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Asynchronous Corner Detection and Tracking

for Event Cameras in Real-Time
Ignacio Alzugaray and Margarita Chli

Abstract—The recent emergence of bio-inspired event cam-
eras has opened up exciting new possibilities in high-frequency
tracking, bringing robustness to common problems in traditional
vision, such as lighting changes and motion blur. In order to
leverage these attractive attributes of the event cameras, research
has been focusing on understanding how to process their unusual
output: an asynchronous stream of events. With the majority
of existing techniques discretizing the event-stream essentially
forming frames of events grouped according to their timestamp,
we are still to exploit the power of these cameras.

In this spirit, this paper proposes a new, purely event-based
corner detector and a novel corner tracker, demonstrating that
it is possible to detect corners and track them directly on the
event-stream in real-time. Evaluation on benchmarking datasets
reveals a significant boost in the number of detected corners
and the repeatability of such detections over the state-of-the-art
even in challenging scenarios with the proposed approach, while
enabling more than a 4× speed-up when compared to the most
efficient algorithm in the literature. The proposed pipeline detects
and tracks corners at a rate of more than 7.5 million events per
second, promising great impact in high-speed applications.

Index Terms—Visual tracking, computer vision for other
robotic applications, SLAM.

I. INTRODUCTION

THE richness of information encoded in images together

with the portability and affordability of visible-light cam-

eras have justifiably set them as the de facto sensor of choice in

a variety of applications. One of the most important milestones

towards machine-vision perception has been the demonstration

of the ability to estimate the egomotion and scene employing

a single moving camera in real-time – commonly referred

to as the Simultaneous Localisation And Mapping (SLAM)

problem. Building on top of SLAM, several techniques have

been developed over the years with a significant impact in

Robotics, e.g. 3D scene reconstruction or place recognition

Despite their undeniable dominance in the Computer Vision,

conventional frame-based cameras, however, also present sev-

eral limitations derived from the most fundamentals of their

design. Discretizing the visual perception of a scene at fixed

frame-rate, global or rolling shutter cameras often suffer from
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Fig. 1. The proposed algorithm operates asynchronously on the event-stream
enabling reliable real-time corner detection and tracking even under high-
speed motions, where conventional cameras would experience motion blur.
Here, corners are identified in the event-stream on the shapes dataset [1] and
data association is used to generate feature tracks corresponding to different
colors (solid lines). The corresponding intensity image is also depicted for
clarity.

capturing redundant information when the camera and the

scene are static, for example. Conversely, in cases of a highly

dynamic scene or camera motion such cameras often capture

insufficient information. In the latter case, the captured images

may exhibit motion blur or prohibitive image distortion when

using global or rolling shutter cameras, respectively, resulting

in unusable frames in both cases.

Due to these limitations, the emergence of biologically-

inspired event cameras or Dynamic Vision Sensor (DVS)

[2], [3] has captured the interest of the community. In event

cameras, whenever the intensity of an individual pixel varies

beyond a specified threshold, an ‘event’ triggers in such pixel

location and is reported asynchronously and independently

from the rest of the pixels in the image array. Going beyond the

fixed frame-rate paradigm, event cameras compress the visual

scene in an asynchronous event-stream with high temporal

resolution (in the order of µs) while exhibiting much higher

dynamic range (up to 120dB) and lower power consumption

than conventional cameras.

In addition to the elimination of any conventional time-

discretization (e.g., in the form of frames) in the perception

pipeline, events only report incremental intensity changes at

each pixel instead of the absolute intensity values (i.e., that

conventional cameras capture in each frame). Consequentially,

the Computer Vision community is driven to revisit even
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the most established algorithms to process the event-stream.

Particularly, the feature detection cannot be directly addressed

by simply studying the distribution of the absolute intensity

levels of a local image area. Established approaches to describe

image regions, which most typically make use of the relative

intensity levels in a local neighbourhood, are also compro-

mised and thus, so is data association.

Driven by the need for effective feature processing on

the event-stream, in this paper, we propose a novel feature

(i.e., corner) detector and tracker, in a framework that runs

asynchronously, i.e. considering only the sequential nature of

the event-stream, in order to fully leverage the benefits of the

event cameras regarding their high sensing rate. Moreover, the

proposed approach is shown to be able to run in real-time even

under high-speed camera motions. In brief, the contributions

of this work are:

• a novel asynchronous corner detector, the ‘Arc*’ algo-

rithm, with enhanced detection repeatability and signifi-

cantly more efficient than the state-of-the-art,

• an efficient asynchronous corner tracker, able to estab-

lish correspondences across asynchronous detections in

real-time and operating directly in the event-stream, and

• a simple and generic event-based filter that effectively

reduces the event-stream to the most relevant events for

corner detection and tracking, capable of speeding up any

existing event-based algorithm.

II. RELATED WORK

Since the development of the DVS, several works have been

dedicated to the identification of relevant features to track in

the event-stream. The first approaches tackled the detection

and tracking of simple features, such as lines [4], circles [5]

or manually seeded regions in the scene [6].

As event cameras promise significant impact in high-rate

motion and scene tracking, SLAM has become the holy

grail of event-based research. Despite of the fact that the

field is still in its infancy, event-based SLAM pipelines have

already made their debut in the literature. Although some of

them do not explicitly employ features [7], [8], avoiding the

data association problem, most recent approaches implement

interesting schemes to detect and track corner features [9],

[10]. Nonetheless, the latter feature-based approaches, [9] and

[10], make use of intermediate frame-like representations of

the scene, rendered from the accumulation past events within

an arbitrary window, in which they detect FAST corners

[11] and track them using Expectation-Maximization (EM)

and the Lukas-Kanade Tracker (KLT) [12], respectively. Both

algorithms rely on the compensation of the camera motion to

obtain the reliable frame-like representations of the scene, by

either using an expensive EM scheme in [9] or using cues

from an Inertial Measurement Unit (IMU) in [10].

In this work, we advocate for algorithms that do not require

any integration of events for an intermediate frame-based

representation. To exploit the true power of event cameras,

the algorithms have to asynchronously operate directly on

event-stream, this is, processing each event upon arrival while

coping with the high data rate of the DVS to perform in real-

time. In [13], for instance, incoming events are classified as

corners upon arrival based on the optical flow orientation in the

local neighbourhood [14]. The corner-events are then matched

and tracked based on their estimated velocity and predicted

position under the assumption of a constant velocity model.

In [15] an adaptation of the original Harris corner detector [16]

for event-streams is proposed. Employing a global window of

events, upon the arrival of a new event, the time-stamp of the

events last triggered in the neighborhood are used to compute

the structure tensor from [16], achieving remarkable accuracy

with moderate computational cost. An improved version of

this method was later proposed in [17] (we refer to this as

‘eHarris’ for brevity), in which the global window of events

is substituted by a local one. Additionally, [17] proposes a

method to detect corners in the event-stream inspired by FAST

[11] – we refer to this as ‘eFAST’. Although eFAST is similar

to eHarris in inspecting the timestamp of the latest events in

the surrounding pixels, eFAST is significantly more efficient

with a small trade-off in accuracy.

Inspired by eFAST, in this paper we present Arc*, a corner

algorithm able to detect corners more than 4x faster eFAST

and 50x faster than eHarris, while enhancing the repeatability

of the corner detections. Additionally, we also propose an

event-based corner tracker, demonstrated to operate success-

fully in real scenes while achieving real-time performance

when compared to other state-of-the-art event-based trackers.

III. METHODOLOGY

A. Data Stream from Event-based Cameras

Let I(x, y, t) be the log-intensity value measured at the pixel

location (x, y), where an event triggered at time t. A new

event e is generated if, after an arbitrary period of time ∆t,

the absolute difference of I reaches a specific threshold K.

Formally,

∆I(x, y) = I(x, y, t+∆t)− I(x, y, t) = pK , (1)

where p denotes the event’s polarity (i.e. is either 1 or −1)

to indicate whether I increases or decreases. Ideally, a new

event e = {t, x, y, p} is generated as soon as this condition

is met, and appended asynchronously to the event-stream. In

practice, however, the triggering of events in a single pixel

is also subject to the sensor/hardware internal configuration

(electronic biases).

B. Filter of Redundant Events

To classify a new event as a corner-event upon arrival, we

need to inspect previously triggered events in the stream. Since

exploring all the previous events would not be scalable, we use

a Surface of Active Events (SAE) [14], [17] to summarize the

event-stream at any given instant. Briefly, the SAE S is defined

as S : (x, y) ∈ R
2 7→ tl ∈ R, where tl is the timestamp of the

latest event triggered at the pixel location (x, y). Following

the trend from [13], [15], [17], we separate the event-stream

according to polarity and process the two sets independently

in different SAEs.

The local neighbourhood in S of the new event’s pixel

location at its arrival time, i.e. the temporal ordering of the

latest triggered events in the neighbouring pixels, is used
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Fig. 2. On the left, real events generated due to translation of a black
rectangle are depicted (brighter green indicates newer events). We illustrate
the timestamps of the latest events triggered in a small region (red segment) on
the right. Although a single contrast change occurs, the significant magnitude
of the change induces the triggering of multiple events in each of the pixels.
Our proposed filtered SAE S∗ (red) captures the timestamps of the first event
in each pixel, accurately representing the position of the rectangle at each time
(note the constant velocity profile). A naive SAE S (blue) would capture the
timestamp of consecutive latest events instead, which are subject to noise.

to test whether the new event is a corner. However, several

factors may compromise the reliability of such ordering and

thus the quality of the detection. A sudden and significant

contrast change, for instance, would trigger multiple events

in the same pixel almost instantly, according to Equation (1).

Due to hardware limitations, however, there exists a minimum

amount of time between consecutive events triggered at the

same pixel. As a consequence, the latest timestamps registered

in the SAE do not represent the time when visual stimulus was

captured accurately, corrupting the local ordering of the events

as illustrated in Fig. 2.

To overcome this undesired effect, we propose a more

restrictive SAE that monitors a new variable, the reference

time tr, such that S∗ : (x, y) ∈ R
2 7→ (tr, tl) ∈ R

2. When

querying for the values of each location in S∗ (e.g., for corner

detection), the stored reference time tr is retrieved instead of

the latest timestamp tl as in S . Upon the arrival of a new

event at time t, the value of tl in the location is always

updated, tl ← t, as for S . However, the reference time tr
is only updated if the previous event in the same location was

not triggered within the time-window κ, such that tr ← t if

t > tl+κ, or if the polarity of the latest event triggered in the

same location differs from the polarity of the incoming one.

Only the events that update the value of tr in S∗ are considered

in the proposed algorithm, rejecting the rest of events as too

noisy and redundant for corner detection. Experimentally, we

observe that the threshold κ can be set to conservatively to

high values, blocking most of events triggered in regions with

smooth intensity changes, while relying on the updates of S∗

due to change of polarity to cope with fast motions. Although

κ could be dynamically modified or specifically tuned for each

experiment, for the sake of fairness, we use a constant value

of κ = 50ms in this work.

The benefits of using S∗ are two-fold: (1) high contrast

regions are more accurately represented spatially and tempo-

rally identifying when they were firstly detected, and (2) the

event-stream to be considered for corner detection is reduced

significantly by removing redundant events, drastically saving

computation time. In Section IV, we evaluate both eHarris
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Fig. 3. We illustrate an example in which the same corner under two
different motion directions (Magenta arrows) may induce completely different
SAEs (Height represents the timestamps of the latest event triggered in each
location). Our algorithm, Arc*, and eFAST successfully detect the corner on
SAE depicted on the left, as the set of newest elements in in the inspected
circles (Blue and red) are distributed continuously. However, only Arc* (and
not eFAST) is able to detect the same corner from the SAE depicted on the
right, where the angle of arc of newest elements is now over 180◦.

and eFAST using the proposed filter (i.e. using S∗), referring

to them as eHarris* and eFAST*, respectively, for a fair

comparison with the proposed corner detector Arc*.

C. Event-based Corner Detection: The Arc* algorithm

The edges in the scene captured by the camera leave a trail

of timestamps in the SAE that, ideally and in the absence of

noise, decreases from the current edge’s location towards the

direction of relative motion (see Fig. 2) in the image plane.

When detecting corner-events with the eFAST algorithm, a

circular set of locations in the SAE is inspected, and a subset

of these locations with newest timestamps is selected. If this

subset is distributed as a contiguous circular arc and its angle

is within a pre-defined range, the incoming event is classified

as corner, similarly to the original FAST algorithm.

The maximum angle of the circular arc of newest elements

in eFAST, however, must be less than 180◦ to prevent the

incorrect classification of events generated by straight edges

as corners. Nonetheless, depending on the direction of motion,

the arc of newest events around the corner may exhibit

an angle greater than 180◦, as illustrated in Fig. 3, which

eFAST fails to detect (see Fig. 6). The proposed Arc* corner

detector extends the detection initially proposed by eFAST to

arcs that are greater than 180◦ by employing a significantly

more efficient iterative algorithm that minimizes the number

of operations to classify corner-events. As a consequence,

Arc* achieves a better corner detector repeatability, effectively

increasing the number of detected corners, while exhibiting

better computational efficiency as shown in Section IV.

In the Arc* detector, described in Algorithm 1, the location

of a new event is used as the center of a circular mask of

a predefined radius as shown in Fig. 4. This circular mask

defines a set of locations, from which we retrieve their value

in SAE S∗, using the same polarity as the new event, and

create a circular set of elements C. We initialize the arc of

newest elements Anew with the newest element in C and a

pair of supporting elements in the adjacent clockwise (CW)

and counter clockwise (CCW) positions, ECW and ECCW .

In each iteration of the algorithm we select the newest

of the supporting elements ECW or ECCW . If the oldest

element in Anew is older than the selected newest supporting
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Fig. 4. Upon the arrival of a new event (green) located in a corner (grey background), we inspect a circular set of elements C (blue) in the local SAE as in
(a). In (b), we initialize the arc Anew (yellow) from the newest element (higher values mean newer timestamps) and ECW (cyan) and ECCW (red) from the
adjacent ones. We initially expand Anew up to a minimum size Lmin = 3 using, in this case, the newest supporting element ECW as in (c). In the following
iterations, we keep updating the position of ECW clockwise (since it is newer than ECCW during these iterations) and only extend Anew as soon as ECW

reaches the positions with the values ‘14’ and ‘15’ as depicted in (d). In (e), the algorithm updates the position of the now newest supporting element ECCW ,
until the circle C is completed. Here the incoming event is classified as a corner (conversely to eFAST) since the length of the complementary continuous
arc C \Anew , i.e. the elements not belonging to Anew , is 4 and thus, lies within the range [Lmin, Lmax] = [3, 6] specified for this circle radius.

element, we expand Anew up to such element (including it)

and update the position of the selected ECW or ECCW to the

following CW or CCW position in the circle, respectively. As

an initialization step, we always expand Anew following the

previous procedure up to a minimum length of Lmin elements,

even if the aforementioned condition is not met. The iterative

procedure is repeated until ECW points to the same element

as ECCW , this is, the oldest element in C. The incoming event

is classified as a corner if the final length of the continuous

arc Anew or its complementary arc in the circle C \ Anew is

between Lmin and Lmax elements.

To robustify our algorithm against noise, we employ the

same strategy as eFAST, employing two different circle radii

in our detection and only classifying the incoming event as

a corner if the test is passed in both. For a fair comparison

with eFAST, we employ circular masks computed from Bre-

senham’s circles of radii 3 and 4 and arc length thresholds of

[Lmin, Lmax] = [3, 6] or [4, 8] elements, respectively. These

thresholds account for the angle range of the detectable cor-

ners, imposing with Lmax a maximum angle of approximately

135◦ and Lmin preventing noisy detections using too small

arcs.

D. Event-based Corner Tracking

Assuming that the corner-events are detected accurately,

they describe continuous trajectories in the image plane due

to the asynchronous nature of the detections. Exploiting this

continuity of tracks, the proposed tracker establishes data asso-

ciation of corners in the event-stream by relying on proximity

of detections. Note that the described tracker is agnostic to the

corner detector used, only requiring continuous detections in

the image plane.

Our event-based tracker employs a directed graph G =
{V,E} to represent corner-event tracks, where the vertices

v ∈ V represent the detected corner-events and the edges

e ∈ E represent the associations between such detections.

Each vertex encodes the same information as the correspond-

ing corner-event, excluding its polarity, i.e. v = {t, x, y}. The

tracker discriminates between active and non-active vertices,

indicating whether they are viable candidates for data associ-

ation or not, respectively. The graph is structured in smaller

Algorithm 1: Arc* – Corner-Event Detection

Input: Event = {t, x, y, p}, S∗, Radius, Lmin, Lmax

1 C = CircleMask(x, y, p,S∗,Radius)
2 Initialize Anew = NewestElement(C)
3 Initialize ECW = NextElementCW(Anew, C)
4 Initialize ECCW = NextElementCCW(Anew, C)
5 while ECW 6= ECCW do

6 if ECW > ECCW then

7 if OldestElement(Anew) ≤ ECW OR

8 Length(Anew) < Lmin then

9 ExpandUntilElement(Anew, ECW )

10 ECW = NextElementCW(ECW , C)

11 else

12 if OldestElement(Anew) ≤ ECCW OR

13 Length(Anew) < Lmin then

14 ExpandUntilElement(Anew, ECCW )

15 ECCW = NextElementCCW(ECCW , C)

16 if Lmin ≤ Length(Anew) ≤ Lmax OR

17 Lmin ≤ Length(C \Anew) ≤ Lmax then

18 return true

19 else return false

tree subgraphs T ⊂ G, where each tree T represents a set of

different hypotheses of trajectories for the same single tracked

corner defined in spatio-temporal space. The tracker, described

in Algorithm 2, addresses the asynchronous growth of the trees

as new corner-events are included in the graph (as illustrated

in Fig. 5).

A new corner-event generates an equivalent active vertex

vnew, which the tracker attempts to associate with any of the

newest active vertices located in its neighbourhood, namely

the subset Vneigh. The neighbourhood expands in the image

plane up to a maximum range of dconn pixels centered around

vnew. Ideally, assuming continuous feature tracks, we could

set dconn = 1px. However, in order to cope with missed

detections in real scenarios, we set dconn = 5px in this

work. The neighbourhood is also temporally constrained, so
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and T2 (blue), consisting of active (full circle) and inactive vertices (striped
circle). Upon the arrival of a new corner-event (green), the set of newest
neighbouring active vertices Vneigh (vertices connected by dashed lines) is
retrieved from the spatio-temporal window (yellow area), determined by the
parameters dconn and ∆tmax. The closest and newest vertex from T1 is
selected for data association, growing the tree as depicted in (b). However,
the inclusion of the new vertex triggers the forgetting process as it increases
the maximum depth of the tree ρmax, inducing the deactivation of previous
vertices according to ρthresh. Lastly, in (c) the best track encoded in T1 can
be retrieved from the deepest branch, i.e. ‘Branch 2’ in this case (green path).

that vertices older than ∆tmax with respect to vnew are not

considered. Essentially, ∆tmax defines a temporal window to

prevent data association with older and noisy parts of the

graph, and is tuned conservatively to ∆tmax = 0.1s to cope

with slow feature motions.

We split the set of neighbouring vertices Vneigh into leaf and

non-leaf vertices, namely Vleaf and V¬leaf , respectively. The

closest vertex to vnew in the image plane from Vleaf is defined

as vparent or, if there are several vertices at the same distance,

the newest one among them. If there are no leaf nodes (Vleaf =
∅), we extract vparent from V¬leaf instead. We establish then

data association between both nodes, assigning vnew to the tree

to which vparent belongs, Tparent, and growing it by adding a

new edge between vertices. In case there are no active vertices

in the neighbourhood, Vneigh = ∅, vnew becomes the root of

a new tree Tnew instead.

Each vertex stores its relative depth to the root of its tree.

If the maximum depth ρmax within a tree increases after

adding a new vertex, we deactivate any vertex whose relative

depth compared to ρmax exceeds ρthresh. This adaptive de-

activation process acts as an event-based driven forgetting

horizon, keeping active only the vertices in the most promising

branches as the tree grows. The parameter ρthresh can be finely

tuned according to the capabilities of the corner-detector to

perform non-maximum suppression or the proximity of the

corners in the scene. In our experiments, however, we set

ρthresh = 5.

At any given instant, we can extract the best hypothesis

for the corner trajectory from the deepest branch in the tree

T , representing the branch with the highest spatio-temporal

consensus. Nonetheless, note that, when the best trajectory

hypothesis is computed at run time, the newest vertices that

are still active and within the forgetting horizon determined by

ρthresh are not reliable to determine the corner position. In our

experiments, we grow the graph and establish data association

in real-time and then post-process each tree to retrieve the best

track, ignoring those that do not last longer than 0.5s.

Algorithm 2: Corner-Event Tracking

Input: Detection = {t, x, y, p}, dconn, ∆tmax, ρthresh
1 Initialize Vertex: vnew = {t, x, y};
2 Vneigh = GetActiveNeighbourVertices(vnew, dconn) ;

3 Vneigh = DiscardOldVertices(Vneigh,∆tmax);
4 if Vneigh 6= ∅ then

5 {Vleaf , V¬leaf} = SegmentLeafVertices(Vneigh) ;

6 if Vleaf 6= ∅ then

7 vparent = GetClosestAndNewestVertex(Vleaf );
8 else

9 vparent = GetClosestAndNewestVertex(V¬leaf );

10 Tparent = GrowExistingTree(vparent, vnew);
11 UpdateActiveVerticesInTree(Tparent, ρthresh);
12 else

13 Tnew = InitializeNewTreeFromVertex(v);

IV. EXPERIMENTS

We evaluated the proposed pipeline on the publicly available

event-camera dataset of [1]. This dataset was recorded with a

Dynamic and Active-pixel Vision Sensor (DAVIS) [3], which

has a resolution of 240× 180 pixels and captures both event-

based cues and intensity (frame-based) images using the same

chip. While the proposed approach works only on the event-

stream, we use the intensity frames to extract ground-truth

for some of the proposed metrics. This dataset is composed

of different scenes recorded using different camera motions.

For our evaluation, we select a representative subset of these

scenes with increasing complexity and event-rate – namely,

we test on the shapes, dynamic, poster and boxes

scenes. Note that we use the same subset of experiments

employed in the evaluation of eFAST against eHarris [17],

in order to enable a fair comparison against all methods.

Unless stated otherwise, due to space limitations, we group

the performance according to the scene, combining all the

recorded experiments with different motions, and report the

mean for each of the proposed metrics. In our metrics, we

compare the performance of our Arc* corner detector to

the state-of-the-art eHarris and eFAST (using the original

implementations provided by the authors1), and their modified

versions eHarris* and eFAST* employing the proposed filter

of redundant events. The proposed corner tracker algorithm is

evaluated using our corner detector.

A. Ground-truth for Event Cameras

Obtaining ground-truth to evaluated purely event-based ap-

proaches is particularly challenging as simulated data does

not guarantee the capture of the true sensor’s behaviour. In the

event-based detector literature, [13] and [15] manually labelled

groups of corners in the event-stream and thus, this approach is

limited in practice to simple scenes with clear corners. In [17],

an automatic labelling method is proposed which evaluates

the spatio-temporal distribution of events classified as corners.

Such method, however, cannot account for missed detections

1https://github.com/uzh-rpg/rpg corner events
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TABLE I
THE PERCENTAGE OF THE EVENTS BLOCKED BY THE PROPOSED FILTER

AND THE PERCENTAGE OF CORNER-EVENTS DETECTED PER SCENE.

Experiment
Block Corner events [%]
[%] eHarris eFAST eHarris* eFAST* Arc*

shapes 52.6 8.2 12.5 5.1 7.8 12.1
dynamic 48.0 4.8 3.6 3.3 2.5 7.1
poster 45.6 7.5 4.3 5.2 3.2 8.3
boxes 43.2 7.6 3.3 5.2 2.6 6.4

and does not guarantee that the detections correspond to actual

corners in the scene.

In our evaluation, we make use of the available intensity

frames in the dataset to detect corners using the (original)

Harris detector [16] and track them using KLT [12], similarly

to [18]. We exhaustively refine the tracks and interpolate their

position in the image plane using cubic splines to match the

temporal resolution of the events, while discarding noisy and

short tracks.

In our accuracy-related metrics, we only consider the events

that are triggered within a neighbourhood of up to 5 pixels (in

the image space) of any intensity-based track. In the algorithms

employing the proposed filter, the considered events are further

restricted to those not filtered in the event-stream. Restricting

our metrics to this subset of events close to intensity-based

tracks, we ensure those events have actually correspondence

to real corners in the image space, where ground-truth is

available. While the DVS allows us to detect more corners

in the scene (e.g. with low intensity contrast or motion blur),

the proposed evaluation strategy is reproducible and reliable to

enable ground-truth comparisons. As the selected experiments

are recorded with increasing velocity, we limit the length of

each experiment to the first 10 seconds, leaving out the images

where significant motion blur affects the fidelity of the ground-

truth tracks.

Metrics that are not related to intensity-based tracks are

not subject to the aforementioned restrictions, and are thus

evaluated by processing the whole event-stream for each

experiment, offering evidence and insights of the applicability

of the proposed pipeline even under high-dynamic motions.

B. Filtering and Reduction to Corner Events

Reducing the event-stream to the most relevant events

decreases the amount of data that needs to be processed by

modules further down in the pipeline. This reduction can

be achieved by filtering the event-stream, as done with the

proposed filter eliminating redundant events, and/or detecting

corners in the stream from which a high-level representation

of the scene is obtained.

Table I summarizes the reduction of the data stream as a per-

centage of the total number of events per scene. The proposed

filter blocks between 40-50% of the events. Consequentially,

the modified versions eHarris* and eFAST* employing our

filter have an equivalent drop in the number of detected

corners. Despite the reduced number of corners detected, the

results in Section IV-C provide evidence that the quality of

the detection is not significantly affected as only redundant

events are filtered out whereas the computational performance

experiences a substantial improvement. When limited to the

filtered event-stream, the proposed corner detector detects

most corners, approaching comparable figures to the number

of corners detected in the unfiltered event-stream with eHarris

and eFAST.

C. Corner Detector Performance

By design, eHarris has a weak response to corners with

wide angles (inherited from the original Harris detector),

whereas eFAST misses the detection of some of the corners

depending on their relative motion with respect to the camera

(as explained in Section III-C). Our method Arc* is able

to extend the detection of corner-events to those cases, as

depicted in Fig. 6, where we also compare the percentage of

the total length of intensity-based track detected using each

algorithm. A segment of the intensity-tracks is considered

detected if there exists at least one corner-event detected in

the past 0.1s at maximum 3.5 pixels away from the track.

To assess the quality of the detections, we report the True

Positive Rate (TPR) and False Positive Rate (FPR) per detector

and scene in Fig. 7, including the ‘Overall’ as the mean across

all the scenes weighted accordingly to the number of events.

To this end, a corner-event is labelled as true positive if it is

closer than 3.5 pixels away from an intensity-based track or

true negative otherwise, up to a maximum of 5 pixels distance.

The proposed Arc* outperforms all others in terms of TPR, i.e.

we detect more real corners from the scene. However, as we

drastically increase the number of detections, we also incur in

an equivalent increment of FPR. Note that the performance

of Arc*, in terms of both TPR and FPR, approaches the

performance of eHarris as the scene’s complexity increases.

The algorithms eHarris* and eFAST* employing our filter

shows no significant difference in these metrics, although the

boost in computational performance is significant as reported

Section IV-E.

The reported results suggest that eHarris is the most robust

algorithm for complex scenes in presence of significant noise

(poster and boxes), only performing marginally worse in

simpler scenes (poster and dynamic) and keeping in all

the cases a stable FPR and TPR score. In contrast, eFAST is

excessively restrictive in its detections, incurring in low FPR

but also low TPR, and, as consequence, it can only retrieve a

small number of all the corner tracks in the scene (See Fig. 6).

The proposed method Arc* drastically increases the number

of detections, improving the TPR but scoring worse FPR, this

is, detecting more real corners of the scene but also incurring

in more noisy detections. The proposed method extracts more

information from the scene to the tracker, allowing the system

to keep track of a higher number of features while relying on

the common consensus among the detections to remove the

noisy ones. Moreover, Arc* is significantly more efficient than

the eFAST and eHarris (i.e. 50× and 4.5× faster, respectively),

being the only method able to process all the event-stream of

the tested scenes in real time.

In terms of accuracy, measured as the mean distance of a

corner-event to its closest intensity-based track, no significant
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Fig. 6. Figures (a)-(c) depict the corner-events detected (green dots) in shapes scene using eHarris, eFAST and our proposed Arc* corner detector whereas
the lines correspond to the intensity-corner tracks within a temporal window of 100ms. Coloured in red, the tracks that are strongly detected by each detector
in contrast to those in yellow. Our detector Arc* is able to successfully detect all the corners, whereas eHarris have a low response in corners with wide angle
and eFAST miss those whose local SAE have a specific shape as explained in Fig. 3. Note the noise reduction in the detections when employing the proposed
filter. Figure (d) shows the percentage of the track length detected in the event-stream with respect to the track length computed from intensity images for
each method and scene.
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Fig. 7. The True Positive Rate and False Positive Rate of corner-event
detections for each scene and detector.

is revealed across the methods, only depending on the scene

complexity: namely, 2.3 ± 0.1px in shapes, 2.8 ± 0.2px in

dynamic, 3.0±0.1px in poster and 3.0±0.1px in boxes.

Such values match the expected range of 2-3px reported in

previous publications such as [15].

D. Corner Tracker Performance

Illustrative examples of the proposed tracking system in

action are depicted in Fig. 1 and Fig. 8 employing the corners

detected with Arc*. The tracker’s “Accuracy” is evaluated

using the mean minimum distance between event-based and

intensity-based tracks, considering only the tracks’ segments

closer than 5 pixels to each other, equivalently to the accuracy

evaluation in corner detection. The results in Table II report an

improved accuracy score compared to the corner detection and

evidence that the tracker prune some of the noisy detections

while composing the feature track from the most reliable ones.

Our method associates the corner-events based on proximity

under the assumption that the corner detections are well local-

ized at a real corner. When this assumption is compromised

TABLE II
THE PERFORMANCE OF THE PROPOSED CORNER-EVENT TRACKER IN

TERMS OF THE MEAN ACCURACY, TRACK LIFETIME AND UNIQUENESS IN

TRACKING THE SAME REAL CORNER PER SCENE.

Experiment
Accuracy Lifetime Uniqueness
[pixels] [s] [%]

shapes 2.2 0.9 71
dynamic 2.6 0.5 23
poster 2.8 0.5 17
boxes 2.9 0.4 18

T
im

e

Fig. 8. Event-based tracks associating corner-events (different colors) within
a time-window in the image space (left) and with respect to time (right)
evaluated on shapes during high-speed camera rotation. The intensity image
is superimposed for illustration.

(as in highly textured environments), a single feature track

associated to an specific real corner may jump to another

corner during its lifetime. As our method does not explicitly

report such tracking failure, for the sake of fairness, we

report the mean “Lifetime” as the time a single feature track

spent tracking the same intensity-based corner. In case more

than a single intensity-based corner characterizes an event-

based track, we report the percentage of the longest time

spent tracking the same intensity-based corner as the score

“Uniqueness”, indicating the additional confusion incurred in

complex scenes. Note that the quality of the proposed tracker is

comparable to other state-of-the-art event-based corner tracker

(e.g., [13]), while achieving significantly longer valid track

lifetime in far more challenging scenarios.

E. Computational Performance

All experiments are run on a Xeon E3-1505M CPU with

2.80GHz and 16GB of RAM and using a single threaded C++
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TABLE III
COMPUTATIONAL PERFORMANCE OF THE DIFFERENT CORNER DETECTOR

METHODS AND THE PROPOSED TRACKING SYSTEM.

Algorithm
Time per event Max. event rate

[µs/ev] [Mev/s]

eHarris [15], [17] 6.96 0.14
eFAST [17] 0.60 1.67

eHarris* 4.56 0.22
eFAST* 0.35 2.85

Arc* 0.13 7.52

Corner Tracker 1.97 0.51

implementation. Table III reports the average time spent to pro-

cess a single event and the equivalent maximum event rate in

Millions of events per second for each algorithm. On average,

the proposed Arc* corner detector runs more than a than 50×
faster than eHarris and up to 4.5× faster than the eFAST using

the implementation provided by the authors. While eFAST

can achieve, on average, real-time performance in the low-

textured scenes (shapes and dynamic), it cannot cope with

the average event rate of over 2 Mev/s of the complex scenes

(poster and boxes). Despite the increased robustness of

eHarris compared to Arc* and eFAST, it performs always

slower than real-time, e.g. 2× slower than-real time in the

simplest shapes scene.

Note the significant computational performance boost due

to the proposed filter in eHarris* and eFAST*. The cost to

process a single event is improved by approximately 35%,

while the performance of the algorithms is not significantly

affected as reported in Section IV-C.

Finally, Table III also reports the processing time required

to establish data association between corner-events with the

proposed tracker. While the time per event is significantly

larger than in detection, note that the tracker only processes

corner-events, which, in the worst case scenario, account up

to 12% (see Table I) of the the original event-stream and thus

applicable in real-time even in high-speed applications.

V. CONCLUSIONS

This paper presents a novel event-based visual front-end

pipeline, that pre-filters the event-stream, detects corners in it

and tracks them in real-time in a completely asynchronous

fashion and thus, can fully leverage the benefits of event

cameras. The proposed event-based filter is shown to reduce

the amount of redundant information, effectively boosting

the performance of even existing state-of-the-art corner-event

detectors. Evaluation on benchmarking datasets reveals a

significant speed-up offered by the proposed Arc* corner-

event detector, with real-time performance even under high-

speed motions, and with improved repeatability and number

of detections. Lastly, the proposed novel asynchronous corner

tracker establishes correspondences across corner-events also

in real-time and can be used to retrieve spatio-temporal event-

based feature tracks. We believe that the proposed pipeline

opens up exciting new research directions for high-speed

camera and scene tracking towards the development of a

completely asynchronous and event-based SLAM framework

in the future.
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