
Asynchronous Datapaths and

the Design of an Asynchronous Adder

Alain J� Martin
Department of Computer Science
California Institute of Technology

Pasadena CA ������ USA

June �����October ����

Abstract

This paper presents a general method for designing delay insen�
sitive datapath circuits� Its emphasis is on the formal derivation
of a circuit from its speci�cation� We discuss the properties re�
quired in a code that is used to transmit data asynchronously�
and we introduce such a code� We introduce a general method
�in the form of a theorem� for distributing the evaluation of a
function over a number of concurrent cells� This method requires
that the code be �distributive�	 We apply the method to the
familiar example of a ripple�carry adder� and we give a CMOS
implementation of the adder�

� Introduction

A circuit is said to be delay�insensitive when its correct operation is

independent of the delays in the operators and in the wires� except that

these delays are positive and �nite� Obviously� such circuits do not use

clocks for the sequencing of actions� and are therefore a special class of

asynchronous circuits� Delay�insensitive circuits are interesting for two

main reasons� First� they are more robust and potentially faster than

their clocked counterparts� since their correct operation does not rely

on worst�case delay assumptions� �The speed advantage will be clearly

demonstrated by the ripple�carry adder example� where we exploit the

�



�

variation in carry�chain lengths to reduce an algorithm that is linear in

the worst�case assumption� to an algorithm that is logarithmic in the

average case��

Second� delay�insensitive circuits are more suitable for formal treat�

ment since they can be designed and analyzed entirely within the

algorithmic domain� up to electrical optimizations like transistor siz�

ing� A delay�insensitive circuit can be formally derived by program�

transformation from a �high�level� program description� If the original

program has been proven correct� the resulting circuit will be correct

by construction� �For a description of the method� see� for instance�

	
�� and 	����

In spite of the intense activity in the area of high�level synthesis of

delay�insensitive circuits� most published research so far has concen�

trated on the design of �control circuits�� i�e�� circuits that realize the

sequencing of actions of a computation� The other type of circuits�

called �data paths�� are those that deal with the manipulation and

transmission of data�

Datapath design raises issues very di
erent from� and in several

respects more di�cult than� that of control circuitry� First� for reasons

of e�ciency� all sequencing circuitry should be eliminated from the

datapath implementation� Second� the evaluation of a function should

be distributed� Ideally� we want each bit of the output to be produced

by a �cell� that depends only on a limited number of bits of input� All

cells operate concurrently�

This paper presents a general method for designing delay�insensitive

datapath circuits� Its emphasis is on the formal derivation of a cir�

cuit from its speci�cation� We �rst discuss the properties required in

codes used to transmit data asynchronously between two concurrent

processes� and we introduce one of these codes� We then introduce a

general method �in the form of a theorem� for distributing the eval�

uation of a function over a number of concurrent cells� this method

requires that the code be �distributive��

Next� we apply the method to the familiar example of a ripple�carry

adder� This example uncovers another di�culty of datapath design� In

order to reduce the fanin of each cell� some information computed by

one cell is used in another cell�the carry in the case of an adder� But

this extra communication may reduce the concurrency between cells�



�

We therefore introduce and apply optimization rules that reduce the

dependencies between input and output�

Finally� we show how a monotonicity property of guard evaluation

�called �stability�� makes it possible to implement the �nal program

directly as a transistor network in CMOS� This mapping is particularly

e	cient since� unlike earlier implementations of the adder� it does not

require translation to standard cells�

The paper is reasonably self
contained� The whole design of the

adder from program to CMOS circuit is explained and justi�ed�

� Delay�insensitive Communication

Consider a system consisting of two communicating processes� a pro


ducer�sender of data words� and a consumer�receiver of the data words�

The data words are binary encoded and transmitted on a set of wires�

For the purpose of making this paper self
contained� we view a wire

shared by two processes as being a boolean variable assigned by one

process and read by the other process� There is an important restric


tion� however� to the use of wires as program variables� Because of the

delay
insensitive nature of the transmission of data� the order in which

the wires of a set are assigned by the sender cannot be maintained on

the receiver side
 they can be observed by the receiver to change value

in any order�

Because signals �assignments to wires� cannot be ordered� it is im


possible to use an extra signal�clock or control signal�to encode the

information �to be used by the the receiver� that the set of data wires

contains a valid value� Instead� this information has to be encoded in

the data that is transmitted between sender and receiver�

��� Delay�insensitive codes

Let us discuss �rst the transmission of one data word� The sender as


signs values to all the wires concurrently� since order is irrelevant� The

receiver reads the data wires in any order or concurrently� Concurrent

reading and writing of a wire is possible� We may assume without loss

of generality that the value read is either the old or the new value�

Concurrent writes are not allowed�



�

Let B be the set of data words to be transmitted� A data value to

be transmitted is encoded using the coding function C � B �� X � Set
X is the set of all code words� Let V be the set C�B�� V is called the

valid set �or the set of valid values��

The code has to be chosen such that there is a non�empty set� N �

the neutral set �or the set of neutral values�� such that N � X � V�
Hence� a code value cannot be both neutral and valid� For a code

word X� the predicate v�X� stands for �X is a valid code word�� The

predicate n�X� stands for �X is a neutral code word�� The code has

to be chosen such that�

Property � For any code word X � �v�X� � �n�X��

Furthermore� j X j�j B j � �Typically� each data word is an array of n

booleans� and each code word is an array of m booleans� with m � n��

The transmission of a data word� B� by the sender is the assignment

of a valid code word� X� to the set of wires such that C�B� 	 X� If the

assignment also implies that the wires change from a neutral value to

a valid value� we can construct a communication protocol in which the

receiver can detect that the value read on the wires is the data sent by

observing a change from a neutral value to a valid value�

Once a valid value has been assigned to the wires� sending the next

code word requires either that all wires 
rst be reset to a neutral value

or that the coding function� C� be changed such that the 
nal� valid�

value of any communication can be interpreted as the initial� neutral

value of the next communication�

The 
rst solution is a straightforward extension of the four�phase

handshake protocol� the second solution is a straightforward extension

of the two�phase handshake protocol� Since we usually prefer to use

a four�phase protocol� we choose the 
rst solution in this paper� The

extended four�phase protocol between the producer and the consumer

can be described as follows�

producer � 	
 
ci�� produce X� X
� 
�ci�� X � �

consumer � 	
 
n�X��� ci�� 
v�X��� consume X� ci
 �

Initially� �ci � n�X� holds�



�

The general notation used is explained in the appendix� X� is the

concurrent assignment of some bits of X such that the result is a valid

value� and X � is the concurrent assignment of some bits of X such

that the result is a neutral value�

In the consumer� the test �v�X�� is needed to guarantee that the

consumed value is a valid value� and the test �n�X�� is needed to guar�

antee that the next valid value produced by the producer is separated

from the previous one by a neutral value�

� Separable Codes

Because the assignments to the wires used to communicate a code word

are concurrent� any transition from a neutral value to a valid value or

from a valid value to a neutral value can go through a number of

intermediate values� When executing the waits �v�X�� and �n�X��� the

receiver can read several intermediate values for X� i�e�� values that are

obtained by changing only some of the wires of X� To avoid premature

completion of the waits� we must ensure that none of the intermediate

values generated during a transition from neutral to valid is valid� and

that none of the intermediate values generated during a transition from

valid to neutral is neutral� A code with this property is said to be

separable�

��� Intermediate Values

We require that assignments X � and X � each contain at most one

assignment to each boolean variable x of X �an 	elementary assign�

ment
�� Since any valid value is distinct from any neutral value� the

assignment X �� which realizes the transition from a neutral value Xn

to a valid valueXv� contains at least one elementary assignment� IfX �

contains more than one elementary assignment� the set of elementary

assignments of X� can be partitioned into two non�empty subsets� S�

and S�� The set S� realizes a transition from Xn to a value Z� called

an upward intermediate value�

Similarly� X �� which realizes the transition from a valid value to

a neutral value� contains at least one elementary assignment� and we

de
ne downward intermediate values in the same way as upward inter�



�

mediate values�

We require that the following property hold�

Property � �Separable code� A code is separable if no upward in�

termediate value is valid� and no downward intermediate value is neu�

tral�

Obviously� if a code contains exactly one neutral value� no downward

intermediate value is neutral�

��� Dual�Rail Code

A simple code that satis�es both Property � and Property � is the so�

called dual�rail code	
�� To each bit� bk� of a word� B� correspond two

bits� xtk and xfk� of the code word� X� encoding B� We de�ne�

n�X

def
� ��k � ���N � � � �xtk � �xfk


v�X

def
� ��k � ���N � � � xtk �� xfk
 �

Hence� the neutral value is unique� The coding of a value word� B� as

a valid code word� X� is simply�

�k � ���N � � � xtk� xfk �� bk��bk � ��


Observe that a code word� X� for which xtk �xfk holds for some value

of k� is neither valid nor neutral� and is therefore not in X �

Proof of Property � By the de�nition of n�X
 and v�X
� we have�

n�X
� �v�X


which establishes Property ��

Proof of Property � Since the code contains only one neutral value�

no downward intermediate value is neutral�

We prove that an upward intermediate word� Z� is not valid� Be�

cause of the coding ��
� any valid dual�rail code word di�ers from the

neutral word in exactly N bit positions� By de�nition� Z di�ers from

the neutral value in a number� m� of bit positions equal to the size of

S�� Hence� m � N � and Z is not valid�



�

��� One�Hot Code

Another commonly used delay�insensitive code is the so�called one�hot

code� For a data word B of n bits� the one�hot code X is the word of

�n bits with exactly one bit true in the position corresponding to the

decimal value of B� We have�

n�X�
def
	 ��k � 
���n � � � �xk�

v�X�
def
	 ��Nk � 
���n � � � xk� 	 �� �

Since X � and X � both contain exactly one elementary assignment�

no intermediate value can be generated� thus� the one�hot code is sep�

arable�

� Function Evaluation

We want to construct a process� F � that repeatedly takes separable code

word� X� and produces a separable code word� Y � such that Y 	 f�X�

for a given function f � The process behaves as both the consumer of

argument X and the producer of the result Y � Combining the two

protocols gives the function�evaluation process

F � �
 
v�X���Y �� 
n�X���Y � � � ���

such that v�Y ���Y 	 f�X�� holds as a postcondition of Y �� and n�Y �

holds as a postcondition of Y ��

The environment behaves as the producer of X and the consumer

of Y � and ful�lls the protocol

E � �
 produce X� 
n�Y ���X�� 
v�Y ���X�� consume Y � � ���

such that v�X� holds as a postcondition of X �� and n�X� holds as a

postcondition of X ��

The initial conditions are n�X� and n�Y ��

If X and Y are dual�rail code words� each pair ytk� yfk of bits of Y

is assigned by the two commands Yk� and Yk�� with

Yk� � 
Btk 	 ytk 
 
�Bfk 	 yfk 
�

Yk� � ytk �k yfk � �

where Btk and Bfk are two boolean expressions that depend on a

subset� Xk� of the bits of X�



�

� Distributive Codes

Essential to the introduction of concurrency in the implementation of

process F is the ability to distribute the global tests� v�X� and n�X��

Codes with this property are called distributive�

A subcode of code word X is a word formed from a proper subset

of the set of bits of X�

De�nition � �Distributive Code� A code is distributive if any code

word� X� can be partitioned into a set� S� of subcodes such that

� n�Y � and v�Y � are de�ned for any Y � Y � S�

�

��Y � Y � S � n�Y �� � n�X� ���

��Y � Y � S � v�Y �� � v�X� �	�

Theorem � The dual�rail code is distributive�

Proof We construct a set� S� of subcodes� X��X�� � � �Xp��� of code

word X as follows� First� each subcode contains any number �larger

than 
 and less than N� of pairs� xtk� xfk� Hence� any such subcode�

Xj� is itself the dual�rail code of the subset of B consisting of the bits

of B with the same indices as the pairs in Xj� and thus� n�Xj� and

v�Xj� are de�ned�

Secondly� S is chosen such that �
S
k � 
��p� 
 � Wk� � X� and thus

��� and �	� hold�

However� the one�hot code is not distributive�

� The Main Theorem

Next� we show how to implement the function evaluation process� F �

with a set of concurrent cells� each dedicated to assigning one bit of the

function� We present the result in the form of a theorem� Although the

method is applicable to all distributive codes� we prove the theorem for

dual�rail codes�

We �rst distribute the �dual�rail� input code wordX in the following

way� We construct a set of N subcodes� Wk� with 
 � k � N � where



�

N is the size �number of bits� of the data output� The construction of

the code follows the two rules introduced in the proof of the previous

theorem� Hence� we have

��k �� v�Wk�� � v�X� ���

��k �� n�Wk�� � n�X� ���

We add one extra requirement� Let Sk be the set of bits of X used

in Btk and Bfk� We require that Wk be chosen such that Sk �Wk�

Hence� the function evaluation can be distributed only if the algo	

rithm used for evaluating the function satis
es the locality property

that the number of bits of X used in Btk and Bfk is �signi
cantly�

smaller than N�

This extra requirement ensures that the validity of Wk implies the

validity of the bits of X used in Btk and Bfk�

With this distribution of the input code� X� we will establish

Theorem � The function evaluation process F can be implemented

as the parallel composition of N function�cells Ck� where Ck is the

program�

����Btk � v�Wk�� ytk ���

k���Bfk � v�Wk�� yfk ���

k���n�Wk�� ytk �k yfk ���

� �

where N is the number of data bits of the output Y of F �

Proof We are going to produce the solution by successive program

transformations�

The function evaluation process� F � and the environment� E� share

variables in a restricted form� Process F sets the output variables�

Y � and observes the input variables� X� Process E sets the input

variables� X� and observes the output variables� Y � The correctness

of any implementation relies on an important property of the guard

evaluations� called stability�

De�nition � �Stability� Let G be a guard containing shared vari�

ables assigned by another process� The evaluation of G is stable if�

once G is evaluated to true� it remains true at least until the process

containing G changes some variable�



��

Theorem � All guards are stable in the initial version of F and in E�

�The proof is immediate from the properties of a separable code��

We shall maintain the stability of the guards as an invariant of all

further versions of F �

We can now introduce and justify the successive transformations of

F � �In the proof� the range of k is from � to N � � and is omitted��

Transformation � replaces the global waits with conjunctions of local

waits�

�� ��k �� v�Wk�	
 Y �
 ��k �� n�Wk�	
 Y � 	

The correctness of the transformation is immediate from ��� and

����

Transformation � distributes the waits�

���kk �� �v�Wk�	�
Y �
 �kk �� �n�Wk�	�
Y �	

The correctness of this transformation follows from the stability of

v�Wk� and n�Wk� for all k in F � which follows from the stability of

v�X� and n�X� in F � since v�X�� v�Wk� and n�X�� n�Wk��

In view of the next transformation� we rewrite this version as�

���kk �� �v�Wk�	�
 �kk �� Yk ��
 �kk �� �n�Wk�	�
 �kk �� Yk��	

Transformation � eliminates the 
global� semicolons between the

concurrent waits and the following concurrent assignments�

���kk �� �v�Wk�	
Yk��
 �kk �� �n�Wk�	
Yk��	

This tranformation is justi�ed as follows� In the new program� Yk�

can be executed before the completion of a wait action �v�Wj�	 for

j �� k
 however� the assignment still follows the wait �v�Wk�	� Since

Sk � Wk� the assignment depends only on the validity of variables in

Wk
 and since v�Wk� is stable� the net e�ect of the assignment Yk � is

not changed by the transformation�

The net e�ect of the assignment� Yj �� is not changed either� This

assignment depends only on the validity of the variables in the set�Wj�

Since all bits of X are assigned concurrently by the environment� if

v�Xk� is true in a state of F � we can conclude that eventually� v�Xj�



��

will hold� and similarly for the downgoing transitions� Hence� the as�

signment� Yj �� will be correctly executed in the new program�

The other half of the transformation is justi�ed in the same way�

Now� F has the structure�

��	kk �� Tk
� 	kk �� T �

k
� �

Transformation � eliminates the last global synchronization points�

leading to the program�

	kk �� ��Tk�T
�

k�


where ��Tk�T
�

k� is the program of function�cell Ck�

This transformation potentially eliminates the sequencing between

an action� Tk� and the following T �

j � and between an action� T �

j � and the

following Tk� for k �� j�

However� T �

j is conditional to n	Wj
 holding� And the environment

establishes n	Wj
 as a result of X �� which is conditional to v	Y 


holding as a postcondition of the preceding Tk for all k� Hence� the

sequencing between a Tk action and the following T �

j is enforced by the

environment even for k � j�

The other half of the proof is similar�

We have also established that the sequential composition between

Tk and T �

k inside the same cell 	i�e�� for the same value of k
 is also

super
uous� which justi�es the next transformation�

Transformation � rewrites the program of function�cell Ck as

	��Tk� k ��T
�

k�


since the sequencing between a Tk action and the following T �

k is en�

forced by the environment�

Transformation �� For X and Y dual�rail codes� the program of Ck

is
	�� �v	Wk
�� �Btk � ytk �

��Bfk � yfk �

� �

k�� �n	Wk
� ytk �k yfk ���


 �



��

We eliminate the last semicolon by moving the test� �v�Wk��� inside the

guard of the selection command� We get	

��� �Btk � v�Wk�� ytk �

��Bfk � v�Wk�� yfk �

� �

k�� �n�Wk�� ytk �k yfk ���

� �

This transformation is valid if we assume that the implementation of

the guard evaluation uses the same value of X for both v�Wk� and

Btk in the 
rst guard� and the same value of X for both v�Wk� and

Bfk in the second guard� This requirement is relatively easy to meet

in VLSI� but we will not elaborate any further� as we can justify the

transformation in another way�thanks to a property of Btk and Bfk
that we will introduce for optimization purposes�

Transformation � replaces the selection command

�� �Btk � v�Wk�� ytk �

��Bfk � v�Wk�� yfk �

� �

with the parallel command

� ���Btk � v�Wk�� ytk ���

k ���Bfk � v�Wk�� yfk ���

� �

The transformation is an application of

Theorem � The programs ���A��B�� and ���A�� k ���B�� are equivalent

if and only if A and B are mutually exclusive�

Proof It is obvious that A and B being mutually exclusive is a nec�

essary condition for the equivalence of the two programs�

Assume that A and B are mutually exclusive� Any 
nite execution

of either program is an interleaving of a 
nite number of executions of

A and B� �An execution of A or B is a 
step of the interleaving���

Assume that the two interleavings are identical up to and excluding

the n�th step� n � �� Since the selection command is deterministic� the

nth step is unique� and is therefore identical for both interleavings�

This completes the proof of the main theorem�

Corollary � All guards of a cell are stable�



��

� Binary Addition

As an example of an application of the method� we will now implement

the process� F � whose function� f � is the addition of two N �bit integers�

A and B� The output is an N � ��bit integer� S� We want to select

an algorithm for binary addition in which the functions� Bt and Bf �

as introduced in the previous sections� depend only on a few bits of A

and B� �Ripple�carry addition� is such an algorithm�

��� Ripple�Carry Addition

The value of bit sk of S can be expressed as a function of bits ak
and bk of A and B� and of the carry�in bit� ck� More precisely� the

postcondition of the addition can be expressed as	

�c� � 
�k 	 ���N � � 	 sumk� � sN 
 cN �

where each sumk is the conjunction of the three predicates	


�ak � �bk�� 
sk� ck�� 
 ck� false�


ak � bk�� 
sk� ck�� 
 ck� true�


ak �
 bk�� 
sk� ck�� 
 �ck� ck�

The computation of bit sk of the sum requires the previous computation

of carry bit ck� and therefore also produces carry bit ck��� Hence� we

are faced with a new problem	 The adder�cell� addk� for k � �� requires

as input the carry�in ck produced by cell addk���

��� �Magic� Inputs

First� let us assume that the carry�in bits are provided �by magic�

by the environment as normal inputs� and that each cell computes its

carry�out� dk� as a normal output� We can then apply our main theorem

and construct an adder as the concurrent composition of N adder�cells�

The inputs� A�B� and C� and the outputs� S and D� are dual�rail

encoded	 To bit a of data input A correspond bits at and af of the

dual�rail code� and similarly for the other inputs and outputs� For the

construction of a generic adder�cell� add� we can omit the subscript



��

k� The guards� Bt and Bf � of the commands that set the two output

bits to true in the main theorem have to be replaced with two sets of

guards� as we have two di�erent output bits per cell�

Guards St and Sf are used to assign bits st and sf � respectively�

Guards Dt and Df are used to assign bits dt and df � respectively�

We have�

St � �ct � eq�a� b�� � �cf � dif �a� b��

Sf � �cf � eq�a� b�� � �ct � dif �a� b��

Dt � �at � bt� � �dif �a� b� � ct�

Df � �af � bf�� �dif �a� b� � cf�

where

eq�a� b� � �at� bt� � �af � bf�

and

dif �a� b� � �at � bf� � �af � bt� �

The smallest set� W � of input bits used in any of the guards is fa� b� cg�

Hence� the validity test� v�W �� is

v�a� � v�b� � v�c�

with

v�x� 	 �xt � �xf�� �xf � �xt� �

For dual
rail codes� this expression can be simpli�ed as

v�x� 	 xt � xf �

since xt � xf never holds�

��� Eliminating the Magic

Since all input transitions are delay
insensitive� we can restrict the

�magic
 to producing a valid input� ck��� only after output dk is valid�

and to producing a neutral input� ck��� only after output dk is neutral�

for � � k � N � �� The environment originally produces input� c��

which is false� The solution is still correct although the concurrency

between cells has been restricted�

Next� we observe that since� for k � N � �� the valid value of dk
is the same as the valid value of ck��� we can eliminate the magic and



��

connect dk with ck��� We also eliminate the d outputs� except for

dN��� which is sN � The �rst carry�in is no longer produced by magic

but more prosaically by the program

�� �at� � af� � cf��

���at� � �af� � cf� �

� � �

The program of a cell is	


���St � v
a� � v
b� � v
c�� st���

k���Sf � v
a� � v
b� � v
c�� sf ���

k���Dt � v
a� � v
b� � v
c�� dt���

k���Df � v
a� � v
b� � v
c�� df ���

k���n
a� � n
b� � n
c�� st�k sf �k dt�k df ���

� �

The solution obtained is completely sequential since the validity of sk
depends on the validity of the carry�in� ck� The solution can be greatly

improved by reducing these dependencies and simplifying the guards�

� Optimization

An important property of the dual�rail code is that the tests v
Wk�

can be simpli�ed and often even eliminated� Simplifying or eliminating

these tests may eliminate some of the sequential dependencies between

the validity of an input and the validity of an output� hence reducing

the number of steps required to compute the function in the average

case�

We will also simplify the remaining expressions� These transforma�

tions will reduce the number of conjuncts in boolean expressions� hence

reducing the number of transistors in series in a pullup or pulldown

chain of a CMOS inplementation� 
In the worst case� the switching

delay is quadratic with the number of transistors in series��

��� Simplifying the Validity Conditions

The validity tests� v
Wk�� can be simpli�ed by application of



��

Theorem � Let B be a guard Bt or Bf of a cell� For B in disjunctive�

normal form �sum�of�products�� let T be a term of B� i�e� B � T �B��

and T be a conjunction� If Wt is the set of input booleans used in T �

we have� for dual�rail encoded inputs

T � v�WT � �

Proof B is derived from a condition Bd on the data words� also in

disjunctive normal form� by applying the dual�rail coding assignment

���� For each data input x in Bd� all literals� x� are replaced with xt and

all literals� �x� are replaced with xf � Hence� if term T of B contains

either xt or xf � we have T � xt � xf �

In other words� if a guard Bt or Bf of a cell is true� the inputs used

to established the truth of the guard are valid and thus the guard is

stable� �As was suggested earlier� Transformation � can be justi	ed by

means of this property of dual�rail codes��

��� Validity of Transient Inputs

Although all guards Bt or Bf of a cell are stable� we cannot always

eliminate the validity tests altogether� because of the possible existence

of so�called transient inputs�

It may occur that� for some value of the inputs� some input bits

are not used to establish the validity of the output Y � and therefore

the function�evaluation process can complete the handshake protocol

without waiting for these input bits to be valid� However� we have to

see to it that those input bits still go through the valid
neutral cycle

before they are used in a subsequent function evaluation� Such input

bits are called transient inputs� Let us look at a simple example�

The function to be implemented is the AND�function�

�a � b� y� ���a � �b� y�� �

The dual�rail translation of this program gives�

�at � bt� yt� ��af � bf � yf �� �

We observe that because of the disjunction in the second guard� both

a and b are transient inputs� Hence� the second guard has to include

the validity test for the transient inputs�



��

��� Simpli�cation of the Adder

We �rst eliminate the validity tests from the guards� We then simplify

Dt and Df � Finally� we check that there is no transient input in the

new guards� We leave it to the reader to verify that Dt

�at � bt� � �dif �a� b�� ct� �

can be simpli�ed as�

�at � bt� � ��at� bt� � ct� �

Df can be simpli�ed similarly as

�af � bf� � ��af � bf�� cf� �

We cannot simplify the expressions for St and Sf � With this new set

of guards� we check that all inputs are used in St and Sf � i�e��

st � sf � v�a� � v�b� � v�c�

holds� and thus there is no transient input�

��� A Graphical Analysis

A graphical analysis can be helpful in identifying the transient inputs

and at the same time in evaluating the e	ciency of the algorithm� In

the case of the adder� we construct the following graph� To each cell

correspond four nodes in the graph
one for input c� one for inputs a

and b together� one for output s� and one for output c�

A solid arrow from node x to node y means that the validity of y

is established by a command with guard G such that G � v�x�� The

dotted arrow from c to d indicates that the validity of d is established

by a command with guard G� such that G� � v�c� only for certain

inputs� namely when a �� b� Figure � shows the dependency graph for

three cells�

The graph shows that the validity of a� b� and c is required for s and

d to be valid� Each directed path from an input to an output indicates

that the validity of each node but the last one on the path is required

for the next node on the path to be valid� Hence� the length of the



��

longest path gives an upper bound of the number of steps necessary to

compute the outputs�

An inspection of the graph shows that the longest path is propor�

tional to the largest number of contiguous cells with the arrow from c

to d�the dotted arrow�present� Hence The number of steps required

to compute the output of the ripple�carry adder is proportional to the

maximal number of contiguous binary positions in which one input bit

is di�erent from the other�

c�

s�

d�

a��b�

c�

s�

a��b�

d� c�

s�

a��b�

d�

s	

Figure �
 The validity graph for three cells

��� Distributing the test n�W �

The assignments of Y � are unconditional
 All variables of Y are reset

to the neutral value� We can therefore distribute the test n�X� in any

way we want� In the case of the adder� we can split the test n�W �

into n�a� � n�b� on the one hand� and n�c� on the other hand� We

can associate either guard with the transitions st �� sf � or dt �� df ��

The two choices are expressed in the dependency graphs of Figure �� in

which an arrow from x to y means that the neutrality of y depends on

the neutrality of x� It is clear that the solution of Figure ��a� is more

e
cient since all paths have constant length� This choice corresponds

to the guarded commands


�at � �af � �bt � �bf� dt�k df �

�ct � �cf� st�k sf � �



��

The �nal program of a cell is

�����ct� eq�a� b�� � �cf � dif �a� b�� � st���

k����cf � eq�a� b�� � �ct � dif �a� b�� � sf ���

k����at � bt� � ��at � bt� � ct� � dt���

k����af � bf�� ��af � bf� � cf� � df ���

k����ct � �cf � st�k sf ���

k����at � �af � �bt � �bf � dt�k df ���

� �

c�

s�

d�

a�	b�

c�

s�

a�	b�

d� c


s


a
	b


d


s�

c�

s�

d�

a�	b�

c�

s�

a�	b�

d� c


s


a
	b


d


s�

Figure 
� Two ways to distribute the neutrality test

� CMOS Implementation

A program ���B � x ��� or ���B � x ���	 with B stable can be imple


mented directly in CMOS� �We call such a program a production rule��

Hence	 the whole adder can be implemented directly in CMOS without

further transformation into �standard cells��



��

To the expression� B� corresponds a series�parallel switching net�

work� N�B�� Each switch is implemented with an n�transistor or a

p�transistor whose gate is a literal of B� Hence� the predicate� there

is a conducting path between the two terminal nodes of N�B�� has

the same value as B� We limit ourselves to two types of switching

networks� A 	pullup
 circuit has for terminal nodes the high�voltage

constant� VDD� and the output node� x� of the program� A 	pulldown


circuit has for terminal nodes the low�voltage constant� GND� and the

output node� x� of the program� Hence� a pullup circuit implements the

program ���B � x���� and a pulldown circuit implements the program

���B � x����

For reasons of e
ciency particular to the CMOS technology� we

restrict a pullup circuit to containing only p�transistors� and a pulldown

circuit to containing only n�transistors� A p�transistor is a conducting

switch when the gate voltage is low� an n�transistor is a conducting

switch when the gate voltage is high�

Hence� we can choose to implement the �rst four guards of the

adder�cell as pulldown circuits since they do not have inverted literals�

and the last two guards of the adder�cell as pullup circuits since they

have only inverted literals� but then� all ouputs of the cell are inverted�

Adding an inverter to each output is expensive since the carry

chain may include up to N inverters in series in addition to the N

carry gates� A better solution is obtained by alternating cells that pro�

duce negated outputs�the even�numbered bits�with cells that pro�

duce straight outputs�the odd�numbered bits�

A CMOS implementation of a cell with inverted outputs is shown

in Figure �� The only noticeable disadvantage of this design is the long

pullup chain �� transistors� for the carry circuitry� We can reduce the

length of these pullup chains from � to � by distributing the neutral�

ity test even more evenly� For instance� we can choose the following

distribution�
�ct � �cf � �at � st�k sf �

�bt � �bf � �af � dt�k df � �



��

sf
st

bt

at af

bf bf bt

afat

cfctcfct

cf

ct

cf

ct

dt

btatbt

at ct

bf

bt

af

at

Figure �� CMOS implementation of an adder cell

�� Performance and Comparisons

The transistor count per cell is ��� If one includes the inverters needed

to invert the inputs and the outputs of every other cell� the transistor

count is ��� as compared to the �� transistors needed for an equivalent

	no pass
transistors� cell design in clocked logic� Hence� contrary to

common belief� the asynchronous solution is hardly larger than the

clocked one� in spite of the use of dual
rail logic�

In evaluating the performance of the adder� it is important to realize

that only the transitions from neutral to valid values are critical in the

type of protocol 	lazy
active� used� From equation 	�� describing the

environment protocol� we see that the environment consumes the result�



��

Y � and produces the next output X before testing that Y has been

reset to the neutral value by the function�evaluation process� Hence�

the resetting of Y to the neutral value is not on the critical path�

As we have seen� the length of the longest carry chain is propor�

tional to the maximal number� n� of contiguous binary positions in

which one input bit is di�erent from the other� In the HP CMOS ��

process provided by MOSIS �	�
 micron feature size�� the delay �in

nanoseconds� for an addition is 
 � 	����n � 	�� This delay includes

the completion�tree delay required for the environment to detect the

completion of an addition� It is usually believed that� statistically� n is

about logN� Hence� forN 
 ��� an adder delay is about 		 nanoseconds

in the average case�

If we had to adjust the delay to the worst case� as is required in

clocked logic� we would have to stretch each addition delay to accom�

modate the delay corresponding to N 
 ��� i�e�� �� nanoseconds� or

four times the average delay�

Comparison to the similar adder designed by C�L� Seitz in ��� seems

unavoidable� Seitz�s adder cell contains more than 	�� transistors�

without counting the inverters� Hence� it is about three times larger�

and also three times slower� than the adder cell presented here�

�� Conclusion

We have presented a method for the formal derivation of asynchronous

datapath functions� First� an algorithm with reasonable distributive

properties has to be chosen for the function evaluation� and� for that

matter� ripple�carry is not the only choice for the adder� After that

choice has been made� the rest of the derivation is almost automatic�

Apart from some simpli�cation of the guards� which can be important�

the main decision left to the designer is how to distribute the validity

test for the transient inputs� if any� and the neutrality test�

In the method presented� the validity and neutrality tests are in�

cluded in the evaluation of the function output variables� Another�

quite di�erent� approach is to keep the function evaluation proper sep�

arate from the validity and neutrality tests� and to perform them con�

currently�

For the method used� dual�rail coding is almost ideal because of



��

its distributivity property� Other codes may be better suited for the

alternative method mentioned�

The adder described here has been used in a slightly di�erent form

�the inputs A and B are not dual�rail encoded as they are part of the

same process as the adder� as a basis for the di�erent asynchronous

arithmetic units in the Caltech Asynchronous Microprocessor ��	� The

performance of the ALUs in general has been surprisingly good ��	�

Acknowledgments

I am indebted to Tony Lee for designing several beautiful asynchronous

ALUs that were an inspiration for this paper� Acknowledgment is

also due Ralph Back and Mark Josephs
 and to my students Dra�zen

Borkovi�c
 Marcel van der Goot
 Pieter Hazewindus
 Tony Lee
 Chris�

tian Nielsen
 and Jos�e Tierno for their comments on several versions of

the manuscript� The referees
 comments were appreciated�

The research described in this paper was sponsored by the Defense

Advanced Research Projects Agency
 and monitored by the O�ce of

Naval Research�

Appendix� The Notation

� b � stands for b �� true
 b� stands for b �� false� Those assign�

ments are called simple assignments�

� The execution of the selection command �G� � S��	� � � �	Gn � Sn	


where G� through Gn are boolean expressions
 and S� through

Sn are program parts �following Edsger W� Dijkstra ��	
 Gi is

called a guard� and Gi � Si a guarded command�
 amounts to

the execution of the Si for which Gi holds�

Unlike Dijkstra
s guarded commands
 this selection is determinis�

tic� At most one guard is true� If no guard is true
 the execution

of the command is suspended until some guard is true�

� Sequencing� Besides the usual sequential composition operator

S��S�
 we use the concurrent composition
 S� k S�� The con�

current composition is weakly fair�



��

� �G�� where G is a boolean expression� stands for �G� skip�� and

thus for �wait until G holds�� 	Hence� ��G�
 S� and �G� S� are

equivalent��

� ��S� stands for �repeat S forever��

� Hence� the operational description of the statement

���G� � S���� � � ��Gn � Sn�� is �repeat forever� wait until some Gi

holds
 execute the Si for which Gi holds��

References

�
� Edsger W� Dijkstra� A Discipline of Programming� Prentice�Hall�

Englewood Cli�s NJ� 
����

��� Alain J� Martin� S�M� Burns� T�K� Lee� D� Borkovic� P�J� Hazewin�

dus� The Design of an Asynchronous Microprocessor� Decennial

Caltech Conference on VLSI� ed� C�L� Seitz� MIT Press� ��
�����


����

��� Alain J� Martin� S�M� Burns� T�K� Lee� D� Borkovic� P�J� Hazewin�

dus� The First Asynchronous Microprocessor� The Test Results�

Computer Architecture News� 
� 	������

�� June 
����

��� Alain J� Martin� Compiling Communicating Processes into Delay�

insensitive VLSI circuits� Distributed Computing� 
	��� 
����

��� Alain J� Martin� Programming in VLSI� From Communicating

Processes to Delay�insensitive Circuits� in C�A�R� Hoare 	ed��

UT Year of Programming Institute on Concurrent Programming�

Addison�Wesley� Reading MA� 
����

��� Carver Mead and Lynn Conway� Introduction to VLSI Systems�

Addison�Wesley� Reading MA� 
����

��� Charles L� Seitz� System Timing� in ����


