrative extreme
example is the very efficient MOUSETRAP pipeline stage
controller, which includes only an XNOR logic gate and a
1-bit latch [14]. This simplicity helps, since controllers are
replicated at each and every stage of a circuit.

A major hurdle in BD circuit design is how to guarantee that
the control and data paths are always precisely delay-matched,
since the data and control flows typically run parallel to each
other. This is the reason why in Figure 3 delay elements
(DEs) are explicitly shown in the request and acknowledge
paths. Much research exists to further the design of DEs
to achieve working BD circuits. As an illustration of such
research efforts, Heck [15] developed a PhD Thesis where
the focus was obtaining a single programmable delay element
to support the design of asynchronous BD circuits resilient
to timing errors. This was in fact the culmination of a joint
research between a research group at the University of South-
ern California in USA and the authors’ research group, which
had previously generated research results on several aspects of
DE design for BD circuits [16]–[19]. Specifically addressed
research in these publications are analysis and optimisation of
programmable DEs, performance analyses on how fine-grained
and coarse-grained delay adjustments work in practice, and to
control the effect of voltage variations over the delay-matching
characteristic of DEs. Relating to DCDT, DEs are thus part of
the design style set of cells to use and affect the architectural
rules of asynchronous BD templates.

The required delay-matching design effort is one of the
main issues to design robust circuits using the BD family
of templates. BD circuit implementations can be as small as
an equivalent synchronous implementation, or even smaller,
as described for example by Teifel in [20]. However, BD
techniques share some of the disadvantages that plague syn-
chronous design techniques, including a potential reduction in
circuit robustness to variations, mostly due to the decoupling
of control and data parts of the circuit.

A. Asynchronous Self-Timed Design
A fundamental difference between BD and self-timed design

is that the latter relies on data encoding schemes that allow

1This is not the case for self-timed circuits, as Section III-A details.

data to carry their own validity information, which enable
receivers to compute the presence or absence of data at
inputs/outputs, and renders possible the local exchange of in-
formation in a mostly delay insensitive way, matching control
and data information processing more easily. Because of this
characteristic, self-timed circuits can adapt more gracefully to
wire and gate delay variations, and are thus one of the best
choices to obtain robust circuits. On the negative side self-
timed circuits further robustness often at the expense of larger
area and/or power overheads. Associating the above discussion
to DCDT, it shows that the choice of the channel type to
use (the communication link and protocol choices) has deep
influence on the design trade-offs of distinct asynchronous and
synchronous templates.

Self-timed designs rely on the use of delay-insensitive (DI)
codes [21]. DI codes use only part of the Boolean encoding
spectrum possible over n bits. An n-bit code length potentially
allows representing 2n distinct codewords. A DI code pledges
the use of only a subset of these codewords, to obtain the delay
insensitivity property for the code. Verhoeff [21] explores the
basic details of the theory behind DI codes. These include
some codewords to represent valid data, and at least one
special (invalid) codeword to represent the absence of data.
This codeword is usually called a spacer. Since valid code-
words and spacer codeword(s) do not comprise all 2n different
codewords possible with n bits, it is clear that some codewords
are wasted as invalid and the matter of code efficiency arises.
This is treated in the work of Verhoeff [21], which defines
the rate R of a code. Given a code with M valid codewords
and a length of n bits its rate is R = (log2M)/n. Of course,
0 ≤ R ≤ 1 always holds, and Verhoeff proves that Sperner
codes, those where every codeword has as structure (ndiv 2)-
out-of-n, are DI codes, and such codes provide the highest
possible encoding efficiency. For example, if the code length
is n = 20 bits, all codewords with 10 bits at 1 and 10 bits at 0
are valid Sperner codewords, and there are a total of 184, 756
distinct codewords in this code. Even though this is much less
than the 1, 048, 576 codewords of a non-DI, 20-bit ordinary
Boolean code, this Sperner code is much more efficient than
the commonly used dual-rail DI code with length 20 bits that
contains only 1, 024 valid codewords. As it can be verified,
although as n → ∞ the rate of Sperner codes tends to 1,
practical n-bit Sperner codes (and all DI codes) have R << 1,
while a non-DI code such as the n-bit Boolean code has R = 1
for any n. Under the point of view of DCDT, codes are clearly
characteristics defined in the communication link and protocol
entities.

To understand how DI codes achieve delay independence,
Figure 4 shows the basic communication protocol of a channel
as a state transition diagram for transmitting data on a 1-
bit DI channel. Clearly, three codewords are necessary and
the minimum code length to represent 0, 1 and the spacer
is 2. Assume transmission always starts with a spacer (S). A
transition from the spacer codeword to 1 (or to 0) characterises
the transmission of a valid 1 (resp. 0) and a transition from
1 (resp. 0) to S characterises the removal of data. In other
words, DI communication protocols assume there is a spacer
between any pair of consecutive data values.

This in fact depicts just a specific family of communication
protocols, often associated to DI codes, that can be called
return to spacer (RTS) protocols. Since the spacer is frequently
a code with all bits in 0, a more commonly used term is return
to zero (RTZ) protocols, although other spacer codewords are
sometimes used.

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 5

S0 1

Valid 1

Valid 0

No Data

No Data

Fig. 4. The basic protocol for transmitting binary data in a DI channel,
using a state transition diagram. Here, S stands for the spacer codeword, a bit
separation symbol.

Referring back to Figure 2(b) and its relation to the protocol
that Figure 4 depicts, asynchronous circuit pipelines can be
implemented using one of two approaches: (i) half-buffer,
where data and spacers alternate occupying successive pipeline
stages; (ii) full-buffer, where all stages can contain data at
every moment. Although at first counter-intuitive, since half-
buffer schemes seem wasteful, these are more frequently used,
because they are simpler to built and in general execute faster
than full-buffer schemes. Also it is easier to achieve robust
circuits using half-buffer schemes.

In circuit design, often used examples of DI codes are
the k-of-n codes, where n is the number of wires used to
represent data (or its absence) and k is the number of wires
that must be at a given logic value for the codeword to
represent valid data (usually using 1 value for these wires and
0 values for the others). Albeit different codes are available
in the contemporary literature (see e.g. [21]), according to
Martin and Nyström [13] the most practical class of DI codes
is the 1-of-n (or one-hot), and more specifically the 1-of-
2 code. The latter is the basis to form codes to represent
any n-bit information using two wires to denote each of the
n bits, producing the so-called dual-rail code. Furthermore,
Martin and Nyström argue that DI codes can be coupled to
either 2-phase or 4-phase handshake protocols, but 2-phase
protocols often lead to more complex circuits. Thus, 4-phase
is frequently chosen by self-timed circuit designers. In fact,
the majority of self-timed designs available in the state-of-
the-art, from networks-on-chip [22], [23], to general purpose
processors [24], and network switches [25], primarily rely
on 4-phase protocols and dual-rail or 1-of-4-based codes2.
The 1-of-4 code is equivalent to two 1-of-2 codes considered
together, but these codes are different. In fact, switching a
1-of-4 codeword (say 0100, corresponding to decimal 2) to
a 0000 spacer implies switching just 1 bit, while the same
value encoded in dual-rail, 1001 (equivalent to 10 in binary
or decimal 2), requires two bits to switch to reach the same
spacer. Thus 1-of-4 codes present roughly a 50% switching
power advantage over dual-rail encoding.

Figure 5(a) depicts a 4-phase dual-rail DI channel D, where
a single bit datum is represented using two wires, D.0 and
D.1 that together carry the datum value, and one signal ack to
control data flow 3. A spacer is encoded here as a codeword
with all wires at 0. Valid data are encoded using exactly one
wire at 1, D.1=1 for a logic 1 and D.0=1 for a logic 0. In this
case, both wires at 1 is a codeword that does not correspond
to any valid datum and is not used. Figure 5(b) shows an
example of data transmission using this convention to demon-
strate the control flow allowed by the ack wire combined to
codewords represented in wires D.1 and D.0. In this example,
a sender provides dual-rail data in D.1 and D.0 to a receiver

2Note that 1-of-2 (resp. dual-rail) and 1-of-4 codes have the same rate,
R = 1/2 = 0.5, while a 1-of-8 code has a rate of just R = 3/8 = 0.375
and is accordingly never used.

3Some works prefer the use of true and false suffixes instead of 0 and 1 to
distinguish between the two wires of a 1-of-2 or dual-rail code, which would
lead e.g. to the terminology Df and Dt in place of D.0 and D.1, respectively.

Wire Spacer Value 0 Value 1
D.0 0 1 0
D.1 0 0 1

(a)

ack

d.0

d.1

null 0 null 1 null

(b)

Fig. 5. The RTZ, dual-rail channel operation: (a) data encoding; (b) example
of data transmission waveform.

Wire Spacer Value 0 Value 1
D.0 1 0 1
D.1 1 1 0

(a)

ack

d.0

d.1

null 0 null 1 null

(b)

Fig. 6. The RTO, dual-rail channel operation: (a) data encoding; (b) example
of data transmission waveform.

that acknowledges received data through ack. Communication
starts with a spacer, all signals at 0. Note that the ack wire
also starts at 0, signaling the receiving side is ready to receive
new data. Next, the sender puts a valid 0 bit in the channel, by
raising the logic value of D.0, which is acknowledged by the
receiver raising the ack wire. After the sender receives ack,
it produces a spacer to end communication, bringing all data
signals in the channel back to 0. The receiver then lowers
its ack signal, after which another communication can take
place. Due to its nature, which requires all signals to go to
0 before each new data transmission starts, this justifies the
return-to-zero (RTZ) denomination for this protocol.

Another protocol for dual-rail self-timed designs is the
return-to-one (RTO) protocol [26]. RTO is similar to RTZ,
but its data values are inverted compared to the latter. As
Figure 6(a) shows, a spacer here is the codeword with all wires
at 1 and valid data is represented by one wire at 0, D.1=0 for
a logic 1 and D.0=0 for a logic 0. Figure 6(b) depicts an
example RTO data transmission, which starts with all wires at
1 in the data channel. As soon as the sender puts valid data in
the channel, the receiver may acknowledge it by lowering ack.
Next, all data wires must return to 1 to denote a spacer, ending
transmission. When the spacer is detected by the receiver,
it raises the ack signal and new data can follow. The idea
behind the RTO protocol is simple but powerful and allows
a better design space exploration for QDI circuits, enabling
optimisations in power [27] and robustness [28]. Furthermore,
as demonstrated in [29], RTZ and RTO can be mixed in a same
dual-rail design and the conversion of values between them
requires only an inverter per wire. According to Martin and
Nyström [13], such conversion is DI and does not compromise
the robust functionality of a self-timed circuit. This tutorial
refers to signals operating under the RTZ (RTO) protocol as
RTZ (RTO) signals.

A seasoned reader might have come across the term quasi-
delay-insensitive (QDI) being used extensively, where here the
term self-timed circuits is used. It is useful to draw attention to
the distinction between these terms. QDI is in fact a large and
important subset of self-timed circuits; but QDI circuits are
self-timed circuits with few timing assumptions. In fact, there
is even a class of self-timed circuits with no timing assumption
called delay insensitive (DI) circuits; they are the most robust
of all ways to design circuits, where any delay of any wire
or any gate (or other logic components) is irrelevant to define
the overall circuit functionality, meaning the functionality of
the design is fully insensitive to delays in wires or gates.
Unfortunately, this ideal class of designs was proven to be

6 CALAZANS & SARTORI: Asynchronous Design Principles and Survey

limited, too limited to be of practical use [30]. QDI offers a
compromise that can produce a set of design techniques that
are expressive enough to be used in the construction of any
digital circuit and be mostly or quasi-delay-insensitive. This
compromise consists in constraining some selected wire forks
in a design to be isochronic. Assume a wire fork has a source
terminal and two sink terminals. Saying this fork is isochronic
basically means the propagation time from the source terminal
to both sink terminals can only differ by a negligible amount.
The isochronic fork assumptions defines the QDI paradigm
within the broader self-timed design style discussed here. An
early theoretical result showed QDI design is Turing-complete,
unlike the DI design paradigm [31], which opens the door to
use QDI as a useful class of circuit design techniques.

Of course, the simply stated isochronic fork constraint can
be hard to ensure, specially in large circuits. Furthermore, the
strictness of limiting the timing assumptions to wire delays
often comes with an area and performance impact. Also,
in some cases the robustness requirements are not so strict.
Others self-timed design styles [32], [33] exist with more
relaxed limitations on timing assumptions to offer better trade
offs among robustness, performance, area and power.

IV. ASYNCHRONOUS DESIGN TOOLS AND SYSTEMS

This Section explores some state-of-the-art asynchronous
design tools. They can be classified as either event- or channel-
driven tools. Event-driven design tools often operate at the
individual signal transition level. They are suited to design
small scale components, such as asynchronous state machines
or controllers with limited amount of logic gates, usually
containing in the order of dozens or hundreds of gates, like
those previously discussed for BD design templates. Con-
versely, a channel based design tool aims at design larger scale,
complex circuits, counting thousands or more gates. These two
approaches are complementary; circuits implemented with an
event-driven design tool can form components and controllers
integrated by a channel-driven design tool to produce larger
circuits.

A. Event-Driven Design Tools

A traditional event-driven approach is to model the circuit
as Petri nets [34]. Figure 7 depicts an example of a Petri net;
these are directional bipartite graphs where nodes are of two
types: places and transitions. In a Petri net places hold tokens
and transitions move tokens between places. When a transition
fires, it consumes a token from each of its predecessor places
and creates a new token in every one of its successor places.
A transition can only fire if there is at least one token at each
of its input places. Of course, the firing rules guarantee that
the number of tokens in the net varies along the net operation.
Petri nets are excellent models to capture both concurrency
and causality.

A signal transition graph (STG) is a Petri Net where
transitions capture signal transitions in a circuit, e.g. a rising
or falling signal transition. STGs are used to specify the
behaviour of asynchronous circuits and their environment; this
specification can be used to both produce a circuit and also to
verify if an existing circuit correctly implements it. Petrify [36]
is a tool capable of synthesising a circuit to the netlist level
from an STG specification. However, Petrify does not provide
a friendly environment for designing, analysing and simulating
STG specifications.

P1

P2 P3

P4 P5

P6

T1 T2

T3 T4

T5

T6

Fig. 7. Simple reversible, lively, deadlock-free Petri net with 6 places, 6
transitions and an initial marking [35].

Workcraft [37]–[39] builds on top of Petrify to offer a
more polished framework to design and verify asynchronous
circuits from event-driven specifications. It enable designers to
specify, test, formally verify and synthesise circuits from their
specifications. Workcraft modelling capabilities is not limited
to STG, it also allows designers to model circuits using burst
mode finite state machines [40].

However, the application scope of Workcraft as a event-
driven design tool is limited to controllers and other small
circuits. For instance, it requires the designer to manually
insert the reset signal and loop breakers in their circuit spec-
ification after synthesis; this and the computation-intensive
nature of event-driven synthesis highlights the need for the
higher abstraction level of channel-driven design tools to
curb design complexity in devising bigger and more complex
circuits.

B. Channel-Driven Design Tools
Channel-driven design tools can be further classified based

on the design template of the circuits they produce; they
can be either BD or self-timed. BD often requires less area
and switching activity, but rely on establishing strict timing
assumptions on the timing paths to reach computation com-
pletion, and large delay margins to cope with delay variations.
Self-timed circuits in turn employ DI codes and completion
detection circuitry to explicitly define computation comple-
tion; however, the additional area overhead and the increased
switching activity of DI codes can be prohibitive for many
applications. Nonetheless, self-timed circuits are more resilient
to delay variations, thus enabling the use of aggressive voltage
scaling.

A possible approach for bundled-data design is desynchro-
nisation [41], i.e. synthesising a conventional RTL-described
synchronous circuit and later replacing the clock tree with
asynchronous controllers that generate a local clock to register
groups. These controllers use a request signal that is delay-
matched to the data propagation paths, marking data availabil-
ity to the asynchronous controller responsible for generating
clock pulses to registers or latches. Figure 8 shows the start
and end of applying desynchronisation during design.

A tool following a similar approach using latch-based de-
sign is Blade [42]. The generic template structure for a Blade
pipeline stage is illustrated in Figure 9. Blade is a template
for circuits resilient to timing errors. Note in the upper part

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 7

Fig. 8. The desynchronization asynchronous design template [41]: (a) after a
first synthesis, pipeline stages are clocked circuits that use flip-flop based
registers; (b) desynchronization changes registers by master-slave latches
commanded by asynchronous controllers, which communicate through local
handshakes.
of the Figure the forward and backward stages handshake
signals, and the local asynchronous controller. Note also the
error detecting latch (EDL), used to store stage data obtained
after processing using conventional combinational logic.

EDL
(Error

Detecting

Latch)

R.data
Combinational

Logic

Blade
Controller

L.data

Reconfigurable Delay Line (δ) Err

Δ
L.ack

L.req

LE.req

LE.ack

R.ack

RE.ack

R.req

RE.req

Sa
m

p
le

C
LK

Blade Stage
Error Detection Logic

2

Fig. 9. The Blade stage circuit template [42].
One of the main features of Blade is the error detection

logic, containing the EDL and additional circuits that enable
on-the-fly data errors detection and correction. The proposed
EDL structure is depicted in Figure 10. Note that the error
signal (Err1/Err0) is a dual-rail signal, generated by a special
component called Q-flop, which contains a metastability filter.
When metastability does occur, the Q-flop keeps its output
in the no-data state (Err0=Err1=0) until it resolves. When no
metastability occurs or when it resolves, Err0 is always distinct
from Err1, indicating either a timing error (Err0=0, Err1=1)
or no timing error (Err0=1, Err1=0).

In Blade, after circuit synthesis using conventional tools
(e.g. Cadence Genus), timing paths are analysed and asyn-
chronous controllers and matching delay lines are inserted.
Blade employs controllers capable of error recovery on critical
timing paths. This requires the use of complex, reconfigurable
delay lines to achieve a better average performance (δ and ∆
in Figure 9). When timing violations occur on critical paths,
the error recovering controller is able to intervene and correct
operation. This enables Blade to reduce the timing margins
and significantly increase circuit resilience to delay variations.

However, the degree of resilience provided by Blade is
debatable when compared to self-timed circuits. As previously

discussed, self-timed circuits are naturally more resilient to
delay variations. A noteworthy self-timed template is Null
Convention Logic (NCL) [43]. It relies on hysteretic threshold
gates to implement quasi-delay-insensitive (QDI) logic blocks.

Uncle [44] is another synthesis system proposed to imple-
ment asynchronous NCL circuits, available as open-source.
It uses specially constructed Verilog RTL templates as input
description format. Uncle relies on standard EDA tools to
synthesise RTL code to a netlist of virtual logic gates. A
custom tool within Uncle performs dual-rail expansion4; it
replaces virtual logic gates with their NCL equivalent, imple-
ments the completion detection logic and performs some NCL-
specific logic optimisations. However, such logic optimisations
are limited when compared to the optimisations performed by
timing driven technology mapping tools in commercial EDA
tools. Furthermore, Uncle does not allow setting a performance
target to trade e.g. performance power and area goals for the
circuit.

The Spatially Distributed Dual-Spacer Null Convention
Logic (SDDS-NCL) asynchronous design template [45], [46]
is an evolution of NCL that enables the use of industry-
standard EDA tools to synthesise self-timed NCL-based logic
from Boolean virtual functions. Conventional EDA tools were
shown to require both positive and negative unate gates to
successfully perform unconstrained technology mapping for
asynchronous circuits synthesis [46]. SDDS-NCL uses a com-
bination of conventional NCL threshold gates (which are all
positive unate) and the dual, negative unate, NCLP threshold
gates to accommodate signal inversions from negative unate
gates. Signal inversions swap protocols between RTZ and
RTO in successive circuit logic stages; NCL gates operate
using RTZ and the active-low NCLP operates correctly on
RTO. For every NCL gate that correctly works with the RTZ
protocol, there is functionally equivalent5 NCLP gate that
works with the RTO protocol. As long as the virtual function
being realised is unate, a simple graph colouring algorithm can
correctly mark regions where the protocol is RTZ and RTO to
swap between functionally equivalent NCL and NCLP gates
and to guarantee correct circuit operation.

Pulsar [47], [48] is an open-source [49] design frame-
work for synthesising constrained self-timed circuit from

4Simply stated, dual-rail expansion is a process that transforms a circuit
where each wire carries a single bit into a new circuit where each bit is
represented by two wires using a dual-rail code.

5Functionally equivalent gates are gates that present the same virtual
function

Out

CLK

In

Sample

Error Detection Logic

Controller

C
+

D Q

delay

E
rr

0

Latch

delay

X

EDL

Q-Flop

E
rr

1

From other
C-elements

{

{ {

From other
Q-Flops

tcomp

tTD

Fig. 10. Blade error detection logic, including a block level diagram of the
EDL [42].

8 CALAZANS & SARTORI: Asynchronous Design Principles and Survey

RTL description

Components
Library

Single Rail
Synthesis

Single Rail Netlist Dual Rail
Expander

Circuit Graph HBCN Constrainer
Design

Constraints
Template Specific

Synthesis Flow

Dual-Rail
Expansions of
components

Output for
Physical

Synthesis

Virtual Netlist

Fig. 11. The Pulsar flow. In blue is the RTL-Like user input in (System)Verilog or VHDL; yellow items are either third party (commercial) tools or conventional
output of such tools; green items comprise the front-end synthesis flow, while red items are components of the back-end synthesis flow.

an RTL-like input description. It synthesises and optimises
QDI circuits under cycle time constraints, and allows trad-
ing off performance and power targets. Pulsar can syn-
thesise SDDS-NCL circuits, but it is not limited to this
template. The timing constraining in Pulsar is achieved us-
ing a combination of modelling techniques: (i) the pseudo-
synchronous Weak-Conditioned Half-Buffer (WCHB) tempo-
ral barrier model [47], [50]; and (ii) the Half-Buffer Channel
Network (HBCN) timing model [47]. Technique (i) allows
using standard static timing analysis (STA) tools to compute
the propagation paths in asynchronous pipelines, and addition-
ally to accurately simulate synthesised circuits; Technique (ii)
enables the performance analysis of complex non-linear QDI
circuits. The Pulsar synthesis flow is depicted in Figure 11.
It comprises a back-end and a front-end synthesis flows. The
front-end is responsible for the template-independent design
capture and generation of the intermediate virtual netlist.
Pulsar design capture methodology shares similarities with
the Uncle synthesis tool [51], as it uses an especially crafted
RTL descriptions and traditional EDA tools to synthesise
a single-rail netlist. The front-end synthesises the RTL-like
description using Cadence Genus to produce a single-rail
netlist of components. These components are defined in the
components library, presented as Liberty files to the front-end
synthesis.

Contrasting to Uncle, which relies on its own tool to
perform dual-rail expansion, Pulsar uses Genus to perform
the dual-rail expansion in the back-end synthesis. It models
channels as SystemVerilog interfaces [52]. A simple tool
replaces every wire in the single-rail netlist with a channel to
create the virtual netlist. This virtual netlist is the input to the
template-dependent back-end synthesis flow. Each component
on the virtual netlist has an equivalent SystemVerilog module
defining its template-dependent dual-rail expansion. Channels
interconnect these modules implementing the dual-rail expan-
sion of components. The channel abstraction is also used to
construct the acknowledgement network during synthesis by
cleverly employing wired AND (wand) and wired OR (wor)
net types.

The Pulsar flow also constructs the HBCN and automati-
cally creates cycle time constraints for synthesis. Concurrent
to the creation of the virtual netlist, cycle time constraints
are computed. The scripts used for the single-rail synthesis
produce a structural graph describing the pipeline topology.
This circuit graph is used to model the HBCN of the expanded
circuit and to compute the path constrains.

V. CONCLUSIONS

The panorama this work provides highlights the field of
digital circuit design is open to accept novel techniques to
deal with the increasing complexity brought about by new
technologies.

Asynchronous design is dominated by few engineers today,
but finds use in multiple niche applications where it con-
stitutes an invaluable resource. A few example fields where
asynchronous techniques already find ample use are:

1) Interface design - Guaranteeing the achievement of cor-
rect timing in the communication between two distinctly
designed complex circuit modules can become a night-
mare. Asynchronous circuit design is an good way to
streamline module communication and adjust data rate
exchanges, independently of the often found modules
clock frequency mismatches. As an example, see Sokolov
et al. that propose a library of specialised analogue-
to-asynchronous components to interface analogue and
asynchronous modules in [53]. In another work, an indus-
try giant, Intel, recently suggested four-pin input output
(FPIO), an asynchronous delay-insensitive protocol for
bit-serial multi-chip management protocol to substitute
with advantages the well-known SPI synchronous proto-
col [54].

2) Intrachip communication - The increasing number of
modules inside a chip requires changing traditional bus-
based communication by networks on chip (NoCs). Asyn-
chronous NoCs are a way to cope with the control of long
wires employed for long range reliable communication
inside chips. This is especially true in advanced technol-
ogy nodes, such as Thonnart et al. describe in [55].

3) Secure data communication - Security is an increasing
concern in data exchange. The use of synchronous design
is known to provide mostly leaky ways to communicate
data. Today, cryptography is mandatory in the exchange
of information, in practically every system. The leakage
of information in synchronous circuits can be used by
system attackers to obtain knowledge about the system,
including access to cryptographic keys with already ob-
served catastrophic consequences. Side channels attacks
(SCAs) can find cryptographic keys by exploring elec-
trical or electromagnetic emissions, which in the case
of clocked systems is mandatorily periodic, facilitating
analysis significantly. Regarding use cases for crypto-
graphic asynchronous circuits, see e.g. the work of Ho et
al. in [56] that propose an asynchronous implementation
of a NoC router with characteristics of resistance to

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 9

differential power analysis (DPA) attacks. In another
effort, related to the efficiency of cryptography, Li et al.
propose a 3.6 Gbps throughput implementation of a SHA-
256 cryptographic module, in [57]. The module relies on
the design of a very efficient asynchronous FIFO.

The final goal of this tutorial consists in encouraging readers
to explore the often daunting amount of new information
regarding the design of asynchronous circuits. Accordingly,
Authors provide several pointers to good references where
to begin learning about how designing digital circuits using
asynchronous techniques can become feasible. The DCDT
metamodel is a simple and formal tool to undertake systematic
explorations and to understand asynchronous templates and
their use in circuit design.

ACKNOWLEDGEMENTS

This research was partially funded by CAPES and CNPq
(grant no. 312917/2018-0), Brazilian research funding organ-
isations.

REFERENCES

[1] P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng, J.-H. Park, M.-H.
Chiu, A.-Y. Lu, H.-L. Tang, M. M. Tavakoli, G. Pitner, X. Ji, Z. Cai,
N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C.-I. Wu, T. Palacios,
L.-J. Li, and J. Kong, “Ultralow contact resistance between semimetal
and monolayer semiconductors,” Nature, vol. 593, no. 7858, pp. 211–
217, 13 May 2021.

[2] J. Lu, W.-K. Chow, and C.-W. Sham, “Fast Power- and Slew-Aware
Gated Clock Tree Synthesis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 11, pp. 2094–2103, Nov 2012.

[3] S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen, and D. Sylvester,
“Razor-lite: A side-channel error-detection register for timing-margin
recovery in 45nm SOI CMOS,” in IEEE International Solid-State
Circuits Conference (ISSCC), Feb 2013, pp. 264–265.

[4] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S. Lu,
T. Karnik, and V. De, “Energy-Efficient and Metastability-Immune
Resilient Circuits for Dynamic Variation Tolerance,” IEEE Journal of
Solid-State Circuits, vol. 44, no. 1, pp. 49–63, Jan 2009.

[5] P. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010.

[6] N. L. V. Calazans, T. A. Rodolfo, and M. L. L. Sartori, “Robust and
Energy-Efficient Hardware:The Case for Asynchronous Design,” Journal
of Integrated Circuits and Systems, vol. 16, no. 2, pp. 1–11, 2021.

[7] M. T. Moreira, “Asynchronous Circuits: Innovations in Components,
Cell Libraries and Design Templates,” Ph.D. dissertation, Faculty of
Computer Science, PUCRS, 2016.

[8] D. Harris, Skew-tolerant Circuit Design. Morgan Kaufmann, 2001.
[9] K. M. Fant, Logically Determined Design. Hoboken, NJ, USA: Wiley-

Interscience, 2005.
[10] P. Beerel, G. Dimou, and A. Lines, “Proteus: An ASIC Flow for GHz

Asynchronous Designs,” IEEE Design and Test of Computers, vol. 28,
no. 5, pp. 36–51, 2011.

[11] J. Sparsø, Introduction to Asynchronous Circuit Design. Independently
published, 2020. [Online]. Available: https://orbit.dtu.dk/en/publications/
introduction-to-asynchronous-circuit-design.

[12] I. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, 1989.

[13] A. Martin and M. Nyström, “Asynchronous Techniques for System-on-
Chip Design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
2006.

[14] M. Singh and S. M. Nowick, “MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 6, pp. 684–698, Jun. 2007.

[15] G. Heck, “The Impact of Voltage Scaling over Delay Elements with
Focus on Post-Silicon Tests,” Ph.D. dissertation, PPGCC - FACIN -
Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS), Mar.
2018.

[16] A. Singhvi, M. T. Moreira, R. Tadros, N. L. V. Calazans, and P. A.
Beerel, “A Fine-Grained, Uniform, Energy-Efficient Delay Element for
2-Phase Bundled-Data Circuits,” ACM Journal on Emerging Technolo-
gies in Computing Systems, vol. 13, no. 2, pp. 1–23, Jan. 2017.

[17] R. Tadros, W. Hua, M. Gibiluka, M. T. Moreira, N. L. V. Calazans, and
P. A. Beerel, “Analysis and Design of Delay Lines for Dynamic Voltage
Scaling Applications,” in IEEE International Symposium on Advanced
Research in Asynchronous Circuits and Systems (ASYNC), May 2016,
pp. 11–18.

[18] A. Singhvi, M. T. Moreira, R. Tadros, N. L. V. Calazans, and P. A.
Beerel, “A Fine-Grained, Uniform, Energy-Efficient Delay Element for
FD-SOI Technologies,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2015, pp. 27–32.

[19] G. Heck, L. Heck, A. Singhvi, M. T. Moreira, P. Beerel, and N. L. V.
Calazans, “Analysis and Optimization of Programmable Delay Elements
for 2-Phase Bundled-Data Circuits,” in International Conference on VLSI
Design (VLSID), Jan. 2015, pp. 321–326.

[20] J. Teifel, “Asynchronous Cryptographic Hardware Design,” in An-
nual IEEE International Carnahan Conference on Security Technology
(ICCST), Oct. 2006, pp. 221–227.

[21] T. Verhoeff, “Delay-insensitive Codes - An Overview,” Distributed
Computing, vol. 3, no. 1, pp. 1–8, 1988.

[22] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An
Asynchronous NOC Architecture Providing Low Latency Service and
its Multi-Level Design Framework,” in IEEE International Symposium
on Advanced Research in Asynchronous Circuits and Systems (ASYNC),
2005, pp. 54–63.

[23] J. Pontes, M. Moreira, F. Moraes, and N. Calazans, “Hermes-AA:
A 65nm asynchronous NoC router with adaptive routing,” in IEEE
International System on Chip Conference (SoCC), Sep. 2010, pp. 493–
498.

[24] A. Martin, M. Nyström, and C. Wong, “Three Generations of Asyn-
chronous Microprocessors,” IEEE Design and Test of Computers,
vol. 20, no. 6, pp. 9–17, 2003.

[25] M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, and
P. Beerel, “A 72-Port 10G Ethernet Switch/Router Using Quasi-Delay-
Insensitive Asynchronous Design,” in IEEE International Symposium
on Advanced Research in Asynchronous Circuits and Systems (ASYNC),
2014, pp. 103–104.

[26] M. Moreira, R. Guazzelli, and N. Calazans, “Return-to-One Protocol for
Reducing Static Power in QDI Circuits Employing m-of-n Codes,” in
Symposium on Integrated Circuits and Systems Design (SBCCI), 2012.

[27] M. T. Moreira, R. A. Guazzelli, and N. L. V. Calazans, “Return-to-
One DIMS Logic on 4-phase m-of-n Asynchronous Circuits,” in IEEE
International Conference on Electronics, Circuits and Systems (ICECS),
2012, pp. 669–672.

[28] M. Moreira, R. Guazzelli, G. Heck, and N. Calazans, “Hardening
QDI Circuits Against Transient Faults Using Delay-insensitive Maxterm
Synthesis,” in ACM Great Lakes Symposium on VLSI (GLSVLSI), 2014,
pp. 3–8.

[29] M. Moreira, J. Pontes, and N. Calazans, “Tradeoffs between RTO and
RTZ in WCHB QDI Asynchronous Design,” in International Symposium
on Quality Electronic Design (ISQED), March 2014, pp. 692–699.

[30] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in 6th MIT Conference on Advanced Research in VLSI
(AUSCRYPT), 1990, pp. 263–278.

[31] R. Manohar and A. J. Martin, “Quasi-Delay-Insensitive Circuits Are
Turing-Complete,” California Institute of Technology - CalTech, USA,
Tech. Rep., 1995, rVM33.

[32] C. Brej, “Early Output Logic and Anti-tokens,” Ph.D. dissertation, The
University of Manchester (United Kingdom), 2005.

[33] C. Brej and D. Edwards, “Forward and Backward Guarding in Early
Output Logic,” in IEEE Design and Diagnostics of Electronic Circuits
and Systems (DDECS). IEEE, 2009, pp. 226–229.

[34] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[35] C. Schweiger, 2007. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Petrinetz.svg

[36] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on
information and Systems, vol. 80, no. 3, pp. 315–325, 1997.

[37] I. Poliakov, D. Sokolov, and A. Mokhov, “Workcraft: a static data
flow structure editing, visualisation and analysis tool,” in International
Conference on Application and Theory of Petri Nets. Springer, 2007,
pp. 505–514.

[38] I. Poliakov, V. Khomenko, and A. Yakovlev, “Workcraft–a framework for
interpreted graph models,” in International Conference on Applications
and Theory of Petri Nets. Springer, 2009, pp. 333–342.

[39] D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years later,”
This asynchronous world. Essays dedicated to Alex Yakovlev on the
occasion of his 60th birthday, pp. 269–293, 2016.

[40] A. Chan, D. Sokolov, V. Khomenko, D. Lloyd, and A. Yakovlev, “Burst
automaton: Framework for speed-independent synthesis using burst-
mode specifications,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2022.

[41] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchro-
nization: Synthesis of Asynchronous Circuits From Synchronous Spec-
ifications,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[42] D. Hand, M. T. Moreira, H. H., D. Chen, F. Butzke, M. Gibiluka,
M. Breuer, N. L. V. Calazans, and P. A. Beerel, “Blade - A Timing
Violation Resilient Asynchronous Template,” in IEEE International

https://orbit.dtu.dk/en/publications/introduction-to-asynchronous-circuit-design.
https://orbit.dtu.dk/en/publications/introduction-to-asynchronous-circuit-design.
https://commons.wikimedia.org/wiki/File:Petrinetz.svg
https://commons.wikimedia.org/wiki/File:Petrinetz.svg

10 CALAZANS & SARTORI: Asynchronous Design Principles and Survey

Symposium on Advanced Research in Asynchronous Circuits and Sys-
tems (ASYNC), May 2015, pp. 21–28.

[43] K. M. Fant and S. A. Brandt, “NULL Convention LogicTM : A complete
and consistent logic for asynchronous digital circuit synthesis,” in
International Conference on Application Specific Systems, Architectures
and Processors (ASAP), Aug. 1996, pp. 261–273.

[44] R. Reese, S. Smith, and M. Thornton, “Uncle - An RTL Approach to
Asynchronous Design,” in IEEE International Symposium on Advanced
Research in Asynchronous Circuits and Systems (ASYNC), 2012, pp.
65–72.

[45] M. T. Moreira, G. Trojan, F. G. Moraes, and N. L. V. Calazans, “Spatially
Distributed Dual-Spacer Null Convention Logic Design,” Journal of Low
Power Electronics, vol. 10, no. 3, pp. 313–320, 2014.

[46] M. T. Moreira, P. A. Beerel, M. L. L. Sartori, and N. L. V. Calazans,
“NCL Synthesis With Conventional EDA Tools: Technology Mapping
and Optimization,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 65, no. 6, pp. 1981–1993, 2018.

[47] M. L. L. Sartori, R. N. Wuerdig, M. T. Moreira, and N. L. V. Calazans,
“Pulsar: Constraining QDI Circuits Cycle Time Using Traditional EDA
Tools,” in IEEE International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC), 2019, pp. 114–123.

[48] M. L. L. Sartori, M. T. Moreira, and N. L. V. Calazans, “A Frontend
using Traditional EDA Tools for the Pulsar QDI Design Flow,” in
IEEE International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC), 2020, pp. 114–123.

[49] ——, “Pulsar - A Flow to Support the Design of QDI Asynchronous
Circuits,” Jun. 2020. [Online]. Available: https://github.com/marlls1989/
pulsar

[50] Y. Thonnart, E. Beigné, and P. Vivet, “A pseudo-synchronous Imple-
mentation Flow for WCHB QDI Asynchronous Circuits,” in IEEE In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), 2012, pp. 73–80.

[51] R. B. Reese, S. C. Smith, and M. A. Thornton, “Uncle - An RTL
Approach to Asynchronous Design,” in IEEE International Symposium
on Advanced Research in Asynchronous Circuits and Systems (ASYNC),
2012, pp. 65–72.

[52] S. Sutherland, S. Davidmann, and P. Flake, SystemVerilog for Design:
A Guide to Using SystemVerilog for Hardware Design and Modeling,
2nd ed. Springer Science & Business Media, 2006.

[53] D. Sokolov, V. Khomenko, A. Mokhov, V. Dubikhin, D. Lloyd, and
A. Yakovlev, “Automating the Design of Asynchronous Logic Control
for AMS Electronics,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 5, pp. 952–965, 2020.

[54] A. Lines, “Asynchronous Serial Infrastructure Using FPIO,” in IEEE In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), May 2021, pp. 62–63.

[55] Y. Thonnart, P. Vivet, S. Agarwal, and R. Chauhan, “Latency Improve-
ment of an Industrial SoC System Interconnect using an Asynchronous
NoC Backbone,” in IEEE International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems (ASYNC), May 2019, pp.
46–47.

[56] W.-G. Ho, N. K. Z. Lwin, N. A. Kyaw, J.-S. Ng, J. Chen, K.-S. Chong,
B.-H. Gwee, and J. S. Chang, “Asynchronous Serial Infrastructure
Using FPIO,” in IEEE International Symposium on Circuits and Systems
(ISCAS), Oct. 2020, pp. 1–5.

[57] J. Li, Z. He, and Y. Qin, “Design of Asynchronous High Throughput
SHA-256 Hardware Accelerator in 40nm CMOS,” in IEEE 13th Inter-
national Conference on ASIC (ASICON), Oct. 2019, pp. 1–4.

https://github.com/marlls1989/pulsar
https://github.com/marlls1989/pulsar

	Introduction
	A Metamodel for the Digital Design Process
	Asynchronous Circuits Design Principles
	Asynchronous Self-Timed Design

	Asynchronous Design Tools and Systems
	Event-Driven Design Tools
	Channel-Driven Design Tools

	Conclusions
	References

