Asynchronous Games over Tree Architectures

Blaise Genest
CNRS, IPAL UMI, Singapore

Hugo Gimbert Anca Muscholl Igor Walukiewicz
LaBRI, CNRS/Université Bordeaux, France

Abstract

We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is Exptime-complete, and that it is non-elementary in general.

I. Introduction

Constructing as well as verifying distributed systems is often a very demanding task. Distributed synthesis and control aim at providing a systematic way for constructing such systems from specifications. Although the challenge of full synthesis of distributed systems from a given specification is far too ambitious, there is a continuous effort in finding more powerful methods that address this challenge in more realistic settings.

We study in this paper a by now well-established model of distributed computation based on synchronization, namely Zielonka's asynchronous automata. Such an automaton is an asynchronous product of finite automata synchronizing on common actions. This simple yet rich model has solid theoretical foundations rooted in the theory of Mazurkiewicz traces. We consider the control problem for such automata: given a Zielonka automaton, a plant, find another Zielonka automaton, a controller, such that the product of the two satisfies a given specification. We show that this problem is decidable for reachability objectives on tree architectures. We also show that the complexity of this problem is bounded from below by a function that is a tower of exponentials of height proportional to the diameter of the communication graph.

Our problem can be seen as a variation of Church's problem. More than half a century ago, Church asked for an algorithm to construct devices transforming (infinite) sequences of input bits to (infinite) sequence of output bits in a way required by a specification [4]. Later Ramadge and Wonham proposed a different formulation where we are given a plant together with a specification and we are required to construct a controller such that the product of the controller with the plant satisfies the specification [21]. So control means restricting the behavior of the plant and synthesis is the particular case where the plant allows for every possible behavior.

In the setting of Ramadge and Wonham both the plant and the specification are finite automata. Pnueli and Rosner have proposed an extension of Church's setting by considering a set of processes working fully synchronously and exchanging messages through one slot communication channels [19]. The control version has also been extended to the distributed case by asking to construct several controllers, each with a different partial view of the plant [23], [22], [25], [1], [2]. In the problem we consider here we ask for just one controller, but both the plant and the controller are themselves distributed devices. In Figure 1 we have represented schematically different settings of synthesis and control problems.

Fig. 1. Different formulations of synthesis/control problems
In short our control problem is as follows. We are given a Zielonka automaton over a fixed set of processes with fixed communication structure. Processes have local actions, that can be uncontrollable, as well as actions that are shared with some other process (binary synchronization actions), that are always controllable. Uncontrollable local actions represent inputs from the environment, controllable ones represent outputs of the system. Synchronization actions are used to gather information about the global state of the system. The synchronization actions define a communication graph, where nodes are processes and edges represent pairs of processes that can share some action. For a given set of final states the objective is to find a controller, that is a Zielonka automaton over the same set of processes and actions, such that every execution of the product of the plant and the controller brings eventually each process into a final state.

We show that our control problem is decidable when the communication graph is acyclic. The idea is simple. If the graph is acyclic and not totally disconnected then there is a leaf process r that communicates only with one other process q. We
then make q simulate r thus reducing the number of processes. Repeating this argument we reduce the problem to a situation when the communication graph is totally disconnected, and this is easily solvable. Because the reduction uses a powerset construction, we obtain an algorithm whose complexity is a function that is a tower of exponentials of size proportional to the diameter of the graph. We show that this is essentially the best one can do. We prove that already for 3 processes the problem is Exptime-complete. We also give a family of control problems whose complexity is bounded from below by a tower of exponentials of height proportional to the diameter of the communication graph.

Our decidability result includes for example a client-server architecture where we have one server communicating with clients, and at the same time server and clients have their own interactions with the environment (cf. Figure 2]. Our reduction method gives an Exptime algorithm solving the control problem for this architecture. Notice that since we have inputs at each process this architecture is very different from decidable architectures in the Pnueli \& Rosner setting. This positive result is possible due to two factors. First, our model is asynchronous: between two successive synchronizations a client and the server can do a different number of actions. The second reason, that is probably even more important, concerns information flow. We explain this below.

Fig. 2. Server/client architecture
The research effort put into Pnueli \& Rosner setting of the distributed synthesis problem justifies the quest for other formulations. By now we understand that suitably using the interplay between specifications and an architecture, one can get undecidability results for most architectures rather easily. Yet the kinds of specifications that lead to undecidability are artificial, like: putting a constraint linking two disconnected parts of the system, or using an output channel to single out one input of unbounded length. Unfortunately, till now we do not know how to eliminate these artificial situations in an elegant way.

One important attempt to get a decidable framework of distributed synthesis is to change the way information is distributed in the system [7], [14]. This is the setting we consider here as well. In the framework of Pnueli and Rosner, every controller sees only its inputs and its outputs. In order to deduce some information about the global state of the system a controller can use only his knowledge about the architecture and the initial state of the system. In particular, controllers are not allowed to exchange additional information
during communication. It is clear though that when we allow some transfer of information during communication, we give more power to controllers. Pushing the idea of information exchange to the limit, we obtain a model where two processes involved in a communication share all the information they have about the global state of the system. This point of view is not as unrealistic as it may seem at the first glance. It is rooted in the theory of Mazurkiewicz traces that studies Zielonka asynchronous automata with this kind of information transfer. A fundamental result of Zielonka [26] (see also [16], [9] for algorithmic improvements) implies a bound on the size of additional information that needs to be transferred during synchronization. In our terms, the theory of traces considers the case of synthesis for closed systems, i.e., systems without uncontrollable actions. Distributed synthesis with environment brings us to the setting we consider here. Similarly to Zielonka's Theorem, we give a bound on additional information that needs to be transferred. In case of the architecture from Figure 1 with each transfer between a client and the server we will need to add at most polynomially many bits with respect to the state space of the client.

Related work. The setting proposed by Pnueli and Rosner has been thoroughly investigated in past years. Results on multi-player games [18], [19] tell us that synthesis in this framework is undecidable, and [20] shows that synthesis w.r.t. properties expressed in LTL is decidable when the communication graph is a (directed) pipeline, with inputs allowed only at the first node. The paper [12] gives an automata-theoretic approach to solving pipeline architectures and at the same time extends the decidability results to CTL* specifications and variations of the pipeline architecture, like one-way ring architectures. The control setting of Ramadge and Wonham is investigated in [13] for local specifications, meaning that each process has its own, linear-time specification. The control problem for local specifications is decidable for pipelines with inputs at both endpoints. The result of [13] is complete in the sense that it shows that an architecture has a decidable control problem if and only if it is a subarchitecture of a clean pipeline. For instance, the 3 process pipeline with inputs on the first two processes is undecidable. The paper [6] proposes the notion of information fork as a uniform notion describing the existing (un)decidability results on distributed synthesis. The paper [8] goes beyond and considers the notion of well-connected architecture, attempting to characterize decidable external specifications.

The setting considered here has been proposed by Gastin, Lerman and Zeitoun [7]. Their model is action-based, meaning that actions decide if they are enabled or not. Here we prefer the process-based formulation, as it corresponds in a direct way to control in the sense of Ramadge and Wonham. Process-based formulation has been introduced by Madhusudan, Thiagarajan, Yang [14]. In [17] we analyze the relationship between the two versions of distributed control.

Compared with the setting of Pnueli and Rosner, our understanding of distributed synthesis with information exchange
between controllers is still quite rudimentary: no undecidable case has been found, so it is possible that the problem is decidable in its full generality. Only two decidability results are known, both very different from our case. The first one [7] is based on a restriction on the alphabet of actions: games with reachability condition are decidable for co-graph alphabets. This restriction is not satisfied as soon as we have local actions for each process, and a process that can communicate with two other ones (a case for which we show here that the control problem is decidable). The second result [14] obtains decidability of the control problem by restricting the plant: roughly speaking, the restriction requires that if two processes do not synchronize during a fixed amount of time, then they will never synchronize again. The proof of [14] goes beyond the controller synthesis problem, by coding it into monadic second-order theory of event structures and showing that this theory is decidable when the criterion on the plant holds. The restriction on the form of the plant is crucial there since there are many very simple plants with decidable control problem but undecidable MSO-theory of the associated even structure.

Another approach to distributed synthesis is to distribute a centralized controller. This has been already proposed by Clarke and Emerson in their paper introducing CTL. In two recent papers [3], [10] some variants of asynchronous models are considered. In both papers, the setting is such that it is possible to distribute every centralized controller, sometimes by adding new synchronizations. This is impossible in our formulation.

Due to space constraints most proofs are ommitted. The appendix contains the full version of the paper.

II. BASIC DEFINITIONS AND OBSERVATIONS

Our control problem can be formulated in the same way as the Ramadge and Wonham control problem but using Zielonka automata instead of standard ones. We start by presenting Zielonka automata and an associated notion of concurrency. Then we briefly recall the Ramadge and Wonham formulation and our variant of it. Finally, we give a more convenient game based formulation of the problem.

A. Zielonka automata

Zielonka automata are simple parallel devices. Such an automaton is a parallel composition of several finite automata, denoted as processes, synchronizing on common actions. There is no global clock, so between two synchronizations, two processes can do a different number of actions. Because of this Zielonka automata are also called asynchronous automata.

A distributed action alphabet on a finite set \mathbb{P} of processes is a pair (Σ, dom), where Σ is a finite set of actions and dom : $\Sigma \rightarrow\left(2^{\mathbb{P}} \backslash \emptyset\right)$ is a location function. The location $\operatorname{dom}(a)$ of action $a \in \Sigma$ comprises all processes that need to synchronize in order to perform this action.

A (deterministic) Zielonka automaton $\mathcal{A}=$ $\left\langle\left\{S_{p}\right\}_{p \in \mathbb{P}}, s_{i n},\left\{\delta_{a}\right\}_{a \in \Sigma}\right\rangle$ is given by

- for every process p a finite set S_{p} of (local) states,
- the initial state $s_{i n} \in \prod_{p \in \mathbb{P}} S_{p}$,
- for every action $a \in \Sigma$ a partial transition function δ_{a} : $\prod_{p \in \operatorname{dom}(a)} S_{p} \dot{\rightarrow} \prod_{p \in \operatorname{dom}(a)} S_{p}$ on tuples of states of processes in $\operatorname{dom}(a)$.
For convenience, we abbreviate a tuple $\left(s_{p}\right)_{p \in P}$ of local states by s_{P}, where $P \subseteq \mathbb{P}$. We also talk about S_{p} as the set of p-states and of $\prod_{p \in \mathbb{P}} S_{p}$ as global states.

A Zielonka automaton can be seen as a sequential automaton with the state set $S=\prod_{p \in \mathbb{P}} S_{p}$ and transitions $s \xrightarrow{a} s^{\prime}$ if $\left(s_{\operatorname{dom}(a)}, s_{\operatorname{dom}(a)}^{\prime}\right) \in \delta_{a}$, and $s_{\mathbb{P} \backslash \operatorname{dom}(a)}=s_{\mathbb{P} \backslash \operatorname{dom}(a)}^{\prime}$. By $L(\mathcal{A})$ we denote the set of words labeling runs of this sequential automaton that start from the initial state.

This definition has an important consequence. The location mapping dom defines in a natural way an independence relation I : two actions $a, b \in \Sigma$ are independent (written as $(a, b) \in I)$ if they involve different processes, that is, if $\operatorname{dom}(a) \cap \operatorname{dom}(b)=\emptyset$. Notice that the order of execution of two independent actions $(a, b) \in I$ in a Zielonka automaton is irrelevant, they can be executed as a, b, or b, a - or even concurrently. More generally, we can consider the congruence \sim_{I} on Σ^{*} generated by I, and observe that whenever $u \sim_{I} v$ and $u \in L(\mathcal{A})$ then $v \in L(\mathcal{A})$, too.

The idea of describing concurrency by an independence relation on actions goes back to the late seventies, to Mazurkiewicz [15] and Keller [11] (see also [5]). An equivalence class $[w]_{I}$ of \sim_{I} is called a Mazurkiewicz trace, it can be also viewed as labeled pomset of a special kind. Here, we will often refer to a trace using just a word w instead of writing $[w]_{I}$. As we have observed $L(\mathcal{A})$ is a sum of such equivalence classes. In other words it is trace-closed.

Example 2.1: Consider the following, very simple, example with processes 1, 2, 3 in Figure 3. Process 1 has local actions a_{0}, a_{1} and synchronization actions $c_{i, j}(i, j=0,1)$ shared with process 2 . Similarly, process 3 has local actions b_{0}, b_{1} and synchronization actions $d_{i, j}(i, j=0,1)$ shared with process 2 . Each process is a finite automaton and the Zielonka automaton is the product to the three components synchronizing on common actions (cf. Figure 3, where the symbol $*$ denotes both values, 0 and 1 , and i, j, k, l each take both values). We have for instance $\left(a_{i}, b_{j}\right) \in I$ and $\left(c_{i, j}, d_{k, l}\right) \notin I$. The

Fig. 3. An example of asynchronous automaton
final states are the rightmost states of each automaton. The automaton accepts traces of the form $a_{i} b_{j} c_{i, k} d_{j, l}$ with $i=l$ or $j=k$.

Since the notion of a trace can be formulated without a reference to an accepting device, it is natural to ask if the model of Zielonka automata is powerful enough. Zielonka's theorem says that this is indeed the case, hence these automata are a right model for the simple view of concurrency captured by Mazurkiewicz traces.

Theorem 2.2: [26] Let dom : $\Sigma \rightarrow\left(2^{\mathcal{P}} \backslash\{\emptyset\}\right)$ be a distribution of letters. If a language $L \subseteq \Sigma^{*}$ is regular and trace-closed then there is a deterministic Zielonka automaton accepting L (of size exponential in the number of processes and polynomial in the size of the minimal automaton for L, see [9]).

One could try to use Zielonka's theorem directly to solve a distributed control problem. For example, one can start with the Ramadge and Wonham control problem, solve it, and if a solution happened to respect the required independence, then distribute it. Unfortunately, there is no reason for the solution to respect the independence. Even worse, the following, relatively simple, result says that it is algorithmically impossible to approximate a regular language by a language respecting a given independence relation.

Theorem 2.3: [24] It is not decidable if, given a distributed alphabet and a regular language $L \subseteq \Sigma^{*}$, there is a traceclosed language $K \subseteq L$ such that every letter from Σ appears in some word of K.

The condition on appearance of letters above is not crucial for the above undecidability result. Observe that we need some condition in order to make the problem nontrivial, since by definition the empty language is trace-closed.

B. The control problem

We can now formulate our control problem as a variant of the Ramadge and Wonham formulation. We will then provide an equivalent description of the problem in terms of games. While more complicated to state, this description is easier to work with.

Recall that in Ramadge and Wonham's control problem [21] we are given an alphabet Σ of actions partitioned into system and environment actions: $\Sigma^{s y s} \cup \Sigma^{e n v}=\Sigma$. Given a plant P we are asked to find a controller C such that the product $P \times C$ satisfies a given specification. Here both the plant and the controller are finite deterministic automata over Σ. Additionally, the controller is required not to block environment actions, which in technical terms means that from every state of the controller there should be a transition on every action from $\Sigma^{e n v}$.

The definition of our problem will be the same with the difference that we will take Zielonka automata instead of standard finite automata. Consider a distributed alphabet $\left\langle\mathbb{P}\right.$, dom $\left.: \Sigma \rightarrow\left(2^{\mathbb{P}} \backslash \emptyset\right)\right\rangle$. We impose two simplifying assumptions. The first one is that all actions are at most
binary: $|\operatorname{dom}(a)| \leq 2$, for every $a \in \Sigma$. The second requires that all uncontrollable actions are local: $|\operatorname{dom}(a)|=1$, for every $a \in \Sigma^{e n v}$. So the first restriction says that we allow only binary synchronizations. It makes the technical reasoning much simpler. The second restriction reflects the fact that each process is modeled with its own, local environment.

Our control problem can be formulated as follows: Given a distributed alphabet $(\mathbb{P}, d o m)$ as above and a Zielonka automaton \mathcal{A}_{p}, find a Zielonka automaton \mathcal{A}_{c} over the same alphabet such that $\mathcal{A}_{p} \times \mathcal{A}_{c}$ satisfies a given specification. Additionally the controller is required not to block uncontrollable actions: from every state of \mathcal{A}_{c} every uncontrollable action should be possible.

As in the original formulation, the role of the controller is to restrict the set of possible behaviours of the plant, but it is not allowed to restrict actions of the environment. The important point is that the controller should have the same distributed structure as the environment. The product of the two automata, that is just the standard product, means that plant and controller are totally synchronized, in particular communications between processes happen at the same time. Hence concurrency in the controlled system is the same as in the plant. The major difference between the controlled system and the plant is that the states carry the additional information computed by the controller.

Example 2.4: Reconsider the automaton in Figure 3 and assume that $a_{i}, b_{j} \in \Sigma^{e n v}$ are uncontrollable. So the controller needs to propose controllable actions $c_{i, k}$ and $d_{j, l}$, resp., in such a way that all processes reach their final state. In particular, process 2 should not block. At first sight this may seem impossible to guarantee, as it looks like process 1 needs to know what b_{j} process 3 has received, or process 3 needs to know about the a_{i} received by process 1 . Nevertheless, a winning strategy exists. It consists of choosing $k=i$ and $l=1-j$: if $i=j$ then $k=j$, else $i=l$.

It will be more convenient to work with a game formulation of this problem. Instead of talking about controller we will talk about distributed strategy in a game between system and environment. A plant defines a game arena, with plays corresponding to initial runs of \mathcal{A}. Since \mathcal{A} is deterministic, we can view a play as a word from $L(\mathcal{A})$ - or a trace, since $L(\mathcal{A})$ is trace-closed. Let $\operatorname{Plays}(\mathcal{A})$ denote the set of traces associated with words from $L(\mathcal{A})$.

A strategy for the system will be a collection of individual strategies for each process. The important notion here is the view each process has about the global state of the system. Intuitively this is the part of the current play that the process could see or learn about from other processes during a communication with them. Formally, the p-view of a play u, denoted $\operatorname{view}_{p}(u)$, is the smallest trace $[v]_{I}$ such that $u \sim_{I} v y$ and y contains no action from Σ_{p}. We write $\operatorname{Plays}_{p}(\mathcal{A})$ for the set of plays that are p-views:

$$
\operatorname{Plays}_{p}(\mathcal{A})=\left\{\operatorname{view}_{p}(u) \mid u \in \operatorname{Plays}(\mathcal{A})\right\}
$$

A strategy for a process p is a function $\sigma_{p}: \operatorname{Plays}_{p}(\mathcal{A}) \rightarrow$ $2^{\Sigma_{p}}$, where $\Sigma_{p}=\left\{a \in \Sigma \mid a \in \Sigma^{\text {sys }}, p \in \operatorname{dom}(a)\right\}$. We
require in addition, for every $u \in \operatorname{Plays}_{p}(\mathcal{A})$, that $\sigma_{p}(u)$ is a subset of the actions that are possible in the p-state reached on u. A strategy is a family of strategies $\left\{\sigma_{p}\right\}_{p \in \mathbb{P}}$, one for each process.

The set of plays respecting a strategy $\sigma=\left\{\sigma_{p}\right\}_{p \in \mathbb{P}}$, denoted $\operatorname{Plays}(\mathcal{A}, \sigma)$, is the smallest set containing the empty play ε, and such that for every $u \in \operatorname{Plays}(\mathcal{A}, \sigma)$:

1) if $a \in \Sigma^{e n v}$ and $u a \in \operatorname{Plays}(\mathcal{A})$ then $u a$ is in $\operatorname{Plays}(\mathcal{A}, \sigma)$.
2) if $a \in \Sigma^{\text {sys }}$ and $u a \in \operatorname{Plays}(\mathcal{A})$ then $u a \in \operatorname{Plays}(\mathcal{A}, \sigma)$ provided that $a \in \sigma_{p}\left(\right.$ view $\left._{p}(u)\right)$ for all $p \in \operatorname{dom}(a)$.
Intuitively, the definition says that actions of the environment are always possible, whereas actions of the system are possible only if they are allowed by the strategies of all involved processes. Notice that in the distributed setting a process by itself cannot impose controllable actions (unless they are local): a controllable, shared action a can be chosen, if proposed by all owners. If some other action b is chosen instead, some owner of a can change his mind, and then a is not eligible anymore.

Before defining winning strategies, we need to introduce infinite plays that are consistent with a given strategy σ. Such plays can be seen as (infinite) traces associated with infinite, initial runs of \mathcal{A} satisfying the two conditions of the definition of $\operatorname{Plays}(\mathcal{A}, \sigma)$. We write Plays ${ }^{\infty}(\mathcal{A}, \sigma)$ for the set of finite or infinite such plays. A play from Plays ${ }^{\infty}(\mathcal{A}, \sigma)$ is also denoted as a σ-play.

A play $u \in$ Plays $^{\infty}(\mathcal{A}, \sigma)$ is called maximal, if there is no action c such that $u c \in$ Plays $^{\infty}(\mathcal{A}, \sigma)$. In particular u is maximal if $\operatorname{view}_{p}(u)$ is infinite for every process p. Otherwise, if $\operatorname{view}_{p}(u)$ is finite then p cannot have enabled local action (either controllable or uncontrollable). Moreover there should be no communication possible between any two processes with finite views in u.

In this paper we consider local reachability winning conditions. For this, every process has a set of target states $F_{p} \subseteq S_{p}$. We assume that states in F_{p} are blocking, that is they have no outgoing transitions. This means that if $\left(s_{d o m(a)}, s_{d o m(a)}^{\prime}\right) \in \delta_{a}$ then $s_{p} \notin F_{p}$ for all $p \in \operatorname{dom}(a)$.

Definition 2.5: The control problem for a plant \mathcal{A} and a local reachability condition $\left(F_{p}\right)_{p \in \mathbb{P}}$ is to determine if there is a strategy $\sigma=\left(\sigma_{p}\right)_{p \in \mathbb{P}}$ such that every maximal trace $u \in$ Plays $^{\infty}(\mathcal{A}, \sigma)$ ends in $\prod_{p \in \mathbb{P}} F_{p}$ (and is thus finite). Such traces and strategies are called winning.

This formulation of the problem is almost equivalent to the formulation with a plant and controller we have given in the beginning of this subsection. It is obvious that a controller defines a strategy. It is also true that a strategy defines a controller, but this controller may be infinite. We will show that for our control problem, if there is a strategy then there is one that can be translated to a finite controller.

As mentioned in the introduction, an interesting aspect of our formulation concerns the information exchanged between processes. In the setting of Pnueli and Rosner each process sees only its input and its output channels. For example, if the specification says that a channel should always contain
the same letter then no information can be transmitted over this channel. In other words, the information exchanged can be totally controlled by specification. Once we adopt the Ramadge and Wonham formulation with Zielonka automata, the amount and type of exchanged information is determined by the controller. In our game formulation we use views that amount to maximal possible information a process can have. So in our model after a synchronization the two processes have the same (partial) knowledge about the global state of the system.

We do not know if this control problem is decidable in general. In this paper we put one restriction on possible communications between processes expressed in terms of communication graph defined below.

Definition 2.6: A distributed alphabet (Σ, dom) with unary and binary actions defines an undirected graph $\mathcal{C G}$ with node set \mathbb{P} and edges $\{p, q\}$ if there exists $a \in \Sigma$ with $\operatorname{dom}(a)=$ $\{p, q\}, p \neq q$. Such a graph is called communication graph.

To sum up: in this paper we consider the Ramadge and Wonham formulation of the control problem but using Zielonka automata instead of standard ones. As specifications we consider reachability properties. We show that this problem is decidable for acyclic communication graphs (Theorem 3.11). We also provide a tight complexity bound (Theorem 4.4).

III. The UPper bound for control problem for ACYCLIC GRAPHS

Let us fix in this section a distributed alphabet $(\Sigma, d o m)$. According to Definition 2.6 the alphabet determines a communication graph $\mathcal{C G}$. We assume that $\mathcal{C G}$ is acyclic and has at least one edge. This allows us to choose a leaf $r \in \mathbb{P}$ in $\mathcal{C G}$, with $\{q, r\}$ an edge in $\mathcal{C G}$. Starting from a control problem with input $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$ we define below a control problem over the smaller (acyclic) graph $\mathcal{C} \mathcal{G}^{\prime}=\mathcal{C} \mathcal{G}_{\mathbb{P} \backslash\{r\}}$. The construction will be an exponential-time reduction from the control problem over $\mathcal{C G}$ to a control problem over $\mathcal{C G ^ { \prime }}$. If we represent $\mathcal{C G}$ as a tree of depth l then applying this construction iteratively we will get an l-fold exponential algorithm to solve the control problem for $\mathcal{C G}$ architecture.

The main idea of the reduction is simple: process q simulates the behavior of process r. The reason why a simulation can work is that after each synchronization between q and r, the views of both processes are identical, and between two such synchronizations r evolves locally. But the construction is more delicate than this simple description suggests, and needs some preliminary considerations about winning strategies.

Some preparatory lemmas: We start with some lemmas showing how to restrict the winning strategies. The first one holds for arbitrary communication graphs, whereas the second one relies on the fact the r is a leaf in $\mathcal{C G}$. For $p, q \in \mathbb{P}$ let $\Sigma_{p, q}=\{a \in \Sigma \mid \operatorname{dom}(a)=\{p, q\}\}$. So $\Sigma_{p, q}$ is the set of synchronization actions between p and q. Moreover $\Sigma_{p, p}$ is just the set of local actions of p. We write $\Sigma_{p}^{l o c}$ instead of $\Sigma_{p, p}$ and $\Sigma_{p}^{c o m}=\Sigma_{p} \backslash \Sigma_{p}^{l o c}$. The first lemma says that a winning
strategy can be assumed to propose either a local action, or some communication actions.

Lemma 3.1: If there exists some winning strategy for \mathcal{A}, then there is one, say σ, such that for every process p and every σ-play $u \in \operatorname{Plays}_{p}(\mathcal{A})$ with $X=\sigma_{p}(u)$, we have one of the following: $X=\{a\}$ for some $a \in \Sigma_{p}^{l o c}$ or $X \subseteq \Sigma_{p}^{c o m}$.

The following definition captures all the possible evolutions of the leaf process r without communication with its parent process q. For an initial run u of \mathcal{A} we denote by $\operatorname{state}_{p}(u)$ the p-state reached by \mathcal{A} on u.

Definition 3.2: Given a strategy σ and a play u, the set of all possible outcomes of a local play on r before its next communication is:

$$
\begin{aligned}
\operatorname{Sync}_{r}^{\sigma}(u)=\left\{\left(s_{r}, A\right) \mid\right. & \exists x \in\left(\Sigma_{r}^{l o c}\right)^{*} . u x \text { is a } \sigma \text {-play, } \\
& \text { state }_{r}(u x)=s_{r} \\
& \left.\sigma_{r}\left(\operatorname{view}_{r}(u x)\right)=A \subseteq \Sigma_{q, r}\right\}
\end{aligned}
$$

Observe that if σ allows r to reach a final state s_{r} from u without communication, then $\left(s_{r}, \emptyset\right) \in \operatorname{Sync}_{r}^{\sigma}(u)$. This is so, since final states are assumed to be blocking.

The lemma below talks about the strategy of process q, the parent of the leaf process r. It says that when the strategy offers communication, then it does so either with r exclusively, or only with other processes.

Lemma 3.3: If there exists some winning strategy for \mathcal{A}, then there is one, say σ, such that for every σ-play $u \in$ $\operatorname{Plays}_{q}(\mathcal{A})$ with $X=\sigma_{q}(u)$, we have one of the following: $X=\{a\}$ for some $a \in \Sigma_{q}^{l o c}$, or $X \subseteq \Sigma_{q, r}$ or $X \subseteq \Sigma_{q}^{c o m} \backslash \Sigma_{q, r}$.

For the game reduction we need to precalculate all possible sets Sync $_{r}^{\sigma}$. These sets will be actually of the special form described below.

Definition 3.4: Let s_{r} be a state of r. We say that $T \subseteq$ $S_{r} \times \mathcal{P}\left(\Sigma_{q r}\right)$ is an admissible plan in s_{r} if there is a play u with state $_{r}(u)=s_{r}$, and a (not necessarily winning) strategy σ such that $T=\operatorname{Sync}_{r}^{\sigma}(u)$, and one of the following holds:

- $A \neq \emptyset$ for every $\left(t_{r}, A\right) \in T$, or
- $t_{r} \in F_{r}$ and $A=\emptyset$ for every $\left(t_{r}, A\right) \in T$.

In the second case T is called a final plan.
It is not difficult to see that we can compute the set of all admissible plans, since this just amounts to solve a reachability game on process r.

Lemma 3.5 below allows to deduce that the sets $S y n c_{r}^{\sigma}$ are admissible plans whenever σ is winning.

Lemma 3.5: If σ is a winning strategy satisfying Lemma 3.3 then for every σ-play u in \mathcal{A} we have:

1) if there is some σ-play $u y$ with $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ and state $_{q}(u y) \in F_{q}$ then $\operatorname{Sync}_{r}^{\sigma}(u)$ is a final plan;
2) if there is some σ-play $u y$ with $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}, \sigma_{q}(u y)=$ $B \subseteq \Sigma_{q, r}$, and $B \neq \emptyset$ then for every $\left(t_{r}, A\right) \in \operatorname{Sync}_{r}^{\sigma}(u)$ we have $B \cap A \neq \emptyset$.
In particular, $\operatorname{Sync}_{r}^{\sigma}(u)$ is always an admissible plan.

The new plant \mathcal{A}^{\prime}. We are now ready to define the reduced plant \mathcal{A}^{\prime} that is the result of eliminating process r. Let $\mathbb{P}^{\prime}=$ $\mathbb{P} \backslash\{r\}$. We have $\mathcal{A}^{\prime}=\left\langle\left\{S_{p}^{\prime}\right\}_{p \in \mathbb{P}^{\prime}}, s_{i n}^{\prime},\left\{\delta_{a}^{\prime}\right\}_{a \in \Sigma^{\prime}}\right\rangle$ where the components will be defined below.

The states of process q in \mathcal{A}^{\prime} are of one of the following types:

$$
\left\langle s_{q}, s_{r}\right\rangle, \quad\left\langle s_{q}, T\right\rangle, \quad\left\langle s_{q}, T, B\right\rangle
$$

where $s_{q} \in S_{q}, s_{r} \in S_{r}, T \subseteq S_{r} \times \mathcal{P}\left(\Sigma_{q, r}\right)$ is an admissible plan, $B \subseteq \Sigma_{q, r}$. The new initial state for q is $\left\langle\left(s_{i n}\right)_{q},\left(s_{i n}\right)_{r}\right\rangle$.

For every $p \neq q$, we let $S_{p}^{\prime}=S_{p}$ and $F_{p}^{\prime}=F_{p}$. The local winning condition for q becomes
$F_{q}^{\prime}=F_{q} \times F_{r} \cup\left\{\left\langle s_{q}, T\right\rangle \mid s_{q} \in F_{q}\right.$, and T is a final plan $\}$.
The set of actions Σ^{\prime} is $\Sigma \backslash \Sigma_{r}$, plus additional local q-actions that we introduce below. All transitions δ_{a} with $\operatorname{dom}(a) \cap$ $\{q, r\}=\emptyset$ are as in \mathcal{A}. Regarding q we have the following transitions:

1) If not in a final state then process q chooses an admissible plan:

$$
\left\langle s_{q}, s_{r}\right\rangle \xrightarrow{c h(T)}\left\langle s_{q}, T\right\rangle
$$

where T is an admissible plan in s_{r}, and $\left\langle s_{q}, s_{r}\right\rangle \notin$ $F_{q} \times F_{r}$.
2) Local action of q :

$$
\left\langle s_{q}, T\right\rangle \xrightarrow{a}\left\langle s_{q}^{\prime}, T\right\rangle, \quad \text { if } s_{q} \xrightarrow{a} s_{q}^{\prime} \text { in } \mathcal{A} .
$$

3) Synchronization between q and $p \neq r$:

$$
\left(\left\langle s_{q}, T\right\rangle, s_{p}\right) \xrightarrow{b}\left(\left\langle s_{q}^{\prime}, T\right\rangle, s_{p}^{\prime}\right), \quad \text { if }\left(s_{q}, s_{p}\right) \xrightarrow{b}\left(s_{q}^{\prime}, s_{p}^{\prime}\right)
$$

4) Synchronization between q and r. Process q declares the communication actions with r :

$$
\left\langle s_{q}, T\right\rangle \xrightarrow{c h(B)}\left\langle s_{q}, T, B\right\rangle, \quad \text { if } B \subseteq \Sigma_{q, r}
$$

when s_{q} is not final, T not a final plan, and for every $\left(t_{r}, A\right) \in T$ we have $A \cap B \neq \emptyset$.
Then the environment can choose the target state of r and a synchronization action $a \in \Sigma_{q, r}$:

$$
\left\langle s_{q}, T, B\right\rangle \xrightarrow{\left(a, t_{r}\right)}\left\langle s_{q}^{\prime}, s_{r}^{\prime}\right\rangle \quad \text { if }\left(s_{q}, t_{r}\right) \xrightarrow{a}\left(s_{q}^{\prime}, s_{r}^{\prime}\right) \text { in } \mathcal{A}
$$

for every $\left(a, t_{r}\right)$ such that $\left(t_{r}, A\right) \in T$ for some A, and $a \in A \cap B$. Notice that the complicated name of the action $\left(a, t_{r}\right)$ is needed to ensure that the transition is deterministic.
To summarize the new actions of process q in plant \mathcal{A}^{\prime} are:

- $\operatorname{ch}(T) \in \Sigma^{s y s}$, for every admissible plan T,
- $\operatorname{ch}(B) \in \Sigma^{s y s}$, for each $B \subseteq \Sigma_{q, r}$,
- $\left(a, t_{r}\right) \in \Sigma^{e n v}$ for each $a \in \Sigma_{q, r}, t_{r} \in S_{r}$.

Before showing that this construction is correct we will provide a translation from plays in \mathcal{A} to plays in \mathcal{A}^{\prime}. A (finite or infinite) play u in \mathcal{A} is a trace that will be convenient to view as a word of the form

$$
u=y_{0} x_{0} a_{1} \cdots a_{i} y_{i} x_{i} a_{i+1} \cdots
$$

where for $i \in \mathbb{N}$ we have that: $a_{i} \in \Sigma_{q, r}$ is communication between q and $r ; x_{i} \in\left(\Sigma_{r}^{l o c}\right)^{*}$ is a sequence of local actions of r; and $y_{i} \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ is a sequence of actions of other processes than r. Note that x_{i}, y_{i} are concurrent, for each i. We will write $\left.u\right|_{a_{i}}$ for the prefix of u ending in a_{i}. Similarly $\left.u\right|_{y_{i}}$ for the prefix ending with y_{i}; analogously for x_{i}.

With a word u as above we will associate the word

$$
\begin{aligned}
& \chi(u)=\operatorname{ch}\left(T_{0}\right) y_{0} \operatorname{ch}\left(B_{0}\right)\left(a_{1}, t_{r}^{1}\right) \ldots \\
& \left(a_{i}, t_{r}^{i}\right) \operatorname{ch}\left(T_{i}\right) y_{i} \operatorname{ch}\left(B_{i}\right)\left(a_{i+1}, t_{r}^{i+1}\right) \ldots
\end{aligned}
$$

where for every $i=0,1, \ldots$:

- $T_{i}=\operatorname{Sync}_{r}^{\sigma}\left(\left.u\right|_{a_{i}}\right)$ and $T_{0}=\operatorname{Sync}_{r}^{\sigma}(\varepsilon)$;
- $B_{i}=\sigma_{q}\left(\operatorname{view}_{q}\left(\left.u\right|_{y_{i}}\right)\right)$;
- $t_{r}^{i}=\operatorname{state}_{r}\left(\left.u\right|_{x_{i}}\right)$.

In Figure 4 we have pictorially represented which parts of u determine which parts of $\chi(u)$.

The next lemma follows directly from the definition of the reduction.

Lemma 3.6: If u ends in a letter from $\Sigma_{q, r}$ then we have the following

- state $_{q}(\chi(u))=\left\langle\right.$ state $_{q}(u)$, state $\left._{r}(u)\right\rangle$.
- $\operatorname{state}_{p}(\chi(u) y)=$ state $_{p}(u y)$ for every $p \neq q$ and $y \in$ $\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.
- state $_{q}(\chi(u) \operatorname{ch}(T) y)=\left\langle\operatorname{state}_{q}(u y), T\right\rangle$ for every $y \in$ $\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.
- $\operatorname{state}_{q}(\chi(u) \operatorname{ch}(T) y \operatorname{ch}(B))=\left\langle\operatorname{state}_{q}(u y), T, B\right\rangle$ for every $y \in\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.

From σ in \mathcal{A} to σ^{\prime} in \mathcal{A}^{\prime}. We are now ready to define σ^{\prime} from a winning strategy σ. We assume that σ satisfies the property stated in Lemma 3.3. We will define σ^{\prime} only for certain plays and then show that this is sufficient.

Consider u^{\prime} such that $u^{\prime}=\chi(u)$ for some σ-play u ending in a letter from $\Sigma_{q, r}$. We have:

- If state $_{q}\left(u^{\prime}\right) \notin F_{q}$ then $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}\left(u^{\prime}\right)\right)=\{\operatorname{ch}(T)\}$ where $T=\operatorname{Sync}_{r}^{\sigma}(u)$.
- For every process $p \neq q$ we put $\sigma_{p}^{\prime}\left(\operatorname{view}_{p}\left(u^{\prime} \operatorname{ch}(T) y\right)\right)=$ $\sigma_{p}\left(\operatorname{view}_{p}(u y)\right)$ for $y \in\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.
- For $y \in\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$ and $B=\sigma_{q}\left(\operatorname{view}_{q}(u y)\right)$ we define

$$
\sigma_{q}^{\prime}\left(\operatorname{view}_{q}\left(u^{\prime} \operatorname{ch}(T) y\right)\right)= \begin{cases}B & \text { if } B \cap \Sigma_{q, r}=\emptyset \\ \{\operatorname{ch}(B)\} & \text { if } B \subseteq \Sigma_{q, r}\end{cases}
$$

- $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}\left(u^{\prime} \operatorname{ch}(T) y \operatorname{ch}(B)\right)\right)=\emptyset$.

Observe that in the last case the strategy proposes no move as there are only moves of the environment from a position reached on a play of this form.

Lemma 3.7: If σ is a winning strategy for $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$ then σ^{\prime} is a winning strategy for $\mathcal{A}^{\prime},\left(F_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$.

From σ^{\prime} in \mathcal{A}^{\prime} to σ in \mathcal{A}. From a strategy $\sigma^{\prime}=\left(\sigma_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$ for \mathcal{A}^{\prime} we define a strategy $\sigma=\left(\sigma_{p}\right)_{p \in \mathbb{P}}$ for \mathcal{A}. We assume that σ^{\prime} satisfies Lemma 3.3. We consider u ending in an action
from $\Sigma_{q, r}$ such that $\chi(u)$ is a σ^{\prime}-play. First, for every $p \neq q, r$ and every $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ we set

$$
\sigma_{p}\left(\operatorname{view}_{p}(u y)\right)=\sigma_{p}^{\prime}\left(\operatorname{view}_{p}(\chi(u) y)\right)
$$

If state $_{q}(\chi(u))$ is not final then $\sigma^{\prime}(\chi(u))=\{\operatorname{ch}(T)\}$ for some admissible plan T in state state $_{r}(\chi(u))$. This means that $T=$ $\operatorname{Sync}_{r}^{\rho}(u)$ for some strategy ρ. In this case:

- for every $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$ we set $\sigma_{r}(u x)=\rho_{r}(u x)$;
- for every $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ we consider $X=$ $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}(\chi(u) \operatorname{ch}(T) y)\right)$ and set

$$
\sigma_{q}\left(\operatorname{view}_{q}(u y)\right)= \begin{cases}B & \text { if } X=\{\operatorname{ch}(B)\} \\ X & \text { otherwise }\end{cases}
$$

Lemma 3.8: If σ^{\prime} is a winning strategy for $\mathcal{A}^{\prime},\left(F_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$ then σ is a winning strategy for $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$.

Together the lemmas 3.7 and 3.8 show the correctness of our reduction:

Theorem 3.9: Let r be the chosen leaf process with $\mathbb{P}^{\prime}=$ $\mathbb{P} \backslash\{r\}$ and q its neighbor process. Then the system has a winning strategy for $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$ iff it has one for $\mathcal{A}^{\prime},\left(F_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$. All the components of \mathcal{A}^{\prime} are identical to those of \mathcal{A}, apart that for the process q. The size of q in \mathcal{A}^{\prime} is $\mathcal{O}\left(M_{q} 2^{M_{r} 2^{\left|\Sigma_{q r}\right|}}\right)$, where M_{q} and M_{r} are the sizes of processes q and r in \mathcal{A}, respectively.

Remark 3.10: The bound of the size of the plant \mathcal{A}^{\prime} can be improved to $\mathcal{O}\left(M_{q} 2^{M_{r}\left|\Sigma_{q r}\right|}\right)$ by observing that we can restrict the notion of admissible plans to (partial) functions from S_{r} into $\mathcal{P}\left(\Sigma_{q, r}\right)$. That is, one does not need to consider different sets of communication actions for the same state in S_{r}.

Coming back to the example from Figure 2 of a server with k clients. Applying our reduction k times we reduce out all the clients and obtain the single process plant whose size is $M_{s} 2^{\left(M_{1}+\cdots+M_{k}\right) 2^{c}}$ where M_{s} is the size of the server, M_{i} is the size of client i, and c is the maximal number of communication actions between a client and the server.

Theorem 3.11: The control problem for distributed alphabets whose communication graph is acyclic, is decidable. There is an algorithm for solving the problem whose working time is bounded by a tower of exponentials of height equal to the diameter of the graph.

Our reduction algorithm can be actually used to compute a (finite-state) controller, as shown below.

Corollary 3.12: There is an algorithm which solves the control problem for distributed alphabets whose communication graph is acyclic and if the answer is positive, the algorithm outputs a controller satisfying the following property: For every process p and every state s of the controller \mathcal{A}_{c}, the set of actions allowed for process p in state s is the set of all uncontrollable local actions plus:

- either a unique controllable local actions,
- or a set of controllable actions shared with a unique neighbour q of p.

Fig. 4. Definition of $\chi(u)$

IV. The Lower bound

In this section we show that the complexity of the distributed control problem grows as a tower of exponentials function with respect to the size of the diameter of the communication graph. Before presenting the general construction we illustrate the proof idea on the simplest non-trivial acyclic communication graph, consisting of a line of three processes. We show that the control problem here is EXPTIME-complete.

Proposition 4.1: For fixed distributed alphabet, the control problem for the communication graph $1-2-3$ is EXPTIME-complete.

Proof: The upper bound follows from Theorem 3.9. We apply twice the reduction with process 2 first simulating process 1, then process 3 . This yields a control problem on one process of exponential size (since the action set is fixed). So this amounts just to solve a reachability game, and therefore we get the EXPTIME upper bound.

For the lower bound we simulate an alternating polynomial space Turing machine M on input w. We assume that M has a unique accepting, blocking configuration (say with blank tape, head leftmost). The goal now is to let processes 1,3 guess an accepting computation tree of M on w. The environment will be able to choose a branch in this tree and challenge each proposed configuration. Process 2 will be used to validate tests initiated by the environment. If a test reveals an inconsistency, process 2 blocks and the environment wins. To summarize the idea of the construction, processes 1 and 3 generate sequences of configurations (encoded by local actions), separated by action $\$$ and $\overline{\$}$, respectively, shared with process 2 . Both start with the initial configuration of M on w. Transitions from existential states are chosen by the plant, and those from universal ones by the environment. At a given time, process 1 has generated the same number or one more configuration than process 3. In the first case, the environment can check that it is the same configuration; and in the second, it can check that it is the successor configuration. In this way, 1 and 3 need to generate the same branch of the run tree.

A computation of M with space bound n is a sequence $C_{0} \vdash$ $C_{1} \vdash \cdots \vdash C_{N}$, where each configuration C_{i} is encoded as a word from $\Gamma^{*}(Q \times \Gamma) \Gamma^{*}$ of length n. Since M is alternating, its acceptance is expressed by the existence of a tree of accepting computations.

Processes 1 starts by generating the initial configuration on w, followed by a synchronization symbol $\$$ with process 2 . After this, process 1 generates a sequence of configurations separated by $\$$. When generating a configuration, process 1 remembers M 's state q and the symbol A under the head. All transitions so far are controllable. After generating $\$$ process

1 goes into a state where the outgoing transitions are labeled by M 's transitions on (q, A) (if the configuration was not blocking). These transitions are controllable if q is existential, and uncontrollable if q is universal. The transition chosen, either by the plant or the environment, is stored in the state up to the next synchronization symbol. Finally, if the current configuration is final then process 1 synchronizes with 2 on $\$_{F}$ (instead of $\$$) and goes into an accepting state.

The description is similar for process 3 , with $\bar{\Gamma}, \bar{Q}, \overline{\$}, \overline{\$}_{F}$ instead of $\Gamma, Q, \$, \$_{F}$. Finally, process 2 has two main states, $e q$ and succ, with transitions $e q \xrightarrow{\overline{\$}}$ succ and succ $\stackrel{\$}{\longrightarrow} e q$. From state $e q$ it can go to an accepting state after reading $\bar{\Phi}_{F}$ followed by $\$_{F}$.

Fig. 5. Environment chooses positions i, j in C_{P}, \bar{C}_{P} with $P=2$. System wins iff $\alpha=\beta$ or $i \neq j$.

The environment can initiate 2 kinds of tests: equality and successor test. The equality test checks that $C_{P}=\bar{C}_{P}$ and the successor test checks that $C_{P} \vdash \bar{C}_{P+1}$.

For the equality test, the environment can choose a position i within C_{P} and a position j in \bar{C}_{P}. Formally, for each (controllable) outgoing transition $s \xrightarrow{\alpha}$ of process 1 with $\alpha \in \Gamma \cup(Q \times \Gamma)$ there is a transition $s \xrightarrow{(\downarrow, \alpha)}(\downarrow, i, \alpha)$ with (\downarrow, α) uncontrollable. The target state (\downarrow, i, α) records the tape position i (known from s) and the tape symbol α. In state (\downarrow, i, α) process 1 synchronizes with 2 on action (\downarrow, i, α), and then stops (accepting). The same for process 3 with uncontrollable actions $\overline{(\downarrow, \beta)}$, and synchronization action $\overline{(\downarrow, j, \beta)}$.

From state $e q$ process 2 can perform a synchronization $\overline{(\downarrow, j, \beta)}$ with process 3 and then one with process 1 on any (\downarrow, i, α), provided $i \neq j$ or $\alpha=\beta$, and then accept. This is the case where the environment has chosen positions on both lines 1 and 3 (see Figure 5). If the environment has chosen a test transition in C_{P} but not in \bar{C}_{P} (or vice-versa), process 2 will accept (and stop), too.

The successor test is similar, it consists in choosing a position within C_{P} and one within \bar{C}_{P+1}. The information checked by process 2 includes the symbols $\alpha_{-}, \alpha, \alpha_{+}$of C_{P} at positions $i-1, i, i+1$ resp., so process 1 goes on transition $\overline{(\searrow, \alpha)}$ into a state of the form $\left(i, \alpha, \alpha_{-}, \alpha_{+}\right)$. In state \bar{t}
process 2 can perform a synchronization on ($\searrow, i, \alpha, \alpha_{-}, \alpha_{+}$) with process 1 , and then one with process 3 on $\overline{(\searrow, j, \beta)}$, provided $i \neq j$ or the symbols $\alpha_{-}, \alpha, \alpha_{+}$are inconsistent with the new middle symbol β according to M 's transition relation.

The reader may notice that we need to guarantee that the universal transitions chosen by the environment are the same, for processes 1 and 3 . This can be enforced by communicating the transitions with actions $\$, \overline{\$}$ to process 2 , who is in charge of checking. Moreover, note that the action alphabet above is not constant, in particular it depends on n. This can be fixed by replacing each action of type (\downarrow, i, α) (or alike) by a sequence of synchronization actions where i is transmitted bitwise. By alternating the bits transmitted by 1 and 3 , respectively, process 2 can still compare indices i, j.

Note also that configurations C_{P}, \bar{C}_{P} are generated in parallel, and so are C_{P} and \bar{C}_{P+1}. This is crucial for the correctness, as we show in the lemma below.

Lemma 4.2: The control problem defined in Proposition 4.1 has a winning strategy if and only if M accepts w.

A. Lower bound: general construction

Our main objective now is to show how using a communication architecture of diameter l one can code a counter able to represent numbers of size $\operatorname{Tower}(2, l)$ (with $\operatorname{Tower}(n, l)=$ $2^{\text {Tower }(n, l-1)}$ and $\left.\operatorname{Tower}(n, 1)=n\right)$. Then an easy adaptation of the construction will allow to code computations of Turing machines with the same space bound as the capabilities of counters.

We fix n and will be first interested to define n-counters. Let $\Sigma_{i}=\left\{a_{i}, b_{i}\right\}$ for $i=1, \ldots, n$. We will think of a_{i} as 0 and b_{i} as 1 , mnemonically: 0 is round and 1 is tall. Let $\Sigma_{i}^{\#}=\Sigma_{i} \cup\left\{\#_{i}\right\}$ be the alphabet extended with an end marker.

A 1-counter is just a letter from Σ_{1} followed by $\#_{1}$. The value of a_{1} is 0 , and the one of b_{1} is 1 . Following this intuition we write $(1-c)$ to denote b if $c=a$ and vice versa.

An $(l+1)$-counter is a word

$$
\begin{equation*}
x_{0} u_{0} x_{1} u_{1} \cdots x_{k-1} u_{k-1} \#_{l+1} \tag{1}
\end{equation*}
$$

where $k=\operatorname{Tower}(2, l)$ and for every i, letter $x_{i} \in \Sigma_{l+1}$ and u_{i} is an l-counter with value i. The value of the above $(l+1)$-counter is $\sum_{i=0, \ldots, k} x_{i} 2^{i}$. The end marker $\#_{l+1}$ will be convenient in the construction that follows. An iterated $(l+1)$-counter is a nonempty sequence of $(l+1)$-counters.

For every l we will define a plant \mathcal{C}^{l} such that the winning strategy for the system in \mathcal{C}^{l} will need to produce an iterated l-counter.

The case $l=1$ is easy. Suppose that we have already constructed \mathcal{C}^{l}. We want now to define \mathcal{C}^{l+1}, a plant producing an iterated $(l+1)$-counter, i.e., a sequence of l-counters with values $0,1, \ldots,(\operatorname{Tower}(2, l)-1), 0,1, \ldots$ We assume that the communication graph of \mathcal{C}^{l} has the distinguished root process r_{l}. Process r_{l} is in charge of generating an iterated l-counter. From \mathcal{C}^{l} we will construct two plants \mathcal{D}^{l} and $\overline{\mathcal{D}}^{l}$, over disjoint
sets of processes. The plant \mathcal{D}^{l} is obtained by adding a new root process r_{l+1} that communicates with r_{l}, similarly for the plant $\overline{\mathcal{D}}^{l}$ with root process $\overline{r_{l+1}}$. The plant \mathcal{C}^{l+1} will be the composition of \mathcal{D}^{l} and $\overline{\mathcal{D}}^{l}$ with a new verifier process that we name \mathcal{V}_{l+1}. The root process of the communication graph of \mathcal{C}^{l+1} will be r_{l+1}. The schema of the construction is presented in Figure 6 Process r_{l+1}, as well as $\overline{r_{l+1}}$, are in charge of generating an iterated $(l+1)$-counter. That they behave indeed this way is guaranteed by a construction similar to the one of Proposition 4.1, with the help of the verifier \mathcal{V}_{l+1} : the environment gets a chance of challenging each l-counter of the sequence of r_{l+1} (and similarly for $\overline{r_{l+1}}$). These challenges correspond to two types of tests, equality and successor. If there is an error in one of these sequences then the environment can place a challenge and win. Conversely, if there is no error no challenge of the environment can be successful; this means then that the sequences of l-counters have correct values $0,1, \ldots,(\operatorname{Tower}(2, l)-1), 0,1, \ldots$. The detailed construction can be found in the appendix.

Fig. 6. Architecture of the plant \mathcal{C}^{l+1}

Proposition 4.3: For every l, the system has a winning strategy in \mathcal{C}^{l}. For every such winning strategy σ, if we consider the unique σ-play without questions then its projection on $\bigcup_{i=1, \ldots, l} \Sigma_{i}^{\#}$ is an iterated l-counter.

Theorem 4.4: Let $l>0$. There is an acyclic architecture of diameter $4 l+1$ and with $\left(2^{l+2}-3\right)$ processes such that the space complexity of the control problem for it is $\Omega(\operatorname{Tower}(n, l))$-complete.

Proof: First observe that the plant \mathcal{C}^{l} has $\left(2^{l+1}-3\right)$ processes and diameter $4 l-3$. It is straightforward to make the l-counter count till Tower (n, l) and not to Tower $(2, l)$ as we have done in the above construction. For this it is enough to make the 1 -counter count to n instead of just to 2 .

We will simulate space bounded Turing machines. Take a machine M and a word w of length n. We want to reduce the problem of deciding if w is accepted by M to the problem of deciding if the system has a winning strategy for a plant $\mathcal{C}(M, w)$ of size polynomial in the sizes of M and w.

A $\operatorname{Tower}(n, l)$ size configuration can be encoded by an $(l+1)$-counter. In an iterated $(l+1)$-counter we can encode a sequence of such configurations. The plant $\mathcal{C}(M, w)$ is obtained by a rather straightforward modification of the construction of \mathcal{C}^{l+1}. Instead of ensuring that the value of the first counter is 0 , it needs to ensure that it represents the initial configuration. Instead of ensuring that the two successive counters represent two successive numbers, it needs to
ensure that they represent two successive configurations. Using Proposition 4.3, the problem of deciding if a $\operatorname{Tower}(n, l)$ space bounded Turing machine M accepts w is polynomially reducible to the problem of deciding if the system has a winning strategy in the so obtained $\mathcal{C}(M, w)$. The size of $\mathcal{C}(M, w)$ is exponential in l and polynomial in M, w, n. The game can be constructed in the time proportional to its size.

V. Conclusions

The distributed synthesis problem is a very difficult and at the same time promising problem, since distributed systems are intrinsically complex to construct. Among many possible settings we have looked at the one that is at the same time pure and realistic: we have taken a simple and well established model for concurrent systems and put it into a classical framework of control. We could have done the same in the Church setting but then we would need to talk about logics for trace closed properties. The setting of Ramadge and Wonham allows to avoid this, since parts of the specification are hidden in the plant. In our opinion Zielonka asynchronous automata are at least as interesting as the fully synchronous model of Pnueli and Rosner. Of course, in the long run it would be desirable to consider even richer models, say 1 -safe Petri nets and beyond, but even asynchronous automata are challenging enough at present.

In our model we have insisted that control does not introduce new synchronizations: it does not reduce parallelism of the controlled system. It seems undesirable to have a solution that removes completely parallelism from the system. Even if one accepts to limit parallelism, it is not clear how to measure how much of it is left afterwards.

The choice of transmitting additional information with communication is a consequence of the definitions we have adopted. We think that it is interesting from a practical point of view. It is also interesting theoretically since it allows to avoid simple, and unrealistic, reasons for undecidability.

Our lower bound result is somehow surprising. Since we have perfect information sharing, all the complexity has to be hidden in the uncertainty of what other processes are doing in parallel. The proof shows that even with three processes this uncertainty can be used to encode complex problems.

Of course the general case, the one without restriction to acyclic communication graphs, is an important open problem. A more immediate task is to examine other conditions than reachability. The reduction we have used to obtain decidability is rather delicate and cannot be easily extended to, say, Büchi conditions.

REFERENCES

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial observation. Theor. Comput. Sci., 303(1):7-34, 2003.
[2] A. Arnold and I. Walukiewicz. Nondeterministic controllers of nondeterministic processes. In Logic and Automata, volume 2 of Texts in Logic and Games, pages 29-52. Amsterdam University Press, 2007.
[3] T. Chatain, P. Gastin, and N. Sznajder. Natural specifications yield decidability for distributed synthesis of asynchronous systems. In Proceedings of SOFSEM'09, volume 5404 of LNCS, pages 141-152. Springer, 2009.
[4] A. Church. Logic, arithmetics, and automata. In Proceedings of the International Congress of Mathematicians, pages 23-35, 1962.
[5] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
[6] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proceedings of LICS'05, pages 321-330. IEEE, 2005.
[7] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory are decidable for series-parallel systems. In FSTTCS, volume 3328 of LNCS, pages 275-286. Springer, 2004.
[8] P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for wellconnected architectures. Formal Methods in System Design, 34(3):215237, 2009.
[9] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Optimal Zielonka-type construction of deterministic asynchronous automata. In Proceedings ICALP'10, volume 6199 of LNCS. Springer, 2010.
[10] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through knowledge accumulation. In Proceedings of CAV'11, volume 6806 of LNCS, pages 510-525. Springer, 2011.
[11] R. M. Keller. Parallel program schemata and maximal parallelism I. Fundamental results. Journal of the Association of Computing Machinery, 20(3):514-537, 1973.
[12] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc. 16th IEEE Symp. on Logic in Computer Science, 2001.
[13] P. Madhusudan and P. Thiagarajan. Distributed control and synthesis for local specifications. In ICALP'01, volume 2076 of $L N C S$, pages 396-407. Springer, 2001.
[14] P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of connectedly communicating processes. In Proceedings of FSTTCS'05, volume 3821 of $L N C S$, pages 201-212. Springer, 2005.
[15] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.
[16] M. Mukund and M. A. Sohoni. Keeping Track of the Latest Gossip in a Distributed System. Distributed Computing, 10(3):137-148, 1997.
[17] A. Muscholl, I. Walukiewicz, and M. Zeitoun. A look at the control of asynchronous automata. In Perspectives in Concurrency Theory, IARCSUniversities. Universities Press, 2009.
[18] G. L. Peterson and J. H. Reif. Multi-person alternation. In Proc. IEEE FOCS, pages 348-363, 1979.
[19] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. ACM POPL, pages 179-190, 1989.
[20] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In 31th IEEE Symposium Foundations of Computer Science (FOCS 1990), pages 746-757, 1990.
[21] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of the IEEE, 77(2):81-98, 1989.
[22] S. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-event control systems. IEEE Transactions on Automatic Control, 45(9), 2000.
[23] K. Rudie and W. Wonham. Think globally, act locally: Decentralized supervisory control. IEEE Trans. on Automat. Control, 37(11):16921708, 1992.
[24] A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms using asynchronous automata. In CONCUR, number 2761 in LNCS, pages 27-41, 2003.
[25] T. Yoo and S. Lafortune. A general architecture for decentralized supervisory control of discrete-event systems. Discrete Event Dynamic Systems: Theory and Applications, 12(3):335-377, 2002.
[26] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. Informatique Théorique et Applications, 21:99-135, 1987.

Asynchronous Games over Tree Architectures

Blaise Genest
Hugo Gimbert

Abstract

We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general.

I. Introduction

Constructing as well as verifying distributed systems is often a very demanding task. Distributed synthesis and control aim at providing a systematic way for constructing such systems from specifications. Although the challenge of full synthesis of distributed systems from a given specification is far too ambitious, there is a continuous effort in finding more powerful methods that address this challenge in more realistic settings.

We study in this paper a by now well-established model of distributed computation based on synchronization, namely Zielonka's asynchronous automata. Such an automaton is an asynchronous product of finite automata synchronizing on common actions. This simple yet rich model has solid theoretical foundations rooted in the theory of Mazurkiewicz traces. We consider the control problem for such automata: given a Zielonka automaton, a plant, find another Zielonka automaton, a controller, such that the product of the two satisfies a given specification. We show that this problem is decidable for reachability objectives on tree architectures. We also show that the complexity of this problem is bounded from below by a function that is a tower of exponentials of height proportional to the diameter of the communication graph.

Our problem can be seen as a variation of Church's problem. More than half a century ago, Church asked for an algorithm to construct devices transforming (infinite) sequences of input bits to (infinite) sequence of output bits in a way required by a specification [4]. Later Ramadge and Wonham proposed a different formulation where we are given a plant together with a specification and we are required to construct a controller such that the product of the controller with the plant satisfies the specification [21]. So control means restricting the behavior of the plant and synthesis is the particular case where the plant allows for every possible behavior.

In the setting of Ramadge and Wonham both the plant and the specification are finite automata. Pnueli and Rosner have proposed an extension of Church's setting by considering a set of processes working fully synchronously and exchanging messages through one slot communication channels [19]. The

Anca Muscholl
 Igor Walukiewicz

control version has also been extended to the distributed case by asking to construct several controllers, each with a different partial view of the plant [23], [22], [25], [1], [2]. In the problem we consider here we ask for just one controller, but both the plant and the controller are themselves distributed devices. In Figure 7 we have represented schematically different settings of synthesis and control problems.

Fig. 7. Different formulations of synthesis/control problems

In short our control problem is as follows. We are given a Zielonka automaton over a fixed set of processes with fixed communication structure. Processes have local actions, that can be uncontrollable, as well as actions that are shared with some other process (binary synchronization actions), that are always controllable. Uncontrollable local actions represent inputs from the environment, controllable ones represent outputs of the system. Synchronization actions are used to gather information about the global state of the system. The synchronization actions define a communication graph, where nodes are processes and edges represent pairs of processes that can share some action. For a given set of final states the objective is to find a controller, that is a Zielonka automaton over the same set of processes and actions, such that every execution of the product of the plant and the controller brings eventually each process into a final state.

We show that our control problem is decidable when the communication graph is acyclic. The idea is simple. If the graph is acyclic and not totally disconnected then there is a leaf process r that communicates only with one other process q. We then make q simulate r thus reducing the number of processes. Repeating this argument we reduce the problem to a situation when the communication graph is totally disconnected, and this is easily solvable. Because the reduction uses a powerset construction, we obtain an algorithm whose complexity is a function that is a tower of exponentials of size proportional to the diameter of the graph. We show that this is essentially the best one can do. We prove that already for 3 processes the problem is Exptime-complete. We also give a family of
control problems whose complexity is bounded from below by a tower of exponentials of height proportional to the diameter of the communication graph.

Our decidability result includes for example a client-server architecture where we have one server communicating with clients, and at the same time server and clients have their own interactions with the environment (cf. Figure 8). Our reduction method gives an EXPTIME algorithm solving the control problem for this architecture. Notice that since we have inputs at each process this architecture is very different from decidable architectures in the Pnueli \& Rosner setting. This positive result is possible due to two factors. First, our model is asynchronous: between two successive synchronizations a client and the server can do a different number of actions. The second reason, that is probably even more important, concerns information flow. We explain this below.

Fig. 8. Server/client architecture
The research effort put into Pnueli \& Rosner setting of the distributed synthesis problem justifies the quest for other formulations. By now we understand that suitably using the interplay between specifications and an architecture, one can get undecidability results for most architectures rather easily. Yet the kinds of specifications that lead to undecidability are artificial, like: putting a constraint linking two disconnected parts of the system, or using an output channel to single out one input of unbounded length. Unfortunately, till now we do not know how to eliminate these artificial situations in an elegant way.

One important attempt to get a decidable framework of distributed synthesis is to change the way information is distributed in the system [7], [14]. This is the setting we consider here as well. In the framework of Pnueli and Rosner, every controller sees only its inputs and its outputs. In order to deduce some information about the global state of the system a controller can use only his knowledge about the architecture and the initial state of the system. In particular, controllers are not allowed to exchange additional information during communication. It is clear though that when we allow some transfer of information during communication, we give more power to controllers. Pushing the idea of information exchange to the limit, we obtain a model where two processes involved in a communication share all the information they have about the global state of the system. This point of view is not as unrealistic as it may seem at the first glance. It is rooted in the theory of Mazurkiewicz traces that studies Zielonka asynchronous automata with this kind of information transfer. A fundamental
result of Zielonka [26] (see also [16], [9] for algorithmic improvements) a bound on the size of additional information that needs to be transferred during synchronization. In our terms, the theory of traces considers the case of synthesis for closed systems, i.e., systems without uncontrollable actions. Distributed synthesis with environment brings us to the setting we consider here. Similarly to Zielonka's Theorem, we give a bound on additional information that needs to be transferred. In case of the architecture from Figure 7 with each transfer between a client and the server we will need to add at most polynomially many bits with respect to the state space of the client.

Related work. The setting proposed by Pnueli and Rosner has been thoroughly investigated in past years. Results on multi-player games [18], [19] tell us that synthesis in this framework is undecidable, and [20] shows that synthesis w.r.t. properties expressed in LTL is decidable when the communication graph is a (directed) pipeline, with inputs allowed only at the first node. The paper [12] gives an automata-theoretic approach to solving pipeline architectures and at the same time extends the decidability results to CTL* specifications and variations of the pipeline architecture, like one-way ring architectures. The control setting of Ramadge and Wonham is investigated in [13] for local specifications, meaning that each process has its own, linear-time specification. The control problem for local specifications is decidable for pipelines with inputs at both endpoints. The result of [13] is complete in the sense that it shows that an architecture has a decidable control problem if and only if it is a subarchitecture of a clean pipeline. For instance, the 3 process pipeline with inputs on the first two processes is undecidable. The paper [6] proposes the notion of information fork as a uniform notion describing the existing (un)decidability results on distributed synthesis. The paper [8] goes beyond and considers the notion of well-connected architecture, attempting to characterize decidable external specifications.

The setting considered here has been proposed by Gastin, Lerman and Zeitoun [7]. Their model is action-based, meaning that actions decide if they are enabled or not. Here we prefer the process-based formulation, as it corresponds in a direct way to control in the sense of Ramadge and Wonham. Process-based formulation has been introduced by Madhusudan, Thiagarajan, Yang [14]. In [17] we analyze the relationship between the two versions of distributed control.

Compared with the setting of Pnueli and Rosner, our understanding of distributed synthesis with information exchange between controllers is still quite rudimentary: no undecidable case has been found, so it is possible that the problem is decidable in its full generality. Only two decidability results are known, both very different from our case. The first one [7] is based on a restriction on the alphabet of actions: games with reachability condition are decidable for co-graph alphabets. This restriction is not satisfied as soon as we have local actions for each process, and a process that can communicate with two other ones (a case for which we show here that the
control problem is decidable). The second result [14] obtains decidability of the control problem by restricting the plant: roughly speaking, the restriction requires that if two processes do not synchronize during a fixed amount of time, then they will never synchronize again. The proof of [14] goes beyond the controller synthesis problem, by coding it into monadic second-order theory of event structures and showing that this theory is decidable when the criterion on the plant holds. The restriction on the form of the plant is crucial there since there are many very simple plants with decidable control problem but undecidable MSO-theory of the associated even structure.

Another approach to distributed synthesis is to distribute a centralized controller. This has been already proposed by Clarke and Emerson in their paper introducing CTL. In two recent papers [3], [10] some variants of asynchronous models are considered. In both papers, the setting is such that it is possible to distribute every centralized controller, sometimes by adding new synchronizations. This is impossible in our formulation.

II. BASIC DEFINITIONS AND OBSERVATIONS

Our control problem can be formulated in the same way as the Ramadge and Wonham control problem but using Zielonka automata instead of standard ones. We start by presenting Zielonka automata and an associated notion of concurrency. Then we briefly recall the Ramadge and Wonham formulation and our variant of it. Finally, we give a more convenient game based formulation of the problem.

A. Zielonka automata

Zielonka automata are simple parallel devices. Such an automaton is a parallel composition of several finite automata, denoted as processes, synchronizing on common actions. There is no global clock, so between two synchronizations, two processes can do a different number of actions. Because of this Zielonka automata are also called asynchronous automata.

A distributed action alphabet on a finite set \mathbb{P} of processes is a pair $(\Sigma, d o m)$, where Σ is a finite set of actions and dom : $\Sigma \rightarrow\left(2^{\mathbb{P}} \backslash \emptyset\right)$ is a location function. The location $\operatorname{dom}(a)$ of action $a \in \Sigma$ comprises all processes that need to synchronize in order to perform this action.

A (deterministic) Zielonka automaton $\mathcal{A}=$ $\left\langle\left\{S_{p}\right\}_{p \in \mathbb{P}}, s_{i n},\left\{\delta_{a}\right\}_{a \in \Sigma}\right\rangle$ is given by

- for every process p a finite set S_{p} of (local) states,
- the initial state $s_{i n} \in \prod_{p \in \mathbb{P}} S_{p}$,
- for every action $a \in \Sigma$ a partial transition function δ_{a} : $\prod_{p \in \operatorname{dom}(a)} S_{p} \rightarrow \prod_{p \in \operatorname{dom}(a)} S_{p}$ on tuples of states of processes in $\operatorname{dom}(a)$.
For convenience, we abbreviate a tuple $\left(s_{p}\right)_{p \in P}$ of local states by s_{P}, where $P \subseteq \mathbb{P}$. We also talk about S_{p} as the set of p-states and of $\prod_{p \in \mathbb{P}} S_{p}$ as global states.

A Zielonka automaton can be seen as a sequential automaton with the state set $S=\prod_{p \in \mathbb{P}} S_{p}$ and transitions $s \xrightarrow{a} s^{\prime}$ if $\left(s_{\operatorname{dom}(a)}, s_{d o m(a)}^{\prime}\right) \in \delta_{a}$, and $s_{\mathbb{P} \backslash \operatorname{dom}(a)}=s_{\mathbb{P} \backslash \operatorname{dom}(a)}^{\prime}$. By $L(\mathcal{A})$ we denote the set of words labeling runs of this sequential automaton that start from the initial state.

This definition has an important consequence. The location mapping dom defines in a natural way an independence relation I : two actions $a, b \in \Sigma$ are independent (written as $(a, b) \in I)$ if they involve different processes, that is, if $\operatorname{dom}(a) \cap \operatorname{dom}(b)=\emptyset$. Notice that the order of execution of two independent actions $(a, b) \in I$ in a Zielonka automaton is irrelevant, they can be executed as a, b, or b, a - or even concurrently. More generally, we can consider the congruence \sim_{I} on Σ^{*} generated by I, and observe that whenever $u \sim_{I} v$ and $u \in L(\mathcal{A})$ then $v \in L(\mathcal{A})$, too.

The idea of describing concurrency by an independence relation on actions goes back to the late seventies, to Mazurkiewicz [15] and Keller [11] (see also [5]). An equivalence class $[w]_{I}$ of \sim_{I} is called a Mazurkiewicz trace, it can be also viewed as labeled pomset of a special kind. Here, we will often refer to a trace using just a word w instead of writing $[w]_{I}$. As we have observed $L(\mathcal{A})$ is a sum of such equivalence classes. In other words it is trace-closed.

Example 2.1: Consider the following, very simple, example with processes $1,2,3$. Process 1 has local actions a_{0}, a_{1} and synchronization actions $c_{i, j}(i, j=0,1)$ shared with process 2. Similarly, process 3 has local actions b_{0}, b_{1} and synchronization actions $d_{i, j}(i, j=0,1)$ shared with process 2 . Each process is a finite automaton and the Zielonka automaton is the product to the three components synchronizing on common actions (cf. Figure 9 , where the symbol $*$ denotes both values, 0 and 1 , and i, j, k, l each take both values). We have for

Fig. 9. An example of asynchronous automaton
instance $\left(a_{i}, b_{j}\right) \in I$ and $\left(c_{i, j}, d_{k, l}\right) \notin I$. The final states are the rightmost states of each automaton. The automaton accepts traces of the form $a_{i} b_{j} c_{i, k} d_{j, l}$ with $i=l$ or $j=k$.

Since the notion of a trace can be formulated without a reference to an accepting device, it is natural to ask if the model of Zielonka automata is powerful enough. Zielonka's theorem says that this is indeed the case, hence these automata are a right model for the simple view of concurrency captured by Mazurkiewicz traces.

Theorem 2.2: [26] Let dom : $\Sigma \rightarrow\left(2^{\mathcal{P}} \backslash\{\emptyset\}\right)$ be a distribution of letters. If a language $L \subseteq \Sigma^{*}$ is regular and trace-closed then there is a deterministic Zielonka automaton accepting L (of size exponential in the number of processes
and polynomial in the size of the minimal automaton for L, see (9]).

One could try to use Zielonka's theorem directly to solve a distributed control problem. For example, one can start with the Ramadge and Wonham control problem, solve it, and if a solution happened to respect the required independence, then distribute it. Unfortunately, there is no reason for the solution to respect the independence. Even worse, the following, relatively simple, result says that it is algorithmically impossible to approximate a regular language by a language respecting a given independence relation.

Theorem 2.3: [24] It is not decidable if, given a distributed alphabet and a regular language $L \subseteq \Sigma^{*}$, there is a traceclosed language $K \subseteq L$ such that every letter from Σ appears in some word of K.

The condition on appearance of letters above is not crucial for the above undecidability result. Observe that we need some condition in order to make the problem nontrivial, since by definition the empty language is trace-closed.

B. The control problem

We can now formulate our control problem as a variant of the Ramadge and Wonham formulation. We will then provide an equivalent description of the problem in terms of games. While more complicated to state, this description is easier to work with.

Recall that in Ramadge and Wonham's control problem [21] we are given an alphabet Σ of actions partitioned into system and environment actions: $\Sigma^{s y s} \cup \Sigma^{e n v}=\Sigma$. Given a plant P we are asked to find a controller C such that the product $P \times C$ satisfies a given specification. Here both the plant and the controller are finite deterministic automata over Σ. Additionally, the controller is required not to block environment actions, which in technical terms means that from every state of the controller there should be a transition on every action from $\Sigma^{e n v}$.

The definition of our problem will be the same with the difference that we will take Zielonka automata instead of standard finite automata. Consider a distributed alphabet $\left\langle\mathbb{P}\right.$, dom : $\left.\Sigma \rightarrow\left(2^{\mathbb{P}} \backslash \emptyset\right)\right\rangle$. We impose two simplifying assumptions. The first one is that all actions are at most binary: $|\operatorname{dom}(a)| \leq 2$, for every $a \in \Sigma$. The second requires that all uncontrollable actions are local: $|\operatorname{dom}(a)|=1$, for every $a \in \Sigma^{e n v}$. So the first restriction says that we allow only binary synchronizations. It makes the technical reasoning much simpler. The second restriction reflects the fact that each process is modeled with its own, local environment.

Our control problem can be formulated as follows: Given a distributed alphabet $(\mathbb{P}$, dom $)$ as above and a Zielonka automaton \mathcal{A}_{p}, find a Zielonka automaton \mathcal{A}_{c} over the same alphabet such that $\mathcal{A}_{p} \times \mathcal{A}_{c}$ satisfies a given specification. Additionally the controller is required not to block uncontrollable actions: from every state of \mathcal{A}_{c} every uncontrollable action should be possible.

As in the original formulation, the role of the controller is to restrict the set of possible behaviours of the plant, but it is not allowed to restrict actions of the environment. The important point is that the controller should have the same distributed structure as the environment. The product of the two automata, that is just the standard product, means that plant and controller are totally synchronized, in particular communications between processes happen at the same time. Hence concurrency in the controlled system is the same as in the plant. The major difference between the controlled system and the plant is that the states carry the additional information computed by the controller.

Example 2.4: Reconsider the automaton in Figure 9 and assume that $a_{i}, b_{j} \in \Sigma^{e n v}$ are uncontrollable. So the controller needs to propose controllable actions $c_{i, k}$ and $d_{j, l}$, resp., in such a way that all processes reach their final state. In particular, process 2 should not block. At first sight this may seem impossible to guarantee, as it looks like process 1 needs to know what b_{j} process 3 has received, or process 3 needs to know about the a_{i} received by process 1 . Nevertheless, a winning strategy exists. It consists of choosing $k=i$ and $l=1-j$: if $i=j$ then $k=j$, else $i=l$.

It will be more convenient to work with a game formulation of this problem. Instead of talking about controller we will talk about distributed strategy in a game between system and environment. A plant defines a game arena, with plays corresponding to initial runs of \mathcal{A}. Since \mathcal{A} is deterministic, we can view a play as a word from $L(\mathcal{A})$ - or a trace, since $L(\mathcal{A})$ is trace-closed. Let $\operatorname{Plays}(\mathcal{A})$ denote the set of traces associated with words from $L(\mathcal{A})$.

A strategy for the system will be a collection of individual strategies for each process. The important notion here is the view each process has about the global state of the system. Intuitively this is the part of the current play that the process could see or learn about from other processes during a communication with them. Formally, the p-view of a play u, denoted $\operatorname{view}_{p}(u)$, is the smallest trace $[v]_{I}$ such that $u \sim_{I} v y$ and y contains no action from Σ_{p}. We write $\operatorname{Plays}_{p}(\mathcal{A})$ for the set of plays that are p-views:

$$
\operatorname{Plays}_{p}(\mathcal{A})=\left\{\operatorname{view}_{p}(u) \mid u \in \operatorname{Plays}(\mathcal{A})\right\}
$$

A strategy for a process p is a function $\sigma_{p}: \operatorname{Plays}_{p}(\mathcal{A}) \rightarrow$ $2^{\Sigma_{p}}$, where $\Sigma_{p}=\left\{a \in \Sigma \mid a \in \Sigma^{s y s}, p \in \operatorname{dom}(a)\right\}$. We require in addition, for every $u \in \operatorname{Plays}_{p}(\mathcal{A})$, that $\sigma_{p}(u)$ is a subset of the actions that are possible in the p-state reached on u. A strategy is a family of strategies $\left\{\sigma_{p}\right\}_{p \in \mathbb{P}}$, one for each process.

The set of plays respecting a strategy $\sigma=\left\{\sigma_{p}\right\}_{p \in \mathbb{P}}$, denoted $\operatorname{Plays}(\mathcal{A}, \sigma)$, is the smallest set containing the empty play ε, and such that for every $u \in \operatorname{Plays}(\mathcal{A}, \sigma)$:

1) if $a \in \Sigma^{e n v}$ and $u a \in \operatorname{Plays}(\mathcal{A})$ then $u a$ is in $\operatorname{Plays}(\mathcal{A}, \sigma)$.
2) if $a \in \Sigma^{\text {sys }}$ and $u a \in \operatorname{Plays}(\mathcal{A})$ then $u a \in \operatorname{Plays}(\mathcal{A}, \sigma)$ provided that $a \in \sigma_{p}\left(\operatorname{view}_{p}(u)\right)$ for all $p \in \operatorname{dom}(a)$.

Intuitively, the definition says that actions of the environment are always possible, whereas actions of the system are possible only if they are allowed by the strategies of all involved processes. Notice that in the distributed setting a process by itself cannot impose controllable actions (unless they are local): a controllable, shared action a can be chosen, if proposed by all owners. If some other action b is chosen instead, some owner of a can change his mind, and then a is not eligible anymore.

Before defining winning strategies, we need to introduce infinite plays that are consistent with a given strategy σ. Such plays can be seen as (infinite) traces associated with infinite, initial runs of \mathcal{A} satisfying the two conditions of the definition of $\operatorname{Plays}(\mathcal{A}, \sigma)$. We write Plays $^{\infty}(\mathcal{A}, \sigma)$ for the set of finite or infinite such plays. A play from Plays $^{\infty}(\mathcal{A}, \sigma)$ is also denoted as a σ-play.

A play $u \in$ Plays $^{\infty}(\mathcal{A}, \sigma)$ is called maximal, if there is no action c such that $u c \in \operatorname{Plays}^{\infty}(\mathcal{A}, \sigma)$. In particular u is maximal if $\operatorname{view}_{p}(u)$ is infinite for every process p. Otherwise, if $v i e w_{p}(u)$ is finite then p cannot have enabled local action (either controllable or uncontrollable). Moreover there should be no communication possible between any two processes with finite views in u.

In this paper we consider local reachability winning conditions. For this, every process has a set of target states $F_{p} \subseteq S_{p}$. We assume that states in F_{p} are blocking, that is they have no outgoing transitions. This means that if $\left(s_{d o m(a)}, s_{d o m(a)}^{\prime}\right) \in \delta_{a}$ then $s_{p} \notin F_{p}$ for all $p \in \operatorname{dom}(a)$.

Definition 2.5: The control problem for a plant \mathcal{A} and a local reachability condition $\left(F_{p}\right)_{p \in \mathbb{P}}$ is to determine if there is a strategy $\sigma=\left(\sigma_{p}\right)_{p \in \mathbb{P}}$ such that every maximal trace $u \in$ Plays $^{\infty}(\mathcal{A}, \sigma)$ ends in $\prod_{p \in \mathbb{P}} F_{p}$ (and is thus finite). Such traces and strategies are called winning.

This formulation of the problem is almost equivalent to the formulation with a plant and controller we have given in the beginning of this subsection. It is obvious that a controller defines a strategy. It is also true that a strategy defines a controller, but this controller may be infinite. We will show that for our control problem, if there is a strategy then there is one that can be translated to a finite controller.

As mentioned in the introduction, an interesting aspect of our formulation concerns the information exchanged between processes. In the setting of Pnueli and Rosner each process sees only its input and its output channels. For example, if the specification says that a channel should always contain the same letter then no information can be transmitted over this channel. In other words, the information exchanged can be totally controlled by specification. Once we adopt the Ramadge and Wonham formulation with Zielonka automata, the amount and type of exchanged information is determined by the controller. In our game formulation we use views that amount to maximal possible information a process can have. So in our model after a synchronization the two processes have the same (partial) knowledge about the global state of the system.

We do not know if this control problem is decidable in
general. In this paper we put one restriction on possible communications between processes expressed in terms of communication graph defined below.

Definition 2.6: A distributed alphabet (Σ, dom) with unary and binary actions defines an undirected graph $\mathcal{C G}$ with node set \mathbb{P} and edges $\{p, q\}$ if there exists $a \in \Sigma$ with $\operatorname{dom}(a)=$ $\{p, q\}, p \neq q$. Such a graph is called communication graph.

To sum up: in this paper we consider the Ramadge and Wonham formulation of the control problem but using Zielonka automata instead of standard ones. As specifications we consider reachability properties. We show that this problem is decidable for acyclic communication graphs (Theorem 3.11). We also provide a tight complexity bound (Theorem 4.7).

III. THE UPPER BOUND FOR CONTROL PROBLEM FOR ACYCLIC GRAPHS

Let us fix in this section a distributed alphabet $(\Sigma$, dom $)$. According to Definition 2.6 the alphabet determines a communication graph $\mathcal{C G}$. We assume that $\mathcal{C G}$ is acyclic and has at least one edge. This allows us to choose a leaf $r \in \mathbb{P}$ in $\mathcal{C G}$, with $\{q, r\}$ an edge in $\mathcal{C G}$. Starting from a control problem with input $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$ we define below a control problem over the smaller (acyclic) graph $\mathcal{C} \mathcal{G}^{\prime}=\mathcal{C} \mathcal{G}_{\mathbb{P} \backslash\{r\}}$. The construction will be an exponential-time reduction from the control problem over $\mathcal{C G}$ to a control problem over $\mathcal{C \mathcal { G } ^ { \prime }}$. If we represent $\mathcal{C G}$ as a tree of depth l then applying this construction iteratively we will get an l-fold exponential algorithm to solve the control problem for $\mathcal{C G}$ architecture.
The main idea of the reduction is simple: process q simulates the behavior of process r. The reason why a simulation can work is that after each synchronization between q and r, the views of both processes are identical, and between two such synchronizations r evolves locally. But the construction is more delicate than this simple description suggests, and needs some preliminary considerations about winning strategies.

Some preparatory lemmas: We start with some lemmas showing how to restrict the winning strategies. The first one holds for arbitrary communication graphs, whereas the second one relies on the fact the r is a leaf in $\mathcal{C G}$. For $p, q \in \mathbb{P}$ let $\Sigma_{p, q}=\{a \in \Sigma \mid \operatorname{dom}(a)=\{p, q\}\}$. So $\Sigma_{p, q}$ is the set of synchronization actions between p and q. Moreover $\Sigma_{p, p}$ is just the set of local actions of p. We write $\Sigma_{p}^{l o c}$ instead of $\Sigma_{p, p}$ and $\Sigma_{p}^{c o m}=\Sigma_{p} \backslash \Sigma_{p}^{l o c}$. The first lemma says that a winning strategy can be assumed to propose either a local action, or some communication actions.

Lemma 3.1: If there exists some winning strategy for \mathcal{A}, then there is one, say σ, such that for every process p and every σ-play $u \in \operatorname{Plays}_{p}(\mathcal{A})$ with $X=\sigma_{p}(u)$, we have one of the following: $X=\{a\}$ for some $a \in \Sigma_{p}^{l o c}$ or $X \subseteq \Sigma_{p}^{c o m}$.

Proof: If $\sigma_{p}(u)$ contains some local action, say a, then we can just put $\sigma_{p}^{\prime}(u)=\{a\}$. We show that σ^{\prime} is winning. Suppose that $v \in \operatorname{Plays}\left(\mathcal{A}, \sigma^{\prime}\right)$ is maximal, but not winning. Clearly v is a σ-play but not a maximal one, since σ is winning. Thus, there is $v c \in \operatorname{Plays}(\mathcal{A}, \sigma)$ for some $c \in \Sigma_{p}^{c o m}$.

This means that σ and σ^{\prime} are different on $\operatorname{view}_{p}(v)$, hence by definition of σ^{\prime} it means that $\sigma_{p}\left(v i e w_{p}(v)\right)$ contains some local action a and $\sigma_{p}^{\prime}\left(\operatorname{view}_{p}(v)\right)=\{a\}$. But then $v a$ is a σ^{\prime}-play, a contradiction with the maximality of v.

The following definition captures all the possible evolutions of the leaf process r without communication with its parent process q. For an initial run u of \mathcal{A} we denote by state $_{p}(u)$ the p-state reached by \mathcal{A} on u.

Definition 3.2: Given a strategy σ and a play u, the set of all possible outcomes of a local play on r before its next communication is:

$$
\begin{aligned}
\operatorname{Sync}_{r}^{\sigma}(u)=\left\{\left(s_{r}, A\right) \mid\right. & \exists x \in\left(\Sigma_{r}^{l o c}\right)^{*} . u x \text { is a } \sigma \text {-play, } \\
& \text { state }_{r}(u x)=s_{r} \\
& \left.\sigma_{r}\left(\text { view }_{r}(u x)\right)=A \subseteq \Sigma_{q, r}\right\}
\end{aligned}
$$

Observe that if σ allows r to reach a final state s_{r} from u without communication, then $\left(s_{r}, \emptyset\right) \in \operatorname{Sync}_{r}^{\sigma}(u)$. This is so, since final states are assumed to be blocking.

The lemma below talks about the strategy of process q, the parent of the leaf process r. It says that when the strategy offers communication, then it does so either with r exclusively, or only with other processes.

Lemma 3.3: If there exists some winning strategy for \mathcal{A}, then there is one, say σ, such that for every σ-play $u \in$ Plays $_{q}(\mathcal{A})$ with $X=\sigma_{q}(u)$, we have one of the following: $X=\{a\}$ for some $a \in \Sigma_{q}^{l o c}$, or $X \subseteq \Sigma_{q, r}$ or $X \subseteq \Sigma_{q}^{c o m} \backslash \Sigma_{q, r}$.

Proof: By the previous lemma we can assume that σ_{q} proposes either an action from $\Sigma_{q}^{l o c}$ or a subset of $\Sigma_{q}^{c o m}$. For the same reason we can assume the same for r. Now given a winning strategy σ we will produce a winning strategy σ^{\prime} satisfying the condition of the lemma.

Assume that $u \in \operatorname{Plays}_{q}(\mathcal{A}, \sigma)$ and $\sigma_{q}(u)=B \cup C$, where $B \subseteq \Sigma_{q, r}$ and $C \subseteq \Sigma_{q}^{c o m} \backslash \Sigma_{q, r}$ with both B, C non-empty. We define σ_{q}^{\prime} by cases:

$$
\sigma_{q}^{\prime}(u)= \begin{cases}C & \text { exists }\left(s_{r}, A\right) \in \operatorname{Sync}_{r}^{\sigma}(u) \text { with } A \cap B=\emptyset \\ B & \text { otherwise }\end{cases}
$$

The idea behind the definition above is simple: if there is a possible outcome for r that makes synchronization with q impossible (first case), then q 's strategy can as well propose only communication with other processes than r - since such communication leads to winning as well. If not, q 's strategy can just offer communication with r, since this choice will never block

We show now that σ^{\prime} is winning. Assume by contradiction that v is a maximal σ^{\prime}-play, but not winning. It is then a σ play, but not a maximal one. That is, there is some $a \in \Sigma_{q}^{c o m}$ such that $v a \in \operatorname{Plays}(\mathcal{A}, \sigma)$. In particular, q 's state after v, $\operatorname{state}_{q}(v)$, is not final. Let $\sigma_{q}\left(v i e w_{q}(v)\right)=B \cup C$ with $B \subseteq$ $\Sigma_{q, r}$ and $C \subseteq \Sigma_{q}^{c o m} \backslash \Sigma_{q, r}$. We have two cases.

If $a \in \Sigma_{q, r}$ then $\sigma_{q}^{\prime}(\operatorname{view}(v))=C$ and we are in the first case above. Thus there exists $\left(s_{r}, A\right) \in \operatorname{Sync}_{r}^{\sigma}(v)$ such that $A \cap B=\emptyset$. By definition of $S y n c_{r}^{\sigma}$ we find $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$
such that $v^{\prime}=v x$ is a σ-play and $\sigma_{r}\left(v i e w_{r}\left(v^{\prime}\right)\right)=A$. Since $\operatorname{view}_{q}(v)=\operatorname{view}_{q}\left(v^{\prime}\right)$, we have $\sigma_{q}\left(\operatorname{view}_{q}\left(u^{\prime}\right)\right) \cap A=\emptyset$. This means that no communication of between q and r is possible. Thus u^{\prime} is a maximal σ-play. But it is not winning since q is not in a finial state. Contradiction, since we have supposed that σ is winning.

So let us assume $a \in \Sigma_{q}^{c o m} \backslash \Sigma_{q, r}$. This brings us into the second case above. Since v is a maximal play respecting σ^{\prime}, no local action of r is possible. This means that $\left(\operatorname{state}_{r}(v), \sigma_{r}\left(\operatorname{view}_{r}(v)\right)\right) \in \operatorname{Sync}_{r}^{\sigma}(v)$. But then $\sigma_{r}\left(\operatorname{view}_{r}(v)\right) \cap \sigma_{q}\left(\operatorname{view}_{q}(v)\right) \neq \emptyset$, thus $\sigma_{r}^{\prime}\left(\operatorname{view}_{r}(v)\right) \cap$ $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}(v)\right) \neq \emptyset$. So communication between q and r is possible and v is not maximal w.r.t. σ^{\prime}.

For the game reduction we need to precalculate all possible sets $S_{y n c}^{\sigma}$. These sets will be actually of the special form described below.

Definition 3.4: Let s_{r} be a state of r. We say that $T \subseteq$ $S_{r} \times \mathcal{P}\left(\Sigma_{q r}\right)$ is an admissible plan in s_{r} if there is a play u with state $_{r}(u)=s_{r}$, and a (not necessarily winning) strategy σ such that $T=\operatorname{Sync}_{r}^{\sigma}(u)$, and one of the following holds:

- $A \neq \emptyset$ for every $\left(t_{r}, A\right) \in T$, or
- $t_{r} \in F_{r}$ and $A=\emptyset$ for every $\left(t_{r}, A\right) \in T$.

In the second case T is called a final plan.
It is not difficult to see that we can compute the set of all admissible plans, since this just amounts to solve a reachability game on process r.

Lemma 3.5 below allows to deduce that the sets $S y n c_{r}^{\sigma}$ are admissible plans whenever σ is winning.

Lemma 3.5: If σ is a winning strategy satisfying Lemma 3.3 then for every σ-play u in \mathcal{A} we have:

1) if there is some σ-play $u y$ with $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ and state $_{q}(u y) \in F_{q}$ then $\operatorname{Sync}_{r}^{\sigma}(u)$ is a final plan;
2) if there is some σ-play $u y$ with $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}, \sigma_{q}(u y)=$ $B \subseteq \Sigma_{q, r}$, and $B \neq \emptyset$ then for every $\left(t_{r}, A\right) \in \operatorname{Sync}_{r}^{\sigma}(u)$ we have $B \cap A \neq \emptyset$.
In particular, $\operatorname{Sync}_{r}^{\sigma}(u)$ is always an admissible plan.
Proof: Take y as in the statement of the lemma and suppose $\operatorname{state}_{q}(u y) \in F_{q}$. Take $\left(t_{r}, A\right) \in \operatorname{Sync}_{r}^{\sigma}(u)$. By definition this means that there is $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$ such that $u x$ is a σ-play, $\operatorname{state}_{r}(u x)=t_{r}$, and $\sigma_{r}\left(\right.$ view $\left._{r}(u x)\right)=A$ with $A \subseteq \Sigma_{q, r}$. Observe that $u y x$ is also a σ-play. Hence t_{r} should be final because after $u y x$ process r can do at most communication with q, but this is impossible since q is in a final state. Since t_{r} is final, it cannot propose an action, hence $A=\emptyset$. This shows the first item of the lemma.

For the second item of the lemma take y, B, and $\left(t_{r}, A\right)$ as in the assumption. Once again we get $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$ such that $u x$ is a σ-play, $\operatorname{state}_{r}(u x)=t_{r}$, and $\sigma_{r}\left(v i e w_{r}(u x)\right)=A$ with $A \subseteq \Sigma_{q, r}$. Once again $u y x$ is a σ-play. We have that state $_{q}(u y x)=$ state $_{q}(u y)$ is not final since $B \neq \emptyset$. As σ is winning, play $u y x$ can be extended by an action of q. But the only such action that is possible is a communication between q and r. Since A and B are the communication sets proposed by r and q, respectively, we must have $A \cap B \neq \emptyset$.

The new plant \mathcal{A}^{\prime}. We are now ready to define the reduced plant \mathcal{A}^{\prime} that is the result of eliminating process r. Let $\mathbb{P}^{\prime}=$ $\mathbb{P} \backslash\{r\}$. We have $\mathcal{A}^{\prime}=\left\langle\left\{S_{p}^{\prime}\right\}_{p \in \mathbb{P}^{\prime}}, s_{i n}^{\prime},\left\{\delta_{a}^{\prime}\right\}_{a \in \Sigma^{\prime}}\right\rangle$ where the components will be defined below.

The states of process q in \mathcal{A}^{\prime} are of one of the following types:

$$
\left\langle s_{q}, s_{r}\right\rangle, \quad\left\langle s_{q}, T\right\rangle, \quad\left\langle s_{q}, T, B\right\rangle,
$$

where $s_{q} \in S_{q}, s_{r} \in S_{r}, T \subseteq S_{r} \times \mathcal{P}\left(\Sigma_{q, r}\right)$ is an admissible plan, $B \subseteq \Sigma_{q, r}$. The new initial state for q is $\left\langle\left(s_{i n}\right)_{q},\left(s_{i n}\right)_{r}\right\rangle$.

For every $p \neq q$, we let $S_{p}^{\prime}=S_{p}$ and $F_{p}^{\prime}=F_{p}$. The local winning condition for q becomes
$F_{q}^{\prime}=F_{q} \times F_{r} \cup\left\{\left\langle s_{q}, T\right\rangle \mid s_{q} \in F_{q}\right.$, and T is a final plan $\}$.
The set of actions Σ^{\prime} is $\Sigma \backslash \Sigma_{r}$, plus additional local q-actions that we introduce below. All transitions δ_{a} with $\operatorname{dom}(a) \cap$ $\{q, r\}=\emptyset$ are as in \mathcal{A}. Regarding q we have the following transitions:

1) If not in a final state then process q chooses an admissible plan:

$$
\left\langle s_{q}, s_{r}\right\rangle \xrightarrow{c h(T)}\left\langle s_{q}, T\right\rangle,
$$

where T is an admissible plan in s_{r}, and $\left\langle s_{q}, s_{r}\right\rangle \notin$ $F_{q} \times F_{r}$.
2) Local action of q :

$$
\left\langle s_{q}, T\right\rangle \xrightarrow{a}\left\langle s_{q}^{\prime}, T\right\rangle, \quad \text { if } s_{q} \xrightarrow{a} s_{q}^{\prime} \text { in } \mathcal{A} .
$$

3) Synchronization between q and $p \neq r$:
$\left(\left\langle s_{q}, T\right\rangle, s_{p}\right) \xrightarrow{b}\left(\left\langle s_{q}^{\prime}, T\right\rangle, s_{p}^{\prime}\right), \quad$ if $\left(s_{q}, s_{p}\right) \xrightarrow{b}\left(s_{q}^{\prime}, s_{p}^{\prime}\right)$
4) Synchronization between q and r. Process q declares the communication actions with r :

$$
\left\langle s_{q}, T\right\rangle \xrightarrow{c h(B)}\left\langle s_{q}, T, B\right\rangle, \quad \text { if } B \subseteq \Sigma_{q, r}
$$

when s_{q} is not final, T not a final plan, and for every $\left(t_{r}, A\right) \in T$ we have $A \cap B \neq \emptyset$.
Then the environment can choose the target state of r and a synchronization action $a \in \Sigma_{q, r}$:
$\left\langle s_{q}, T, B\right\rangle \xrightarrow{\left(a, t_{r}\right)}\left\langle s_{q}^{\prime}, s_{r}^{\prime}\right\rangle \quad$ if $\left(s_{q}, t_{r}\right) \xrightarrow{a}\left(s_{q}^{\prime}, s_{r}^{\prime}\right)$ in \mathcal{A}
for every $\left(a, t_{r}\right)$ such that $\left(t_{r}, A\right) \in T$ for some A, and $a \in A \cap B$. Notice that the complicated name of the action $\left(a, t_{r}\right)$ is needed to ensure that the transition is deterministic.
To summarize the new actions of process q in plant \mathcal{A}^{\prime} are:

- $\operatorname{ch}(T) \in \Sigma^{\text {sys }}$, for every admissible plan T,
- $\operatorname{ch}(B) \in \Sigma^{s y s}$, for each $B \subseteq \Sigma_{q, r}$,
- $\left(a, t_{r}\right) \in \Sigma^{e n v}$ for each $a \in \Sigma_{q, r}, t_{r} \in S_{r}$.

Before showing that this construction is correct we will provide a translation from plays in \mathcal{A} to plays in \mathcal{A}^{\prime}. A (finite or infinite) play u in \mathcal{A} is a trace that will be convenient to view as a word of the form

$$
u=y_{0} x_{0} a_{1} \cdots a_{i} y_{i} x_{i} \quad a_{i+1} \cdots
$$

where for $i \in \mathbb{N}$ we have that: $a_{i} \in \Sigma_{q, r}$ is communication between q and $r ; x_{i} \in\left(\Sigma_{r}^{l o c}\right)^{*}$ is a sequence of local actions of r; and $y_{i} \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ is a sequence of actions of other processes than r. Note that x_{i}, y_{i} are concurrent, for each i. We will write $\left.u\right|_{a_{i}}$ for the prefix of u ending in a_{i}. Similarly $\left.u\right|_{y_{i}}$ for the prefix ending with y_{i}; analogously for x_{i}.

With a word u as above we will associate the word

$$
\begin{aligned}
& \chi(u)=\operatorname{ch}\left(T_{0}\right) y_{0} \operatorname{ch}\left(B_{0}\right)\left(a_{1}, t_{r}^{1}\right) \ldots \\
& \quad\left(a_{i}, t_{r}^{i}\right) \operatorname{ch}\left(T_{i}\right) y_{i} \operatorname{ch}\left(B_{i}\right)\left(a_{i+1}, t_{r}^{i+1}\right) \ldots
\end{aligned}
$$

where for every $i=0,1, \ldots$:

- $T_{i}=\operatorname{Sync}_{r}^{\sigma}\left(\left.u\right|_{a_{i}}\right)$ and $T_{0}=\operatorname{Sync}_{r}^{\sigma}(\varepsilon)$;
- $B_{i}=\sigma_{q}\left(\operatorname{view}_{q}\left(\left.u\right|_{y_{i}}\right)\right)$;
- $t_{r}^{i}=$ state $_{r}\left(\left.u\right|_{x_{i}}\right)$.

In Figure 10 we have pictorially represented which parts of u determine which parts of $\chi(u)$.

The next lemma follows directly from the definition of the reduction.

Lemma 3.6: If u ends in a letter from $\Sigma_{q, r}$ then we have the following

- state $_{q}(\chi(u))=\left\langle\right.$ state $_{q}(u)$, state $\left._{r}(u)\right\rangle$.
- $\operatorname{state}_{p}(\chi(u) y)=\operatorname{state}_{p}(u y)$ for every $p \neq q$ and $y \in$ $\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.
- $\operatorname{state}_{q}(\chi(u) \operatorname{ch}(T) y)=\left\langle\operatorname{state}_{q}(u y), T\right\rangle$ for every $y \in$ $\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.
- state $_{q}(\chi(u) \operatorname{ch}(T) y \operatorname{ch}(B))=\left\langle\right.$ state $\left._{q}(u y), T, B\right\rangle$ for every $y \in\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.

From σ in \mathcal{A} to σ^{\prime} in \mathcal{A}^{\prime}. We are now ready to define σ^{\prime} from a winning strategy σ. We assume that σ satisfies the property stated in Lemma 3.3 We will define σ^{\prime} only for certain plays and then show that this is sufficient.

Consider u^{\prime} such that $u^{\prime}=\chi(u)$ for some σ-play u ending in a letter from $\Sigma_{q, r}$. We have:

- If state $_{q}\left(u^{\prime}\right) \notin F_{q}$ then $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}\left(u^{\prime}\right)\right)=\{\operatorname{ch}(T)\}$ where $T=\operatorname{Sync}_{r}^{\sigma}(u)$.
- For every process $p \neq q$ we put $\sigma_{p}^{\prime}\left(\operatorname{view}_{p}\left(u^{\prime} \operatorname{ch}(T) y\right)\right)=$ $\sigma_{p}\left(\right.$ view $\left._{p}(u y)\right)$ for $y \in\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$.
- For $y \in\left(\Sigma \backslash \Sigma_{q, r}\right)^{*}$ and $B=\sigma_{q}\left(\operatorname{view}_{q}(u y)\right)$ we define

$$
\sigma_{q}^{\prime}\left(\operatorname{view}_{q}\left(u^{\prime} \operatorname{ch}(T) y\right)\right)= \begin{cases}B & \text { if } B \cap \Sigma_{q, r}=\emptyset \\ \{\operatorname{ch}(B)\} & \text { if } B \subseteq \Sigma_{q, r}\end{cases}
$$

- $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}\left(u^{\prime} \operatorname{ch}(T) y \operatorname{ch}(B)\right)\right)=\emptyset$.

Observe that in the last case the strategy proposes no move as there are only moves of the environment from a position reached on a play of this form.

The next lemma states the correctness of the construction.
Lemma 3.7: If σ is a winning strategy for $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$ then σ^{\prime} is a winning strategy for $\mathcal{A}^{\prime},\left(F_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$.

Proof: We will show inductively that for every σ^{\prime}-play u^{\prime} ending in a letter of the form $\left(a^{\prime}, t_{r}^{\prime}\right)$ there is a σ-play u such that $u^{\prime}=\chi(u)$. Then we will show that every maximal σ^{\prime}-play is winning.

Fig. 10. Definition of $\chi(u)$

We start with the induction step, later we will explain how to do the induction base. Let us take $u^{\prime}=\chi(u)$ as in the induction hypothesis. By Lemma 3.6 we have $\operatorname{state}_{q}\left(u^{\prime}\right)=$ $\left\langle\right.$ state $_{q}(u)$, state $\left._{r}(u)\right\rangle$.

Consider a possible, σ^{\prime}-compatible, extension of u^{\prime} till the next letter $\left(a, t_{r}\right)$. It is of the form $u^{\prime} \operatorname{ch}(T) y \operatorname{ch}(B)\left(a, t_{r}\right)$ where $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$. We will show that it is of the form $\chi(u y x a)$ for some $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$, and that uyxa is a σ-play.

- By definition of the automaton \mathcal{A}^{\prime} and the strategy σ^{\prime} we have $\sigma^{\prime}\left(u^{\prime}\right)=\{\operatorname{ch}(T)\}$ with $T=\operatorname{Sync}_{r}^{\sigma}(u)$.
- Since σ^{\prime} is the same as σ on actions from $\Sigma \backslash \Sigma_{r}$, we get that $u y$ is a σ-play.
- Concerning $\operatorname{ch}(B)$, by the definition of σ^{\prime} we have that $B=\sigma_{q}\left(\right.$ view $\left._{q}(u y)\right)$. Then by the definition of \mathcal{A}^{\prime} we get some A such that $\left(t_{r}, A\right) \in T$, and $a \in A \cap B$. As $T=\operatorname{Sync}_{r}^{\sigma}(u)$ we can find $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$ such that $u x$ is a σ-play, $\operatorname{state}_{r}(u x)=t_{r}$ and $\sigma_{r}(u x)=A$. We get that $\chi(u y x a)=u^{\prime} \operatorname{ch}(T) y \operatorname{ch}(B)\left(a, t_{r}\right)$, and we are done.
The induction base is exactly the same as the induction step taking u^{\prime} and u to be the empty sequence.

To finish the lemma we need to show that every maximal σ^{\prime}-play is winning. For this we examine all possible situations where such a play can end. We consider plays u^{\prime} and u as at the beginning of the lemma.

If u^{\prime} itself is maximal then $\operatorname{state}_{q}\left(u^{\prime}\right)$ is final because otherwise $\operatorname{ch}(T)$ would be possible. Hence, by Lemma 3.6 $\operatorname{state}_{q}(u)$ and state $_{r}(u)$ are final. Since σ and σ^{\prime} are the same on processes other than q and r, no action a with $\operatorname{dom}(a) \cap\{q, r\}=\emptyset$ is possible from u. It follows that u is a maximal σ-play. Since σ is winning, state $_{p}(u)$ is final for every process p. By Lemma 3.6, u^{\prime} is winning too.

Suppose now that $u^{\prime} \operatorname{ch}(T) y$ is maximal for some $y \in$ $\left(\Sigma \backslash \Sigma_{r}\right)^{*}$. By the same reasoning as above there is no σ play extending $u y$ by an action from $\Sigma \backslash \Sigma_{r}$. We have two cases

- If state $_{q}(u y)$ is final then T is a final plan by Lemma 3.5 . So there is $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$ such that state $_{r}(u y x)$ is final. Then uyx is a maximal σ-play. Since σ is winning, after $u y x$ all processes are in the final state. By Lemma 3.6 , $u^{\prime} \operatorname{ch}(T) y$ is winning too.
- If $\operatorname{state}_{q}(u y)$ is not final then $\sigma(u y) \subseteq \Sigma_{q, r} \neq \emptyset$ since σ is assumed to satisfy Lemma 3.3, and communication with other processes than r is not possible. By Lemma 3.5 T cannot be final and action $\operatorname{ch}(B)$ for $B=\sigma(u y)$ is possible according to σ^{\prime}. A contradiction.
A play of the form $u^{\prime} \operatorname{ch}(T) y \operatorname{ch}(B)$ cannot be maximal since some local actions of the form $\left(a, t_{r}\right)$ are always possible. This covers all the cases and completes the proof.

From σ^{\prime} in \mathcal{A}^{\prime} to σ in \mathcal{A}. From a strategy $\sigma^{\prime}=\left(\sigma_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$ for \mathcal{A}^{\prime} we define a strategy $\sigma=\left(\sigma_{p}\right)_{p \in \mathbb{P}}$ for \mathcal{A}. We assume that σ^{\prime} satisfies Lemma 3.3 We consider u ending in an action from $\Sigma_{q, r}$ such that $\chi(u)$ is a σ^{\prime}-play. First, for every $p \neq q, r$ and every $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ we set

$$
\sigma_{p}\left(\operatorname{view}_{p}(u y)\right)=\sigma_{p}^{\prime}\left(\operatorname{view}_{p}(\chi(u) y)\right)
$$

If $\operatorname{state}_{q}(\chi(u))$ is not final then $\sigma^{\prime}(\chi(u))=\{\operatorname{ch}(T)\}$ for some admissible plan T in state state $_{r}(\chi(u))$. This means that $T=$ $\operatorname{Sync}_{r}^{\rho}(u)$ for some strategy ρ. In this case:

- for every $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$ we set $\sigma_{r}(u x)=\rho_{r}(u x)$;
- for every $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$ we consider $X=$ $\sigma_{q}^{\prime}\left(\operatorname{view}_{q}(\chi(u) \operatorname{ch}(T) y)\right)$ and set

$$
\sigma_{q}\left(\operatorname{view}_{q}(u y)\right)= \begin{cases}B & \text { if } X=\{\operatorname{ch}(B)\} \\ X & \text { otherwise }\end{cases}
$$

Lemma 3.8: If σ^{\prime} is a winning strategy for $\mathcal{A}^{\prime},\left(F_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$ then σ is a winning strategy for $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$.

Proof: Suppose that u is σ-play ending in an action from $\Sigma_{q, r}$ and such that $\chi(u)$ is a σ^{\prime}-play. We first show that for every extension of u to a σ-play $u y x a$ with $y \in\left(\Sigma \backslash \Sigma_{r}\right)^{*}$, $x \in\left(\Sigma_{r}^{l o c}\right)^{*}$, and $a \in \Sigma_{q, r}$, its image $\chi(u y x a)$ is a σ^{\prime}-play. Then we will show that every maximal σ-play is winning.

Take uyxa. By Lemma 3.6 state $_{q}(\chi(u))$ is not final, so we have $\sigma^{\prime}(\chi(u))=\{\operatorname{ch}(T)\}$. Then $T=\operatorname{Sync}_{r}^{\sigma}(u)$ by the definition of σ. Again directly from the definition we have that $\chi(u) \operatorname{ch}(T) y$ is a σ^{\prime}-play. By definition of σ we have then that $\chi(u) \operatorname{ch}(T) y \operatorname{ch}(B)$ is a σ^{\prime}-play for $B=\sigma_{q}\left(\right.$ view $\left._{q}(u y)\right)$. Finally, we need to see why $\left(a, t_{r}\right)$ with $t_{r}=$ state $_{r}(u x)$ is possible. Since $T=\operatorname{Sync}_{r}^{\sigma}(u)$ we get that $\left(t_{r}, \sigma_{r}(u x)\right) \in T$. Then $a \in \sigma_{r}(u x) \cap B$, and in consequence $\chi(u) \operatorname{ch}(T) y \operatorname{ch}(B)\left(a, t_{r}\right)$ is possible by Lemma 3.6 and the definition of \mathcal{A}^{\prime}.

It remains to verify that every maximal σ-play is winning. Consider a maximal σ-play $u y x$ where u ends in an action from $\Sigma_{q, r}, x \in\left(\Sigma_{r}^{l o c}\right)^{*}$, and $y \in\left(\Sigma \backslash \Sigma_{s}\right)^{*}$ (this includes the cases when x, or y are empty). We look at $\chi(u)$ and consider two situations:

- If no $\operatorname{ch}(T)$ is possible from $\chi(u)$ then state $_{q}(\chi(u))$ is finial. This means that x is empty and $\operatorname{state}_{q}(u)$ and $\operatorname{state}_{r}(u)$ are both final. It is then clear that $\chi(u) y$ is a maximal σ^{\prime}-play. Since σ^{\prime} is winning, every process is in a final state. So $u y$ is a winning play in \mathcal{A}.
- If $\chi(u) \operatorname{ch}(T)$ is a σ^{\prime}-play for some T then again we have two cases:
- If $s_{r}=\operatorname{state}_{r}(u y x)$ is final then $\left(s_{r}, \emptyset\right) \in T$ by the definition of σ. As T is an admissible plan, T is final. After $\chi(u) y$ no action other than $\operatorname{ch}(B)$ is possible. But $\operatorname{ch}(B)$ is not possible either since T is final. Hence $\chi(u) y$ is a maximal σ^{\prime}-play. So all the states reached on $\chi(u) y$ are final. By Lemma 3.6 we deduce the same for $u y x$, hence $u y x$ is winning.
- If s_{r} is not final then $\sigma_{r}\left(\operatorname{view}_{r}(u y x)\right)=A \subseteq \Sigma_{q, r}$ for $A \neq \emptyset$. Hence $\left(s_{r}, A\right) \in T$, and T is not final. This means that state $_{q}(\chi(u) \operatorname{ch}(T) y)$ is not final. So it is possible to extend the σ^{\prime}-play with an action of the form $\operatorname{ch}(B)$. But by the definition of \mathcal{A}^{\prime} we have $B \cap A \neq \emptyset$. Hence $u y x$ can be extended by a communication between q and r on a letter from $B \cap A$; a contradiction.

Together the lemmas 3.7 and 3.8 show the correctness of our reduction:

Theorem 3.9: Let r be the chosen leaf process with $\mathbb{P}^{\prime}=$ $\mathbb{P} \backslash\{r\}$ and q its neighbor process. Then the system has a winning strategy for $\mathcal{A},\left(F_{p}\right)_{p \in \mathbb{P}}$ iff it has one for $\mathcal{A}^{\prime},\left(F_{p}^{\prime}\right)_{p \in \mathbb{P}^{\prime}}$. All the components of \mathcal{A}^{\prime} are identical to those of \mathcal{A}, apart that for the process q. The size of q in \mathcal{A}^{\prime} is $\mathcal{O}\left(M_{q} 2^{M_{r} 2^{\left|\Sigma_{q r \mid}\right|}}\right)$, where M_{q} and M_{r} are the sizes of processes q and r in \mathcal{A}, respectively.

Remark 3.10: The bound of the size of the plant \mathcal{A}^{\prime} can be improved to $\mathcal{O}\left(M_{q} 2^{M_{r}\left|\Sigma_{q r}\right|}\right)$ by observing that we can restrict the notion of admissible plans to (partial) functions from S_{r} into $\mathcal{P}\left(\Sigma_{q, r}\right)$. That is, one does not need to consider different sets of communication actions for the same state in S_{r}.

Coming back to the example from Figure 8 of a server with k clients. Applying our reduction k times we reduce out all the clients and obtain the single process plant whose size is $M_{s} 2^{\left(M_{1}+\cdots+M_{k}\right) 2^{c}}$ where M_{s} is the size of the server, M_{i} is the size of client i, and c is the maximal number of communication actions between a client and the server.

Theorem 3.11: The control problem for distributed alphabets whose communication graph is acyclic, is decidable. There is an algorithm for solving the problem whose working time is bounded by a tower of exponentials of height equal to the diameter of the graph.

Deciding the existence of a controller is good, the question now is how to compute such a controller. Our reduction algorithm can be actually used to compute a (finite-state) controller.

Corollary 3.12: There is an algorithm which solves the control problem for distributed alphabets whose communication graph is acyclic and if the answer is positive, the algorithm outputs a controller satisfying the following property: For every process p and every state s of the controller \mathcal{A}_{c}, the set of actions allowed for process p in state s is the set of all uncontrollable local actions plus:

- either a unique controllable local actions,
- or a set of controllable actions shared with a unique neighbour q of p.

Proof: We prove the corollary by induction on the number of processes, the base case is easy.

For the induction step, we consider a plant \mathcal{A} with at least two processes and choose a leaf process r and its parent process q. A controller exists for \mathcal{A} if and only if the system has a distributed winning strategy in the associated game. According to Lemmas 3.7 and 3.8 , this is equivalent to the existence of a winning strategy for the new plant \mathcal{A}^{\prime} obtained by removing process r. By induction, there exists a controller \mathcal{A}_{c}^{\prime} for \mathcal{A}^{\prime} satisfying the condition of the corollary. By inspection of the proof of Lemma 3.8, the controller \mathcal{A}_{c}^{\prime} can be turned into such a controller \mathcal{A}_{c} for plant \mathcal{A}. Moreover, the set of states and transitions of all processes except the leaf process r is the same in \mathcal{A}_{c} and \mathcal{A}_{c}^{\prime}. In \mathcal{A}_{c}, the state space of the controller on the leaf process r is the set of all possible outcomes of a local play on r before its next communication, as given by Definition 3.2.

IV. The lower bound

In this section we show that the complexity of the distributed control problem grows as a tower of exponentials function with respect to the size of the diameter of the communication graph. Before presenting the general construction we illustrate the proof idea on the simplest non-trivial acyclic communication graph, consisting of a line of three processes. We show that the control problem here is EXPTIME-complete.

Proposition 4.1: For fixed distributed alphabet, the control problem for the communication graph $1-2-3$ is EXPTIME-complete.

Proof: The upper bound follows from Theorem 3.9. We apply twice the reduction with process 2 first simulating process 1 , then process 3 . This yields a control problem on one process of exponential size (since the action set is fixed). So this amounts just to solve a reachability game, and therefore we get the Exptime upper bound.

For the lower bound we simulate an alternating polynomial space Turing machine M on input w. We assume that M has a unique accepting, blocking configuration (say with blank tape, head leftmost). The goal now is to let processes 1,3 guess an accepting computation tree of M on w. The environment will be able to choose a branch in this tree and challenge each proposed configuration. Process 2 will be used to validate tests initiated by the environment. If a test reveals an inconsistency, process 2 blocks and the environment wins. To summarize the idea of the construction: processes 1 and 3 generate sequences of configurations (encoded by local actions), separated by action $\$$ and $\overline{\$}$, respectively, shared with process 2 . Both start with the initial configuration of M on w. Transitions from existential states are chosen by the plant, and those from universal ones by the environment. At a given time, process 1 has generated the same number or one more configuration than process 3. In the first case, the environment can check
that it is the same configuration; and in the second, it can check that it is the successor configuration. In this way, 1 and 3 need to generate the same branch of the run tree.

A computation of M with space bound n is a sequence $C_{0} \vdash$ $C_{1} \vdash \cdots \vdash C_{N}$, where each configuration C_{i} is encoded as a word from $\Gamma^{*}(Q \times \Gamma) \Gamma^{*}$ of length n. Since M is alternating, its acceptance is expressed by the existence of a tree of accepting computations.

Processes 1 starts by generating the initial configuration on w, followed by a synchronization symbol $\$$ with process 2 . After this, process 1 generates a sequence of configurations separated by $\$$. When generating a configuration, process 1 remembers M 's state q and the symbol A under the head. All transitions so far are controllable. After generating $\$$ process 1 goes into a state where the outgoing transitions are labeled by M 's transitions on (q, A) (if the configuration was not blocking). These transitions are controllable if q is existential, and uncontrollable if q is universal. The transition chosen, either by the plant or the environment, is stored in the state up to the next synchronization symbol. Finally, if the current configuration is final then process 1 synchronizes with 2 on $\$_{F}$ (instead of $\$$) and goes into an accepting state.

The description is similar for process 3 , with $\bar{\Gamma}, \bar{Q}, \overline{\$}, \overline{\$}_{F}$ instead of $\Gamma, Q, \$, \$_{F}$. Finally, process 2 has two main states, $e q$ and succ, with transitions $e q \xrightarrow{\overline{\$}}$ succ and succ $\xrightarrow{\$} \underline{e q}$. From state $e q$ it can go to an accepting state after reading $\overline{\$}_{F}$ followed by $\$_{F}$.

Fig. 11. Environment chooses positions i, j in C_{P}, \bar{C}_{P} with $P=2$. System wins iff $\alpha=\beta$ or $i \neq j$.

The environment can initiate 2 kinds of tests: equality and successor test. The equality test checks that $C_{P}=\bar{C}_{P}$ and the successor test checks that $C_{P} \vdash \bar{C}_{P+1}$.

For the equality test, the environment can choose a position i within C_{P} and a position j in \bar{C}_{P}. Formally, for each (controllable) outgoing transition $s \xrightarrow{\alpha}$ of process 1 with $\alpha \in \Gamma \cup(Q \times \Gamma)$ there is a transition $s \xrightarrow{(\downarrow, \alpha)}(\downarrow, i, \alpha)$ with (\downarrow, α) uncontrollable. The target state (\downarrow, i, α) records the tape position i (known from s) and the tape symbol α. In state (\downarrow, i, α) process 1 synchronizes with 2 on action (\downarrow, i, α), and then stops (accepting). The same for process 3 with uncontrollable actions $\overline{(\downarrow, \beta)}$, and synchronization action $\overline{(\downarrow, j, \beta)}$.
From state $e q$ process 2 can perform a synchronization $\overline{(\downarrow, j, \beta)}$ with process 3 and then one with process 1 on any (\downarrow, i, α), provided $i \neq j$ or $\alpha=\beta$, and then accept. This is the case where the environment has chosen positions on both lines 1 and 3 (see Figure 11). If the environment has chosen
a test transition in C_{P} but not in \bar{C}_{P} (or vice-versa), process 2 will accept (and stop), too.

The successor test is similar, it consists in choosing a position within C_{P} and one within \bar{C}_{P+1}. The information checked by process 2 includes the symbols $\alpha_{-}, \alpha, \alpha_{+}$of C_{P} at positions $i-1, i, i+1$ resp., so process 1 goes on transition $\overline{(\searrow, \alpha)}$ into a state of the form $\left(i, \alpha, \alpha_{-}, \alpha_{+}\right)$. In state \bar{t} process 2 can perform a synchronization on ($\left.\searrow, i, \alpha, \alpha_{-}, \alpha_{+}\right)$ with process 1 , and then one with process 3 on $\overline{(\searrow, j, \beta)}$, provided $i \neq j$ or the symbols $\alpha_{-}, \alpha, \alpha_{+}$are inconsistent with the new middle symbol β according to M 's transition relation.

The reader may notice that we need to guarantee that the universal transitions chosen by the environment are the same, for processes 1 and 3. This can be enforced by communicating the transitions with actions $\$, \overline{\$}$ to process 2 , who is in charge of checking. Moreover, note that the action alphabet above is not constant, in particular it depends on n. This can be fixed by replacing each action of type (\downarrow, i, α) (or alike) by a sequence of synchronization actions where i is transmitted bitwise. By alternating the bits transmitted by 1 and 3 , respectively, process 2 can still compare indices i, j.

Note also that configurations C_{P}, \bar{C}_{P} are generated in parallel, and so are C_{P} and \bar{C}_{P+1}. This is crucial for the correctness, as we show in the lemma below.

Lemma 4.2: The control problem defined in Proposition 4.1 has a winning strategy if and only if M accepts w.

Proof: We assume that there is a winning strategy in the control game. Let us consider a maximal winning play without tests, where process 1 generates $C_{0} \$ C_{1} \$ \cdots C_{N} \$_{F}$ and process 3 generates $\bar{C}_{0} \overline{\$} \bar{C}_{1} \overline{\$} \cdots \bar{C}_{N^{\prime}} \bar{\Phi}_{F}$. By construction, each of the C_{p} and \bar{C}_{q} are configurations of length $n, C_{0}=\bar{C}_{0}$ is the initial configuration of M on w, and $C_{N}=\bar{C}_{N^{\prime}}$ is the accepting configuration. Suppose by contradiction that C_{0}, \ldots, C_{N} is not a run of M. Assume first that $C_{p}=\bar{C}_{p}$ for all $0 \leq p<P$, but $C_{P-1} \nvdash \bar{C}_{P}$. In this case the environment could have chosen the first position i where \bar{C}_{P} does not correspond to a successor of C_{P-1}, and process 2 would have rejected after the synchronization ($\searrow, i, \alpha, \alpha_{-}, \alpha_{+}$) followed by $\overline{(\searrow, i, \beta)}$, contradicting the fact that the strategy is winning. The second case is where $C_{p}=\bar{C}_{p}$ for all $0 \leq p<P$, but $C_{P} \neq \bar{C}_{P}$. Then the environment could have chosen the first position i where C_{P} and \bar{C}_{P} differ, and process 2 would have rejected after the synchronization $\overline{(\downarrow, i, \beta)}$ followed by (\downarrow, i, α) with $\alpha \neq \beta$, again a contradiction. This means that $C_{0} \vdash C_{1} \vdash \cdots C_{N}$. Moreover, $C_{N}=\bar{C}_{N}$ is final since process 1 is in a final state (thus also $N=N^{\prime}$).

For the converse, we assume that M accepts w. Let the strategy of processes 1 and 3 consist of generating an accepting run tree of M on w. For existential configurations, say that both 1 and 3 choose the first winning transition among all possibilities. Every maximal play without environment test corresponds to an accepting run $C_{0} \vdash C_{1} \vdash$ $\cdots C_{N}$, hence the play reaches a final state on every process. Every maximal play with test is of one of the follow-
ing forms: (1) $C_{0} \bar{C}_{0} \overline{\$} \$ \cdots C_{P-1} \bar{C}_{P-1} \overline{\$} \$ x y$, where x and y are prefixes of $C_{\underline{P}}$ and \bar{C}_{P}, followed by \downarrow-actions, or (2) $C_{0} \bar{C}_{0} \overline{\$} \$ \cdots \bar{C}_{P-1} \overline{\$} x y$, where x is prefix of C_{P-1} and y a prefix of \bar{C}_{P}, followed by $\searrow_{- \text {-actions. In both cases, the envi- }}$ ronment's challenge fails, since $C_{P}=\bar{C}_{P}$ and $C_{P-1} \vdash \bar{C}_{P}$.

A. Lower bound: general construction

Our main objective now is to show how using a communication architecture of diameter l one can code a counter able to represent numbers of size $\operatorname{Tower}(2, l)$ (with $\operatorname{Tower}(n, l)=$ $2^{\text {Tower }(n, l-1)}$ and $\left.\operatorname{Tower}(n, 1)=n\right)$. Then an easy adaptation of the construction will allow to code computations of Turing machines with the same space bound as the capabilities of counters.

We fix n and will be first interested to define n-counters. Let $\Sigma_{i}=\left\{a_{i}, b_{i}\right\}$ for $i=1, \ldots, n$. We will think of a_{i} as 0 and b_{i} as 1 , mnemonically: 0 is round and 1 is tall. Let $\Sigma_{i}^{\#}=\Sigma_{i} \cup\left\{\#_{i}\right\}$ be the alphabet extended with an end marker.

A 1 -counter is just a letter from Σ_{1} followed by $\#_{1}$. The value of a_{1} is 0 , and the one of b_{1} is 1 . Following this intuition we write $(1-c)$ to denote b if $c=a$ and vice versa.

An $(l+1)$-counter is a word

$$
\begin{equation*}
x_{0} u_{0} x_{1} u_{1} \cdots x_{k-1} u_{k-1} \#_{l+1} \tag{2}
\end{equation*}
$$

where $k=\operatorname{Tower}(2, l)$ and for every i, letter $x_{i} \in \Sigma_{l+1}$ and u_{i} is an l-counter with value i. The value of the above $(l+1)$-counter is $\sum_{i=0, \ldots, k} x_{i} 2^{i}$. The end marker $\#_{l+1}$ will be convenient in the construction that follows. An iterated $(l+1)$-counter is a nonempty sequence of $(l+1)$-counters.

For every l we will define a plant \mathcal{C}^{l} such that the winning strategy for the system in \mathcal{C}^{l} will need to produce an iterated l-counter.

For $l=1$ this is very easy, we have only one process in \mathcal{C}^{1} and all transitions are controllable.

This automaton can repeatedly produce a 1 -counter and eventually go to the accepting state. The letter on which it goes to accepting state will be not important, so we put T_{1}. Recall that our acceptance condition is that all processes reach a final state from which no actions are possible.

Suppose that we have already constructed \mathcal{C}^{l}. We want now to define \mathcal{C}^{l+1}, a plant producing an iterated $(l+$ 1)-counter, i.e., a sequence of l-counters with values $0,1, \ldots,(\operatorname{Tower}(2, l)-1), 0,1, \ldots$. We assume that the communication graph of \mathcal{C}^{l} has the distinguished root process r_{l}. Process r_{l} is in charge of generating an iterated l-counter. From \mathcal{C}^{l} we will construct two plants \mathcal{D}^{l} and $\overline{\mathcal{D}}^{l}$, over disjoint sets of processes. The plant \mathcal{D}^{l} is obtained by adding a new root process r_{l+1} that communicates with r_{l}, similarly for the plant $\overline{\mathcal{D}}^{l}$ with root process $\overline{r_{l+1}}$. The plant \mathcal{C}^{l+1} will be the composition of \mathcal{D}^{l} and $\overline{\mathcal{D}}^{l}$ with a new verifier process
that we name \mathcal{V}_{l+1}. The root process of the communication graph of \mathcal{C}^{l+1} will be r_{l+1}. The schema of the construction is presented in Figure 12 Process r_{l+1}, as well as $\overline{r_{l+1}}$, are in charge of generating an iterated $(l+1)$-counter. That they behave indeed this way is guaranteed by a construction similar to the one of Proposition 4.1, with the help of the verifier \mathcal{V}_{l+1} : the environment gets a chance of challenging each l-counter of the sequence of r_{l+1} (and similarly for $\overline{r_{l+1}}$). These challenges correspond to two types of tests, equality and successor. If there is an error in one of these sequences then the environment can place a challenge and win. Conversely, if there is no error no challenge of the environment can be successful; this means then that the sequences of l-counters have correct values $0,1, \ldots,(\operatorname{Tower}(2, l)-1), 0,1, \ldots$.

Fig. 12. Architecture of the plant \mathcal{C}^{l+1}

Construction of \mathcal{D}^{l}. The construction of the automaton of the new root r_{l+1} is presented in Figure 13 .

We start by modifying the automaton for process r_{l}, given by \mathcal{C}^{l}. Actions of r_{l} from $\Sigma_{l}^{\#}$, that were previously local for r_{l}, become shared actions with r_{l+1}. Process r_{l+1} has new local actions $\Sigma_{l+1}^{\#}$ and an action $\$_{l}$, shared with process \mathcal{V}_{l+1}. The action $\$_{l}$ is executed after each l-counter, that is, after each $\#_{l}$.

The automaton for r_{l+1} has two main tasks: it "copies" the sequence of l-counters generated by r_{l} (actually only the projection onto Σ_{l}) and it interacts with \mathcal{V}_{l+1} towards the verification of this sequence. This automaton is composed of three parts that synchronize with r_{l}, forcing it to behave in some specific way. The first part called "zero" enforces that r_{l} starts with an l-counter with value 0 (otherwise r_{l+1} would block). When we read $\#_{l}$ we know that the first l-counter has ended and the control is passed to the second, main part of r_{l+1}.

The main part of r_{l+1} gives a possibility for the environment to enter into a test part. That is, after each transition on $c_{l} \in \Sigma_{l}$ (that is a_{l} or b_{l}) the environment chooses between action skip (that continues the main part) or a test action from $\left\{\left(\downarrow, c_{l}\right),(\searrow\right.$,$\left.\left.c_{l}\right)\right\}$ that leads into the test part. The main part also outputs a local action $\#_{l+1}$ when needed, i.e., whenever the last seen l-counter was maximal. (Technically it means that there has been no a_{l} since the last $\#_{l}$.) The transition on $\#_{l+1}$ gives a possibility to go to the accepting state.

The test part of r_{l+1} simply receives the Σ_{l}-actions of r_{l} and sends them to process \mathcal{V}_{l+1} (cf. loop $a_{l} a_{l}^{0}$ and $b_{l} b_{l}^{0}$). It does so until it receives $\#_{l}$ signaling the end of the counter. Then it sends $\$_{l}$ to process \mathcal{V}_{l+1} to inform it that the counter has finished. After this r_{l+1} enters in a state where it can do

Fig. 13. Automaton for process r_{l+1}

Fig. 14. Process \mathcal{V}_{l+1}.
any controllable action. From this state at any moment it can enter the accepting state on a dummy letter T_{l+1}.
Plant $\overline{\mathcal{D}}^{l}$. This one is constructed in almost the same way as \mathcal{D}^{l}. Most importantly all processes (and actions) in $\overline{\mathcal{D}}^{l}$ are made disjoint from \mathcal{D}^{l}. We will write \bar{a} for the letter of $\overline{\mathcal{D}}^{l}$ corresponding to a in \mathcal{D}^{l}.

The other difference between \mathcal{D}^{l} and $\overline{\mathcal{D}}^{l}$ is that in the latter every transition $\overline{(\searrow, c)}$ is changed into $\overline{(\searrow, 1-c)}$ if since the last $\$_{l}$ there have been only $\overline{l_{l}}$. This is done to accommodate for the carry needed for the successor test. Recall that $(1-c)$ stands for a if c is b and vice versa.
Process \mathcal{V}_{l+1}. This process will have two main states eq and succ, the first one being initial. From $e q$ there is a transition on $\overline{\$}_{l}$ to succ, and from succ there is a transition on $\$_{l}$ back to $e q$. Moreover from eq it is possible to go to the accepting state.

Additionally, from $e q$ there is a transition on $\overline{(\downarrow, c)^{0}}$ to the state (eq, c) for every $c \in \Sigma_{l}$. Similar to the construction of Proposition 4.1. process \mathcal{V}_{l+1} should accept if either the two bits from Σ_{l} challenged by the environment are compatible with the test, or their positions are unequal. So, from state (eq, c) on letter $(\downarrow, 1-c)^{0}$ there is a transition to a state called neqtest; on all other letters there is a transition to a looping state (see also Figure 14. Similarly from succ, but now with
(\searrow, c) letters, and the order of reading from the components reversed.

From state neqtest process \mathcal{V}_{l+1} verifies that the sequence of actions Σ_{l}^{0} initiated by r_{l+1} has not the same length as the sequence over $\bar{\Sigma}_{l}^{0}$ initiated by $\overline{r_{l+1}}$ (up to the moment where $\$_{l}^{0}$ and $\overline{\$}_{l}^{0}$ are executed). This is done simply by interleaving the two sequences of actions a_{l}^{0}, b_{l}^{0}, shared with r_{l+1} and $\overline{r_{l+1}}$, respectively. Notice that the symbols a_{l}^{0}, b_{l}^{0} by themselves are not important, one could as well replace them by a single symbol. If this is the case, then process \mathcal{V}_{l+1} gets to an accepting state, otherwise it rejects. In state loop process \mathcal{V}_{l+1} can perform any controllable action and then enter the accepting state.

Putting together \mathcal{C}^{l+1}. The plant \mathcal{C}^{l+1} is the composition of $\mathcal{D}^{l}, \overline{\mathcal{D}}^{l}$ and the new process \mathcal{V}_{l+1}. The actions of \mathcal{C}^{l+1} are the ones of \mathcal{C}^{l}, plus $X \cup \bar{X}$ where X consists of:

- $\Sigma_{l+1}^{\#} \subseteq \Sigma^{\text {sys }}$ with domain $\left\{r_{l+1}\right\}$,
- $\Sigma_{l}^{\#} \subseteq \Sigma^{s y s}$ with domain $\left\{r_{l}, r_{l+1}\right\}$,
- skip $\in \Sigma^{e n v}$ and $(\downarrow, c),(\searrow, c) \in \Sigma^{e n v}$ with domain $\left\{r_{l+1}\right\}\left(c \in \Sigma_{l}\right)$,
- $c^{0}, \$_{l},(\downarrow, c)^{0}$, and $(\searrow, c)^{0}$, all in $\Sigma^{s y s}$ with domain $\left\{r_{l+1}, \mathcal{V}_{l+1}\right\}\left(c \in \Sigma_{l}\right)$.
The set \bar{X} is defined similarly, by replacing every action c by \bar{c}, and r_{l}, r_{l+1} by $\overline{r_{l}}, \overline{r_{l+1}}$ in the domain of the action.
First we show that the system can indeed win every control instance \mathcal{C}^{l}. Moreover he can win and produce at the same time any iterated l-counter.

Lemma 4.3: For every level l and every iterated l-counter \mathfrak{c} there is a winning strategy σ in \mathcal{C}^{l} such that for every σ-play the projection of this play on $\bigcup_{i=1, \ldots, l} \Sigma_{i}^{\#}$ is \mathfrak{c}.

Proof: The proof is by induction on l. For $l=1$ this is obvious since there are no environment moves and all possible behaviours leading to the accepting state are iterated 1 -counters.
Let us consider level $l+1$. Recall that \mathcal{C}^{l+1} is constructed from $\mathcal{C}^{l}, \overline{\mathcal{C}}^{l}$, and three new processes: $r_{l+1}, \overline{r_{l+1}}, \mathcal{V}_{l+1}$. Fix an iterated $(l+1)$-counter \mathfrak{c}. Observe that the projection of \mathfrak{c} on the alphabet of l-counters, namely $\bigcup_{i=1, \ldots, l} \Sigma_{i}^{\#}$, is an iterated l-counter. By induction we have a winning strategy producing
this counter in \mathcal{C}^{l}. We play this winning strategy in the \mathcal{C}^{l} and $\overline{\mathcal{C}}^{l}$ parts of \mathcal{C}^{l+1}. It remains to say what the new processes should do.

Process r_{l+1} should just produce \mathfrak{c}. By induction assumption we know that the letters this process reads from r_{l} are the projection of \mathfrak{c} on the alphabet of the l-counter; and it is so no matter if there are environment questions in \mathcal{C}^{l} or not. So process r_{l+1} has to just fill in missing Σ_{l+1} letters. If the environment asks no questions to r_{l+1} then at the end of \mathfrak{c}, this process will do $\#_{l+1}$, then \top_{l+1} and enter the accepting state. Analogously for $\overline{r_{l+1}}$. At the same time process \mathcal{V}_{l+1} will be at state $e q$ and it can enter the accepting state, too, since it can count how many $\$_{l}$ symbols he has received.

Let us suppose now that the environment chooses a question action in r_{l+1} or $\overline{r_{l+1}}$. Let i be the index of an l-counter u_{i} within \mathfrak{c} at which the first question is asked. We will consider two cases: (i) the question is asked in $\overline{r_{l+1}}$, (ii) the question is asked in r_{l+1} but not in $\overline{r_{l+1}}$.

If a question is asked in $\overline{r_{l+1}}$ then the play has the following form:

with u, \bar{v} being prefixes of u_{i}; e being a question, and d a synchronization action of r_{l+1} with \mathcal{V}_{l+1}. So d can be a question or $\$_{l}$. Observe that after reading $\overline{\$}_{l} \$_{l}$ process \mathcal{V}_{l+1} is in the state eq. It means that if the sequence $\bar{e} d$ is not $\overline{(\downarrow, c)}(\downarrow, 1-c)$ for some $c \in \Sigma_{l}$ then \mathcal{V}_{l+1} enters state loop. From there it can calculate how many inputs from r_{l+1} and $\overline{r_{l+1}}$ it is going to receive. It receives them and then enters the accepting state. If $\bar{e} d$ is $\overline{(\downarrow, c)}(\downarrow, 1-c)$ then \mathcal{V}_{l+1} enters state neqtest. Since r_{l+1} and $\overline{r_{l+1}}$ output the same iterated counter it must be that the questions are placed in different positions of the two counters. But then \mathcal{V}_{l+1} will receive from the two processes a different number of Σ_{l} letters. Hence it will enter eventually into the accepting state also in this case.

Process $\overline{r_{l+1}}$ after receiving a question moves to a test component where it transmits the remaining part of the l counter to \mathcal{V}_{l+1} followed by $\overline{\$}_{l}$. Then it enters into the loop state of the test copy and can continue to generate \mathfrak{c} since it can do any transition in this state. As for process r_{l+1}, if d is a question, then it does the same thing as $\overline{r_{l+1}}$. If d is $\$_{l}$ then r_{l+1} can continue to produce \mathfrak{c}, and both \mathcal{V}_{l+1} and $\overline{r_{l+1}}$ can simulate their behaviour as if no question has occurred. If the environment asks a question to r_{l+1} at some moment, it too will enter into accepting state and continue to produce \mathfrak{c}.

If the first counter with a question is in r_{l+1} but not in $\overline{r_{l+1}}$ then the play has the form:

where u is a prefix of u_{i}, \bar{v} a prefix of u_{i+1}, d is a question, and \bar{e} a synchronization of $\overline{r_{l+1}}$ with \mathcal{V}_{l+1}. Observe that after reading $\$_{l} \overline{\$_{l}}$ process \mathcal{V}_{l+1} is in state succ. As before our first goal is to show that \mathcal{V}_{l+1} gets to an accepting state. If the sequence $d \bar{e}$ is not $\left(\searrow, c_{l}\right) \overline{\left(\searrow, 1-c_{l}\right)}$ then we reason as in the previous case. Otherwise \mathcal{V}_{l+1} gets to state neqtest. As before we can deduce that the two questions are asked at different positions of the respective counters. Which means that \mathcal{V}_{l+1} will receive a different number of Σ_{l} letters from r_{l+1} and $\overline{r_{l+1}}$ so it will get to state loop. The rest of the argument is exactly the same as in the previous case.

We will show that in order to win in \mathcal{C}^{l} the system has no other choice than to generate an iterated l-counter. Before this we present a general useful lemma:

Lemma 4.4: Consider a plant \mathcal{C} consisting of two plants \mathcal{C}_{1} and \mathcal{C}_{2} over process set \mathbb{P}_{1} and \mathbb{P}_{2}, respectively. We assume that there exist $r_{1} \in \mathbb{P}_{1}$ and $r_{2} \in \mathbb{P}_{2}$ such that each action a in \mathcal{C} is such that either $\operatorname{dom}(a) \subseteq \mathbb{P}_{1}$ or $\operatorname{dom}(a) \subseteq \mathbb{P}_{2}$, or $\operatorname{dom}(a) \subseteq\left\{r_{1}, r_{2}\right\}$. Then every winning strategy in \mathcal{C} gives a winning strategy in \mathcal{C}_{1}.

Proof: Just fix the behaviour of the environment in \mathcal{C}_{2} and play the strategy in \mathcal{C}.

With this at hand we can now prove the main lemma.
Lemma 4.5: If σ is a winning strategy in \mathcal{C}^{l+1} and x is a σ-play with no question then the projection of x on $\bigcup_{i=1, \ldots, l+1} \Sigma_{i}^{\#}$ is an iterated $(l+1)$-counter.

Proof: By the construction of \mathcal{C}^{l+1}, if there is no question during a σ-play, then the play is uniquely determined by the strategy. We will show that this unique play is an iterated $(l+1)$-counter.

By applying Lemma 4.4 twice we obtain from σ a winning strategy in \mathcal{C}^{l}. By induction assumption the projection of x on $\bigcup_{i=1, \ldots, l} \Sigma_{i}^{\#}$ is an iterated l-counter. Thus, between every two consecutive $\$_{l}$ we have a letter from Σ_{l+1}, followed by an l-counter and $\#_{l}$ (as long as we stay in the main part). The same holds for the $\overline{r_{l+1}}$ part. It remains to show that the sequence u_{0}, u_{1}, \ldots of these l-counters represents the values $0,1, \ldots$ modulo Tower $(2, l)$, and the same for the sequence $\overline{u_{0}}, \overline{u_{1}}, \ldots$

Assume that this is not the case and let i be the index where the first error occurs. We will construct a play winning for the environment.

Let us first assume that the value of $\overline{u_{i}}$ is correct but the one of u_{i} is not. Let k be the first position where the error occurs in the u_{i} counter. After the k-th letter of u_{i} is transmitted to r_{l+1} the environment can execute action (\downarrow, c). Similarly, in process $\overline{r_{l+1}}$ after the k-th letter the environment can execute $\overline{(\downarrow, 1-c)}$. Notice that these two questions are concurrent and happen after the letters of the corresponding counters are generated. Process \mathcal{V}_{l+1} goes to neqtest since it receives (\downarrow, c), and $(\downarrow, 1-c)$. On the other levels the environment does not choose test actions. By induction, processes r_{l} and $\overline{r_{l}}$ will continue to generate iterated l-counters, since there are no questions in \mathcal{C}^{l} and $\overline{\mathcal{C}^{l}}$. As the environment has chosen the
same position k in both counters, process \mathcal{V}_{l+1} will receive the same number of letters from r_{l+1} and $\overline{r_{l+1}}$ thus entering into a rejecting state. This contradicts the assumption that the strategy in \mathcal{C}^{l+1} was winning.

The second case is where the value of u_{i} equals i (mod Tower $(2, l)$), but the one of $\overline{u_{i+1}}$ is different from $(i+1)(\bmod$ Tower $(2, l))$. Let k be the position of the first error. In this case the environment can execute actions $\overline{(\searrow, c)}$, and (\searrow, c) or $(\searrow, 1-c)$, depending on whether or not there is some a_{l} before position k in u_{i}. As in the case above, these two questions are concurrent because process \mathcal{V}_{l+1} first synchronizes with $\overline{r_{l+1}}$ and then with r_{l+1}. The same argument as above shows that in this case we could find a play consistent with σ and winning for the environment.

Putting Lemmas 4.3 and 4.5 together we obtain:
Proposition 4.6: For every l, the system has a winning strategy in \mathcal{C}^{l}. For every such winning strategy σ, if we consider the unique σ-play without questions then its projection on $\bigcup_{i=1, \ldots, l} \Sigma_{i}^{\#}$ is an iterated l-counter.

Theorem 4.7: Let $l>0$. There is an acyclic architecture of diameter $2 l+1$ and with $\left(2^{l+3}-3\right)$ processes such that the space complexity of the control problem for it is $\Omega(\operatorname{Tower}(n, l))$-complete.

Proof: First observe that the plant \mathcal{C}^{l} has $\left(2^{l+2}-3\right)$ processes and diameter $2 l-1$. It is straightforward to make the l-counter count till Tower (n, l) and not to Tower $(2, l)$ as we have done in the above construction. For this it is enough to make the 1 -counter count to n instead of just to 2 .

We will simulate space bounded Turing machines. Take a machine M and a word w of length n. We want to reduce the problem of deciding if w is accepted by M to the problem of deciding if the system has a winning strategy for a plant $\mathcal{C}(M, w)$ of size polynomial in the sizes of M and w.

A Tower (n, l) size configuration can be encoded by an $(l+1)$-counter. In an iterated $(l+1)$-counter we can encode a sequence of such configurations. The plant $\mathcal{C}(M, w)$ is obtained by a rather straightforward modification of the construction of \mathcal{C}^{l+1}. Instead of ensuring that the value of the first counter is 0 , it needs to ensure that it represents the initial configuration. Instead of ensuring that the two successive counters represent two successive numbers, it needs to ensure that they represent two successive configurations. Using Proposition 4.6, the problem of deciding if a $\operatorname{Tower}(n, l)$ space bounded Turing machine M accepts w is polynomially reducible to the problem of deciding if the system has a winning strategy in the so obtained $\mathcal{C}(M, w)$. The size of $\mathcal{C}(M, w)$ is exponential in l and polynomial in M, w, n. The game can be constructed in the time proportional to its size.

V. CONCLUSIONS

The distributed synthesis problem is a very difficult and at the same time promising problem, since distributed systems are intrinsically complex to construct. Among many possible settings we have looked at the one that is at the same time
pure and realistic: we have taken a simple and well established model for concurrent systems and put it into a classical framework of control. We could have done the same in the Church setting but then we would need to talk about logics for trace closed properties. The setting of Ramadge and Wonham allows to avoid this, since parts of the specification are hidden in the plant. In our opinion Zielonka asynchronous automata are at least as interesting as the fully synchronous model of Pnueli and Rosner. Of course, in the long run it would be desirable to consider even richer models, say 1 -safe Petri nets and beyond, but even asynchronous automata are challenging enough at present.

In our model we have insisted that control does not introduce new synchronizations: it does not reduce parallelism of the controlled system. It seems undesirable to have a solution that removes completely parallelism from the system. Even if one accepts to limit parallelism, it is not clear how to measure how much of it is left afterwards.

The choice of transmitting additional information with communication is a consequence of the definitions we have adopted. We think that it is interesting from a practical point of view. It is also interesting theoretically since it allows to avoid simple, and unrealistic, reasons for undecidability.

Our lower bound result is somehow surprising. Since we have perfect information sharing, all the complexity has to be hidden in the uncertainty of what other processes are doing in parallel. The proof shows that even with three processes this uncertainty can be used to encode complex problems.

Of course the general case, the one without restriction to acyclic communication graphs, is an important open problem. A more immediate task is to examine other conditions than reachability. The reduction we have used to obtain decidability is rather delicate and cannot be easily extended to, say, Büchi conditions.

REFERENCES

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial observation. Theor. Comput. Sci., 303(1):7-34, 2003.
[2] A. Arnold and I. Walukiewicz. Nondeterministic controllers of nondeterministic processes. In Logic and Automata, volume 2 of Texts in Logic and Games, pages 29-52. Amsterdam University Press, 2007.
[3] T. Chatain, P. Gastin, and N. Sznajder. Natural specifications yield decidability for distributed synthesis of asynchronous systems. In Proceedings of SOFSEM'09, volume 5404 of LNCS, pages 141-152. Springer, 2009.
[4] A. Church. Logic, arithmetics, and automata. In Proceedings of the International Congress of Mathematicians, pages 23-35, 1962.
[5] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
[6] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proceedings of LICS'05, pages 321-330. IEEE, 2005.
[7] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory are decidable for series-parallel systems. In FSTTCS, volume 3328 of LNCS, pages 275-286. Springer, 2004.
[8] P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for wellconnected architectures. Formal Methods in System Design, 34(3):215237, 2009.
[9] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Optimal Zielonka-type construction of deterministic asynchronous automata. In Proceedings ICALP'10, volume 6199 of $L N C S$. Springer, 2010.
[10] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through knowledge accumulation. In Proceedings of CAV'11, volume 6806 of LNCS, pages 510-525. Springer, 2011.
[11] R. M. Keller. Parallel program schemata and maximal parallelism I. Fundamental results. Journal of the Association of Computing Machinery, 20(3):514-537, 1973.
[12] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc. 16th IEEE Symp. on Logic in Computer Science, 2001.
[13] P. Madhusudan and P. Thiagarajan. Distributed control and synthesis for local specifications. In ICALP'01, volume 2076 of $L N C S$, pages 396-407. Springer, 2001.
[14] P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of connectedly communicating processes. In Proceedings of FSTTCS'05, volume 3821 of LNCS, pages 201-212. Springer, 2005.
[15] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.
[16] M. Mukund and M. A. Sohoni. Keeping Track of the Latest Gossip in a Distributed System. Distributed Computing, 10(3):137-148, 1997.
[17] A. Muscholl, I. Walukiewicz, and M. Zeitoun. A look at the control of asynchronous automata. In Perspectives in Concurrency Theory, IARCSUniversities. Universities Press, 2009.
[18] G. L. Peterson and J. H. Reif. Multi-person alternation. In Proc. IEEE FOCS, pages 348-363, 1979.
[19] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. ACM POPL, pages 179-190, 1989.
[20] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In 31th IEEE Symposium Foundations of Computer Science (FOCS 1990), pages 746-757, 1990.
[21] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of the IEEE, 77(2):81-98, 1989.
[22] S. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-event control systems. IEEE Transactions on Automatic Control, 45(9), 2000.
[23] K. Rudie and W. Wonham. Think globally, act locally: Decentralized supervisory control. IEEE Trans. on Automat. Control, 37(11):16921708, 1992.
[24] A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms using asynchronous automata. In CONCUR, number 2761 in LNCS, pages 27-41, 2003.
[25] T. Yoo and S. Lafortune. A general architecture for decentralized supervisory control of discrete-event systems. Discrete Event Dynamic Systems: Theory and Applications, 12(3):335-377, 2002.
[26] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. Informatique Théorique et Applications, 21:99-135, 1987.

