
Algorithmica (1990) 5:325-340 Algorithmica
�9 1990 Springer-Verlag New York Inc.

Asynchronous Distributed Termination--Parallel and
Symmetric Solutions with Echo Algorithms 1

F r i e d e m a n n M a t t e r n 2

Abstract. The principle of message counting is used to detect termination of distributed computations
which consist of processes asynchronously communicating over non-FIFO channels. The solution is
symmetric and not based on a predefined communication structure. An efficient variant of the echo
algorithm, which dynamically builds a spanning tree, allows a parallel and distributed evaluation of
the termination predicate in time proportional to the diameter of the communication graph. Concurrent
and repeated initiation of the detection algorithm by different processes is possible at any time without
prior synchronization due to a subtle method of collision detection and wave extinction, which can
be regarded as a distributed election scheme where the average message complexity increases only
logarithmically with the number of concurrent initiators. Control messages have a small length and
additional communication links are not required. Only a fixed number of simple variables is needed
in every process, global knowledge such as the total number of processes or the structure of the
network is not used, making the scheme useful for dynamic systems. Several variations of the basic
principle are presented, important issues such as message complexity and fault-tolerance are discussed.

Key Words. Distributed termination, Echo algorithm, Distributed programming, Decentralized
control, Distributed algorithm, Election, Symmetry.

1. In t roduc t ion . D e t e r m i n i n g w h e n the c o m p u t a t i o n o f a c o l l e c t i o n o f c o m -

m u n i c a t i n g p r o c e s s e s has t e r m i n a t e d is a f u n d a m e n t a l a n d n o n t r i v i a l p r o b l e m in

d i s t r i b u t e d p r o g r a m m i n g , a n d in r ecen t years t he p r o b l e m o f distributed termina-
tion detection has r e c e i v e d m u c h a t t e n t i o n (see a m o n g o the r s [9], [11], [10], [5],

a n d [18]). A l t h o u g h the p r o b l e m is s i m p l e to f o r m u l a t e , a su rp r i s ing va r i e ty o f

a l g o r i t h m s wi th r a t h e r d i f f e ren t p r o p e r t i e s h a v e b e e n p u b l i s h e d . W h e r e a s m o s t

s o l u t i o n s a re b a s e d on a s y n c h r o n o u s m o d e l o f c o m m u n i c a t i o n (n o t a b l y C S P) ,

we p r e s e n t a n d d i scuss s o l u t i o n s fo r a m o r e g e n e r a l m o d e l , w h e r e m e s s a g e p a s s i n g

is asynchronous with arbitrary but finite communication delays. D u e to the fac t

t ha t g l o b a l t i m e [17] o r a cons i s t en t s n a p s h o t [4] o f a d i s t r i b u t e d sys tem is

a priori n o t ava i l ab l e , the m a i n p r o b l e m w h i c h cons i s t s in d e t e c t i n g m e s s a g e s

tha t a re in t rans i t , is n o n t r i v i a l . As in [15], [16], a n d [19], the a l g o r i t h m s we

p r e s e n t h e r e are b a s e d on the p r i n c i p l e o f m e s s a g e c o u n t i n g .

In o r d e r to vis i t eve ry p r o c e s s a n d co l l e c t use fu l i n f o r m a t i o n we m a k e use o f

a v a r i a n t [22] o f the echo algorithm [8]. A n initiator s u s p e c t i n g t e r m i n a t i o n sends

1 This work was supported by the German National Science Foundation (Deutsche Forschungsgemein-
schaft) as part of research project SFB124.
2 Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, D-6750 Kaisers-
lautern, Federal Republic of Germany.

Received November 24, 1987; revised April 15, 1988. Communicated by C. K. Wong.

326 F. Mattern

out query messages to all neighboring processes. Upon receipt of the first query
message a node becomes engaged and propagates the "query wave" further on
to all its neighbors. A node having no other communicat ion link than the one
from which it has received the query message, immediately returns an echo which
contains among other things the value of a counter indicating the number of sent
minus the number of received messages of the underlying computat ion by that
node. Having received queries or echoes along every incident communicat ion
link, a node becomes disengaged and returns an echo with the accumulated
values to the node from which it was engaged. Eventually the "echo wave"
reaches the initiator.

Two problems emerging from this principle have to be solved: the first one is
concerned with possible inconsistencies due to the fact that the nodes are visited
at different times, possibly leading to false termination detection. We will prove
that the system is actually terminated when the accumulated value of the message
counters at the initiator is 0 and no process node received a basic message while
it was engaged. This property can easily be implemented by a flag which is set
on receipt of a basic message, reset by the query wave, and tested and accumulated
by the echo wave. The second problem is concerned with contemporary invocations
of the algorithm by different processes: whereas in principle every node can have
its own set of control variables at every other node (possibly allocated dynamically
when required) so that "control waves" initiated by different nodes would not
interfere, mainly for reasons of economy we prefer solutions where a node is
engaged in at most one wave at a time. Because we do not want the nodes to
synchronize themselves for exclusive invocation of the algorithm, collisions of
control waves must be detected and handled in an appropriate way. In particular,
the possibility of deadlock or starvation must be avoided by still keeping the
scheme as "symmetr ic" as possible.

Besides being simple and readily implementable, the symmetric solution presen-
ted in this paper has a number of interesting properties. Control messages have
a small length and additional communicat ion links are not required. Communica-
tion can be synchronous or asynchronous and messages can be received out of
order. Every node can repeatedly start the detection algorithm independently of
other nodes, prior synchronization is not required. The detection algorithm itself
is distributed, the termination condition is evaluated in parallel. No node needs
global knowledge such as the structure of the network or the total number of
nodes. Symmetry, independence of topology, and absence of global knowledge
and centralized control promote robust and fault-tolerant variants.

The paper is organized as follows: in Section 2 we present our model of
distributed computat ion and define the distributed termination problem. In Sec-
tion 3 we describe the general principle of the algorithm, assuming that different
executions are mutually exclusive. Its correctness is proven in Section 4. Section
5 describes concurrent initiations and the principle of wave extinction. In Section
6 we present another, similar algorithm; the two solutions and several variants
are discussed in Section 7. In Section 8 we compare our algorithms to related
solutions. Finally, we summarize the conclusions in Section 9.

Asynchronous Distributed Termination 327

2. The Model. For the application of the algorithms we consider static dis-
tributed systems with at least two processes having distinct totally ordered
identities different from 0. The processes (also called nodes) are connected by
bidirectional communicat ion links forming a connected communicat ion graph.
We assume that all messages sent arrive within some finite undetermined time
(message losses will be discussed in Section 7); however, we do not require the
FIFO property. The messages of the underlying application are called basic
messages, whereas messages of the superimposed termination detection algorithm
(i.e., queries and echoes) make up the control communication.

With respect to the underlying computat ion a process is in one of two states,
active or passive. The system behaves according to the following rules:

(1) Only active processes may send basic messages.
(2) A process may change from active to passive at any time.
(3) A process may change from passive to active only on receipt of a basic

message.

The underlying computat ion has terminated when all processes are passive
and no basic messages are in transit. The problem is to devise an algorithm which
detects this persistent property of the global state by means of extra control
communication. In order to superimpose a termination detection algorithm on
the underlying computat ion properly, we assume that control messages are only
accepted when a process is passive and that no other messages are accepted while
it is processing a control message, i.e., the actions of the message-driven control
computat ion are supposed to be atomic. We further assume that a process initiates
termination detection only when it is passive.

3. The First AlgorithmmDistributed Time Priority. In order to simplify the
description we assume for the moment that different executions of the algorithm
are mutually exclusive. The principle of the method is simple: an initiator which
is passive with respect to the underlying computat ion may start an execution of
the echo algorithm. The query wave then spreads "down" resetting a communica-
tion flag COM in every node. The echo wave accumulates the local message
counters S and the communicat ion flag. I f the initiator detects that the total
number of registered messages sent and received are equal and that the flag was
not set due to the receipt of a basic message while a node was engaged, it signals
termination.

We first explain the task of the variables and their initializations (if relevant)
used in the realization of the algorithm. A process node is unaware of the global
structure of the network, it only needs to know the links leading to its neighboring
nodes. However, for the sake of easy readability we assume that the identities
of the neighboring nodes are stored in the set NEIGHBORS. A counter N is
used to count the incoming control messages (line 17). A variable PRED is used
to hold the identity of the preceding node (line 4) from which the first control
message has been received (PRED = 0 for the initiator) so that when all control

328 F. Mattern

messages have been received (line 18) an echo can be sent back (line 19). We
further assume that a boolean flag COM (reset by the query wave in line 7) is
set to true on receipt of a basic message (line 24) and that a counter S (initialized
to 0 prior to the start of the basic computation) is incremented whenever a basic
message is sent and decremented if one is received (lines 24 and 25). The variable
ACCU serves as an accumulator for S-values received by echoes (line 13). The
CLOCK is initialized to some minimal value, its exact function will be explained
in Section 5 when we are concerned with concurrent executions of the algorithm.
Together with the variable T its function is among others to discern primary
queries from secondary queries which may arrive later on other edges instead of
an echo (line 10).

Upon receiving QUERY(T) from process p:
1. if T > CLOCK then /* primary que ry* /
2. CLOCK~- T; /* remember the new t ime*/
3. if PRED = 0 and N ~]NEIGHBORS] then failed fi;
4. P R E D , - p ;
5. if INEIGHBORS] = 1 then send ECHO(T, S, false) to p;
6. else N ~- 1; /* initializations */
7. START: ACCU ~- 0; COM ~- false;
8. send QUERY(CLOCK) to N E I G H B O R S - {PRED};

queries */
fi;

elseif T-~ CLOCK then CHECK_COMPLETED;
fi;

.

10.
11.

Upon receiving ECHO(T, SUM, FAILED):
12. if T = CLOCK then /* not an old wave */
13. A C C U ~ - A C C U + S U M ; /* accumulate*/
14. COM ~- COM or FAILED;
15. CHECK_COMPLETED;
16. fi;

procedure CHECK_COMPLETED:
17. N~- N + I ; /* count control messages*/
18. if N = I N E I G H B O R S I then /* comple te*/

/* extinction */

/* terminal */

/* propagate

/* secondary queries */

19. if PRED ~ 0 then send ECHO(T, ACCU + S, COM) to PRED;
20. elseif ACCU + S = 0 and not COM then terminated;
21. else failed;
22. fi;
23. fi;
end CHECK_COMPLETED;

When receiving a basic message:
24. S ~ S - 1 ; C O M ~ t r u e ;

When sending a basic message:
25. S,-- S + 1;

Asynchronous Distributed Termination 329

The initiator starts the algorithm by setting N and PRED to 0, advancing the
CLOCK, and beginning execution at the label START (line 7). Query messages
are sent to all neighbors (line 8). The initiating actions can be stated explicitly
as follows:

N<-0; PRED ~- 0; ACCU<- 0; COM ~ false;
C L O C K . t < - C L O C K . t + 1; /* see first paragraph*/
CLOCK.i<- this_process_id; /* of Section 5 be low*/
send Q U E R Y (C L O C K) to NEIGHBORS;

When a query is received for the first time, its parameter T is guaranteed to
be greater than the local CLOCK-value (line 1). As a consequence, either the
query is propagated (line 8) or, if it reached a terminal node, an echo is generated
(line 5). Subsequent receipts of secondary query messages are merely counted
(lines 10 and 17). Echoes are also counted (lines 15 and 17) after the values sent
with them have been accumulated (lines 13 and 14). When the echo wave reaches
the initiator (PRED -- 0) a test is made to check whether the accumulated message
counter equals 0 and no node recorded the receipt of a basic message while it
was engaged (line 20). If that is the case, termination is reported. Otherwise (line
21) the algorithm can be restarted at some later time, repeated executions of the
algorithm pose no problems.

By changing the statement "COM ~ true" to "ACCU <-ACCU+ 1" in line 24
it is possible to dispense with the boolean flag COM (and the last parameter of
echo messages). Because this compensates the effect of " S ~ S - 1 " in the same
line, this can be regarded as if basic messages being received while a node is
engaged are not registered. However, the correctness proof of the algorithm
(Section 4) is simplified by keeping the communication flag.

Lines 3 and 12, the parameter T of echo messages, the second component of
CLOCK, and proper initializations of PRED and N prior to the start of the basic
computation at all process nodes are only relevant when considering concurrent
invocations of the algorithm (Section 5).

4. Correctness of the Method. The correctness of the method is based on the
following propositions:

(a) The echo principle is correctly realized by the algorithm (i.e., the initiator receives
the accumulated values of all nodes after finite time).

(b) I f the system was already terminated at the start of a detection round, termination
will be detected at the end of the round.

(c) I f at the end of the detection algorithm the accumulated communication flag is
not set and the accumulated message counter equals O, the system is truly
terminated.

We dispense with a proof of (a) since the echo principle as a scheme for
collecting information from the nodes of a network is discussed in detail in [8]
and [22]. Note that to guarantee termination of the echo algorithm we must

330 F. Mattern

assume that no process remains in its active state forever. Property (b) is simple
to realize: since all basic messages that were sent were also received, the accumu-
lated message counter is 0 and the flag is not set during execution of the detection
algorithm. Hence, if the application eventually terminates and the algorithm is
repeatedly executed, termination will finally be detected in line 20.

Safety property (c) asserts that no false termination is reported by the algorithm.
This is the most crucial point in the proof of the algorithm, it guarantees that
the criterion used in line 20 is correct. In order to motivate the proof, the following
"colorful" description of the echo scheme may be helpful, though it is not essential
for the proof.

Assume that originally all nodes and edges of the communication graph are
white and the initiator turns red upon the start of the algorithm. Query messages
are red, echoes green. A message colors edges (along which it travels) in its own
color. A red message arriving at a white node colors that node red. A (red) node
having received red or green messages along all its incident edges becomes green
(before it possibly sends an echo). Clearly, every node changes from white via
red to green, for terminal nodes the red phase is rather short. It is easy to see
that after the execution of the algorithm the green edges (which were first colored
red by a message moving in one direction and later green by an opposite echo
message) build a spanning tree of the communication graph. Edges remaining
red were concurrently colored by two red messages moving in opposite directions.
Since each edge is used by exactly two messages, this variant of the echo algorithm
is also useful to construct dynamically a spanning tree with exactly 2e messages,
where e denotes the number of edges of the underlying graph.

A sequence of technical lemmata will now prepare the proof of assertion (c).
In accordance with the above description, the process states are designated by
colors with the following meaning:

White: not yet received a control message.
Red: query message received, but echo message not yet sent ("engaged").
Green: all control messages received, echo message sent.

(1) I f a basic message is received by a red process, its local communication flag is
set.
PROOF: Line 24 of the algorithm (which is independent of the color of the
process).

(2) I f a basic message is sent by a red process, the communication flag of the
initiator is set.
PROOF: The process was passive after turning red. In order to become active
to send a basic message it must have received an activating basic message.
According to (1) this sets its flag. The flag is not reset in the current execution
of the algorithm and its setting is conveyed to the initiator by the echo wave
when the process eventually becomes green.

(3) A white process cannot receive a basic message sent by a green process.
PROOF: All neighbors of a green process are colored (i.e., they are red or
green) because a process becomes green only after having received control
messages from all neighbors. Only colored processes send control messages

Asynchronous Distributed Termination 331

and colored processes do not change back to white. Hence, basic messages
sent by green processes are received by colored processes only.

(4) I f at the end of the detection algorithm the communication flag is not set, all
basic messages received by a white process have also been sent by a white process.
PROOF: Follows directly from (2) and (3).

(5) A basic message sent and received by white processes does not change the
accumulated message counter.
PROOF: Its sending a s well as its receipt is registered.

(6) I f at the end of the detection algorithm the system is not terminated and the
flag is not set, there exists a basic message sent by a white process which was
or will be received by a green process.
PROOF: At the end of the detection algorithm all processes are green. From
the definition of termination it follows that a basic message is still in transit
to a green process or a green process is active if the system is not terminated.
In the latter case the process was activated by a basic message while it was
already green (processes do not change colors while they are active). Because
green processes are not activated spontaneously, there must exist a green
process receiving an activating basic message from a nongreen process.
Because by hypothesis the flag is not set, the sender is not red (2). Hence,
it must be white.

(7) I f a basic message sent by a white process is received or will be received by a
green process and the flag is not set, the accumulated counter is greater than O.
PROOF: The sending of the message is noticed, but no message receipt is
registered: no red process receives a message if the flag is not set (1) and
messages received by white processes do not affect the counter (4), (5).
Messages received by green processes arrive too late to be registered.

(8) I f the system is not terminated at the end of the algorithm, then the flag is set
or the accumulated counter is greater than O.
PROOF: Follows directly from (6) and (7).

This completes the p roof of the algorithm, since (8) is already the proof of
assertion (c).

5. Concurrent and Independent Initiations. In order to allow concurrent activa-
tions of the detection algorithm to take place without the necessity of prior
synchronization, we make use of the principle of wave extinction together with
a simple virtual time mechanism. A wave is tagged with its starting time and a
newer wave will extinguish an older wave. Virtual time is considered to be a set
of integer pairs (t, i) which are linearly ordered by the definition (t, i) > (t', i') <=~
t > t' or t = t' and i > i'. The C L O C K is initialized to (0, 0). When a new wave
is started, the initiating node advances the C L O C K by setting CLOCK. t to
CLOCK. t + 1 and CLOCK. i to its process identif icationnumber. This guarantees
that the starting times of different waves are different.

Lines 1, 10, and 12 guarantee that an old wave (T < C L O C K) is absorbed
without any consequences when it meets a newer wave. Because time is linearly

332 F. Mattern

ordered it is not possible that two or more waves mutually extinguish themselves.
Furthermore, an initiator is guaranteed to be informed of the extinction of its wave:
whenever a new query message arrives at a node this node is checked (line 3)
whether it is still engaged (N ~ INEIGHBORSI) in a wave it has started (PRED =
0). For that purpose, N must be initialized to the number of neighbors and PRED
to some value different from 0 at every node. It is easy to see that whenever two
different waves are concurrently active, the older initiator wi l l - -sooner or l a te r - -
receive a query message with a higher t imestamp. (This is not necessarily the
t imestamp of the other initiator since an even newer wave could have emerged
in the meant ime !)

The solution is symmetric in that every node has a fair chance of completing
the execution without being extinguished. The priorities based on node iden-
tifications are only used for arbitration purposes in the case of a collision of two
waves with identical " local" times. To minimize the possibility of collisions the
termination test should only be started if the node is not engaged in the computa-
tion of another execution of the algorithm, i.e., if N = INEIGHBORSI.

Although it is not possible that several concurrently active waves mutually
extinguish themselves, a dynamic blocking situation could emerge if nodes restart
the algorithm too early: a node, knowing about the recent extinction of its wave,
could as soon as it is disengaged by its "opponen t " (line 19 or line 5) restart the
algorithm with a higher t imestamp and chase after its opponents wave to take
"revenge." I f two or more nodes repeatedly behave in that way, no node would
succeed in successfully terminating the test. The situation is reminiscent of the
collision problem in C S M A / C D local-area networks, and in fact the solutions
of using timeouts to reduce the frequency of initiating the termination test could
also be applied here. Whether this is a practicable method or whether the
optimistic approach ("collisions will rarely occur") should be abandoned in favor
of a pessimistic approach (synchronization for mutual exclusion or election of
a starter-process) is a pragmatic question we will not endeavor to discuss here.
In any case, the dynamic blocking problem is solved by the variant presented in
the next section.

The starvation problem can also be avoided if a node whose wave has been
extinguished never starts a new wave again. Since the waves are linearly ordered,
at least one wave will run to completion. The initiator of that wave can restart
the detection algorithm at some later time; the node which eventually detects
termination should then inform the other nodes. Since competing nodes are
eliminated very quickly, this also reduces the number of messages--af ter a short
number of rounds with competing initiators, only one node remains which may
repeatedly execute the algorithm. However, a drawback of this scheme is that it
is no longer fully symmetric because the other processes are prohibited from
initiating the termination test again. (Instead of that, however, they may ask the
winner to initiate the test on behalf of them.) I f this is a problem, the behavior
of a node could be changed in a way that when it is visited by the (newer) query
wave of another node it will not start an execution of the detection algorithm
until it receives a special wake-up signal from the winning node. The winning
node should initiate a t imestamped wake-up wave if it does not detect global

Asynchronous Distributed Termination 333

termination (line 21). Each node that wakes up propagates the wake-up signal,
echoes are not necessary for that purpose. The timestamps are used to absorb
secondary wake-up signals and to reduce the traffic caused by outdated wake-up
waves.

6. The Second Algorithm--Indulgent Process Priority. In order to avoid the
problem of "mutual revenge" and to keep the scheme symmetric without syn-
chronizing the nodes by a wake-up wave, we slightly modify the algorithm by
assigning fixed priorities based on process numbers to the nodes. A parameter
INIT of a query wave denotes the identity of its initiator and a process variable
ENGAGER (initialized to 0) is used to hold the identity of the wave the node
is currently engaged with. When a lower priority wave reaches a node engaged
in a higher priority wave it immediately retreats (line 9) by generating an echo
with the communication flag set to indicate that the test failed. If a higher priority
query message reaches a node currently engaged with a lower priority wave
(INIT> ENGAGER~ 0), the acceptance of that message is deferred until the
node is eventually disengaged (ENGAGER=0, line 15). A node which is
currently not engaged may start the algorithm at the label START (line 5) after
setting N and PRED to 0 and setting ENGAGER to its own process identification
number. As before, basic messages are counted by S and registered by the
COM flag.

Upon receiving QUERY(INIT) from process p when ENGAGER = 0:
/* disengaged node--primary query */

1. if]NEIGHBORS] = 1 then /* terminal node*/
2. send ECHO(S, false) to p;
3. else
4. ENGAGER~ INIT; PRED~p; N ~ 1; /* initialize */
5. START: ACCU ~ 0; COM +- false;
6. send QUERY(ENGAGER) to NEIGHBORS-{PRED};

/* propagate */
7. fi;

Upon receiving QUERY(INIT) from process p when INIT = ENGAGER:
8. CHECK_COMPLETED; /* secondary query*/

Upon receiving QUERY(INIT) from process p when INIT< ENGAGER:
9. send ECHO(0, true) to p; /* repell/retreat*/

Upon receiving ECHO(SUM, FAILED):
10. ACCU~ ACCU+ SUM; /* accumulate */
11. COM~COM or FAILED;
12. CHECK_COMPLETED;

procedure CHECK_COMPLETED:
13. N ~ N + 1; /* count control messages*/

334 F. Mattern

14. if N = [NEIGHBORS I then /* complete.*/
15. ENGAGER<-0; /* disengage*/
16. if PRED r 0 then send ECHO(ACCU + S, COM) to PRED;
17. elseif A C C U + S = 0 and not COM then terminated;
18. else failed;
19. fi;
20. fi;
end CHECK_COMPLETED;

The main difference between this algorithm and the previous version is that a
higher priority wave does not extinguish a lower priority wave-- the lower priority
wave is repelled and the echoes are allowed to run till completion instead, thus
informing the initiator and avoiding the danger of an endless waiting. A drawback
of this indulgent wave propagation scheme is its increased delay, but the assign-
ment of fixed priorities is a simple principle to avoid the starvation and "after
you after you" blocking problems.

It should be noted that our priority-based wave propagation scheme (and also
the variant described at the end of the previous section) is basically a distributed
election algorithm: several nodes may asynchronously start the algorithm, even-
tually the wave initiated by the highest qualifying node succeeds in traversing
the whole graph. The links traveled by the respective echo messages constitute
a (rooted) spanning tree.

7. Variations, Optimizations, and Discussion. If an execution of the algorithm
presented in Section 6 failed because the flag is set, it is not possible to decide
whether the wave had a collision with a higher priority wave or whether some
nodes received basic messages while they were engaged (i.e., the underlying
computation was not terminated). To overcome this problem, two different flags
could be used instead. In order to minimize the number of collisions, a process
which was engaged with a defeated wave and later disengaged by its own retreating
echo wave should not accept any lower priority messages or start a new wave
while it is waiting for a higher priority wave (which will eventually arrive).
Instead, it should repell all lower priority query messages as if it was already
engaged with the higher priority wave. The realization of this scheme is straightfor-
ward: the echo wave carries with it the value of the highest priority wave
encountered so far. The echo wave of the winning node will then reset that
value.

Compared with the original version of our first algorithm where starvation is
possible (Section 3), the second variant (Section 6) is "less symmetric" since not
every node has the same fair chance of winning the election. The notion of
symmetry in distributed programs has recently received some attention [1], [13]
and it is generally agreed that symmetry is a very useful concept enabling general
and robust solutions. But it has also been observed that symmetry is a potential
source of deadlocks, since in a fully symmetric system nothing prevents all
processes from doing the same thing at the same time. Solutions which use the

Asynchronous Distributed Termination 335

static ordering of process numbers as a means for breaking symmetry are no
longer symmetric in the general sense that "all processes have the same rights
and duties" [2]. Since fairness ("any process may be elected") is not an important
issue here, we confine ourselves to the still very useful principle of syntactic
symmetry.

In principle, the problem of collisions due to concurrent and independent
activations can be overcome by any (inherently symmetric) election algorithm
which is run prior to the start of the actual detection algorithm and which
determines a unique node as the single initiator for termination detection. Elec-
tions in general asynchronous networks are known to be of O(e + n log n) message
complexity [12] where e denotes the number of edges and n the number of nodes.
In [14] an election algorithm is proposed which can be initiated at any subset
of k nodes and requires at most 2 e + 3 n log2 k+O(n) messages. Because our
built-in election scheme uses up to 2ke messages, it seems only practicable for a
small number of concurrent initiators. However, we can estimate that when using
the optimizations described at the beginning of this section the average message
complexity of one round with k concurrent initiators is bounded by O(e log k)
which is favorable for sparse graphs where e - O(n). The argument is as follows:
any node is reached by (at most) k different waves w~, . . . , Wk (Wi denotes the
identity I N I T of the wave generated by the ith initiator). The arrival sequence
is a random permutat ion war, l) , . . . , War(k). At any node, wave w~(j) is only
propagated once if it is larger than all previous waves that reached the node, i.e.,
if w~tj) = max{w~(~), . . . , w~(j)}. The probabili ty for that is 1/j; summing up over
all j - - 1 , . . . , k results in Ilk ~0.58+1og k, the kth harmonic number. When
propagat ing the wave, the node sends a query message to all of its (other)
neighbors, their number is 2e/n - 1 on the average. For all n nodes the average
number of query messages is therefore bounded by about 2e log k. The number
of echoes is bounded by the number of query messages.

One definitive advantage of our built-in election scheme is that it runs in
combination with the termination detection algorithm. No separate passes for
election, termination detection, and possibly opening of the next election round
are necessary. However, if the number of concurrent initiators is expected to be
high and competing nodes are not eliminated as described in Section 5, it might
be favorable to determine a spanning tree once and use it subsequently for the
election of a leader. Also we should be aware that the echo principle probably
becomes impractical if the number of neighbors of a node is generally large or
if every node can communicate directly with every other node. Since it is essential
that control messages travel along every edge, the number of messages would
then be of the order of O(n 2) for each round. In that case a variant of the method
operating on a predetermined spanning tree (or a Hamiltonian circle) and
requiring two complete traversals can be used. The principles of this variant are
described in [15] and [18].

A drawback of the termination detection method is its unbounded message
complexity. The problem is to decide when to start a next trial if termination
could not be established because of the counter being greater than 0 although
the communicat ion flag was not set. In that case some slow basic messages were

336 F. Mattern

still in transit, but it is not known at which node to expect them and it cannot
be guaranteed that they will have arrived before the next round. However, by
equipping each node with incoming and outgoing message counters for each
communicat ion link it is possible to guarantee that during each detection round
(except the last one) at least one basic message is received. This leads to an upper
bound of 2 e (m + l) control messages for one initiator where m denotes the
number of basic messages. To achieve that, a control message carries with it the
number of basic messages which have previously been sent over the communica-
tion link. The control message will only be accepted at the other end if at least
that number of basic messages have been received. It should be noted, however,
that it is extremely unlikely that only one basic message is in transit during each
control round. On the other hand, the best case is independent of m; in fact, it
is possible that termination is detected in one single round using 2e control
messages. The average or typical case is difficult to estimate, but only few control
messages should be generated if a process propagates the control messages only
when it is passive (and, possibly, if its local state is consistent with a global
termination state) and if the next round is only started when the initiator has
reasons to suspect that global termination has occurred.

Since global knowledge such as the structure of the network or the total number
of processes is not used, the algorithms are easily adaptable to dynamic systems.
I f new communicat ion links (or links to new process nodes) are established, the
identities of the new links or nodes are merely inserted into the N E I G H B O R S
set. I f this happens while the process is engaged with a termination detection
phase it has to send a query message along the new link. Of course, some care
has to be taken when removing processes or links in order not to wait for messages
from processes which no longer exist or to send messages to already dead
processes.

When communicat ion is synchronous, the number of messages in transit on a
communicat ion link is always 0 which simplifies the general principle of termina-
tion detection. The message counters can then be removed from our algorithms
since whenever the accumulated counter is different from 0, the communicat ion
flag is set: the arguments of Section 4 show that if the flag is not set, only messages
sent by a white process and received by a green process can disturb the balance
of the counter; but since a white process never has a green neighboring process,
synchronous communicat ion cannot take place between a white and a green
process. Therefore, it suffices to keep the flag.

Finally, the issue of fault-tolerance should be briefly addressed. We will see
that apart from extreme cases (network partitioning) the algorithm can cope well
with network failures. We may assume that transient network failures are handled
by the underlying communicat ion system using techniques such as checksums,
acknowledgments, and a t imeout and retransmit protocol. Because lost basic
messages are considered to be in permanent transit by the termination detection
protocol, we must also assume that the sender (or some other process) is eventually
notified if a basic message could not be del ivered--otherwise termination can
never be determined. The loss of basic messages may also be determined by the
underlying application using timeouts. Independent of the recovery action the

Asynchronous Distributed Termination 337

underlying application may then take, the message counter S must be corrected
accordingly in some process (typically the sender or the receiver).

On the other hand, if a control message is lost the termination detection
algorithm blocks, since each single control message is essential for the progress
of the (single initiator) echo scheme. Again, this might be detected by timeouts
or by notification by the underlying communication system. Because of the
symmetry of the scheme, any process which becomes aware of such a problem
may simply restart the detection algorithm, possibly after the communication
system has closed (i.e., removed) the faulty communication link. In order not to
intermingle the control messages, sequence numbers should be used to invalidate
the messages of the previous control rounds. Therefore, as long as the network
remains connected, a communication link may fail at any time; the algorithm
will adapt itself to the new topology. However, if the network is partitioned or
a process fails (i.e., becomes permanently unreachable), important information
is lost and detection of termination (on the basis of the processes which are still
reachable) is not possible by our scheme. Because the echo wave can easily count
the number of reachable nodes, however, the initiator can detect these events, if
it knows the total number of nodes.

8. Related Work. In recent years over 50 papers on the distributed termination
problem have been published [18]. Some of the solutions of these papers are
based on similar principles or have partially comparable properties. As already
mentioned before, Kumar [15] and Lai [16] have also used the principle of message
counting to detect termination of asynchronously communicating processes.
However, their schemes are not symmetric. Lai makes use of timestamped basic
messages; control messages are generated by a fixed initiator and travel along
the edges of a predetermined tree. Concurrent activations are also not possible
in [15] where fixed cycles are used for the control messages and generally two
rounds are necessary, one for collecting the values, and another for testing the
flag. More algorithms based on the message-counting principle are presented in
[18].

Shavit and Francez [23] describe a generalized and symmetric version of the
Dijkstra-Scholten principle [9] which views a distributed execution as a collection
of diffusing computations which is tracked by a scheme reminiscent of the echo
principle. The worst-case message complexity is O(m+ne). However, their
scheme uses at least m control messages, whereas our best case is independent
of the number of basic messages and can be much smaller than m.

All other known solutions to the distributed termination problem require the
FIFO property or are based on synchronous communication. In [25], Tan and
van Leeuwen present symmetric solutions to the termination problem which are
directly based on distributed election protocols and also make use of the principle
of wave extinction. Although the general principle for symmetry breaking is
similar to our scheme, the two approaches are rather different in detail; in
particular, the termination-detection criteria are different (while our method is
based on distributed message counting and consistency checking, their scheme

338 F. Mattern

is based on the "black-white paradigm" as found in [10] and [27]). The underlying
computation is assumed to be synchronous and control communication must
observe the FIFO discipline. Other symmetric solutions based on synchronous
communication are even more restrictive; Richier [21] assumes the existence of
a Hamiltonian circuit for the propagation of control messages, Skyum and Eriksen
[24] assume that an upper bound for the diameter of the communication graph
is known to all processes.

For synchronous communication our principle is also reminiscent of the method
described by Topor [27] and Francez and Rodeh [11]. However, these solutions
are not symmetric. A fixed spanning tree is used and only the root process of
that tree can initiate the algorithm.

Finally, it should be mentioned that some basic principles of our algorithms
were already used in applications other than termination detection. The principle
of wave extinction was used by Chang and Roberts in their election algorithm
for rings of processes [7] and in the deadlock-detection algorithm by Chandy
et al. [6]. Another distributed deadlock-detection algorithm [3] based on FIFO
communication makes use of the echo principle where any node may initiate a
wave tagged with the initiator identity and a sequence number. However, since
the principle of wave extinction is not used, the message-load is not reduced in
the case of contemporary initiations. Conflict resolution mechanisms for dis-
tributed systems employing timestamp-based priority schemes are a well-known
principle [17], among others they are used in mutual-exclusion algorithms [20]
and in concurrency control schemes [26].

9. Conclusions. We presented two variants of the general principle, both having
a minor but specific drawback compared with the other. For the first variant the
absence of starvation caused by repeated mutual extinction cannot be guaranteed
if competing nodes are not eliminated or if wake-up synchronization signals are
not used; timeouts should then be used to reduce the frequency of initiations.
The second variant suffers from increased delay of the prevailing detection wave
if several executions of the algorithm are concurrently active.

The general method has a number of interesting properties. Its main advantages
a r e

It is suited for asynchronous communication without FIFO property.
It is not based on a predefined communication structure (ring, t r ee , . . .) ,

additional communication channels solely for control communication are
not required.

Global knowledge (e.g., the total number of processes) is not used.
It is easily adaptable to dynamic systems.
It copes well with network failures.
The scheme is symmetric--every process executes an identical algorithm and

repeated initiation by any node is possible.
Mutual exclusion or synchronization prior to the initiation of the algorithm is

not required.
It allows parallel and distributed evaluation of the termination condition.

Asynchronous Distributed Termination 339

The total number of necessarily sequential control message transfers of one
run (i.e., the time complexity) is proportional (with a factor less or equal to
2) to the diameter of the communication graph.

The total number of control messages for one round initiated by a single node
(no collisions and wave extinctions) is 2e, the expected number of messages
increases only logarithmically with the number of concurrent initiators.

Control messages are small, their length is not dependent on the total number
of processes.

Local computations for the processing of control messages are short and
performed essentially when the process is passive with respect to the under-
lying computation, causing only negligible overhead.

The scheme is simple and readily implementable, nearly without any influence
on the underlying computation.

The purpose of this paper was not only to present a new and efficient method
of termination detection based on message counting in combination with the
echo technique of parallel graph traversal, but also to generalize the principle of
wave extinction in order to allow concurrent initiations of echo algorithms without
prior synchronization or mutual exclusion leading to symmetric solutions. Since
the only requirements are bidirectional communication links, the general principle
of our algorithms should also be applicable to other areas of interest in distributed
computing such as distributed deadlock detection and global snapshot evaluation.

Acknowledgments. The author would like to thank Christian Beilken, Michel
Raynal, Mike Spenke, Gerard Tel, and Dieter ZSbel for helpful comments on
an earlier version of the paper. Several useful suggestions were also provided by
the referees.

References

[1] L. Boug6, Symmetry and genericity for CSP distributed systems, Report 85-32, LITP, University
of Paris 7, 1985.

[2] L. Boug6, On the existence of symmetric algorithms to find leaders in networks of communicat-
ing sequential processes, Acta Inform. (to appear).

[3] G. Bracha and S. Toueg, Distributed deadlock detection, Distrib. Comput., 2 (1987), 127-138.
[4] K.M. Chandy and L. Lamport, Distributed snapshots: determining global states of distributed

systems, A C M Trans. Comput. Systems, 3 (1985), 63-75.
[5] K. M. Chandy and J. Misra, A paradigm for detecting quiescent properties in distributed

computations, in Logics and Models of Concurrent Systems (K. R. Apt, ed.), Springer-Verlag,
Berlin, 1985, pp. 325-341.

[6] K.M. Chandy, J. Misra, and L. M. Haas, Distributed deadlock detection, ACM Trans. Comput.
Systems, 1 (1983), 144-156.

[7] E. Chang and R. Roberts, An improved algorithm for decentralized extrema-finding in circular
configurations of processes, Comm. ACM, 22 (1979), 281-283.

[8] E . J . H . Chang, Echo algorithms: depth parallel operations on general graphs, IEEE Trans.
Software Engng., 8 (1982), 391-401.

I-9] E.W. Dijkstra and C. S. Scholten, Termination detection for diffusing computations, Inform.
Process. Lett., 11 (1980), 1-4.

340 F. Mattern

[10] E.W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren, Derivation of a termination detection
algorithm for distributed computations, Inform. Process. Lett., 16 (1983), 217-219.

[11] N. Francez and M. Rodeh, Achieving distributed termination without freezing, IEEE Trans.
Software Engng., 8 (1982), 287-292.

[12] E. Gafni, Improvements in the time complexity of two message-optimal election algorithms,
Proc. 4th ACM Symp. on Principles of Distributed Computing, 1985, pp. 175-185.

[13] R.E. Johnson and F. B. Schneider, Symmetry and similarity in distributed systems, Proc. 4th
A C M Syrup. on Principles of Distributed Computing, 1985, pp. 13-22.

[14] E. Korach, S. Kutten, and S. Moran, A modular technique for the design of efficient distributed
leader finding algorithms, Technical Report, Computer Science Department, Technion, Haifa,
1986.

[15] D. Kumar, A class of termination detection algorithms for distributed computations, in Proc.
5th Conf on Foundations of Software Technology and Theoretical Computer Science (N. Mahesh-
wari, ed.), Springer-Verlag, Berlin, LNCS 206, 1985, pp. 73-100.

[16] T.-H. Lai, Termination detection for dynamic distributed systems with non-first-in-first-out
communication, J. Parallel Distrib. Comput., 3 (1986), 577-599.

[17] L. Lamport, Time, clocks and the ordering of events in a distributed system, Comm. ACM, 21
(1978), 558-565.

[18] F. Mattern, Algorithms for distributed termination detection, Distrib. Comput., 2 (1987),
161-175.

[19] F. Mattern, Experience with a new distributed termination detection algorithm, in Proc. 2nd
Int. Workshop on Distributed Algorithms (J. van Leeuwen, ed.), Springer-Verlag, Berlin, LNCS
312, 1988, pp. 127-143.

[20] G. Ricart and A. K. Agrawala, An optimal algorithm for mutual exclusion in computer networks,
Comm. ACM, 24 (1981), 9-17.

[21] J.-L. Richier, Distributed termination in CSP, symmetric solutions with minimal storage, in
Proc. STACS 85 (K. Mehlhorn, ed.), Springer-Verlag, Berlin, LNCS 182, 1985, pp. 267-278.

[22] A. Segal, Distributed network protocols, IEEE Trans. Inform. Theory, 29 (1983), 23-35.
[23] N. Shavit and N. Francez, A new approach to detection of locally indicative stability, Report

RC 11925, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1986.
[24] S. Skyum and O. Eriksen, Symmetric distributed termination, in The Book o fL (G. Rozenberg

and A. Salomaa, eds.), Springer-Verlag, Berlin, 1986, pp. 427-430.
[25] R.B. Tan and J. van Leeuwen, General symmetric distributed termination detection, Report

RUU-CS-86-2, Department of Computer Science, University of Utrecht, 1986.
[26] R. H. Thomas, A majority consensus approach to concurrency control for multiple copy

databases, A C M Trans. Database Systems, 4 (1979), 180-209.
[27] R.W. Topor, Termination detection for distributed computations, Inform. Process. Lett., 18

(1984), 33-36.

