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Abstract Good public-key infrastructures (PKis) are essential to make electronic 
commerce secure. Quite recently, certificate verification trees (CVTs) 

have been introduced as a tool for implementation of large-scale cer

tification authorities (CAs). In most aspects, the CVT approach out

performs previous approaches like X.509 and certificate revocation lists, 

SDSI/SPKI, certificate revocation trees, etc. However, there is a trade
off between manageability for the CA and response time for the user: 

CVT-based certification as initially proposed is synchronous, i.e. cer

tificates are only issued and revoked at the end of a CVT update period 
(typically once a day). Assuming that the user is represented by a 

smart card, we present here solutions that preserve all advantages of 

CVTs while relaxing the aforementioned synchronization requirement. 
If short-validity certificates are used, implicit revocation provided by 

the proposed solutions completely eliminates the need for the signature 

verifier to check any revocation information (CRLs, CRTs, etc.). 

Keywords: Large-scale public key infrastructures, Certification authorities, Certifi

cate verification trees, Smart cards, Implicit revocation. 

1. INTRODUCTION 

The design of efficient large-scale public-key infrastructures (PKis) for 
electronic commerce is a hot topic of research in these days. Two im

portant bottlenecks are certificate revocation (signalled as a bottleneck 

as early as seven years ago, [1]) and the design of manageable large-scale 

certi:ficatien authorities. 
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Most currently proposed CAs assume that digital certificates consist 

of a c-statement (the statement to be cerfified, e.g. an individual's name, 

a public key and an expiration date) along with theCA's signature which 

validates the c-statement. One drawback of such an assumption is that 

the authorization given by the CA's signature may need to be revoked 

at some future time. Several solutions to deal with revocation have been 

proposed: 

• Certificate revocation lists (CRLs) are the standard solution for 

revocation that is being deployed with X.509 certificates. 

• To reduce the huge size of large-scale CRLs, a special kind of 

Merkle trees [5) called certificate revocation trees or CRTs is used 

to store revocation information in [6, 4, 7). 

• Another solution is to assume that no revocation is needed be

cause certificates are good until their expiration date [2, 9). Using 

short-validity certificates is one way to make such an assumption 

realistic [8). 

• In [3), CRLs and CRTs are eliminated as separate data structures 

for revocation information. Actually, both revocation information 

and the certificate directory are stored by the CA in the same 

Merkle tree, called certificate verification tree (CVT). 

The solution based on CVTs is the most scalable one, but it also has 

the drawback of tying certificate issuance and revocation to CVT up

dates. For efficiency reasons, CVT updates are only carried out once in 

a period (e.g. on a daily basis), which means that all certificate requests 

or revocation requests during the period will not be processed before the 

period's end. Assuming that the user is represented by a smart card, we 

describe in this paper solutions that maintain all advantages of CVTs 

while allowing for asynchronous certificate renewal and revocation. If 

short-validity certificates are used, implicit revocation provided by the 

proposed solutions completely eliminates the need for the signature ver

ifier to check any revocation information (CRLs, CRTs, etc.). 

In Section 2, we recall the advantages of CVTs with respect to previ

ous proposals. In Section 3, we describe our proposed solution. Section 4 

analyzes the strong points of our proposal in terms of efficiency and secu

rity. A variant of the basic scheme designed to minimize communication 

is described in Section 5. Conclusions are summarized in Section 6. 
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2. CERTIFICATE VERIFICATION TREES 

In the CVT approach described in [3], the CA constructs a Merkle 

B-tree: each leaf is a c-statement plus the hash of that c-statement (ob

tained using a collision-free hash function). The hash values of siblings 

in the B-tree are hashed together to get a hash value for their parents 

node; this procedure iterates until the root node ofthe B-tree is obtained. 

Then the CA signs the hash value of the root node, called RV, together 

with some additional information such as date and time. The cert-path 

for a c-statement is the path from the leaf containing the c-statement to 

the root, along with the hash values needed to verify that path (which 

include the hash values of siblings of nodes along that path). When a 

user requests a certificate, theCA supplies additionally the cert-path of 

the c-statement, plus the signature on RV. 
As new certificates are issued by the CA, these are incorporated to 

the Merkle B-tree; tree update is performed on a regular basis, e.g. once 

a day. If the B-tree is a 2-3 tree, each certificate update requires only 

O(Iogn) work for the directory, where n is the total number of certifi

cates. For each batch of certificates that is incorporated to the CVT, 

only one signature is computed on RV; the remaining computations are 

hashes, which using Rivest's figure are about 10000 times faster than 
signatures. 

CVTs allow the CA key to be changed following compromise or just as 

a security measure, for example to increase the key length. The CA just 

has to generate a new key pair, broadcast its new public key and sign the 

current RV with the new key. New RV's arising from tree updates will 

be signed with the new private key as well. Note that in previous schemes 

where certificates are signed individually, a CA key change requires to 

revoke all currently valid certificates, issue new certificates and forward 
those to their owners. 

The ability to deal with historical queries is another strong point of 

CVTs. Certificate usage may be ephemeral (e.g. session authentication) 

or persistent (e.g. signature on a real-estate purchase). For persistent 

usage a requirement of non-repudiation appears: the user should be able 

to prove in some years from now that her public key was valid when us

ing the certificate (e.g. when signing the purchase order). For historical 

queries to be possible with CVTs, the CA should store the roots of the 
CVTs (one root per update period). For any contract needing persistent 

certificates, the cert-paths of the necessary c-statements should be stored 
with the contract, along with the signature on RV. In case of CA key 

change, all stored root values should be signed with the new key. Note 

that, in previous schemes with individually signed certificates, allowing 
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historical queries for persistent certificates requires the CA to store all 

certificates ever issued, along with complete CRLs for every update pe

riod; also a CA key change implies resigning all ever issued certificates 

and old CRLs! 

Proving certificate non-existence is also an important feature of CVTs. 

CRLs and CRTs do not provide evidence of the existence of non-revoked 

certificates. A CVT can comfortably store all certificates ever issued 

by a CA: using a CVT of height 30 (which yields cert-paths of length 

30) is enough to store more than 109 certificates {which is more than 

the existing number of VISA credit cards). Thus, certificate forgery is 

difficult to hide. 

Last but not least, CVTs give the possibility of verifier caching for 

efficiency. Verifiers checking many signatures every day (like vendors or 

routers using certificates for session authentication) may reduce commu

nication with the CVT directory and computation by caching the top 

part of the CVT. This top part together with theCA signature on RV 

need only be retrieved and verified once per update period (e.g. once 

a day). Further, if a CVT has depth d and the top d1 levels of it are 

cached, a signature verification will only require d - d1 hashes. 

3. CVT-BASED ASYNCHRONOUS 

CERTIFICATION 

As mentioned in the introduction, the weak point of CVTs as used 

in [3] is that certificate issuance and revocation are synchronous: they 

are performed only at the start of each CVT update period. With daily 

updates at midnight, this means that a certificate request placed at 1:00 

AM would have to wait 23 hours before being serviced. The same holds 

true for a revocation request. When comparing with the traditional 

solution of individually signed certificates, it becomes apparent that the 

improved manageability of the certificate directory described in Section 2 

is darkened by delay in reacting to issuance and revocation requests. 

We present in this section a CVT-based scheme whereby batches of 

certificates can be requested ahead of time without the user having to 

store the corresponding private keys (which would increase the chances of 

key compromise). In practice, this allows the user to use a new certificate 

as soon as the current one has expired, which is functionally equivalent 

to asynchronous certification -no synchronization with CVT updates is 

needed-. When mentioning short-validity certificates in what follows, 

it will be assumed that such certificates do not survive more than one 

CVT update period; if necessary, adjust the validity of the last certificate 

in a CVT period for its expiration to occur at the end of the period. As 
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an example, if the CVT is updated once a day, then a one-hour validity 

would be appropriate for a short-validity certificate. It is assumed that 

the signer is represented by a smart card SC or another tamper-resistant 

device. The scheme can be described by three protocols: set-up, signa

ture and implicit revocation upon loss of signer's smart card. In the 

description of those protocols, we distinguish communication between 

SC and theCA from communication between SC and the CVT direc

tory (for certificate download). 

In the set-up stage, a batch of public-private key pairs is computed 

ahead by the signer and stored by theCA in the CVT. Key pairs are 

assumed to be valid in consecutive future time intervals, i.e. if the first 

key pair in the batch is valid in time interval t, then the i-th key pair is 

constructed to be valid during the t + i- 1-th time interval. The aim 

of the solution proposed here is to make intervals of certificate validity 

completely independent from CVT update periods. Let m be the number 

of key pairs in the batch {m can be arbitrarily large). 

Proto coil (Set-up) 

1 The signer's smart card SC generates a key k for a symmetric 

block cipher (e.g. DES, AES). 

2 For i = 1 to m: 

(a) SC generates a public-private key pair (pki, ski)· 

{b) SC encrypts ski under k to get Ek(ski)· 

(c) SC sends {pki,Ek(ski)) to the CA. 

{d) SC deletes and from its memory. 

3 CA stores the encrypted private keys Ek(ski) received from SC. 

4 In the next update of the general CVT, CA adds all received pki 's 
to the CVT. 

We assume that Protocol 1 is run frequently enough so that one never 

runs out of key pairs for the next time intervals; the larger m, the less 

frequently the protocol needs to be run. Under this assumption, the 

signer can use the following protocol to sign at a time interval t for 
which a valid public key exists in the CVT: 
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Protocol 2 (Signature at time interval t) 

1 If the user's smart card SC stores a private key skt valid for time 
interval t, then SC does: 

(a) If the certificate for pkt is not a short-validity one and this is 

the first signature computed during the current CVT update 

period, get from the CVT directory the current cert-path for 
the pkt certificate. The cert-path may have changed as a result 

of the CVT update. {Short-validity certificates are not sup

posed to survive more than one CVT update period, so there 

is no need to refresh cert-paths for them). 

{b) Sign using skt (which involves appending the certificate and 
the cert-path of pkt to the signature). 

2 Otherwise SC does: 

{a} Delete from its memory the last private key skj stored, if any. 

{b) Get Ek(skt) from the CA. 

{c) Get the certificate and the cert-path of pkt from the CVT di
rectory. 

{d) Decrypt Ek(skt) to get skt. 

{e) Sign using skt. 

Under the above scheme, SC stores no private key except the current 

one, but can use a new certificate as soon as the current one has expired 

(provided that the new one was requested ahead in the past). If the SC 
is stolen or lost, the following revocation protocol is invoked by the user: 

Protocol 3 (Implicit revocation) 

1 The user informs the CA on the loss of SC. 

2 The CA stops serving encrypted private keys Ek(ski) to SC. 

Note that, if Protocol 3 is run at time interval t, it implicitly revokes 

all certificates in the CVT which were requested by SC for time inter
vals t' > t. The reason is that the CA will not provide Ek(skt') for the 
SC to sign at time interval t'. The current certificate is not revoked 
by Protocol 3. To eliminate the need for explicit revocation of the cur

rent certificate, short-validity certificates can be used. In this way, an 
intruder will have little time to tamper with SC in order to have it sign 
under the private key SC is currently storing. 
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4. PERFORMANCE ANALYSIS 

The advantages of the proposed asynchronous CVT-based scheme are 
outlined in what follows. Note that the scheme maintains all of the 

advantages of CVTs listed in Section 2. 

4.1. EFFICIENCY 

The following are strong points regarding efficiency: 

• Asynchronous certification. Requesting certificates from the CA 

ahead of time allows the SC to use a new certificate as soon as the 
current certificate expires. From a functional point of view, this is 

equivalent to asynchronous certification. 

• Reduced storage. The user can request a batch of certificates, but 

her smart card only needs to store the current key pair and the 
key of a symmetric block cipher. 

• Implicit revocation. As mentioned above, in the event of smart 
card loss or compromise, Protocol 3 provides implicit revocation 

for all certificates requested by that smart card for time intervals 
following the current one. Explicit revocation of the current cer

tificate can be made unnecessary if short-validity certificates are 
used. Further, note that implicit revocation does not require a 

CVT update (unlike the explicit revocation used in [3]). 

4.1.1 Implicit vs explicit revocation. As pointed out in 

the previous paragraph, implicit revocation combined with short-validity 
certificates can completely eliminate the need to keep explicit revocation 

information; no CRLs, CRTs or CVT updates are needed. 

Implicit revocation is safer for the signer and especially convenient 
for the verifier. Under the traditional paradigm, explicit revocation is 

used, which is implemented by labelling the certificate of a public key as 
revoked. As pointed out in [8], explicit revocation is consistent with the 

traditional certificate guarantee that "this certificate is good until the 

expiration date, unless, of course, you hear that it has been revoked". 

Thus, explicit revocation forces the CA to distribute CRLs or update 
CVTs and, even worse, it also forces the signature verifier to check those 
CRLs or CVTs before accepting a signature. If a certificate is to be re
voked before starting its validity interval, implicit revocation is a much 
better alternative which prevents the private key corresponding to a re
voked certificate from ever being used to sign; in this way, the need for 
verifiers to check revocation information is reduced. 
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4.1.2 Communication requirements. A seemingly weak 

point of Protocol 2 is that communication between SC and the CA is 

required each time a certificate expires. However, this holds for compet

ing approaches as well. Indeed, both for individually signed certificates 
and for the CVT solution [3], the user requests a new certificate from 
theCA when the current one is about to expire. Requesting in advance 

a batch of certificates in those approaches is not practical because it 

would force the user to find secure storage for the whole corresponding 
batch of private keys. 

On the other hand, if the amount and frequency of CA-user commu

nication required by short-validity certificates is deemed too high to be 

affordable, then one can resort to longer-lived certificates. In that case, 
explicit revocation of the current certificate is a sensible option: it can 

be either based on CRLs or on a CVT update (the leaf containing the 

current certificate is labelled as "revoked"). CVT updates do not require 
separate revocation information (such as CRLs) to be maintained, but 

they have the drawback that revocation will not become effective before 

the next update period. 

4.2. SECURITY 

If the user's smart card SC is lost or stolen and Protocol 3 is run by 

the user at time interval t, there is a guarantee for the user that SC 
will become useless from time interval t + 1 onwards. Regarding time 
interval t, the following situations are possible: 

• At the moment of being lost/stolen, SC has not yet downloaded 

skt (because no signature has been performed since time interval t 
started). In this case, SC may contain ski for some j < t but this 
private key has expired. No further action by theCA is required, 

since SC is useless to the intruder. 

• SC has already downloaded skt, but the corresponding certificate 

is a short-validity one (e.g. a one-day certificate). In this case, it 

is unlikely that the intruder can hack SC to sign with skt before 

certificate expiration. Thus, probably no further action needs to 
be taken by the CA. 

• SC has already downloaded skt and the corresponding certificate is 

a long-lived one. In this case, the CA should use explicit revocation 
(CRLs or CVT update) to revoke the certificate corresponding to 

skt. 

In any of the above cases, it can be seen that SC contains only one 
private key (the one that was most recently used); therefore, compromise 
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of the SC does not jeopardize past key pairs. The other key contained 

by SC is the key k used to encrypt private keys in the current batch. 

Tampering with SC to get k is useless, because Protocol 3 ensures that 

no encrypted private keys will be served by the CA in the future. 

The use of a secret sharing scheme can help increasing dependability 

and reducing the trust requirements of the scheme proposed in this pa

per. For example, assume an n1-out-of-n2 threshold scheme [10] is used 

in Protocols 1 and 2 as follows: 

• In Protocol 1, the user's smart card computes n2 shares of Ek(ski) 

using the threshold scheme. Then each share is sent to a different 

CA. 

• In Protocol 2, the user's smart card polls all n2 CAs to recover 

Ek(skt)i getting the shares of n1 n2 CAs is enough for recovery 

to succeed. 

The increase in communication and computation caused by the secret 

sharing scheme may be justified by the following benefits: 

Dependability Up to n2 - nt CAs polled in Protocol 2 may be un

reachable and the encrypted private key can still be recovered. If 

a single CA is used as described in Section 3, then unreachability 

of the CA causes Protocol 2 to fail (the new private key cannot be 

obtained). 

Increased security Secret sharing schemes (and more specifically thresh

old schemes) exist which offer unconditional security that a col

lusion of less than nt CAs have no chances at all of recover

ing Ek(ski)· This adds to the computational security offered by 

the symmetric block cipher that ski cannot be recovered from 

Ek(ski) without knowledge of k. Remark that symmetric encryp

tion cannot be eliminated unless we assume that collusions of nt 

or more CAs will not happen (if the shared secret was instead 

of Ek(ski), a collusion of n1 CAs could recover the user's private 

key). 

5. A VARIANT FOR REDUCED 

COMMUNICATION 

Smart cards are equipped with low-bandwidth I/0 interfaces, so re

ducing communication in on-line transactions may be an important goal. 

As pointed out in Paragraph 4.1.2, explicit revocation of the current 

certificate may be a solution if the amount of communication needed 

to use short-validity certificates is too high. Explicit revocation allows 
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longer-lived certificates to be used, which require less frequent communi
cation. However, the communication cost is transferred from the signer 
to the verifier, who will be forced to check revocation information (CRLs, 
CRTs, etc.) before accepting a signature. 

Rather than trying to reduce the frequency of communication, an 
alternative strategy that does not transfer any cost to the verifier is 
to use short-validity certificates, while minimizing the size of messages 
exchanged between the GA and SC. This is possible by modifying Pro
tocols 1, 2 and 3 as follows: 

Protocol 4 (Set-up) 

1 For i = 1 to m: 

{a) SC generates a key ki for a symmetric block cipher. 

(b) SC generates a public-private key pair (pki, ski). 

{c) SC encrypts ski under ki to get Ek; (ski)· 

{d) SC sends (ki,Pki) to the GA. 

(e) SC stores Ek;(ski)· 

{f) SC deletes pki, ski and ki from its memory. 

2 GA stores the keys ki received from SC. 

3 In the next update of the general GVT, GA adds all received pki 's 
to the GVT. 

Protocol 5 (Signature at time interval t) 

1 If the user's smart card SC stores a private key skt valid for time 
interval t, then SC signs using skt. 

2 Otherwise SC does: 

{a) Delete from its memory the last private key skj stored, if any. 

(b) Get kt from the GA. 

{c) Get the {short-validity) certificate and the cert-path of pkt 
from the GVT directory. 

{d) Decrypt Ekt(skt) to get skt. 

(e) Sign using skt. 



Protocol 6 {Implicit revocation) 

1 The user informs the CA on the loss of SC. 

2 The CA stops serving keys kt to SC. 
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In Protocol 5, the communication between the CA and SC is reduced 
to the CA sending a symmetric block cipher key (typically 128 bits) 

each time a new certificate is to be used. In the basic proposal (Pro
tocol 2), an encrypted private key was sent, which could take a few 
kilobits. Similarly, in Protocol 4 less bits are sent from SC to CA than 
in Protocol 1. However, unlike in the latter protocol, the size m of the 
batch of encrypted private keys that can be generated ahead in a single 

execution of Protocol 4 is limited by the amount of available storage in 
SC. The more storage, the larger m can be and the less frequently is 
set-up execution needed. 

6. CONCLUSION 

Certificate verification trees are a very convenient data structure for 
managing large-scale public key directories. As initially proposed, their 
only major drawback is that certificate issuance and revocation must be 
synchronized with the start of a CVT update period. To sort out this 
problem, we have proposed a scheme where certificates can be requested 
by the user and added ahead of time to the CVT without decreasing 
security; no one but the user's smart card device knows private keys, 
but only one private key must be safely stored by the user's smart card 

at a time. Upon expiration of the current certificate, the new one can 
be obtained from the CVT; this renewal is asynchronous in that it does 
not depend on the CVT update periods (provided that enough certifi

cates have been added in advance to the CVT). In the event of loss or 
compromise of the user's smart card, all certificates in the CVT linked 
to that card (except the current one) are implicitly revoked because the 
CA will not supply the encrypted private keys corresponding to those 
certificates. 
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