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Abstract

We consider the problem of asynchronous online testing, aimed at providing control of the false discovery rate

(FDR) during a continual stream of data collection and testing, where each test may be a sequential test that

can start and stop at arbitrary times. This setting increasingly characterizes real-world applications in science

and industry, where teams of researchers across large organizations may conduct tests of hypotheses in a

decentralized manner. The overlap in time and space also tends to induce dependencies among test statistics,

a challenge for classical methodology, which either assumes (overly optimistically) independence or (overly

pessimistically) arbitrary dependence between test statistics. We present a general framework that addresses

both of these issues via a unified computational abstraction that we refer to as “conflict sets.” We show how

this framework yields algorithms with formal FDR guarantees under a more intermediate, local notion of

dependence. We illustrate our algorithms in simulations by comparing to existing algorithms for online FDR

control.

Keywords: FDR control, false discovery rate, sequential hypothesis testing, sequential experimentation,

p-values

1. Introduction

As applications of machine learning expand in scope beyond the classical setting of a single decision-maker

and a single dataset, the decision-making side of the field has become increasingly important. Unfortunately,

research on the decision-making side of the field has lagged relative to the pattern-recognition side, often

focusing only on the validity of single decisions. Arguably, however, deployed machine learning models

witness large collections of decisions, typically occurring in an extended asynchronous stream. In such

settings, it is essential to consider error rates over sets of decisions, and not merely over single decisions.

Although it is not a focus of research in machine learning, multiple decision-making has been promi-

nent during the past two decades in statistics, in the wake of seminal research by Benjamini and Hochberg

(1995) on false discovery rate (FDR) control in multiple testing. That literature has, however, principally

focused on batch data analysis and relatively small-scale problems. Modern applications in domains such as

medicine, commerce, finance, and transportation are increasingly of planetary scale, with statistical analy-

sis and decision-making tools being used to evaluate hundreds or thousands of related hypotheses in small

windows of time (see, e.g., Tang et al., 2010; Xu et al., 2015). These testing processes are often sequential,

c©2021 Tijana Zrnic, Aaditya Ramdas, and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at

http://jmlr.org/papers/v22/19-910.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-910.html


ZRNIC, RAMDAS, AND JORDAN

conducted in the context of a continuing stream of data analysis. The sequentiality is at two levels—each

individual test is often a sequential procedure, terminating at a random time when a stopping criterion is

satisfied, and also the overall set of tests is carried out sequentially, with possible overlap in time. In this

setting—which we refer to as asynchronous online testing—the goal is to control a criterion such as the FDR

not merely at the end of a batch of tests, but at any moment in time, and to do so while recognizing that the

decision for a given test must generally be made while other tests are ongoing.

A recent literature on “online FDR control” has responded to one aspect of this problem, namely the

problem of providing FDR control during a sequence of tests, and not merely at the end, by adaptively setting

the test levels for the tests (Foster and Stine, 2008; Javanmard and Montanari, 2018; Ramdas et al., 2017,

2018). These methods are synchronous, meaning that each test can only start when the previous test has

finished. Our goal is to consider the more realistic setting in which each test is itself a sequential process

and where tests can overlap in time. This is done in real applications to gain time efficiency, and because

of the difficulties of coordination in a large-scale, decentralized setting. To illustrate this point, Figure 1

compares the testing of five hypotheses within an asychronous setting and a synchronous setting. In the

asynchronous setting, the test level αt used to test hypothesis Ht is allowed to depend only on the outcomes

of the previously completed tests—for example, α3 can depend on the outcome of H1, however not on the

outcome of H2. In the synchronous setting, on the other hand, the test level αt can depend on all previously

started (hence also completed) tests. To account for the uncertainty about the tests in progress, the test levels

assigned by asynchronous online procedures must be more conservative. Thus, there is a tradeoff—although

asynchronous procedures take less time to perform a given number of tests they are necessarily less powerful

than their synchronous counterparts. The management of this tradeoff involves consideration of the overall

power achieved per unit of real time, and consideration of the complexity of the coordination required in the

synchronous setting.

Another limitation of existing work on online multiple testing is that the dependence assumptions on the

tested sequence of test statistics, under which the formal false discovery rate guarantees hold, are usually at

one of two extremes—they are either assumed to be independent, or arbitrarily dependent. From a practical

perspective, independence seems overly optimistic as new tests may use previously collected data to formulate

hypotheses, or to form a prior, or as evidence while testing. On the other hand, arbitrary dependence is likely

too pessimistic, as older data and test outcomes with time become “stale,” and no longer have direct influence

on newly created tests. We see that a reconsideration of dependence is natural in the setting of online FDR

control, and is particularly natural in the asynchronous setting, given that tests that are being conducted

concurrently are often likely to be dependent, since they may use the same or highly correlated data during

their overlap.

We therefore define and study a notion of local dependence, and place it within the context of asyn-

chronous multiple testing. Working with p-values for simplicity, and letting Pt denote the t-th tested p-value,

we say that a sequence of p-values {Pt} satisfies local dependence if the following condition holds:

for all t > 0, there exists Lt ∈ N such that Pt ⊥ Pt−Lt−1, Pt−Lt−2, . . . , P1, (1)

where {Lt} is a fixed sequence of parameters which we will refer to as “lags.” Clearly, when Lt = 0 for all t,
we obtain the independent setting, and when Lt = t, we recover the arbitrarily dependent setting. If Lt ≡ L
for all t, condition (1) captures a lagged dependence of order L.

To further emphasize the natural connection between asynchrony and local dependence, consider the

simple setting in Figure 2. This diagram captures the setting in which a research team is collecting data over

time, and decides to run multiple tests in a relatively short time interval. For example, such a situation might

arise when testing multiple treatments against a common control (Robertson and Wason, 2018), or in large-

scale A/B testing by internet companies (Xu et al., 2015). Since there is overlap in the data these tests use

to compute their test statistics, the corresponding p-values could be arbitrarily dependent. In general several

tests might share data with the first test. Thus the p-values are locally dependent, with the lag parameter being

equal to the number of consecutive tests that share data.

In this work, we reinforce this connection between asynchronous online testing and dependence by devel-

oping a general abstract framework in which, from an algorithmic point of view, these two issues are treated
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Figure 1: Testing five hypotheses synchronously (top) and asynchronously (bottom). In both cases, the test

levels αt depend on the outcomes of previously completed tests, which in the synchronous case includes all

previously started tests. At the start time of experiment t, Wt−1 is used to denote the remaining “wealth”

for making false discoveries. At the end of experiment t, a p-value Pt and its corresponding decision Rt : =
1 {Pt ≤ αt} are known, which is used to adjust the available wealth at the start time of the next new test.

Figure 2: Example of p-values within a short interval computed on overlapping data. They exhibit local

dependence; for example, P3 and P4 are independent of P1.

with a single formal structure. We do so by associating with each test a conflict set, which consists of other

tests that have a potentially adversarial relationship with the test in question. Within this framework, we de-

velop algorithms with provable guarantees on the rate of false discoveries. The core idea is to enforce a notion

of pessimism with regard to the conflict set—when computing a new test level, the algorithm “hallucinates”

the worst-case outcomes of the conflicting tests.

We derive procedures that handle conflict sets as strict generalizations of current state-of-the-art online

FDR procedures; indeed, when there are no conflicts, for example when there is no asynchrony and when the
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p-values are independent, our solutions recover LORD (Javanmard and Montanari, 2018), LOND (Javanmard

and Montanari, 2015), and SAFFRON (Ramdas et al., 2018), the latter of which recovers alpha-investing

(Foster and Stine, 2008) as a special case for a particular choice of parameters. On the other hand, if the

conflict sets are as large as possible—for example, if the parameter Lt or the number of tests run in parallel

tend to infinity—our algorithms behave like alpha-spending,1 which was designed to control a more stringent

criterion called the family-wise error rate (FWER), under any dependence structure. Independently, we also

prove that the original LOND procedure controls the FDR even under positive dependence (PRDS), the first

online procedure to provably have this guarantee under the PRDS condition that is popular in the offline FDR

literature (Benjamini and Yekutieli, 2001; Ramdas et al., 2019).

Organization. The rest of this paper is organized as follows. After a presentation of the general problem

formulation and related work, Section 2 presents the key notion of conflict sets. We present two general

procedures based on conflict sets, deferring their formal FDR guarantees to Section 6. In Section 3, we couch

asynchronous testing in terms of conflict sets. In a similar fashion, in Section 4, we describe synchronous

testing of locally dependent p-values using conflict sets, and present procedures having FDR guarantees

within this environment. Section 5 then combines the ideas of local dependence and asynchronous testing into

an overall framework designed for testing asynchronous batches of dependent p-values. Section 6 provides

additional, stronger guarantees of the presented algorithms, which hold under more stringent assumptions on

the p-value sequence. In Section 7 we present simulations designed to explore our methods, comparing them

to existing procedures that handle dependent p-values. Finally, we conclude the paper with a short discussion

in Section 8. All proofs are deferred to the Appendix.

1.1 Technical preliminaries

We briefly overview the technical background upon which our work builds. Recall that the false discovery

rate (FDR) (Benjamini and Hochberg, 1995) is defined as follows:

FDR ≡ E [FDP] = E

[
|H0 ∩R|

|R| ∨ 1

]
,

where H0 is the unknown set of true null hypotheses and R is the set of hypotheses rejected by some proce-

dure. Formally we have H0 = {i : Hi is true}, R = {i : Hi is rejected}. The random ratio appearing inside

the expectation is called the false discovery proportion (FDP). It is also of theoretical and practical interest to

study a related metric called the modified false discovery rate (mFDR):

mFDR ≡
E
[
|H0 ∩R|

]

E [|R| ∨ 1]
.

Foster and Stine (2008) show that in the long run the mFDR behaves similarly to the FDR in an online

environment. Similarly, Genovese and Wasserman (2002) prove that the mFDR and FDR achieved by the

celebrated Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) become equivalent as the num-

ber of hypotheses tends to infinity. In this work, we mainly focus on the control of mFDR, as we can provide

simple proofs under less restrictive assumptions. Importantly, in the Appendix we provide a side-by-side

comparison of the mFDR and FDR for all of the experiments in this paper; as we show there, the plots for

mFDR and FDR are visually indistinguishable when the number of non-nulls is non-negligible, and mFDR

dominates the FDR when non-nulls are sparse. Thus, our experiments suggest that mFDR control suffices for

FDR control as well.

In addition, we point out one advantage of mFDR over FDR which is especially relevant in the online

context. Suppose that different sequences of hypotheses are tested with different algorithms controlling the

mFDR. Then, one can retroactively group the set of discoveries resulting from these different algorithms,

1. Alpha-spending is a generalization of the Bonferroni correction in which the assigned test levels do not have to be equal. In other

words, the Bonferroni correction suggests testing n hypotheses under level α/n, while alpha-spending merely requires
∑n

i=1 αi ≤
α, where αi is the test level for the i-th hypothesis.
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all the while knowing that the mFDR is still controlled. If the original sets of discoveries come with FDR

guarantees only, one cannot argue FDR control over the overall batch of discoveries. This decentralized

testing of different sequences using different algorithms is particularly aligned with the online FDR setup,

where not all hypotheses are known in advance. In fact, this “online” property of the mFDR was recognized

even within offline FDR control (van den Oord, 2008).

To simplify our presentation, we will often suppress the distinction, referring to both of these metrics as

“FDR.”

In online FDR control, the set of rejections possibly changes at each time step, implying changes in

mFDR and FDR. Therefore, in online settings, we have to consider R(t), which is the set of rejections up to

time t, and the naturally implied mFDR(t) and FDR(t). We will also use the symbol V(t) : = R(t) ∩ H0 to

denote the set of false rejections made up to time t. The main objective of online FDR algorithms is to ensure

mFDR(t) ≤ α or FDR(t) ≤ α, for a chosen level α and for all times t.
Many of the online FDR algorithms that have been proposed to date in the literature are special cases of the

generalized alpha-investing (GAI) framework (Aharoni and Rosset, 2014). The initial interpretation of these

algorithms, as put forward by Foster and Stine (2008), relied on a notion of dynamically changing “alpha-

wealth.” Ramdas et al. (2017, 2018) subsequently presented an alternative perspective on GAI algorithms.

In this view, GAI algorithms are viewed as keeping track of an empirical estimate of the true false discovery

proportion, denoted F̂DP(t), and they assign test levels αt in a way that ensures F̂DP(t) ≤ α for all time

steps t, where α is the pre-specified FDR level. In the earlier paper (Ramdas et al., 2017), they show that

such control of FDP estimates also yields FDR control. This perspective—which is equivalent to the earlier,

wealth characterization of GAI algorithms—will provide the mathematical framework upon which we build

in this paper.

Finally, we recap the typical assumptions made for null p-values in the FDR literature. If a hypothesis Hi

is truly null, then the corresponding p-value Pi is stochastically larger than the uniform distribution (“super-

uniformly distributed,” or “super-uniform” for short), meaning that:

If the null hypothesis Hi is true, then Pr{Pi ≤ u} ≤ u for all u ∈ [0, 1].

This condition is sometimes generalized to the online FDR setting by incorporating a filtration F i−1, resulting

in the following assumption:

If the null hypothesis Hi is true, then Pr
{
Pi ≤ u

∣∣ F i−1
}
≤ u for all u ∈ [0, 1], (2)

Here, F i captures all relevant information about the first i tests. As we discuss in later sections, however,

this condition can be overly stringent when there are interactions between p-values, and we will accordingly

introduce weaker super-uniformity assumptions.

1.2 Problem formulation and contribution

We now give a formal introduction to the problem setting, at the same time introducing the necessary notation

for the sections to follow.

At time step t ∈ N, the test of hypothesis Ht begins, and the p-value resulting from this test is denoted Pt.

In contradistinction to the standard online FDR paradigm, Pt is not required to be known at time t; indeed,

this test is not fully performed at time t, but is only initiated at time t. The decision time for Ht is denoted

Et; this is the time of possible rejection. Fully synchronous testing is thus an instance of this setting in which

Et = t, as assumed in classical online FDR work. In general, however, Et 6= t. Note also that, unlike in the

classical online FDR problem, the set of rejections R(t) and false rejections V(t) at time t now consider not

all {Pi : i ≤ t}, but only {Pi : Ei ≤ t}:

R(t) = {i ∈ [t] : Ei ≤ t,Hi is rejected}, V(t) = R(t) ∩H0.

In addition, to capture the desideratum of statistical validity in the face of data reuse, we allow the possibility

of the p-values not being completely independent; in particular, we allow local dependence. Here, we envi-

sion Pt having arbitrary, possibly adversarial dependence on Pt−1, . . . , Pt−Lt
, while the dependence between
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Pt and Pj , j < t−Lt is limited. For simplicity the reader can assume Pt ⊥ Pt−Lt−1, Pt−Lt−2, . . . , P1, how-

ever in later sections we will discuss some restricted forms of dependence between Pt and Pj , for j < t−Lt,

handled by our results.

We treat Et as fixed but unknown before time Et itself. While the p-value and the duration of a test

could indeed be dependent random quantities—for example, when the duration is a reasonably good proxy

for sample size—here Et is not the absolute duration on a meaningful time scale, but it merely captures how

many tests have started before the decision for the t-th test. Thus, treating Et as fixed roughly corresponds

to asserting independence between Pt and the number of newly created tests before test t finishes. As we

envision a highly decentralized setting with little between-test coordination, we deem this assumption reason-

able. We do, however, acknowledge the possibility of a more coordinated setting with Pt and Et randomly

coupled, and this is an important avenue for future work.

Under the setup described above, the goal is to produce test levels αt dynamically at the beginning of

the t-th test, such that, despite arbitrary local dependence and regardless of the decision times Et, the false

discovery rate is controlled at any given moment under a pre-specified level α. In this work, we provide

procedures which achieve this goal, both at all fixed times t ∈ N, as well as adaptively chosen stopping

times.

It is important to remark that, even under independence of p-values, we cannot simply ignore the asyn-

chronous aspects of the problem and naively apply an existing online FDR algorithm. We discuss two such

plausible but naive applications of online methodology, and discuss why they are invalid.

One natural adjustment could be to apply an online FDR algorithm whenever each test finishes (that is,

whichever test is the t-th one to finish, test it at level αt). This scheme would only assign αt to a test at

the end of that test, which is unrealistic because sequential hypothesis tests—parametric tests such as Wald’s

sequential probability ratio test (SPRT), and nonparametric tests as well (Balsubramani and Ramdas, 2016)—

typically require specification of the target type I error level in advance because it is an important component

of their stopping rule. For examples of sequential tests in clinical trials, see, e.g., (Bartroff et al., 2012;

Bartroff and Lai, 2008; Bartroff and Song, 2014). The same constraint holds for more recent, multi-armed

bandit approaches to A/B testing (Yang et al., 2017; Jamieson and Jain, 2018). Thus, we need to specify αt at

the start of test t. That said, there do exist tests which only require the test level at decision time. If all tests

in the sequence are of the latter kind, existing online methodology is indeed sufficient; however, we find this

assumption too strong, especially given the popularity of bandit approaches in modern testing applications.

Alternatively, one could imagine computing αt at the start of test t by applying an online FDR algorithm

to the completed tests only, and ignoring those that have not finished. From the theory perspective, this

clearly comes with no formal guarantee; for example, one could imagine starting N tests, and all N tests

finishing at once, after the N -th test has started. Given that there are no completed tests at the time of test

level assignment, all tests would receive the same level, which would violate the FDR requirement under any

natural setting (we ignore trivial special cases such as all hypotheses being non-null). Somewhat less trivially,

Figure 3 plots the FDR and mFDR achieved by this naive heuristic in a simulation setting from Section 7.

When the proportion of non-null p-values is relatively small—as one would generally expect in practice—this

heuristic severely violates the FDR requirement.

1.3 Related work

There is a vast literature on sequential testing (see, e.g., Wald, 1945; Chernoff, 1959; Albert, 1961; Naghshvar

and Javidi, 2013). We do not aim to contribute to that literature per se; rather, our goal is to consider multiple

testing through a more realistic lens as an outer sequential process, one that acknowledges the existence of

inner sequential processes that are based on sequential testing.

Likewise, there is a large and growing literature on false discoveries in multiple testing, aimed at solving

a range of problems, often addressing issues of scientific reproducibility in research (Ioannidis, 2005). Here

we focus on work whose methods or objectives have the most overlap with ours. In particular, we focus on

literature on “online” methods in multiple testing, and compare and contrast those solutions to the ones we

propose.
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Figure 3: FDR and mFDR achieved by a naive application of the LORD algorithm with target FDR level

α = 0.05 (Javanmard and Montanari, 2018) in an asynchronous environment. We adopt the experimental

setting from Section 7; we set the asynchrony parameter to p = 1/150, and the mean of observations under

the alternative to µc = 3. Here, π1 is the proportion of tested hypotheses which are non-null. Both FDR and

mFDR are controlled only for π1 ≥ 0.4.

The most salient difference is that we address the general problem of asynchrony; when there is no

asynchrony, meaning Et = t, our approach recovers a slew of existing methods, including work by Foster

and Stine (2008), Aharoni and Rosset (2014), Javanmard and Montanari (2015, 2018), Ramdas et al. (2017,

2018).

Most previous work also differs from ours in that it assumes that condition (2) holds. This condition is

too strong for the notion of local dependence this paper considers; indeed, in Section 4 we present a simple

toy example in which this assumption fails. An exception is the work of Javanmard and Montanari (2015,

2018), who discuss sufficient conditions for achieving FDR control under arbitrary dependence within the

p-value sequence. However, these conditions essentially imply an alpha-spending-like correction for the test

levels, making their proposed procedure overly conservative. We elaborate on this argument and empirically

demonstrate this observation in Section 7.

Robertson and Wason (2018) have investigated the performance of several online FDR algorithms empir-

ically, including all of those listed above, when the p-value sequence is positively dependent. They do not,

however, provide any formal guarantees for those procedures that have thus far been shown to work only un-

der independence. We make partial progress to justifying their empirical observations by proving that LOND

provably controls FDR under positive dependence.

Recently, there has also been some work specifically motivated by controlling false discoveries in A/B

testing in the tech industry (Yang et al., 2017). However, their setup was again fully synchronous, and assume

that the observations are independent across all experiments, which are the two assumptions this paper deems

too strong and circumvents.

The vast literature on adaptive data analysis (Dwork et al., 2015b,a; Bassily et al., 2016; Blum and Hardt,

2015) focuses on an online setting where a distribution is adaptively queried for a chosen functional, and at

each step these queries are answered by making use of a single data set coming from that distribution. This

line of work also has the goal of preventing false discovery, however by proving generalization bounds, rather

than controlling the FDR in online multiple testing.

Ordered hypothesis testing considers tests for which additional prior information is available, and allows

sorting null hypotheses from least to most promising (Li and Barber, 2017; Lei and Fithian, 2016; Lynch

et al., 2017; G’Sell et al., 2016). In these papers, however, the word “sequential” or “ordered” does not refer

to online testing; these methods are set in an offline environment, requiring access to all p-values at once. In

our approach, we allow testing a possibly infinite number of hypotheses with no available knowledge of the

future p-values.
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2. Conflict sets: the unifying approach

In this section we describe a general, abstract formulation of multiple testing under asynchrony and depen-

dence, which unifies the seemingly disparate solutions of this paper and provides the point of departure for

deriving specific algorithms. We describe two such procedures, which we will refer to as LORD* and SAF-

FRON*, that control mFDR within this framework.

LORD* and SAFFRON* build off the LORD (Javanmard and Montanari, 2018) and SAFFRON (Ramdas

et al., 2018) algorithms. Like SAFFRON, SAFFRON* allows the user to choose a parameter λt ≥ αt, which

is the “candidacy threshold” at time t, meaning that, if Pt ≤ λt, then Pt is referred to as a candidate for

rejection. We will discuss this extension introduced in the SAFFRON procedure further below; for now, we

simply note that it is an analog of the notion of “null-proportion adaptivity” in the offline multiple testing

literature. Indeed, Ramdas et al. (2018) argue that LORD can be seen as the online analog of the BH pro-

cedure (Benjamini and Hochberg, 1995), while SAFFRON can be seen as the online analog of the adaptive

Storey-BH procedure (Storey, 2002; Storey et al., 2004).

Throughout we let Rt : = 1 {Pt ≤ αt} denote the indicator for rejection, and Ct : = 1 {Pt ≤ λt} denote

the indicator for candidacy.

We now define several filtrations, which capture the increasing information available to the experimenter

as well as the FDR algorithm.

By Lt, we denote a filtration that captures all relevant information about the tests that started up to, and

including, time t, for the LORD* procedure. Formally, Lt : = σ({R1, . . . , Rt, }). For SAFFRON*, we also

incorporate candidates in the filtration: St : = σ({R1, C1, . . . , Rt, Ct}). Many of our arguments will apply

to both algorithms; we accordingly use F t to indicate a generic filtration that can be either Lt or St.

With each test and its corresponding hypothesis, we associate a conflict set. For the test starting at step

t, we denote this set X t; it consists of a (not necessarily strict) subset of {1, . . . , t − 1}. For example, X 5

could be {3, 4}. The reason why we refer to this set as conflicting for test t is because it contains the indices

of tests that interact with the t-th test in some unknown way. This could mean that, at time t, there is missing

information about these tests, or that there potentially exists some arbitrary dependence between those tests

and the upcoming one. More explicitly, we let

X t = {i ∈ [t− 1] : Ei ≥ t} ∪ {t− Lt, . . . , t− 1},

where Lt is the sequence of dependence lags. In words, X t consists of all tests that have not finished running

or are locally dependent with test t.
We require the conflict sets to be monotone: each index t has to be in a continuous “block” of conflict

sets. More formally, if there exists j such that t ∈ X j , then t ∈ X i, for all i ∈ {t + 1, . . . , j}. Without any

constraint on the sequence {Lt}, the conflict sets need not be monotone. Therefore, we translate the condition

of monotonicity of conflict sets into a constraint on the sequence {Lt} as: Lt+1 ≤ Lt +1. Informally, this is

just a requirement that the “non-conflicting information” does not decrease with time. This will ensure that

the test level αt and candidacy threshold λt have at least as much knowledge about prior tests as αt−1 and

λt−1. Moreover, this requirement is indeed a natural one, and usual testing practices satisfy it; for example,

this condition holds if dependent p-values come in disjoint blocks.

We define the last-conflict time of test t as τt : = max{j : t ∈ X j}. If test t never appears in a conflict

set, we take τt = t.
Consider again the filtration F t. A subtlety we initially ignored is that the superscript t does not corre-

spond to the physical quantity of time. In particular, different tests may run for different lengths of time and

the decision time for each test may even be random; therefore, Rt might be known before Rt−1. This moti-

vates us to define a filtration as a counterpart of F t whose increase at each step corresponds to the real increase

in knowledge with time. We introduce F−X t

as the non-conflicting filtration; the sigma-algebra F−X t

con-

tains information about the tests that started before time t which are not in the conflict set of test t. In partic-

ular, L−X t

: = σ({Ri : i ≤ t− 1, i 6∈ X t}) for LORD*, S−X t

: = σ({Ri, Ci : i ≤ t− 1, i 6∈ X t}) for SAF-

FRON*, and again we use F−X t

to generically denote either L−X t

or S−X t

. We have that F−X t

⊆ F t−1.

Notice that we promised to make this set a filtration; if X t was an arbitrary set of indices, this would not in
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general be satisfied. However, it is straightforward to verify that the monotonicity property of conflict sets

ensures that F−X t

indeed forms a filtration.

We will design αt and λt to be F−X t

-measurable. This is essentially the idea of pessimism mentioned

earlier—among all tests that finished before the t-th one starts, αt and λt have to ignore the ones conflicting

with test t in order to guard against unknown interactions that the conflicting tests have with the upcoming

one.

Finally, we will generally require the following super-uniformity condition for null p-values:

If the null hypothesis Ht is true, then Pr
{
Pt ≤ u

∣∣∣ F−XEt
}
≤ u, for all u ∈ [0, 1]. (3)

This is a condition that requires validity of null p-values: given the knowledge one has before making a

decision, if a hypothesis is truly null, it has to be well-behaved. However, unlike in classical online FDR

work, we do not have F−XEt
= F t−1. As we discuss further in later sections, assumption (3) will allow

arbitrary local dependence, as well some limited, but nevertheless important, forms of dependence between

distant p-values. Note that, if the distant p-values are independent—a setting we study in Section 4 and

Section 5—this condition is automatically satisfied.

2.1 The LORD* algorithm

Following a recently proposed framework (Ramdas et al., 2017), we define LORD* and SAFFRON* as

arbitrary update rules which control a certain estimate of the false discovery proportion under a pre-specified

level α; the two algorithms differ in their choice of estimate. In Subsection 2.3, we introduce additional

analysis tools which will justify the choice of these estimates.

LORD* is defined as any update rule for αt that ensures that the estimate

F̂DPLORD*(t) : =

∑
j≤t αj

(
∑

j≤t,j 6∈X t Rj) ∨ 1
.

is at most α for all t ∈ N.

Below we state two different versions of LORD*, using two different test level updates. Algorithm 1

generalizes the LORD++ procedure (Javanmard and Montanari, 2018; Ramdas et al., 2017), while Algorithm

2 generalizes its predecessor, the LOND procedure (Javanmard and Montanari, 2015). These are not the only

ways of assigning αj that are consistent with the assumptions and satisfy the definition of LORD* in their

control of F̂DPLORD*, but they are our focus in the remainder of the paper. Other rules can be developed as

extensions of the rules in the LORD paper (Javanmard and Montanari, 2018).

To state the algorithms in this paper, we will make use of the variable rk, which refers to the first time

that k rejections are non-conflicting, meaning that there exist k rejected hypotheses which are no longer in

the conflict set at that time. That is, we define rk as:2

rk : = min{i ∈ [t] :
i∑

j=1

Rj1 {τj ≤ i} ≥ k}. (4)

Algorithm 1 The LORD++ algorithm under general conflict sets (a special case of LORD*)

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W0 ≤ α
Set α1 = γ1W0

for t = 1, 2, . . . do
start t-th test with level αt

αt+1 = γt+1W0 + γt+1−r1 (α−W0) +
(

∑

j≥2 γt+1−rj

)

α

end

2. Here, as well as in the rest of this paper, we define the minimum of an empty set to be −∞.
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Algorithm 2 The LOND algorithm under general conflict sets (a special case of LORD*)

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1
Set α1 = γ1α

for t = 1, 2, . . . do
start t-th test with level αt

αt+1 = αγt+1

(

(
∑t

j=1 1 {Pj ≤ αj , τj ≤ t}) ∨ 1
)

end

It is a simple algebraic exercise to verify that the two update rules given for αt indeed guarantee that

F̂DPLORD*(t) ≤ α for all t ∈ N.

2.2 The SAFFRON* algorithm

In response to LORD and LOND’s FDP estimate, the SAFFRON method was derived after observing that

the former might be overly conservative estimates of the FDP. Indeed, if the tested sequence contains a

significant fraction of non-nulls, and if the non-nulls yield strong signals for rejection, the realized FDP and

the estimated FDP might be very far apart. Motivated by this observation, SAFFRON was developed as the

adaptive counterpart of LORD which keeps track of an empirical estimate of the null proportion, similar to the

way in which Storey et al. (Storey, 2002; Storey et al., 2004) improved upon the BH procedure (Benjamini

and Hochberg, 1995). We thus propose the SAFFRON* algorithm to maintain control over the following

estimate:

F̂DPSAFFRON*(t) : =

∑
j<t,j 6∈X t

αj

1−λj
1 {Pj > λj}+

∑
j∈{X t∪{t}}

αj

1−λj

(
∑

j≤t,j 6∈X t Rj) ∨ 1
.

Any update rule for αt and λt ensuring F̂DPSAFFRON*(t) ≤ α for all t ∈ N satisfies the definition of SAF-

FRON*. Algorithm 3 and Algorithm 4 describe two particular instances of SAFFRON*, obtained for specific

choices of the sequence {λj}. We present an algorithmic specification of SAFFRON* for the constant se-

quence {λj} ≡ λ in Algorithm 3. A different case of SAFFRON* is presented in Algorithm 4, where we use

the alpha-investing strategy λj = αj (Foster and Stine, 2008; Ramdas et al., 2018).

For the updates below, recall the definition of rk from equation (4).

Algorithm 3 The SAFFRON* algorithm for constant λ under general conflict sets

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, candidate threshold λ ∈ (0, 1), initial

wealth W0 ≤ α
α1 = (1− λ)γ1W0

for t = 1, 2, . . . do
start t-th test with level αt

αt+1 = min
{

λ, (1− λ)
(

W0γt+1−C0+
+ (α−W0)γt+1−r1−C1+

+
∑

j≥2 αγt+1−rj−Cj+

)}

,

where Cj+ =
∑t

i=rj+1 Ci1
{

i 6∈ X t
}

end

Algorithm 4 The alpha-investing algorithm under general conflict sets (a special case of SAFFRON*)

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W0 ≤ α
s1 = γ1W0

α1 = s1/(1 + s1)
for t = 1, 2, . . . do

start t-th test with level αt

st+1 = W0γt+1−R0+
+ (α−W0)γt+1−r1−R1+

+
∑

j≥2 αγt+1−rj−Rj+
, where Rj+ =

∑t
i=rj+1 Ri1

{

i 6∈ X t
}

αt+1 = st+1/(1 + st+1),
end
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2.3 Oracle estimate under conflict sets

Following Ramdas et al. (2018), we analyze LORD* and SAFFRON* through an oracle estimate of the false

discovery proportion. This quantity serves as a good estimate of the true false discovery proportion, and

controlling it under a pre-specified level guarantees that FDR is also controlled. Let the oracle estimate of the

FDP be defined as:

FDP∗(t) : =

∑
j≤t,j∈H0 αj

(
∑

Ej≤t Rj) ∨ 1
,

where we recall that αj is required to be F−X j

-measurable, across all j. The following proposition gives

formal justification for using FDP∗(t) as a proxy for the true FDP.

Proposition 1 Suppose that the null p-values are super-uniform conditional on F−XEt
, meaning Pr

{
Pt ≤ u

∣∣∣ F−XEt

}
≤

u, for all u ∈ [0, 1] and t ∈ H0. Then, for all times t ∈ N, the condition FDP∗(t) ≤ α implies that

mFDR(t) ≤ α.

Note that Proposition 1 is technically true even if we only consider tests for which Ej ≤ t, j ∈ H0 in

the numerator of FDP∗(t). However, it is not clear how to achieve this without ensuring FDP∗(t) ≤ α. For

example, even if

∑
Ej≤t,j∈H0 αj

(
∑

Ej≤t
Rj)∨1 ≤ α at time t, it is possible that in subsequent rounds all tests will finish

without any new rejections, thus increasing the FDP estimate. Therefore, we need to assign αj conservatively,

such that this estimate is provably controlled under α, despite unknown future outcomes which might augment

the FDP estimate.
The fact that αt is measurable with respect to F−X t

should give us pause. Even though we are only
required to guarantee FDP∗(t) ≤ α, we cannot rely on the rejection indicators that push down the value of
FDP∗(t), if they are in the current conflict set. As a consequence, αt has to ensure FDP∗(t) ≤ α for the
worst-case configuration of conflicting rejections; that is, when Rj = 0 for all j ∈ X t. This motivates us to
define the oracle estimate of the FDP under conflict sets:

FDP
∗
conf(t) : =

∑

j≤t,j∈H0 αj

(
∑

j≤t,j 6∈X t Rj) ∨ 1
. (5)

Since this quantity is only more conservative than the oracle estimate, controlling it under α will preserve

the guarantees given by Proposition 1. However, notice an unfortunate fact about both oracle estimates—they

depend on the unobservable set H0. This implies that not even FDP∗
conf(t) can be controlled tightly. For this

reason, LORD* and SAFFRON* construct empirical estimates of FDP∗
conf(t), such that the properties given

in Proposition 1 are retained. For LORD*, claiming mFDR control at fixed times boils down to a simple

observation: for any chosen α, FDP∗
conf(t) ≤ F̂DPLORD*(t) ≤ α, hence by Proposition 1 mFDR is controlled.

SAFFRON* controls mFDR by virtue of ensuring that, on average, FDP∗
conf(t) ≤ α. We make this argument

formal in Section 6.

3. Example 1: Asynchronous online FDR control

In this section, we look at one instantiation of the conflict-set framework, which considers arbitrary asyn-

chrony but limits possible dependencies between p-values. This immediately gives two procedures for asyn-

chronous online testing as special cases of LORD* and SAFFRON*. From here forward we will refer to these

methods as LORDasync and SAFFRONasync, respectively. In Section 6, we provide mFDR guarantees of these

procedures in terms of the general conflict-set setting, as well as additional FDR guarantees for LORDasync

and SAFFRONasync under a strict independence assumption.

In this section, the only conflicting tests are those whose outcomes are unknown, since the allowed de-

pendencies will be fairly restrictive. Therefore, the asynchronous conflict set at time t is:

X t
async = {i ∈ [t− 1] : Ei ≥ t},
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which is observable at time t − 1. This simplified conflict set implies that the last-conflict time of test t is,

naturally, τt = Et.

Denote by Rt the set of rejections at time t, and similarly let Ct denote the set of candidates at time t:

Rt = {i ∈ [t] : Ei = t, Pi ≤ αi}, Ct = {i ∈ [t] : Ei = t, Pi ≤ λi}.

Therefore, R(t) = ∪t
i=1Rt. With this, we can write the non-conflicting filtrations L−X t

async and S−X t

async compactly

as:

L−X t

async : = σ(R1, . . . ,Rt−1), S
−X t

async : = σ(R1, C1, . . . ,Rt−1, Ct−1).

Since the arguments for LORDasync and SAFFRONasync have significant overlap, for brevity we write F−X t

async

to refer to both L−X t

async and S−X t

async , where possible. Recall from Section 2 that αt is designed to be measurable

with respect to F−X t

async ; here this essentially means that it is computed as a function of the outcomes known

by time t. For SAFFRONasync, additionally λt is S−X t

async -measurable. More generally, for LORDasync, we

can choose αt = ft(R1, . . . ,Rt−1), for any deterministic function ft as long as the correct FDP estimate

is controlled. The SAFFRONasync procedure also keeps track of encountered candidates, hence we can take

αt = gt(R1, C1, . . . ,Rt−1, Ct−1) and λt = ht(R1, C1, . . . ,Rt−1, Ct−1), for deterministic functions gt and

ht.

Our mFDR guarantees hold under a condition which we term asynchronous super-uniformity:

If the null hypothesis Ht is true, then Pr
{
Pt ≤ u

∣∣∣ F−XEt

async

}
≤ u, for all u ∈ [0, 1]. (6)

This condition essentially shapes the allowed dependencies between p-values. It is immediately implied if

the p-values are independent. However, it is strictly weaker. For example, it allows revisiting p-values which

were previously not rejected. Suppose we have tested independent p-values thus far, and we failed to reject

Ht, that is Pt > αt. If at a later time s > t we have a higher error budget αs > αt, we can, somewhat

surprisingly, test Ht using the same p-value Pt again at time s. This clearly violates independence of Pt and

Ps (as they are identical), however condition (6) is nevertheless satisfied. Indeed, for all u > αt:

Pr
{
Ps ≤ u

∣∣∣ F−XEs

async

}
= Pr{Ps ≤ u | Ps > αt} ≤

u− αt

1− αt

≤ u,

where the equality follows because Ps ⊥ F−XEs

async | 1 {Ps > αt}. On the other hand, if u ≤ αt, Pr{Ps ≤ u | Ps > αt} =
0 ≤ u, and hence condition (6) follows.

The LORDasync and SAFFRONasync algorithms

We turn to an analysis of how the abstract LORD* and SAFFRON* procedures translate into our asyn-

chronous testing scenario, for the particular choice of conflict set X t
async. They utilize all available informa-

tion; the conflict set—the tests whose outcomes the algorithms ignore—consists only of the tests about which

we temporarily lack information.

Plugging in the definition of X t
async, we obtain the following empirical estimate of the false discovery

proportion for LORDasync:

F̂DPLORDasync
(t) =

∑
j≤t αj

(
∑

j≤t 1 {Pj ≤ αj , Ej < t}) ∨ 1
.

For SAFFRONasync, we obtain the following estimate:

F̂DPSAFFRONasync
(t) =

∑
j≤t

αj

1−λj
(1 {Pj > λj , Ej < t}+ 1 {Ej ≥ t})

(
∑

j≤t 1 {Pj ≤ αj , Ej < t}) ∨ 1
.
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Consider the dynamics of these two algorithms, and how their pessimism comes into play. Whenever

a test starts, they increase their FDP estimate, expecting that the resulting p-value will have no favorable

contribution. However, when the test in question ends, they readjust the FDP estimate if they see a positive

outcome, namely a candidate and/or rejection. This shows that testing in parallel indeed has a cost—due to

pessimistic expectations about the tests in progress, the algorithms remain conservative when assigning a new

test level. For this reason, asynchronous testing should be used with caution, and the number of tests run in

parallel should be monitored closely. Indeed, in the asymptotic limit where the number of parallel tests tends

to infinity, the algorithm behaves like alpha-spending; i.e., the sum of all assigned test levels converges to the

error budget α.

Substituting X t for X t
async in Algorithms 1-4 yields procedures for asynchronous online FDR control. The

explicit statements of these algorithms, which correspond to asynchronous versions of LORD++, LOND,

SAFFRON, and alpha-investing, are given in the Appendix.

4. Example 2: Online FDR control under local dependence

In this section, we derive online FDR procedures that handle local dependencies. We begin with the fully

synchronous setting studied in classical online FDR literature, and turn to the asynchronous environment in

the next section.

A standard assumption in existing work on online FDR has been independence of p-values, a requirement

that is rarely justified in practice. Tests that cluster in time often use the same data, null hypotheses depend

on the outcomes of recent tests, etc. On the other hand, arbitrary dependence between any two p-values in

the sequence is also arguably unreasonable—very old data used for testing in the past is usually considered

“stale,” and hypotheses tested a long time ago may bear little relevance to current hypotheses. In light of this,

we consider a notion of local dependence:

for all t > 0, there exists Lt ∈ N such that Pt ⊥ Pt−Lt−1, Pt−Lt−2, . . . , P1,

where {Lt} is a fixed sequence of parameters which we refer to as lags.

Since we allow Pt to have arbitrary dependence on the previous Lt p-values, some of these dependencies

might be adversarial toward the statistician, and, with “peeking” into this adversarial set, the nulls might no

longer behave super-uniformly. Suppose we observe a sample X ∼ N(µ, 1), and wish to test two hypotheses

using this sample. Let the two hypotheses be H1 : µ < 0 and H2 : µ ≥ 0. If, for instance, R1 = 0, we know

that P2 ≤ 1−α1 almost surely, implying that P2 is not super-uniform, given the information about past tests.

On the other hand, if we were to ignore the outcome of the first test, P2 would indeed be super-uniform.

This observation motivates us to define the conflict set for testing under local dependence as:

X t
dep : = {t− Lt, . . . , t− 1}.

The non-conflicting filtrations L−X t

dep for LORDdep and S−X t

dep for SAFFRONdep are respectively given by:

L−X t

dep : = σ(R1, . . . , Rt−Lt−1), S
−X t

dep : = σ(R1, C1, . . . , Rt−Lt−1, Ct−Lt−1).

Since most formal arguments in this section apply to both procedures, we use F−X t

dep to indicate that the

filtration in question could be both L−X t

dep and S−X t

dep .

In contrast to asynchronous testing, the levels αt and λt under local dependence ignore some portion of

available information, specifically the outcomes of the last Lt tests. Notice the difference between these two

settings—in the asynchronous setting, pessimism guards against unknown outcomes, while here pessimism

guards against known outcomes. Perhaps counterintuitively, this observation means that the pessimism of

LORDdep and SAFFRONdep actually guards against possible disadvantageous direct impact of the last Lt

p-values on the upcoming one. In the Appendix we instantiate the test levels and candidacy thresholds

according to Algorithms 1-4, however more generally we allow αt = ft(R1, . . . , Rt−Lt−1) for LORDdep, and

αt = gt(R1, C1, . . . , Rt−Lt−1, Ct−Lt−1) and λt = ht(R1, C1, . . . , Rt−Lt−1, Ct−Lt−1) for SAFFRONdep.
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Consider some Pt which is from a null hypothesis. As previously emphasized, we cannot trust Pt to

behave like a true null, given that we already know its last Lt predecessors that have a direct impact on it.

The appropriate super-uniformity condition satisfied by locally dependent p-values thus ignores these last Lt

p-values and is of the following form:

If the null hypothesis Ht is true, then Pr
{
Pt ≤ u

∣∣∣ F−X t

dep

}
≤ u, for all u ∈ [0, 1]. (7)

This will allow setting αt ∈ F−X t

dep , while knowing Pr
{
Pt ≤ αt

∣∣∣ F−X t

dep

}
≤ αt. Importantly, unlike in

the previous section where the appropriate super-uniformity condition implied dependence constraints on the

p-values, condition (7) is immediately true by local dependence.

The LORDdep and SAFFRONdep algorithms

As in Section 3, we analyze the particular instances of LORD* and SAFFRON* that are obtained by taking

the conflict set of Section 2 to be X t
dep = {t − Lt, . . . , t − 1}. Since this conflict set is deterministic,

unlike X t
async, the estimate of the false discovery proportion that LORDdep and SAFFRONdep keep track of is

completely determined Lt steps ahead, that is at time t− Lt − 1.

By definition of the general estimates and the conflict set in consideration, LORDdep controls the follow-

ing quantity:

F̂DPLORDdep
(t) =

∑
j≤t αj

(
∑

j≤t,j 6∈{t−Lt,...,t−1} Rj) ∨ 1
.

The SAFFRONdep method, on the other hand, controls the estimate:

F̂DPSAFFRONdep
(t) =

∑
j<t−Lt

αj

1−λj
1 {Pj > λj}+

∑t

j=t−Lt

αj

1−λj

(
∑

j≤t,j 6∈{t−Lt,...,t−1} Rj) ∨ 1
.

In the case of running asynchronous tests, the algorithms were constructed as pessimistic; however, they

had access to as much information as the statistician performing the tests. Here, that is not the case—LORDdep

and SAFFRONdep choose to ignore the outcomes of completed tests as long as they are in the conflict set of

subsequent tests. Only after the last-conflict time τi, positive outcomes are rewarded by readjusting the

FDP estimate. On the other hand, the statistician’s perspective is different—as soon as round t is over, the

statistician knows the outcome of the t-th test. Just like testing in parallel, testing locally dependent p-values

comes at a cost—if the lags are large, the algorithm keeps increasing the FDP estimate, assigning ever smaller

test levels, waiting for rewards from tests performed a long time ago. In the extreme case of Lt = t, the test

levels steadily decrease so that their sum converges to α, regardless of the fact that discoveries have possibly

been made.

Explicit setting-specific algorithms, obtained by substituting X t for X t
dep in Algorithms 1-4, resulting in

LORD++, LOND, SAFFRON, and alpha-investing under local dependence, are given in the Appendix.

5. Example 3: Controlling FDR in asynchronous mini-batch testing

Here we merge the ideas of the previous two sections, bringing together asynchronous testing and local

dependence of p-values. Although there are various ways one could think of in which these two concepts

intertwine, here we discuss a particularly simple and natural one.

Let a mini-batch represent a grouping of an arbitrary number of tests that are run asynchronously, which

result in dependent p-values; for instance, these tests could be run on the same data. After a mini-batch

of tests is fully executed, a new one can start, testing new hypotheses, independent of the previous batch,

and doing so on fresh data. From the point of view of asynchrony, such a process could be thought of as a

compromise between synchronous and asynchronous testing—batches are internally asynchronous, however

they are globally sequential and synchronous. If all batches are of size one, one recovers classical online
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testing; if the batch-size tends to infinity, the usual notion of asynchronous testing is obtained. Figure 4

depicts an example of a mini-batch testing process with three mini-batches.

Figure 4: Running three mini-batches of tests. The batches are run synchronously, while the tests that com-

prise each of them are run asynchronously. We use Wt,j−1 to denote the remaining "wealth" for making false

discoveries before starting the j-th test in the t-th batch.

We introduce notation that captures this setting. We will use two time indices; Pb,t denotes the p-value

resulting from the test that starts as the t-th one in the b-th batch, testing hypothesis Hb,t. We allow any two

p-values in the same batch to have arbitrary dependence; however, we require any two p-values in different

batches to be independent. This can be written compactly as:

Pb1,i ⊥ Pb2,j , for any b1, b2, i, j, such that b1 6= b2.

We will denote the size of the b-th batch as nb. Thus, the first batch results in P1,1, . . . , P1,n1
, the

second one in P2,1, . . . , P2,n2
, etc. Analogously, the test levels and candidacy thresholds will also be doubly-

indexed; αb,t and λb,t are used for testing Pb,t. Further, we define Rb,t : = 1 {Pb,t ≤ αb,t}, and Cb,t :
= 1 {Pb,t ≤ λb,t} as the rejection and candidacy indicators, respectively. By Rb we will denote the set of

rejections in the b-th batch, and by Cb the set of candidates in the b-th batch.

Recall the key ideas of the previous two sections—tests running in parallel, or those resulting in dependent

p-values, are seen as conflicting. We again pursue this approach, and let the conflict set of Pb,t consist of all

other p-values in the same batch. More formally, the mini-batch conflict set can be defined as:

X b,t
mini = {(b, i) : i < t}.

Notice that in Section 3, the conflicts arise solely due to missing information, in Section 4 solely due to

dependence, while here they are due to both.

The instances of LORD* and SAFFRON* used to test mini-batches will be referred to as LORDmini and

SAFFRONmini. As before, we will define the past-describing filtrations for both of these algorithms. Due to

local dependence, as in Section 4, whole batches of tests are mutually conflicted. Only at the finish time of a

batch are the discoveries taken into account. For this reason, from the perspective of any batch, all rejections

in any prior batch happened at one time step. Consequently, there is no need to consider the actual finish

time of any test from previous batches, and thus the respective non-conflicting filtrations for LORDmini and

SAFFRONmini will be of the form:

L−X b,t

mini = σ(R1, . . . ,Rb−1), S
−X b,t

mini = σ(R1, C1, . . . ,Rb−1, Cb−1).

As before, we use F−X b,t

mini to refer to both of these two filtrations simultaneously. The test levels {αb,t}
and candidacy thresholds {λb,t} are therefore computed as functions of the outcomes of the tests in previous

batches, i.e., we can write αb,t = fb,t(R1, . . . ,Rb−1) for LORDmini, and similarly, αb,t = gb,t(R1, C1, . . . ,Rb−1, Cb−1)
and αb,t = hb,t(R1, C1, . . . ,Rb−1, Cb−1) for SAFFRONmini.

By analogy with the last section, we do not necessarily expect the p-value Pb,t to be well-behaved, given

that we have seen the outcomes of tests whose p-values have dependence on Pb,t. By the local dependence

assumption, it is straightforward to verify that the following condition holds true:

If the null hypothesis Hb,t is true, then Pr
{
Pb,t ≤ u

∣∣∣ F−X b,t

mini

}
≤ u, for all u ∈ [0, 1]. (8)
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The LORDmini and SAFFRONmini algorithms

By definition of the mini-batch conflict set and the general estimate of LORD*, LORDmini is obtained as an

update rule for αb,t such that the following quantity is controlled for all b, t ∈ N:

F̂DPLORDmini
(b, t) =

∑
i<b

∑
j≤ni

αi,j +
∑

j≤t αb,j

(
∑

i<b

∑
j≤ni

Ri,j) ∨ 1
.

Similarly, SAFFRONmini controls the following adaptive estimate:

F̂DPSAFFRONmini
(b, t) =

∑
i<b

∑
j≤ni

αi,j

1−λi,j
1 {Pi,j > λi,j}+

∑
j≤t

αb,j

1−λb,j

(
∑

i<b

∑
j≤ni

Ri,j) ∨ 1
.

Since the set of rejections corresponding to tests that are not in the current conflict set is invariant through-

out the testing of any whole batch, the FDP estimate gradually increases while a batch is being tested. Only

when the batch has finished testing in its entirety does the algorithm get rewarded for every rejection it made

in that batch. This implies that the batch size should be carefully chosen, as the achieved power decreases

with batch size. This is numerically verified in Section 7.

The LORD++, LOND, SAFFRON, and alpha-investing procedures for mini-batch testing are explicitly

stated in the Appendix, obtained by substituting X b,t
mini into Algorithms 1-4.

6. Controlling mFDR and FDR at fixed and stopping times

The previous three sections have shown that the abstract framework of conflict sets is a useful representa-

tional tool for expressing interactions across different tests, yielding three natural specific testing protocols.

In this section, we return to the abstract unified framework in order to prove mFDR guarantees of LORD*

and SAFFRON*, which implies mFDR control of all of the setting-specific algorithms. Additionally, we pro-

vide several results on strict FDR control under asynchrony and dependence, although under more stringent

conditions.

6.1 mFDR control

We begin by focusing on fixed-time mFDR control. As mentioned earlier, the claim for LORD* follows triv-

ially from Proposition 1, so the proof of Theorem 2, given in the Appendix, focuses on providing guarantees

for SAFFRON*.

Theorem 2 Suppose that the null p-values are super-uniform conditional on F−XEt
, meaning Pr

{
Pt ≤ u

∣∣∣ F−XEt

}
≤

u, for all u ∈ [0, 1] and t ∈ H0. Then, LORD* and SAFFRON* with target FDR level α both guarantee that

mFDR(t) ≤ α for all t ∈ N.

Notice that the super-uniformity assumption above reduces to conditions (6), (7), and (8), in the three

settings previously described.

The result of Theorem 2 actually holds more generally; in particular, in the following theorem we show

that mFDR is also controlled at certain stopping times. Our approach is based on constructing a process

which behaves similarly to a submartingale, which allows us to derive a result mimicking optional stopping.

This process, however, is not a submartingale in the general case. For example, it is not a submartingale in

the synchronous setting under local dependence, described in Section 4.

More specifically, we show that LORD* and SAFFRON* control mFDR at any stopping time T which

satisfies the following conditions:

(C1) T is defined with respect to the filtration F−X t+1

, {T = t} ∈ F−X t+1

;

(C2) T is almost surely bounded.
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Recall that F−X t+1

denotes the non-conflicting information about the first t tests (in particular, not the

first t+1), and hence the offset by 1 in indexing. Intuitively, this means that the decision to stop at time t can

depend on all information up to time t that the algorithm is allowed to utilize.

Condition (C2) is a mild one, as in practice we primarily care about bounded stopping times. For instance,

one would not wait infinitely long to observe the first rejection; if Tr1 denotes the time of the first rejection, a

natural stopping time would be T : = Tr1 ∧ tmax, where tmax is the fixed longest time one is willing to wait

for a rejection.

When Et = t and the p-values are independent, we require the same conditions as Foster and Stine

(2008) in their stopping-time analysis of the mFDR. Consequently, their result can be seen as a special case

of Theorem 3, given that alpha-investing is a special instance of SAFFRON.

Theorem 3 Suppose that the null p-values are super-uniform conditional on F−XEt
, meaning Pr

{
Pt ≤ u

∣∣∣ F−XEt

}
≤

u, for all u ∈ [0, 1] and t ∈ H0. Consider any stopping time T that satisfies conditions (C1-C2). Then,

LORD* and SAFFRON* with target FDR level α both control mFDR at T : mFDR(T ) ≤ α.

6.2 FDR control

Even though the main objective of the paper is to provide mFDR guarantees, one can also obtain FDR control

for LORDasync and SAFFRONasync, provided that the p-values in the sequence are independent. This is in

line with earlier work where (synchronous) online FDR control has only been proved under independence

assumptions (Javanmard and Montanari, 2018; Ramdas et al., 2017, 2018). While our arguments below gen-

eralize the earlier ones, we stress that the independence assumption may not be reasonable in asynchronous

settings, which is why we focused on the mFDR for most of the paper and we only present the argument

below for completeness.

For FDR control, we additionally require αt and λt to be monotone. In the context of LORDasync, this

means that

αt = ft(R1, . . . ,Ri, . . .Rt−1) ≥ ft(R1, . . . ,R
′
i, . . .Rt−1) = α′

t

whenever R′
i ⊆ Ri. For SAFFRONasync, we require the same condition also when C′

i ⊆ Ci, both for αt and

λt. All update rules stated in this paper are monotone by design.

First we state a technical lemma that is the key ingredient in proving FDR control of our asynchronous

procedures, which generalizes several similar lemmas that have appeared in related work (Javanmard and

Montanari, 2018; Ramdas et al., 2017, 2018).

Lemma 4 Assume that null p-values are independent of each other and of the non-nulls. Moreover, let

g : {N∪ {0}}M → R be any coordinate-wise non-decreasing function. Then, for any index t ≤ M such that

t ∈ H0, we have:

E

[
αt1 {Pt > λt}

(1− λt)g(|R|1:M )

∣∣∣∣ F−XEt

async

]
≥ E

[
αt

g(|R|1:M )

∣∣∣∣ F−XEt

async

]
≥ E

[
1 {Pt ≤ αt}

g(|R|1:M )

∣∣∣∣ F−XEt

async

]
,

where |R|1:M = (|R1|, . . . , |RM |).

With this lemma, we directly obtain FDR guarantees of LORDasync and SAFFRONasync under indepen-

dence, as stated in Theorem 5.

Theorem 5 Suppose that the null p-values are independent of each other and of the non-nulls, and that

αt and λt are monotone. Then, LORDasync and SAFFRONasync with target FDR level α both guarantee

FDR(t) ≤ α for all t ∈ N.

Additionally, we prove that the original LOND algorithm (Javanmard and Montanari, 2015) controls

FDR for an arbitrary sequence of p-values that satisfy positive regression dependency on a subset (PRDS)

(Benjamini and Yekutieli, 2001), without any correction. In other words, under the PRDS assumption, it
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suffices to take all conflict sets in the sequence to be empty. For convenience, we state the formal definition

of PRDS in the Appendix.

Recall the setup of the LOND algorithm. Given a non-negative sequence {γj}
∞
j=1 such that

∑∞
j=1 γj = 1,

the test levels are set as αt = αγt(|R(t− 1)| ∨ 1), where |R(t− 1)| denotes the number of rejections at time

t− 1. Note that this rule is monotone, in the sense that αt is coordinate-wise non-decreasing in the vector of

rejection indicators (R1, . . . , Rt−1). Below, we prove that LOND controls the FDR at any time t ∈ N under

PRDS.

Recalling the definition of reshaping (Ramdas et al., 2019; Blanchard and Roquain, 2008), we will also

prove that if {βt} is a sequence of reshaping functions, then using the test levels α̃t := αγtβt(|R(t−1)| ∨1)
controls FDR under arbitrary dependence. We call this the reshaped LOND algorithm. As one example,

using the Benjamini-Yekutieli reshaping yields α̃t := αγt(|R(t− 1)| ∨ 1)/(
∑t

i=1
1
i
).

Theorem 6 (a) The LOND algorithm satisfies FDR(t) ≤ α for all t ∈ N under positive dependence

(PRDS).

(b) Reshaped LOND satisfies FDR(t) ≤ α for all t ∈ N under arbitrary dependence.

7. Numerical experiments

Here we present the results of several numerical simulations, which show the gradual change in performance

of LORD* and SAFFRON* with the increase of asynchrony and the lags of local dependence.3 We also

compare these solutions to existing procedures with formal FDR guarantees under dependence. The plots in

this section compare the achieved power and FDR of LORDasync, SAFFRONasync, LORDdep, SAFFRONdep,

LORDmini and SAFFRONmini for different problem parameters, in settings with p-values computed from

Gaussian observations. We present additional experiments, including those on real data, in the Appendix.

The justification for focusing on synthetic data is two-fold. First, there is no standardized real data set

for testing online FDR procedures. The quintessential applications of these methods involve testing with

sensitive data, which are not publicly available due to privacy concerns. Second, even when real data are

obtainable, it is unclear how one would evaluate the ground truth.

In all of the simulations we present the FDR is controlled at α = 0.05, and we estimate the FDR and

power by averaging the results of 200 independent trials. The SAFFRON-type algorithms use the constant

candidacy threshold sequence λ = 1/2, across all tests. The LORD-type algorithms use the LORD++ update

for test levels. Each figure additionally plots the performance of uncorrected testing, in which the constant

test level αt = α = 0.05 is used across all t ∈ N, and alpha-spending, whose test levels decay according to

the {γt}
∞
t=1 sequence of LORD* and SAFFRON*.

The experiments test for the means of M = 1000 Gaussian observations, and each null hypothesis takes

the form Hi : µi = 0, where µi is the mean of the Gaussian sample. We generate samples {Zi}
M
i=1, where

Zi ∼ N(µi, 1) and the parameter µi is chosen as µi = ξF1, where ξ ∼ Bern(π1), for a fixed proportion

of non-nulls in the sequence π1, and some random variable F1. We consider two distributions for F1—a

degenerate distribution with a point mass at µc, where µc is a fixed constant for the whole sequence, or

N(0, 2 log(M)). The motivation for the latter is that
√
2 log(M) is the minimax amplitude for estimation

under the sparse Gaussian sequence model. In the case of the mean coming from a degenerate distribution,

we form one-sided p-values as Pi = Φ(−Zi), where Φ is the standard Gaussian CDF. If the mean has a

Gaussian distribution, we form two-sided p-values, i.e., Pi = 2Φ(−|Zi|).

7.1 Varying asynchrony

First we show the results of simulated asynchronous tests, in which the p-values are independent. At each time

step, the test duration is sampled from a geometric distribution with parameter p: Ei ∼ i− 1 + Geom(p) for

all i. This implies that p = 1 yields the fully synchronous setting, while, as p gets smaller, the expectation of

3. The code for all experiments in this section is available at: https://github.com/tijana-zrnic/async-online-FDR-code
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Figure 5: Power and FDR of LORDasync and SAFFRONasync with varying the parameter of asynchrony p of

the tests. In all five runs LORDasync and SAFFRONasync have the same parameters ({γj}
∞
j=1,W0). The mean

of observations under the alternative is a point mass at µc = 3.
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Figure 6: Power and FDR of LORDasync and SAFFRONasync with varying the parameter of asynchrony p of

the tests. In all five runs LORDasync and SAFFRONasync have the same parameters ({γj}
∞
j=1,W0). The mean

of observations under the alternative is N(0, 2 log(M)).

the test duration grows larger, hence the procedure gets more asynchronous, and consequently less powerful.

Figure 5 shows numerically how changing p affects the achieved power of LORDasync and SAFFRONasync,

across different non-null proportions π1, when the mean of the alternative is fixed as µc = 3. Figure 6 plots

power and FDR of LORDasync and SAFFRONasync against π1 for normally distributed means, showing a more

gradual change in performance with the increase of asynchrony.

Building on our discussion in Section 1.2, we note that certain sequential tests have simpler, less “opti-

mized” counterparts that do not require knowledge of the test level up front. As a result, standard online FDR

algorithms can be applied. This leads to another tradeoff in asynchronous testing—one between the power

gain of optimized tests, which make use of the test level at the beginning of the test, and the accompanying

power loss when running such tests asynchronously. We illustrate this point numerically in Appendix D,

where we simulate A/B tests of varying levels of asynchrony using two approaches: an optimized one which

makes use of αi throughout the test, and a naive one which computes a p-value without knowledge of αi.

7.2 Varying the lag of dependence

The second set of simulations considers synchronous testing of locally dependent p-values. We take Lt to
be invariant and equal to L, which reduces to lagged dependence. We generate an M -dimensional vector of
Gaussian observations (Z1, . . . , ZM ), which are marginally distributed according to the model described at
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Figure 7: Power and FDR of LORDdep and SAFFRONdep with varying the dependence lag L in the p-value

sequence. In all five runs LORDdep and SAFFRONdep have the same parameters ({γj}
∞
j=1,W0). The mean

of observations under the alternative is a point mass at µc = 3.
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Figure 8: Power and FDR of LORDdep and SAFFRONdep with varying the dependence lag L in the p-value

sequence. In all five runs LORDdep and SAFFRONdep have the same parameters ({γj}
∞
j=1,W0). The mean

of observations under the alternative is N(0, 2 log(M)).

the beginning of the section, and have the following M ×M Toeplitz covariance matrix:

Σ(M,L, ρ) =
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ρ 1 ρ . . . ρL−1 ρL . . . 0 0 0
...
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. . .

...
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. . .

...

0 0 0 . . . 0 0 . . . ρ 1 ρ
0 0 0 . . . 0 0 . . . ρ2 ρ 1



































, (9)

where we set ρ = 0.5. Figure 7 compares the power and FDR of LORDdep and SAFFRONdep under local

dependence, when the mean of the observations under the alternative is µc = 3 with probability 1. Figure 8

gives the same comparison when the mean of non-null samples is normally distributed, which yields a slower

decrease in performance with increasing the lag.

7.3 Varying mini-batch sizes

Here we analyze the change in performance of LORDmini and SAFFRONmini when the size of mini-batches

varies. We fix the batch size nb ≡ n for all batches b. Within each batch tests are performed asynchronously,

20



ASYNCHRONOUS ONLINE TESTING OF MULTIPLE HYPOTHESES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D
R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D
R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

Figure 9: Power and FDR of LORDmini and SAFFRONmini with varying the size of mini-batches. In all five

runs LORDmini and SAFFRONmini have the same parameters ({γj}
∞
j=1,W0). The mean of observations under

the alternative is a point mass at µc = 3, and ρ = 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D
R

LORDmini, B = 1

LORDmini, B = 50

LORDmini, B = 100

LORDmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.2

0.4

0.6

0.8

1.0
P
ow

er

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
D
R

SAFFRONmini, B = 1

SAFFRONmini, B = 50

SAFFRONmini, B = 100

SAFFRONmini, B = 150

Alpha-spending

Uncorrected

Figure 10: Power and FDR of LORDmini and SAFFRONmini with varying the size of mini-batches. In all

five runs LORDmini and SAFFRONmini have the same parameters ({γj}
∞
j=1,W0). The mean of observations

under the alternative is N(0, 2 log(M)), and ρ = 0.5.

and all p-values within the same batch are dependent. In particular, they follow a multivariate normal distri-

bution, where the marginal distributions are as described at the beginning of this section, and the covariance

matrix is the Toeplitz matrix Σ(n, n− 1, ρ) (9), where we fix ρ = 0.5. Dependent p-values come in “blocks”

of size n, implying that any two p-values belonging to two different batches are independent. Figure 9 com-

pares the power and FDR of LORDmini and SAFFRONmini for different batch sizes when the mean of the

non-null Zi is a point mass at µc = 3, and Figure 10 plots the same comparison when the mean of the

non-null observations is normally distributed.

7.4 Comparison with LORD under dependence

The final set of experiments contrasts LORDdep and SAFFRONdep to the original LORD algorithm under

dependence. The latter controls FDR under arbitrary dependence, however, as mentioned earlier, this entails

a similar update to alpha-investing; more precisely, the test levels αindep
j of LORD under independence have

to be discounted by a convergent sequence {ξj}
∞
j=1, resulting in new test levels αj : = ξjα

indep
j , which

essentially diminishes the effect of αindep
j earning extra budget through discoveries. We generate the p-value

sequence using the same scheme as in Subsection 7.2; they are computed from Gaussian observations with

covariance matrix Σ(M,L, ρ) (9), where we fix ρ = 0.5 and L = 150. By construction, this sequence is

only locally dependent, which implies that the application of our algorithms comes with provable guarantees.

Figure 11 compares the power and FDR of SAFFRONdep, LORDdep, LORD under dependence, and alpha-
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Figure 11: Power and FDR of SAFFRONdep, LORDdep, LORD under dependence, and alpha-spending. The

decay of test levels in alpha-spending and discount sequence {ξj}
∞
j=1 act according to the sequence {γj}

∞
j=1

used for SAFFRONdep and LORDdep. On the left two plots, the mean of observations under the alternative is

a point mass at µc = 3, while on the right two plots, it is distributed as N(0, 2 log(M)). We fix parameters

ρ = 0.5 and L = 150.

spending when the mean of the non-null Zi is a point mass at µc = 3 (left), as well as in the setting with a

normally distributed mean under the alternative (right).

8. Discussion

We have presented a unified framework for the design and analysis of online FDR procedures for asyn-

chronous testing, as well as testing locally dependent p-values. Our framework reposes on the concept of

“conflict sets,” and we show the value of this concept for the study of both asynchronous testing and local

dependence and for their combination. We derive two specific procedures that make use of conflict sets to

yield algorithms that provide online mFDR and FDR control.

Several technical questions remain open for future work. While we have shown strict FDR control of

our asynchronous procedures under independence, it is still unclear how to prove their FDR control under

local dependence. We believe that it might also be possible to prove FDR control of uncorrected LORD

under positive dependence, similarly to how we proved validity of the plain LOND algorithm under positive

dependence in Section 6. Finally, it would be of great interest to obtain strict FDR control at stopping

times, a problem that remains open even under independence of p-values. In mFDR control, this proof relies

on a martingale-like argument which decouples the numerator and denominator of the FDP. The expected

numerator increments, conditional on the information from past tests, are then controlled by invoking super-

uniformity. When false rejection indicators are coupled with the FDP denominator, however, it is less clear

how to invoke conditional super-uniformity. This is a non-trivial step even when analyzing FDR at fixed

times, as witnessed by many “super-uniformity lemmas” in the literature (Javanmard and Montanari, 2018;

Ramdas et al., 2017, 2018).
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Appendix A. Deferred proofs

A.1 Proof of Proposition 1

Fix a time step t ∈ N. By this time, exactly t tests have started, and hence at most those t decisions are

known. Therefore, by linearity of expectation:

E [|V(t)|] = E


 ∑

Ej≤t,j∈H0

1 {Pj ≤ αj}


 ≤

∑

j≤t,j∈H0

E [1 {Pj ≤ αj}] .

Applying the law of iterated expectations by conditioning on F−XEj
for each term, we obtain:

∑

j≤t,j∈H0

E [1 {Pj ≤ αj}] =
∑

j≤t,j∈H0

E

[
E

[
1 {Pj ≤ αj}

∣∣∣ F−XEj
]]

≤
∑

j≤t,j∈H0

E [αj ] ,

which follows due to measurability of αj with respect to F−X j

⊆ F−XEj
, and the super-uniformity assump-

tion. If we assume FDP∗(t) : =
∑

j≤t,j∈H0 αj

(
∑

Ej≤t
Rj)∨1 ≤ α, then it follows that:

∑

j≤t,j∈H0

E [αj ] = E


 ∑

j≤t,j∈H0

αj


 ≤ αE




∑

Ej≤t

Rj


 ∨ 1


 = αE [|R(t)| ∨ 1] ,

which follows by linearity of expectation and the assumption on FDP∗(t). Rearranging yields the inequality

mFDR(t) : = E[|V(t)|]
E[|R(t)|∨1] ≤ α, which completes the proof.

A.2 Proof of Theorem 2

As stated before, the guarantees for LORD* follow directly from Proposition 1, after observing that FDP∗
conf(t) ≤

F̂DPLORD*(t) ≤ α holds almost surely for all t ∈ N. Therefore, in the rest of this proof, we focus on SAF-

FRON*.

Fix a time t. Then, we have:

E [|V(t)|] = E


 ∑

Ej≤t,j∈H0

1 {Pj ≤ αj}


 ≤

∑

j≤t,j∈H0

E [1 {Pj ≤ αj}] ,

where the inequality follows because the set of rejections made by time t could be at most the set [t]. Note

that αj and λj are measurable with respect to S−X j

⊆ S−XEj
; therefore, applying iterated expectations by

conditioning on S−XEj
gives:

∑

j≤t,j∈H0

E [1 {Pj ≤ αj}] ≤
∑

j≤t,j∈H0

E [αj ] ≤
∑

j≤t,j∈H0

E

[
αj

1 {Pj > λj}

1− λj

]
,

where we apply the super-uniformity assumption. If we assume that

F̂DPSAFFRON*(t) : =

∑
j<t,j 6∈X t

αj

1−λj
1 {Pj > λj}+

∑
j∈X t∪{t}

αj

1−λj(∑
j<t,j 6∈X t Rj

)
∨ 1

≤ α,
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then it follows that:

∑

j≤t,j∈H0

E

[
αj

1 {Pj > λj}

1− λj

]
≤

∑

j≤t

E

[
αj

1 {Pj > λj}

1− λj

]

≤ E


 ∑

j<t,j 6∈X t

αj

1− λj

1 {Pj > λj}+
∑

j∈X t∪{t}

αj

1− λj


 ≤ αE




 ∑

j<t,j 6∈X t

Rj


 ∨ 1




≤ αE [|R(t)| ∨ 1] ,

where the first inequality drops the condition j ∈ H0, the second one ignores the condition 1 {Pj > λj} for

some terms, the third inequality applies the assumption on F̂DPSAFFRON*(t) and the last inequality uses the

fact that R(t) contains all past rejections that are no longer conflicting. Rearranging the terms in the previous

derivation, we reach the conclusion that mFDR(t) ≤ α, which concludes the proof of the theorem.

A.3 Proof of Theorem 3

We first prove the theorem for LORD*, and then we move on to proving the SAFFRON* guarantees.

LORD*. For all t ∈ N, define the process A(t) as:

A(t) : = −
∑

i≤t,i∈H0

1 {Ei ≤ t} (1 {Pi ≤ αi} − αi) = A(t− 1)−
∑

i≤t,i∈H0

1 {Ei = t} (1 {Pi ≤ αi} − αi),

where we take A(0) = 0. Let H(t) : = 1 {T ≥ t}. Since T is a stopping time, it holds that {T ≥ t + 1} =

{T ≤ t}c ∈ F−X t+1

, therefore H(t + 1) is predictable, that is it is measurable with respect to F−X t+1

.

Define the transform (H ·A) of H by A as follows:

(H ·A)(t) : =

t∑

m=1

H(m)(A(m)−A(m− 1))

=

t∑

m=1

H(m)


−

∑

i≤m,i∈H0

1 {Ei = m} (1 {Pi ≤ αi} − αi)


 .

By taking conditional expectations, we can obtain:

E

[
(H ·A)(t+ 1)

∣∣∣ F−X t+1
]

= E

[
(H ·A)(t)

∣∣∣ F−X t+1
]
+ E

[
H(t+ 1)(A(t+ 1)−A(t))

∣∣∣ F−X t+1
]

= E

[
(H ·A)(t)

∣∣∣ F−X t+1
]

+H(t+ 1)E


−

∑

i≤t+1,i∈H0

1 {Ei = t+ 1} (1 {Pi ≤ αi} − αi)

∣∣∣∣∣∣
F−X t+1




= E

[
(H ·A)(t)

∣∣∣ F−XEt
]

+H(t+ 1)
∑

i≤t+1,i∈H0

1 {Ei = t+ 1}E
[
−(1 {Pi ≤ αi} − αi)

∣∣∣ F−X t+1
]
,

where the first and last equality follow by linearity of expectation, and the second one uses the predictability

of H(t+ 1). Now we can apply the super-uniformity condition (3), since we are summing over null indices:

E

[
−1 {Pi ≤ αi}+ αi

∣∣∣ F−XEi

]
≥ −αi + αi = 0. Therefore, additionally applying the law of iterated
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expectations, it follows that E [(H ·A)(t+ 1)] ≥ E [(H ·A)(t)]. Iteratively applying the same argument, we

reach the conclusion that, for all t ∈ N:

E [(H ·A)(t)] ≥ 0. (10)

So far we have only used the predictability of H(t); observe that, by its definition, and the definition of

A(t), (H · A)(t) = A(T ∧ t) − A(0) = A(T ∧ t), and hence by equation (10), we obtain E [(H ·A)(t)] =
E [A(T ∧ t)] ≥ 0.

Since A(T ∧ t) → A(T ) almost surely as t → ∞, by boundedness of T and dominated convergence we

can conclude that E [A(T ∧ t)] → E [A(T )] as t → ∞. With this we obtain a useful intermediate result:

E [A(T )] ≥ 0. (11)

Recall that R(t) denotes the set of all rejections made by time t, and V(t) denotes the set of false rejections

made by time t. Consider the following process:

B(t) : = α(|R(t)| ∨ 1)− |V(t)|+
∑

j≤t

αj − α


 ∑

j<t,j 6∈X t

Rj ∨ 1




≥ −|V(t)|+
∑

j≤t

αj ≥ A(t),

where the final inequality applies the definition of A(t) together with the fact that
∑

j≤t αj ≥
∑

j≤t 1 {Ej ≤ t}αj .

Now take a stopping time T such that the conditions of the theorem are satisfied, then:

E [α(|R(T )| ∨ 1)− |V(T )|] = E


B(T )−

∑

j≤T

αj + α


 ∑

j<T,j 6∈XT

Rj ∨ 1






≥ E [B(T )] ≥ E [A(T )] ≥ 0,

where the first inequality follows by definition of the LORD* FDP estimate, the second one by the relationship

already established between A(t) and B(t), and the third inequality applies the intermediate result (11).

Rearranging the terms we have that mFDR(T ) ≤ α, as desired.

SAFFRON*. We begin the proof using similar tools as in the LORD* section of the proof. For all t ∈ N,

define the process A(t) as:

A(t) : = −
∑

i≤t,i∈H0

1 {Ei ≤ t}

(
1 {Pi ≤ αi} − 1 {Pi > λi}

αi

1− λi

)

= A(t− 1)−
∑

i≤t,i∈H0

1 {Ei = t}

(
1 {Pi ≤ αi}+ 1 {Pi > λi}

αi

1− λi

)
,

where we take A(0) = 0. Let H(t) : = 1 {T ≥ t}. Since T is a stopping time, it holds that {T ≥ t + 1} =

{T ≤ t}c ∈ F−X t+1

, therefore H(t + 1) is measurable with respect to F−X t+1

. Define the following

transform of H by A:

(H ·A)(t) : =

t∑

m=1

H(m)(A(m)−A(m− 1))

=

t∑

m=1

H(m)


−

∑

i≤m,i∈H0

1 {Ei = m}

(
1 {Pi ≤ αi}+ 1 {Pi > λi}

αi

1− λi

)
 .
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By taking conditional expectations, we can obtain:

E

[
(H ·A)(t+ 1)

∣∣∣ F−X t+1
]

= E

[
(H ·A)(t)

∣∣∣ F−X t+1
]
+ E

[
H(t+ 1)(A(t+ 1)−A(t))

∣∣∣ F−X t+1
]

= E

[
(H ·A)(t)

∣∣∣ F−X t+1
]

+H(t+ 1)E


−

∑

i≤t+1,i∈H0

1 {Ei = t+ 1}

(
1 {Pi ≤ αi}+ 1 {Pi > λi}

αi

1− λi

) ∣∣∣∣∣∣
F−X t+1




= E

[
(H ·A)(t)

∣∣∣ F−X t+1
]

+H(t+ 1)
∑

i≤t+1,i∈H0

1 {Ei = t+ 1}E

[
−

(
1 {Pi ≤ αi}+ 1 {Pi > λi}

αi

1− λi

) ∣∣∣∣ F−X t+1

]
,

where the first equality follows by linearity of expectation and the definition of the transform and the second

one uses measurability of H(t+1). The term −1 {Ei = t+ 1} (1 {Pi ≤ αi}+1 {Pi > λi}
αi

1−λi
) is clearly

non-negative when Ei 6= t + 1. If Ei = t + 1 however, we can invoke the super-uniformity condition (3),

since we are summing over null indices:

E

[
−(1 {Pi ≤ αi}+ 1 {Pi > λi}

αi

1− λi

)

∣∣∣∣ F−XEi

]
≥ −αi + (1− λi)

αi

1− λi

= 0.

Therefore, additionally applying the law of iterated expectations, it follows that E [(H ·A)(t+ 1)] ≥ E [(H ·A)(t)].
Iteratively applying the same argument, we reach the conclusion that, for all t ∈ N:

E [(H ·A)(t)] ≥ 0. (12)

So far we have only used the predictability of H(t); observe that, by its definition, and the definition of

A(t), (H · A)(t) = A(T ∧ t) − A(0) = A(T ∧ t), and hence by equation (12), we obtain E [(H ·A)(t)] =
E [A(T ∧ t)] ≥ 0.

Since A(T ∧ t) → A(T ) almost surely as t → ∞, by boundedness of T and dominated convergence we

can conclude that E [A(T ∧ t)] → E [A(T )] as t → ∞. As in the LORD* argument, we reach the result that

states:

E [A(T )] ≥ 0. (13)

Recall R(t), the set of all rejections made by time t, and V(t), the set of false rejections made by time t.
Consider the following process:

B(t) : = α(|R(t)| ∨ 1)− |V(t)|+
∑

j<t,j 6∈X t

1 {Pj > λj}
αj

1− λj

+
∑

j∈X t∪{t}

αj

1− λj

−





∑

j<t,j 6∈X t

Rj ∨ 1



α

≥ −|V(t)|+
∑

j≤t

1 {Pj > λj}
αj

1− λj

≥ A(t),

where the second inequality applies the definition of A(t) together with 1 {Ej ≤ t} ≤ 1.

Now taking a stopping time T that satisfies the conditions of the theorem, we have:

E [α(|R(t)| ∨ 1)− |V(t)|]

= E


B(T )−

∑

j<T,j 6∈XT

1 {Pj > λj}
αj

1− λj

−
∑

j∈XT∪{T}

αj

1− λj

+


 ∑

j<T,j 6∈XT

Rj ∨ 1


α




≥ E [B(T )] ≥ E [A(T )] ≥ 0,
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where the first inequality follows by construction of the SAFFRON* empirical FDP estimate, the second

inequality uses the proved relationship between A(t) and B(t), and the third inequality applies equation (13).

Rearranging the terms we have that mFDR(T ) ≤ α, as desired.

A.4 Proof of Lemma 4

We begin by focusing on the first inequality. Letting P1:M = (P1, . . . , PM ) be the original vector of p-values,

we define a “hallucinated” vector of p-values P̃ t→1
1:M : = (P̃1, . . . , P̃M ) that equals P1:M , except that the t-th

component is set to one:

P̃i =

{
1 if i = t,

Pi if i 6= t.

Further, denote by Ẽj the finish times of the tests that yield P̃j , and let Ẽj be equal to Ej for all 1 ≤

j ≤ M . Denote the set of candidates and rejections in the hallucinated sequence at time i by C̃i and R̃i,

respectively, and let α̃i be the test level for P̃i. Also, let R1:M = (R1, . . . ,RM ) and R̃t→1
1:M = (R̃1, . . . , R̃M )

denote the vectors of the numbers of rejections using P1:M and P̃ t→1
1:M , respectively. Similarly, let C1:M =

(C1, . . . , CM ) and C̃t→1
1:M = (C̃1, . . . , C̃M ) denote the vectors of the numbers of candidates using P1:M and

P̃ t→1
1:M , respectively.

By construction, we have the following properties:

1. Ẽj = Ej , ∀j implies αi = α̃i for all i ≤ Et.

2. R̃i = Ri and C̃i = Ci for all i < Et, since the p-values from the finished tests and the respective test

levels are the same in the original and hallucinated setting.

3. R̃Et
⊆ REt

and C̃Et
⊆ CEt

, and hence R̃i ⊆ Ri also for all i > Et, due to monotonicity of the test

levels αi and candidacy thresholds λi.

Therefore, on the event {Pt > λt}, we have REt
= R̃Et

and CEt
= C̃Et

, and hence also R1:M = R̃t→1
1:M and

C1:M = C̃t→1
1:M . This allows us to conclude that:

αt1 {Pt > λt}

(1− λt)g(|R|1:M )
=

αt1 {Pt > λt}

(1− λt)g(|R̃|t→1
1:M )

.

Since the null p-values are mutually independent and independent of the non-nulls, we conclude that

R̃t→1
1:M is independent of Pt conditioned on F−XEt

async . With this, we can obtain:

E

[
αt1 {Pt > λt}

(1− λt)g(|R|1:M )

∣∣∣∣ F−XEt

async

]
= E

[
αt1 {Pt > λt}

(1− λt)g(|R̃|t→1
1:M )

∣∣∣∣∣ F
−XEt

async

]
≥ E

[
αt

g(|R̃|t→1
1:M )

∣∣∣∣∣ F
−XEt

async

]

≥ E

[
αt

g(|R|1:M )

∣∣∣∣ F−XEt

async

]
,

where the first inequality follows by taking an expectation only with respect to Pt by invoking the asyn-

chronous super-uniformity property (6), and the second inequality follows because g(|R|1:M ) ≥ g(|R̃|t→1
1:M )

since |Ri| ≥ |R̃i| for all i by monotonicity of the test levels and candidacy thresholds. This concludes the

proof of the first inequality.

The second inequality uses a similar idea of hallucinating tests with identical finish times, only now the

p-values that these tests result in are:

P̃i =

{
0 if i = t,

Pi if i 6= t,

where Pi are the p-values in the original sequence. In a similar fashion, the following observations hold:
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1. Ẽj = Ej implies αi = α̃i for all i ≤ Et.

2. R̃i = Ri and C̃i = Ci for all i < Et, since the p-values from the finished tests and the respective test

levels are the same in the original and hallucinated setting.

3. R̃Et
⊇ REt

and C̃Et
⊇ CEt

, and hence R̃i ⊇ Ri also for all i > Et, due to monotonicity of the test

levels αi.

Then, on the event {Pt ≤ αt}, we have REt
= R̃Et

and CEt
= C̃Et

, and hence also R1:M = R̃t→1
1:M and

C1:M = C̃t→1
1:M . From this we conclude that:

1 {Pt ≤ αt}

g(|R|1:M )
=

1 {Pt ≤ αt}

g(|R̃|t→1
1:M )

.

As in the first part of the proof, we use the fact that the null p-values are mutually independent and

independent of the non-nulls, which allows us to conclude that R̃t→1
1:M is independent of Pt conditioned on

FXEt

async . This observation results in the following:

E

[
1 {Pt ≤ αt}

g(|R|1:M )

∣∣∣∣ FXEt

async

]
= E

[
1 {Pt ≤ αt}

g(|R̃|t→1
1:M )

∣∣∣∣∣ F
XEt

async

]
≤ E

[
αt

g(|R̃|t→1
1:M )

∣∣∣∣∣ F
XEt

async

]

≤ E

[
αt

g(|R|1:M )

∣∣∣∣ FXEt

async

]
,

where the first inequality follows by taking an expectation only with respect to Pt by invoking the asyn-

chronous super-uniformity property (6), and the second inequality follows because g(|R|1:M ) ≤ g(|R̃|t→1
1:M )

since |Ri| ≤ |R̃i| for all i by monotonicity of the test levels. This concludes the proof of the lemma.

A.5 Proof of Theorem 5

LORDasync. Fix a time step t. First we show the claim for LORDasync, so suppose that

F̂DPLORDasync
(t) : =

∑
j≤t αj∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1
≤ α.

Then:

FDR(t) : = E

[
|V(t)|

|R(t)| ∨ 1

]
= E

[∑
j≤t,j∈H0 1 {Pj ≤ αj , Ej ≤ t}∑
j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]

≤
∑

i≤t,i∈H0

E

[
1 {Pi ≤ αi}∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]
,

where the second equality follows by definition of V(t) and R(t), and the inequality drops the condition

Ei ≤ t from the numerator and applies linearity of expectation. Now we can apply Lemma 4 with g(|R|1:t) =
(
∑t

i=1 |Ri|) ∨ 1, together with iterated expectations, to obtain:

∑

i≤t,i∈H0

E

[
1 {Pi ≤ αi}∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]
≤

∑

i≤t,i∈H0

E

[
αi∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]

≤ E

[
F̂DPLORDasync

(t)
]
≤ α,

where the second inequality follows by dropping the condition i ∈ H0. This completes the proof for

LORDasync.
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SAFFRONasync. Now we move on to SAFFRONasync. Using the same steps as above, for any fixed time t,
we can conclude the following inequality:

FDR(t) ≤
∑

i≤t,i∈H0

E

[
αi∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]
.

Here we additionally apply the other inequality of Lemma 4, with the same choice g(|R|1:t) = (
∑t

i=1 |Ri|)∨
1, again with iterated expectations:

∑

i≤t,i∈H0

E

[
αi∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]
≤

∑

i≤t,i∈H0

E

[
αi1 {Pi > λi}

(1− λi)(
∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1)

]
.

Assuming that the inequality

F̂DPSAFFRONasync
(t) : =

∑
j≤t

αj

1−λj
(1 {Pj > λj , Ej ≤ t}+ 1 {Ej > t})

∑
j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

≤ α

holds, it follows that:

∑

i≤t,i∈H0

E

[
αi1 {Pi > λi}

(1− λi)(
∑

j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1)

]

≤ E

[∑
j≤t

αj

1−λj
(1 {Pj > λj , Ej ≤ t}+ 1 {Ej > t})

∑
j≤t 1 {Pj ≤ αj , Ej ≤ t} ∨ 1

]
= E

[
F̂DPSAFFRONasync

(t)
]
≤ α,

where the first inequality follows by dropping the conditions j ∈ H0 and {Pj > λj} for some rounds. The

second inequality follows by assumption, hence proving the theorem.

A.6 Proof of Theorem 6

For statement (a), we begin by noting that for any t ∈ N:

FDR(t) = E

[∑
i≤t,i∈H0 1 {Pi ≤ αi}

|R(t)| ∨ 1

]
≤

∑

i≤t,i∈H0

E

[
1 {Pi ≤ αi}

|R(i− 1)| ∨ 1

]
=

∑

i≤t,i∈H0

γiαE

[
1 {Pi ≤ αi}

αi

]
,

where the first equality follows by definition of FDR, the sole inequality follows because the number of

rejections can only increase with time, and the second equality follows by definition of the LOND rule for

αi. Lemma 1 from Ramdas et al. (2019) now asserts that the term in the expectation is bounded by one under

PRDS. Hence, by also noting that
∑

i≤t γi ≤ 1 we immediately deduce statement (a).

For statement (b), we follow almost the same sequence of steps to note that:

FDR(t) = E

[∑
i≤t,i∈H0 1 {Pi ≤ α̃i}

|R(t)| ∨ 1

]
≤

∑

i≤t,i∈H0

E

[
1 {Pi ≤ α̃i}

|R(i− 1)| ∨ 1

]

=
∑

i≤t,i∈H0

γiαE

[
1 {Pi ≤ γiαβi(|R(i− 1)| ∨ 1)}

γiα(|R(i− 1)| ∨ 1)

]
.

We now apply Lemma 1 from Ramdas et al. (2019) with c = γiα and f(P ) = |R(i− 1)| ∨ 1 to again assert

that the term in the expectation is bounded by one under arbitrary dependence, hence establishing statement

(b).
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Appendix B. Different instantiations of LORD* and SAFFRON*

Here we give explicit statements of different instances of LORD* and SAFFRON* described in Section 3,

Section 4 and Section 5. All of the following algorithms are special instances of Algorithms 1-4, given in

Section 2.
First we state LORDasync and SAFFRONasync explicitly, by taking X t = X t

async in the statement of LORD*
and SAFFRON*. Algorithm 5 and Algorithm 6 state the LORD++ and LOND versions of LORDasync, Al-
gorithm 7 states SAFFRONasync for constant candidacy thresholds, i.e. {λj} ≡ λ, and Algorithm 8 states
asynchronous alpha-investing, i.e. SAFFRONasync when λj = αj . Recall the definition of rk, which in this
setting takes the form:

rk = min{i ∈ [t] :

i
∑

j=1

Rj1 {Ej ≤ i} ≥ k}.

Algorithm 5 The asynchronous LORD++ algorithm as a version of LORDasync

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W0 ≤ α
α1 = γ1W0

for t = 1, 2, . . . do
start t-th test with level αt

αt+1 = γt+1W0 + γt+1−r1 (α−W0) +
(

∑

j≥2 γt+1−rj

)

α

end

Algorithm 6 The asynchronous LOND algorithm as a version of LORDasync

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1
W0 = α
α1 = γ1W0

for t = 1, 2, . . . do
start t-th test with level αt

αt+1 = αγt+1

(

(
∑t

j=1 1 {Pj ≤ αj , Ej ≤ t}) ∨ 1
)

end

Algorithm 7 The SAFFRONasync algorithm for constant λ

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, candidate threshold λ ∈ (0, 1), initial

wealth W0 ≤ α
α1 = (1− λ)γ1W0

for t = 1, 2, . . . do
start t-th test with level αt

αt+1 = min

{

λ, (1− λ)

(

W0γt+1−C
#
0+

+ (α−W0)γt+1−r1−C
#
1+

+
∑

j≥2 αγt+1−rj−C
#
j+

)}

,

where C#
j+ =

∑t
i=rj+1 |Ci|

end

Algorithm 8 The asynchronous alpha-investing algorithm as a special case of SAFFRONasync

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W0 ≤ α
s1 = γ1W0

α1 = s1/(1 + s1)
for t = 1, 2, . . . do

start t-th test with level αt

st+1 = W0γt+1−R
#
0

+
+ (α−W0)γt+1−r1−R

#
1+

+
∑

j≥2 αγt+1−rj−R
#
j+

, where R#
j+ =

∑t
i=rj+1 |Ri|

αt+1 = st+1/(1 + st+1)
end
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Below we give explicit statements of LORDdep and SAFFRONdep as special cases of LORD* and SAF-

FRON*. Algorithm 9 and Algorithm 10 state LORD++ and LOND under local dependence, both as instances

of LORDdep. Algorithm 11 states SAFFRONdep for the constant sequence {λj} ≡ λ, and Algorithm 12 states

alpha-investing under local dependence, which is a particular instance of SAFFRONdep obtained by taking

λj = αj . The definition of rk under local dependence simplify to:

rk = min{i ∈ [t] :

i−Li+1∑

j=1

Rj ≥ k}.

Algorithm 9 The LORD++ algorithm under local dependence as a version of LORDdep

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W0 ≤ α
α1 = γ1W0

for t = 1, 2, . . . do
run t-th test with level αt

αt+1 = γt+1W0 + γt+1−r1 (α−W0) +
(

∑∞
j=2 γt+1−rj

)

α

end

Algorithm 10 The LOND algorithm under local dependence as a version of LORDdep

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1
W0 = α
α1 = γ1W0

for t = 1, 2, . . . do
run t-th test with level αt

αt+1 = αγt+1

(

(
∑t−Lt+1

i=1 Ri) ∨ 1
)

end

Algorithm 11 The SAFFRONdep algorithm for constant λ

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, candidate threshold λ ∈ (0, 1), initial

wealth W0 ≤ α
α1 = γ1W0

for t = 1, 2, . . . do
run t-th test with level αt

αt+1 = min
{

λ, (1− λ)
(

W0γt+1−C0+ + (α−W0)γt+1−r1−C1+
+ α(

∑

j≥2 γt+1−rj−Cj+
)
)}

,

where Cj+ =
∑t−Lt+1

i=rj+1 Ci

end

Algorithm 12 The alpha-investing algorithm under local dependence as a special case of SAFFRONdep

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W0 ≤ α
s1 = γ1W0

α1 = s1/(1 + s1)
for t = 1, 2, . . . do

run t-th test with level αt

st+1 = W0γt+1−R0+ + (α−W0)γt+1−r1−R1+
+

∑

j≥2 αγt+1−rj−Rj+
, where Rj+ =

∑t−Lt+1

i=rj+1 Ri

αt+1 = st+1/(1 + st+1)
end

Algorithms 13 and 14 describe the mini-batch versions of LORD++ and LOND respectively, both as

cases of LORDmini. Algorithm 15 is a variant of SAFFRONmini with λj chosen constant and equal to some
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λ ∈ (0, 1), and Algorithm 16 is the alpha-investing version of SAFFRONmini, in which λj = αj . In this

setting, the definition of rk is slightly tweaked in order to satisfy the convention of double indexing; rk refers

to the batch in which the k-th non-conflicting rejection occurs:

rk : = min{i ∈ [b− 1] :

i∑

j=1

|Rj | ≥ k}.

Algorithm 13 The mini-batch LORD++ algorithm as a version of LORDmini

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W1,0 ≤ α
α1,1 = γ1W1,0

for b = 1, 2, . . . do

if b > 1 then
Wb,0 = Wb−1,n + α|Rb−1| −W1,01 {r1 = b− 1}

end

for t = 1, 2, . . . , nb do
start t-th test in the b-th batch with level αb,t

αb,t+1 = γ∑b−1
i=1

ni+t+1
W1,0 + γ∑b−1

i=1
ni+t+1−

∑r1
i=1

ni
(α−W1,0) +

(

∑∞
j=2 γ∑b−1

i=1
ni+t+1−

∑rj
i=1

ni

)

α

end

end

Algorithm 14 The mini-batch LOND algorithm as a version of LORDmini

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1
α1,1 = γ1α

for b = 1, 2, . . . do

for t = 1, 2, . . . , nb do
start t-th test in the b-th batch with level αb,t

αb,t+1 = αγ∑b−1
i=1

ni+t+1

(

(
∑b−1

j=1 |Rj |) ∨ 1
)

end

end

Algorithm 15 The SAFFRONmini algorithm for constant λ

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W1,0 ≤ α, constant λ

α1,1 = (1− λ)γ1W1,0

for b = 1, 2, . . . do

for t = 1, 2, . . . , n do
start t-th test in the b-th batch with level αb,t

αb,t+1 = (1 − λ)(γ∑b−1
i=1

ni−|C+
0
|+t+1

W1,0 + γ∑b−1
i=1

ni−|C+
1
|+t+1−

∑r1
i=1

ni
(α − W1,0) +

(

∑∞
j=2 γ∑b−1

i=1
ni−|C+

j
|+t+1−

∑r1
i=1

ni

)

α), where |C+
j | =

∑b−1
j=rj+1 |Cj |

end

end
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Algorithm 16 The mini-batch alpha-investing as a special case of SAFFRONmini

input: FDR level α, non-negative non-increasing sequence {γj}
∞
j=1 such that

∑

j γj = 1, initial wealth W1,0 ≤ α
s1,1 = γ1W1,0

α1,1 = s1,1/(1 + s1,1)
for b = 1, 2, . . . do

for t = 1, 2, . . . , n do
start t-th test in the b-th batch with level αb,t

sb,t+1 = γ∑b−1
i=1

ni−|C+
0
|+t+1

W1,0 + γ∑b−1
i=1

ni−|C+
1
|+t+1−

∑r1
i=1

ni
(α − W1,0) +

(

∑∞
j=2 γ∑b−1

i=1
ni−|C+

j
|+t+1−

∑rj
i=1

ni

)

α, where |C+
j | =

∑b−1
j=rj+1 |Cj |

αb,t+1 = sb,t+1/(1 + sb,t+1)

end

end

Appendix C. Experiments on real data with local dependence

We perform an additional case study on a high-throughput phenotypic data set from the International Mouse

Phenotyping Consortium (IMPC) data repository. This database documents gene knockout experiments on

mice and annotates every protein coding gene by exploring the impact of the gene knockout on the resulting

phenotype. This is an example of a continuously growing data set, as the family of hypotheses and the new

knockouts grow with time. Karp et al. (2017) tested the role of genotype and the role of sex as a modifier of

genotype effect. In this section, we focus on the p-values resulting from the analysis of genotype effects. This

set of p-values exhibits local dependence—the same set of mice is used to test multiple hypotheses adjacent

on the time horizon, while p-values computed at sufficiently distant time points are statistically independent.

We use the subset of the database organized by Robertson et al. (2019), which is available at https://zenodo.org/record/2396572

Hypotheses belonging to the same batch have the same experimental ID. For the sake of computational ef-

ficiency, we only analyze the hypotheses whose experimental ID is in the interval [36700, 37000). This

results in 4275 distinct hypotheses and their corresponding p-values, split into 172 batches of varying sizes.

For different target FDR levels, we report the number of discoveries made by SAFFRONdep, LORDdep, and

alpha-spending. Since we expect a small number of truly relevant genes, for SAFFRONdep we set λ = 0.1;

all other parameters for all three algorithms are as in Section 7. We cannot evaluate the FDR and power due

to lack of ground truth, but theoretically all three procedures control the FDR at the target level.
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Figure 12: Number of rejections made by SAFFRONdep, LORDdep, and alpha-spending, for different target

FDR levels.
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Appendix D. Additional experiments with varying asynchrony

We illustrate the tradeoff between the power gain of optimized tests, which make use of the test level αi at

the beginning of the test, and the accompanying power loss when running such tests asynchronously. We do

so by contrasting optimized sequential tests with their simpler counterparts which compute p-values without

knowledge of αi in a simulated A/B testing environment.

We test null hypotheses of the form Hi : µ
(i)
treatment−µ

(i)
control = 0, and for each test we collect samples from

N(µ
(i)
control, 1) and N(µ

(i)
treatment, 1). We collect samples by uniformly sampling from the treatment and control

distribution; at every sampling step j of test i we draw a single sample from both distributions, X
(i,j)
treatment ∼

N(µ
(i)
treatment, 1), X

(i,j)
control ∼ N(µ

(i)
control, 1), akin to allocating one of two matched patients to each of those arms.

We contrast two approaches: in one, we fix the number of per-test draws n from each distribution, and simply

calculate a p-value by computing Pi = 1−Φ(
√
n/2(µ̂

(i)
treatment−µ̂

(i)
control)), where µ̂

(i)
treatment =

1
n

∑n

j=1 X
(i,j)
treatment

and µ̂
(i)
control = 1

n

∑n

j=1 X
(i,j)
control. This approach does not require an asynchronous correction. In the other

approach, we use the test level αi and the law of the iterated logarithm to adaptively stop sample collection
once a rejection is admissible; as in the first approach, we collect at most n samples from each distribution,
but we stop and make a rejection after k ≤ n draws if

k
∑

j=1

(

X
(i,j)
treatment −X

(i,j)
control

)

>
√

k(4 log(1/(αi ∧ 0.1)) + 12 log(log(1/(αi ∧ 0.1))) + 6 log(log(ek))).

Validity of this stopping rule follows from Theorem 8 in Kaufmann et al. (2016). For other stopping rules

that can be employed in nonparametric situations, see Howard et al. (2021).

Rather than fixing the total number of tests, we fix the total sample budget B. In the simpler strategy, this

corresponds to fixing the total number of tests one can perform, namely ⌊B/(2n)⌋. In the adaptive approach,

the number of tests is lower bounded by ⌊B/(2n)⌋, but can be higher if rejections are made with fewer than

n samples drawn per distribution.

For each test, with equal probability we let µ
(i)
treatment − µ

(i)
control = 0, in which case the null hypothesis is

true, or we draw the margin from an exponential distribution, µ
(i)
treatment − µ

(i)
control ∼ Exp(1), in which case the

null is false. We set α = 0.05 and average all results over 200 trials. In each trial, all considered algorithms

observe the same sequence of average treatment effects, {µ
(i)
treatment −µ

(i)
control}, but draw independent Gaussian

samples. In Figure 13, we plot the number of true discoveries made by LORD against different values of the

sample budget B for several different values of n (varying n changes the false negative rate). The adaptive

stopping strategy with a low level of asynchrony generally outperforms the naive approach; however, if the

level of asynchrony is high (relative to other problem parameters), the naive approach dominates, as expected.

Appendix E. Positive regression dependency on a subset (PRDS)

We briefly review the definition of positive regression dependency on a subset (PRDS).

Definition 7 Let D ⊆ [0, 1]n be any non-decreasing set, meaning that x ∈ D implies y ∈ D, for all y
such that yi ≥ xi for all i ∈ [n]. We say that a vector of p-values P = (P1, . . . , Pn) satisfies positive

dependence (PRDS) if for any null index i ∈ H0 and arbitrary non-decreasing D ⊆ [0, 1]n, the function

t → Pr{P ∈ D | Pi ≤ t} is non-decreasing over t ∈ (0, 1].

Clearly, independent p-values satisfy PRDS. Another important example is given for Gaussian obser-

vations. Suppose Z = (Z1, . . . , Zn) is a multivariate Gaussian with covariance matrix Σ, and let P =
(Φ(Z1, ), . . . ,Φ(Zn)) be a vector of p-values, where Φ is the standard Gaussian CDF. Then, P satisfies

PRDS if and only if, for all i ∈ H0 and j ∈ [n], Σij ≥ 0.
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Figure 13: Number of true discoveries made by LORD with simple p-values and LORDasync with a sequential

strategy, against the sample budget B. The values of n are 400 (left), 800 (middle), 1200 (right). The duration

of asynchronous tests is sampled as in Section 7.

Appendix F. Examining the difference between mFDR and FDR

In Section 7, we plotted strict FDR estimates, obtained by averaging the false discovery proportion over

200 independent trials; on the other hand, the main guarantees of this paper apply to mFDR control. For

this reason, here we provide the plot of both mFDR and FDR estimates, for all experiments in Section 7.

We estimate mFDR by computing the ratio of the average number of false discoveries and the average total

number of discoveries.
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Figure 14: The left plots reproduce FDR from Figure 5 and Figure 6, while the right plots show mFDR for

the same experiments.
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Figure 15: The left plots reproduce FDR from Figure 7 and Figure 8, while the right plots show mFDR for

the same experiments.
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Figure 16: The left plots reproduce FDR from Figure 9 and Figure 10, while the right plots show mFDR for

the same experiments.
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Figure 17: The left plots reproduce FDR from Figure 11, while the right plots show mFDR for the same

experiments.
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