Asynchronous Circuits
for Token-Ring Mutual Exclusion

Alain J. Martin

Computer Science Department
California Institute of Technology

Caltech-CS-TR-90-09

Asynchronous Circuits
for Token-Ring Mutual Exclusion

Alain J. Martin

The research described in this report was

sponsored by the Defense Advanced Research
Projects Agency, ARPA Order Number 6202;
and monitored by the Office of Naval Research,
under contract number N00014-87-K-0745.

Department of Computer Science
California Institute of Technology
Pasadena CA 91125

Caltech-CS-TR-90-09

Asynchronous Circuits
for Token-Ring Mutual Exclusion

Alain J. Martin
Department of Computer Science

California Institute of Technology
Pasadena CA 91125, USA

18 June 1990

1 Introduction

In [1], we have described three algorithms for distributed mutual exclusion
on a ring. All algorithms use a token to select a candidate. We have already
implemented the most efficient of these algorithms as an asynchronous VLSI
circuit. We are now going to implement the simplest one.

An arbitrary number (> 1) of cyclic automata, called “masters,” make
independent requests for exclusive access to a shared resource. The circuit
should handle the requests from the masters in such a way that

1. any request is eventually granted, and
2. there is at most one master using the shared resource at any time.

The masters are independent of each other: They do not communicate
with each other, and the activity of a master not using the resource should
not influence the activity of other masters.

A master, M, communicates with its private server, m. When M wants
to use the shared resource (M is said to be a candidate), it issues a request to
m. When the request is accepted, M uses that resource (for a finite period of
time), and then informs m that the resource is free again.

The servers are connected in a ring. At any time, exactly one (arbitrary)
server holds a “privilege,” or “token.” The token circulates continuously
around the ring of servers, and only the server that holds the token may
grant the resource to its master, which guarantees mutual exclusion on the
access to the resource.

The simplicity of the solution is due to the fact that we can encode the
passing of the token between servers without introducing an explicit message
or boolean variable. By definition, a server has the token if and only if it has
completed a communication on its left channel L and has not yet completed
the following communication on its right channel R.

master = x[...D;CS;D]
server = *[L;[U — U;U]-U — skip; R).
In order to start the ring with a token in one server, one server must be

initialized in the state preceding R. In other words, it has to implement the
sequence:

*[R; L; [U — U; U~ U — skip]] .
2 Implementation of a Server Process

We first decompose a server into two processes by the usual decomposition
technique. We get:

ml = %[L; S; R)
m2=+[[UAS - U;U;S
|SA-T — S

1]

3 Compilation of m2

We start with the compilation of m2 since it will remained unchanged through
all different compilations of the program. We implement the two consecutive
U communications as passive two-phase handshaking expansions, which is
equivalent to replacing the two I/ communications with one passive four-phase
handshaking expansion.

Since U can change from false to true at any time, the two guards of m2
can both be evaluated to true. We therefore need to introduce an arbiter or a,
synchronizer. Since we know that the basic arbiter and the basic synchronizer
both require a four-phase protocol, we implement S with a (passive) four-
phase handshaking expansion. We get:

m2 = *[[si A ui — wo T; [-ui]; uo |; s01; [-si]; s0 |
|si A —ui — soT;[—si];s0 |

11

The structure of the guards suggests that we introduce a synchronizer. It

is the standard process:

sync = *[[si Aui — ut;[-si];ul
|8t A —ui — v T;[msi];v]

11,

in which ui and si are the variables of ml, and v and v are new auxiliary
variables.

We now have to derive a process m3 such that (m3||sync) = m2. Since
exactly the same decomposition has already be done in [5], we shall not repeat
it. We get:

m3 = +[[u — uo T; [-ui];uo |; 50 15 [-ul; 50|
[v— sof;[-v]; 0

1l

The compilation of the first guarded command is facilitated if the tran-
sition uo | is postponed until after the wait [-u]. This transformation does
not introduce deadlock since the completion of U does not depend on the
completion of S. It is important to observe that the whole use of the critical
section takes place between uo | and [-ui] in m3. The rest of the compilation
is also described in [5]. It gives the set of operators:

U W uo
(u, ~ui) AV’
(v,v") Vso

where v’ is an auxiliary variable. The circuit for m2 is shown in Figure 1.

4 Four-phase Implementation of m1

Process ml is just the repetition of three communication actions in sequence.
We choose to have L passive and R active, and S has to be active because it
is probed in m2. For reasons of efficiency, we slightly modify m1 as:

*[L— LeS;R].

If we ignore S, the process is just a standard “passive/lazy-active” buffer,
which we have compiled in [6]. The handshaking expansion, including the
handshaking sequence of S and the state variable z, gives:

*[[li A —sil;lo 1, s0 152 T; [l A si];lo |, [=ri];ro 12 s [ri]; ro |].

[L o > ro
it
éa«,;_..__.__ — e
Ay/] Y2
e e -
i
! i
f Are & i
i A) 4 .
| ;
; Sﬁﬁa |
| !
i = ;
; ol [l b
| D e
i ' !
! >0 ma i
| AR S U |
L Vo

Figure 1: Circuit for m2

The production-rule expansion gives:

“siAroAliANz— sof,lo]
lo—z1
siNzA-li—lo],so0]
—loAzA=rirrof
ro— |
ST ArTi—TO0] .

The special process that starts with R is initialized simply by setting its
variable & to true.

We can improve the solution even further. We first observe that the use
of the critical section takes place entirely between so1 and [s¢] in m1. Hence,
the action of passing the token to the right can start immediately after [si].
This gives the following reshuffling of the handshaking expansion:

#[[li A =sil;lo T, s01; [-ri A si]; ro 15 [ld]; Lo |, so |; [ri]; ro 1].

The production-rule expansion does not require any state variable:

=siA-roAli—~sof,lo?
loA-riAsir—ro]
roA=li—lo|,so0]
=loAri—ro] .

The operator expansion gives the two generalized C-elements represented
in Figure 2. The initialization of the process that starts holding the token is
quite difficult with this PR expansion. A way out is to use the first imple-
mentation just for this process.

A S¢
S0 ‘,f/

&
ole

Figure 2: Four-phase implementation of m1

5 Two-phase implementation of m1

We can also implement L and R with two-phase handshake. Since ml is
a straight-line program, it is always known whether the handshake transi-

tions are upgoing or downgoing; and therefore this is a case where two-phase
handshake can be implemented efficiently.
As usual, we unroll the loop once and get:

*[L;S;R; L; S; R] .

We choose to implement L passive and R active. But observe that S has to
be four-phase active because of the structure of the basic synchronizer. If we
postpone the decision of whether S should be lazy-active or not, we get:

ml = #[[li]; lo1; S; ro 1; [ril; [li]; 1o |; S; ro |; [-ri]] .

We can postpone lo1 until after [ri] and lo| until after [-ri], and then
decompose m1 into the two processes:

mll = #[[li]; S;ro1; [-]; S; ro |]
ml2 = «[[ri];lo 1; [-ri]; lo]

Process m12 is obviously a wire, and process m11 is a “two-to-four-phase
converter,” where {7 and ro are the handshake variables of the two-phase side,
and S is the four-phase side.

5.1 Phase Converters

The implementation of the converter is slightly different depending on whether
S is plain active or lazy active. The first case has already been implemented
in [4]. The handshaking expansion with a state variable added gives:

#[[ld]; so 1 [s1]; w 1; [u]; s0 L; [-si]; ro 15
[—i]; so 1; [sd]; u ; [~u]; s0 | [-si]; ro |

The rest of the compilation is left as an exercise for the reader. The circuit
obtained consists of a toggle (constructed as two cross-coupled switches) and
a difference element. It is shown in Figure 3.

For the case that S is lazy active, the handshaking expansion with a state
variable added gives:

*[[13]; [=si]; u 1; [u]; s0 15 [sd]; 50 |; ro 1
[=ld]; [-si]; u |; [~u]; so 13 [si]; s0 | ro |

We replace so ;701 with ro1;s0|. The production-rule expansion gives:

[0 re

-~
1((': __g — 0
?&f}{{‘ T
Oyl o
ST

4

o Ll
Y s

Figure 3: First two-phase implementation of m1

lin—si—utl
uA-ro—sofl
siAu—ro]
roAur— so|
A =sis |
—uAror sot
stA—urro|
—roA-u—so| .

The operator reduction gives again two switches and a difference element,
but connected in a different way than in the previous case. The circuit for
ml is shown in Figure 4.

In both cases, the initialization of the special process consists of Jjust an
inverter on the wire i w lo.

[0 r c'

[L' 2 le'd}

ol »

P

Sc

Figure 4: Second two-phase implementation of m1

6 Comparison of the Circuits

We shall compare the different solutions based on the number of transitions in
series required for a server to pass the token from its left neighbor to its right
neighbor. The four-phase solution requires the following sequence of firings:

gen.C,m2, gen.C

The first two-phase solution requires:
diff ,m2, switch, diff, m2, switch
The second two-phase solution requires:

switch, switch, diff, m2, switch

(Actually, this implementation can be slightly improved by having the
transitions on u after the transitions on so. But the operators are not standard

and therefore a little less convenient from the point of view of the description of
the circuit. Since the difference is marginal, we leave the other implementation
as an exercise to the reader.)

Hence, the four-phase implementation is the most efficient, followed by the
second two-phase implementation.

Acknowledgments

DraZen Borkovi¢, Steve Burns, Pieter Hazewindus, and José Tierno con-
tributed to the design of the different solutions.

References

[1] Alain J. Martin. Distributed Mutual Exclusion on a Ring of Processes.
Science of Computer Programming, 5, 265-276, 1985.

[2] Alain J. Martin. The Design of a Self-timed Circuit for Distributed
Mutual Exclusion. 1985 Chapel Hill Conference on VLSI, ed. Henry
Fuchs, Computer Science Press, 247-260, 1985.

[3] Alain J. Martin. Compiling Communicating Processes into Delay-
insensitive VLSI circuits. Distributed Computing, 1,(4), 1986.

[4] Alain J. Martin. Formal Program Transformations for VLSI Circuit Syn-
thesis. UT Year of Programming Institute on Formal Developments of

Programs and Proofs, ed. E-W. Dijkstra, Addison-Wesley, Reading MA,
1989.

[5] Alain J. Martin. Programming in VLSI: From Communicating Processes
to Delay-insensitive Circuits. UT Year of Programming Institute on Con-

current Programming, ed. C.A.R. Hoare, Addison-Wesley, Reading MA,
1990.

[6] AlainJ. Martin. Synthesis of Asynchronous VLSI Circuits. Formal Meth-
ods for VLSI Design, ed. J. Staunstrup, North-Holland, 1990.

Note added in proof A four-phase solution can easily be derived without
using process decomposition. The circuit obtained is slightly more efficient
than the one described above, but it is larger since each alternative path
(depending whether T holds or not) requires its own control part.

