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Abstract

Common Crawl is a considerably large, het-

erogeneous multilingual corpus comprised of

crawled documents from the internet, surpass-

ing 20TB of data and distributed as a set of

more than 50 thousand plain text files where

each contains many documents written in a

wide variety of languages. Even though each

document has a metadata block associated to

it, this data lacks any information about the

language in which each document is written,

making it extremely difficult to use Common

Crawl for monolingual applications. We pro-

pose a general, highly parallel, multithreaded

pipeline to clean and classify Common Crawl

by language; we specifically design it so that

it runs efficiently on medium to low resource

infrastructures where I/O speeds are the main

constraint. We develop the pipeline so that it

can be easily reapplied to any kind of hetero-

geneous corpus and so that it can be parame-

terised to a wide range of infrastructures. We

also distribute a 6.3TB version of Common

Crawl, filtered, classified by language, shuf-

fled at line level in order to avoid copyright

issues, and ready to be used for NLP applica-

tions.

1 Introduction

In recent years neural methods for Natural Lan-

guage Processing (NLP) have consistently and re-

peatedly improved the state-of-the-art in a wide

variety of NLP tasks such as parsing, PoS-

tagging, named entity recognition, machine trans-

lation, text classification and reading comprehen-

sion among others. Probably the main contribut-

ing factor in this steady improvement for NLP

models is the raise in usage of transfer learning
techniques in the field. These methods normally

consist of taking a pre-trained model and reusing

it, with little to no retraining, to solve a different

task from the original one it was intended to solve;

in other words, one transfers the knowledge from

one task to another.

Most of the transfer learning done in NLP

nowadays is done in an unsupervised manner, that

is, it normally consist of a language model that is

fed unannotated plain text in a particular language;

so that it extracts or learns the basic features and

patterns of the given language, the model is subse-

quently used on top of an specialised architecture

designed to tackle a particular NLP task. Proba-

bly the best known example of this type of model

are word embeddings which consist of real-valued

vector representations that are trained for each

word on a given corpus. Some notorious exam-

ples of word embeddings are word2vec (Mikolov

et al., 2013), GloVe (Pennington et al., 2014) and

fastText (Mikolov et al., 2018). All these models

are context-free, meaning that a given word has

one single vector representation that is indepen-

dent of context, thus for a polysemous word like

Washington, one would have one single represen-

tation that is reused for the city, the state and the

US president.

In order to overcome the problem of polysemy,

contextual models have recently appeared. Most

notably ELMo (Peters et al., 2018) which pro-

duces deep contextualised word representations

out of the internal states of a deep bidirectional

language model in order to model word use and

how the usage varies across linguistic contexts.

ELMo still needs to be used alongside a spe-

cialised architecture for each given downstream

task, but newer architectures that can be fine-tuned

have also appear. For these, the model is first fed

unannotated data, and is then fine-tuned with an-

notated data to a particular downstream task with-

out relying on any other architecture. The most re-

markable examples of this type of model are GPT-

1, GPT-2 (Radford et al., 2018, 2019), BERT (De-

vlin et al., 2018) and XLNet (Yang et al., 2019);
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the latter being the current state-of-the-art for mul-
tiple downstream tasks. All of these models are
different arrangements of the Transformer archi-
tecture (Vaswani et al., 2017) trained with differ-
ent datasets, except for XLNet which is an in-
stance of the Transformer-XL (Dai et al., 2019).

Even though these models have clear advan-
tages, their main drawback is the amount of data
that is needed to train them in order to obtain a
functional and efficient model. For the first En-
glish version of word2vec, Mikolov et al. (2013)
used a one billion word dataset consisting of vari-
ous news articles. Later Al-Rfou et al. (2013) and
then Bojanowski et al. (2017) used the plain text
from Wikipedia to train distributions of word2vec
and fastText respectively, for languages other than
English. Now, the problem of obtaining large
quantities of data aggravates even more for con-
textual models, as they normally need multiple
instances of a given word in order to capture all
its different uses and in order to avoid overfitting
due to the large quantity of hyperparameters that
these models have. Peters et al. (2018) for exam-
ple use a 5.5 billion token1 dataset comprised of
crawled news articles plus the English Wikipedia
in order to train ELMo, Devlin et al. (2018) use a
3.3 billion word2 corpus made by merging the En-
glish Wikipedia with the BooksCorpus (Zhu et al.,
2015), and Radford et al. (2019) use a 40GB En-
glish corpus created by scraping outbound links
from Reddit.3

While Wikipedia is freely available, and mul-
tiple pipelines exist4,5 to extract plain text from
it, some of the bigger corpora mentioned above
are not made available by the authors either due
to copyright issues or probably because of the in-
frastructure needed to serve and distribute such big
corpora. Moreover the vast majority of both these
models and the corpora they are trained with are
in English, meaning that the availability of high
quality NLP for other languages, specially for low-
resource languages, is rather limited.

To address this problem, we choose Common
Crawl,6 which is a 20TB mutilingual free to use
corpus composed of crawled websites from the

1Punctuation marks are counted as tokens.
2Space sparated tokens.
3https://www.reddit.com/
4https://github.com/attardi/

wikiextractor
5https://github.com/hghodrati/wikifil
6http://commoncrawl.org/

internet, and we propose a highly parallel multi-
threaded asynchronous pipeline that applies well-
known concurrency patterns, to clean and classify
by language the whole Common Crawl corpus to a
point where it is usable for Machine Learning and
in particular for neural NLP applications. We op-
timise the pipeline so that the process can be com-
pleted in a sensible amount of time even in infras-
tructures where Input/Output (I/O) speeds become
the main bottleneck.

Knowing that even running our pipeline will not
always be feasible, we also commit to publish-
ing our own version of a classified by language,
filtered and ready to use Common Crawl corpus
upon publication of this article. We will set up an
easy to use interface so that people can download
a manageable amount of data on a desired target
language.

2 Related Work

Common Crawl has already been successfully
used to train language models, even multilingual
ones. The most notable example in probably fast-
Text which was first trained for English using
Common Crawl (Mikolov et al., 2018) and then
for other 157 different languages (Grave et al.,
2018). In fact Grave et al. (2018) proposed a
pipeline to filter, clean and classify their fastText
multilingual word embeddings, which we shall
call the “fastText pre-processing pipeline.” They
used the fastText linear classifier (Joulin et al.,
2016, 2017) to classify each line of Common
Crawl by language, and downloaded the initial
corpus and schedule the I/O using some simple
Bash scripts. Their solution, however, proved to
be a synchronous blocking pipeline that works
well on infrastructures having the necessary hard-
ware to assure high I/O speeds even when storing
tens of terabytes of data at a time. But that down-
scales poorly to medium-low resource infrastruc-
tures that rely on more traditional cost-effective
electromechanical mediums in order to store this
amount of data.

Concerning contextual models, Baevski et al.
(2019) trained a BERT-like bi-directional Trans-
former for English using Common Crawl. They
followed the “fastText pre-processing pipeline”
but they removed all copies of Wikipedia inside
Common Crawl. They also trained their model
using News Crawl (Bojar et al., 2018) and using
Wikipedia + BooksCorpus, they compared three
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models and showed that Common Crawl gives the
best performance out of the three corpora.

The XLNet model was trained for English
by joining the BookCorpus, English Wikipedia,
Giga5 (Parker et al., 2011), ClueWeb 2012-B
(Callan et al., 2009) and Common Crawl. Partic-
ularly for Common Crawl, Yang et al. (2019) say
they use “heuristics to aggressively filter out short
or low-quality articles” from Common Crawl,
however they don’t give any detail about these
“heuristics” nor about the pipeline they use to
classify and extract the English part of Common
Crawl.

It is important to note that none of these projects
distributed their classified, filtered and cleaned
versions of Common Crawl, making it difficult in
general to faithfully reproduce their results.

3 Common Crawl

Common Crawl is a non-profit foundation which
produces and maintains an open repository of
web crawled data that is both accessible and
analysable.7 Common Crawl’s complete web
archive consists of petabytes of data collected over
8 years of web crawling. The repository contains
raw web page HTML data (WARC files), met-
data extracts (WAT files) and plain text extracts
(WET files). The organisation’s crawlers has al-
ways respected nofollow8 and robots.txt9

policies.
Each monthly Common Crawl snapshot is in it-

self a massive multilingual corpus, where every
single file contains data coming from multiple web
pages written in a large variety of languages and
covering all possible types of topics. Thus, in or-
der to effectively use this corpus for the previously
mentioned Natural Language Processing and Ma-
chine Learning applications, one has first to ex-
tract, filter, clean and classify the data in the snap-
shot by language.

For our purposes we use the WET files which
contain the extracted plain texts from the web-
sites mostly converted to UTF-8, as well as head-
ers containing the metatada of each crawled doc-
ument. Each WET file comes compressed in gzip
format10 and is stored on Amazon Web Services.

7http://commoncrawl.org/about/
8http://microformats.org/wiki/

rel-nofollow
9https://www.robotstxt.org/

10https://www.gnu.org/software/gzip/

We use the November 2018 snapshot which sur-
passes 20TB of uncompressed data and contains
more than 50 thousand plain text files where each
file consists of the plain text from multiple web-
sites along its metadata header. From now on,
when we mention the “Common Crawl” corpus,
we refer to this particular November 2018 snap-
shot.

4 fastText’s Pipeline

In order to download, extract, filter, clean and
classify Common Crawl we base ourselves on the
“fastText pre-processing pipeline” used by Grave
et al. (2018). Their pipeline first launches multi-
ple process, preferably as many as available cores.
Each of these processes first downloads one Com-
mon Crawl WET file which then proceeds to de-
compress after the download is over. After decom-
pressing, an instance of the fastText linear clas-
sifier (Joulin et al., 2016, 2017) is launched, the
classifier processes each WET file line by line,
generating a language tag for each line. The tags
are then stored in a tag file which holds a one-to-
one correspondence between lines of the WET file
and its corresponding language tag. The WET file
and the tag files are read sequentially and each on
the WET file line holding the condition of being
longer that 100 bytes is appended to a language
file containing only plain text (tags are discarded).
Finally the tag file and the WET files are deleted.

Only when one of these processes finishes an-
other can be launched. This means that one can
at most process and download as many files as
cores the machine has. That is, if for example a
machine has 24 cores, only 24 WET files can be
downloaded and processed simultaneously, more-
over, the 25th file won’t be downloaded until one
of the previous 24 files is completely processed.

When all the WET files are classified, one
would normally get around 160 language files,
each file holding just plain text written in its cor-
responding language. These files still need to be
filtered in order to get rid of all files containing in-
valid UTF-8 characters, so again a number of pro-
cesses are launched, this time depending on the
amount of memory of the machine. Each process
reads a language file, first filters for invalid UTF-
8 characters and then performs deduplication. A
simple non-collision resistant hashing algorithm is
used to deduplicate the files.

The fastText linear classifier works by repre-
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Figure 1: A scheme of the goclassy pipeline. The red square represents the Compressed WET files stored on
Amazon Web Services. The 3 icons represent the gzip files stored locally, the p represent one of the 50K WET
files. The q represents the filtered file and the $ represents a file of language tags, one tag per line in q. The ^
represents one of the 166 classified files. Each arrow represents an asynchronous non blocking worker and dotted
arrows represent a line filtering process.

senting sentences for classification as Bags of
Words (BoW) and training a linear classifier. A
weight matrix A is used as a look-up table over the
words and the word representations are then aver-
aged into a text representation which is fed to the
linear classifier. The architecture is in general sim-
ilar to the CBoW model of Mikolov et al. (2013)
but the middle word is replaced by a label. They
uses a softmax function f to compute the proba-
bility distribution over the classes. For a set of N
documents, the model is trained to minimise the
negative log-likelihood over the classes:

− 1

N

N∑

n=1

yn log (f(BAxn)) ,

where xn is the normalised bag of features of the
n-th document, yn is the n-th label, and A,B
are the weight matrices. The pre-trained fast-
Text model for language recognition (Grave et al.,
2018) is capable of recognising around 176 differ-
ent languages and was trained using 400 million
tokens from Wikipedia as well as sentences from
the Tatoeba website11.

5 Asynchronous pipeline

We propose a new pipeline derived from the fast-
Text one which we call goclassy, we reuse
the fastText linear classifier (Joulin et al., 2016,
2017) and the pre-trained fastText model for lan-
guage recognition (Grave et al., 2018), but we

11https://tatoeba.org/

completely rewrite and parallelise their pipeline in
an asynchronous manner.

The order of operations is more or less the same
as in the fastText pre-processing pipeline but in-
stead of clustering multiple operations into a sin-
gle blocking process, we launch a worker for each
operation and we bound the number of possible
parallel operations at a given time by the num-
ber of available threads instead of the number of
CPUs. We implement goclassy using the Go pro-
gramming language12 so we let the Go runtime13

handle the scheduling of the processes. Thus in
our pipeline we don’t have to wait for a whole
WET file to download, decompress and classify in
order to start downloading and processing the next
one, a new file will start downloading and process-
ing as soon as the scheduler is able to allocate a
new process.

When using electromechanical mediums of
storage, I/O blocking is one of the main problems
one encounters. To overcome this, we introduced
buffers in all our I/O operations, a feature that is
not present in the fastText pre-processing pipeline.
We also create, from the start, a file for each of
the 176 languages that the pre-trained fastText lan-
guage classifier is capable of recognising, and we
always leave them open, as we find that getting a
file descriptor to each time we want to write, if we
wanted leave them open just when needed, intro-
duces a big overhead.

12https://golang.org/
13https://golang.org/src/runtime/mprof.

go
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10 files 100 files 200 files

Min Max Mean Min Max Mean Min Max Mean

real
fastText 2m50s 6m45s 3m31s 13m46s 38m38s 17m39s 26m20s 47m48s 31m4s
goclassy 1m23s 3m12s 1m42s 7m42s 12m43s 9m8s 15m3s 15m47s 15m16s
user
fastText 26m45s 27m2s 26m53s 4h21m 4h24m 4h23m 8h42m 8h48m 8h45m
goclassy 10m26s 12m53s 11m0s 1h46m 1h54m 1h49m 3h37m 3h40m 3h38m
sys
fastText 40.14s 40.85s 40.56s 6m14s 6m17s 6m15s 12m26s 12m45s 12m31s
goclassy 37.34s 45.98s 39.67s 5m7s 5m34s 5m16s 9m57s 10m14s 10m5s

Table 1: Benchmarks are done using the UNIX time tool, are repeated 10 times each and are done for random
samples of 10, 100 and 200 WET files. Only the classifying and filtering part are benchmarked. The table shows
the minimum, maximum and mean time for the user, real and sys time over the 10 runs. Here “fastText” is used as
short for the pipeline.

We also do the filtering and cleaning processes
at line level before feeding each line to the classi-
fier, which makes us create a new filtered file so
that we can have a correspondence with the tag
file, which in turn will consume more space, but
that will also reduce the amount of unnecessary
classifications performed by fastText. The filtered
and file tags are then read and lines are appended
to its corresponding language file. The writing in
the classification step is asynchronous, meaning
that process writing a line to the filtered files does
not wait for the classifier to write a tag on the tag
file. Figure 1 shows the pipeline up to this point.

After all WET files are processed, we then
use Isaac Whitfield’s deduplication tool runiq14

which is based on Yann Collet’s xxhash6415, an
extremely fast non-cryptographic hash algorithm
that is resistant to collisions. We finally use the
Mark Adler’s pigz16 for data compression, as op-
posed to the canonical UNIX tools proposed in the
original fastText pipeline. We add both tools to our
concurrent pipeline, executing multiple instances
of them in parallel, in order to ensure we use the
most of our available resources at a given time.

Beyond improving the computational time re-
quired to classify this corpus, we propose a simple
improvement on the cleaning scheme in the fast-
Text pre-processing pipeline. This improvement
allows our pipeline to better take into account the
multilingual nature of Common Crawl; that is, we
count UTF-8 characters instead of bytes for set-
ting the lower admissible bound for the length of
a line to be fed into the classifier. This straightfor-

14https://github.com/whitfin/runiq
15https://github.com/Cyan4973/xxHash
16https://zlib.net/pigz/

ward modification on the fastText pre-processing
pipeline assures we take into account the multiple
languages present in Common Crawl that use non-
ASCII encoded characters.

Given that our implementation is written in Go,
we release binary distributions 17 of goclassy for
all major operating systems. Both pigz and runiq
are also available for all major operating systems.

6 Benchmarks

We test both pipelines against one another in an
infrastructure using traditional electromechanical
storage mediums that are connected to the main
processing machine via an Ethernet interface, that
is, a low I/O speed environment as compared to
an infrastructure where one would have an array
of SSDs connected directly to the main processing
machine via a high speed interface. We use a ma-
chine with an Intel R© Xeon R© Processor E5-2650
2.00 GHz, 20M Cache, and 203.1 GiB of RAM.
We make sure that no other processes apart from
the benchmark and the Linux system processes are
run. We do not include downloading, decompres-
sion or deduplication in our benchmarks as down-
loading takes far too much time, and deduplica-
tion and compression were performed with third
party tools that don’t make part of our main con-
tribution. We are mainly interested in seeing how
the way the data is fed to the classifier impacts the
overall processing time.

Benchmarks in table 1 of our goclassy pipeline
show a drastic reduction in processing time
compared to the original fastText prepossessing
pipeline. We show that in our particular infras-
tructure, we are capable of reducing the real time

17https://github.com/pjox/goclassy
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as measured by the time UNIX tool almost al-
ways by half. The user time which represents the
amount of CPU time spent in user-mode code (out-
side the kernel) within the process is almost three
times lower for our goclassy pipeline, this partic-
ular benchmark strongly suggest a substantial re-
duction in energy consumption of goclassy with
respect to the fastText pipeline.

As we understand that even an infrastructure
with more than 20TB of free space in traditional
electromechanical storage is not available to ev-
eryone and we propose a simple parametrization in
our pipeline that actively deletes already processed
data and that only downloads and decompresses
files when needed, thus ensuring that no more than
10TB of storage are used at a given time. We
nevertheless note that delaying decompression in-
creases the amount of computation time, which is
a trade-off that some users might make as it might
be more suitable for their available infrastructure.

7 OSCAR

Finally, we are aware that some users might not
even have access to a big enough infrastructure to
run our pipelines or just to store all the Common
Crawl data. Moreover, even if previously used
and cited in NLP and Machine Learning research,
we note that there is currently no public distri-
bution of Common Crawl that is filtered, classi-
fied by language and ready to use for Machine
Learning or NLP applications. Thus we decide
to publish a pre-processed version of the Novem-
ber 2018 copy of Common Crawl which is com-
prised of usable data in 166 different languages,
we publish18 our version under the name OSCAR
which is short for Open Super-large Crawled AL-
MAnaCH19 coRpus.

After processing all the data with goclassy, the
size of the whole Common Crawl corpus is re-
duced to 6.3TB, but in spite of this considerable
reduction, OSCAR still dwarfs all previous men-
tioned corpora having more 800 billion “words”
or spaced separated tokens and noting that this in
fact in an understatement of how big OSCAR is, as
some of the largest languages within OSCAR such
as Chinese and Japanese do not use spaces. The
sizes in bytes for both the original and the dedu-
plicated versions of OSCAR can be found in table
2. OSCAR is published under the Creative Com-

18https://team.inria.fr/almanach/oscar/
19https://team.inria.fr/almanach/

mons CC0 license (“no rights reserved”)20, so it
is free to use for all applications.

8 Conclusions

We are sure that our work will greatly benefit re-
searchers working on an either constrain infras-
tructure or a low budget setting. We are also con-
fident, that by publishing a classified version of
Common Crawl, we will substantially increase the
amount of available public data for medium to low
resource languages, thus improving and facilitat-
ing NLP research for them. Furthermore, as our
pipeline speeds-up and simplifies the treatment of
Common Crawl, we believe that our contribution
can be further parallelised and adapted to treat
multiple snapshots of Common Crawl opening the
door to what would be otherwise costly diachronic
studies of the use of a given language throughout
the internet.

Finally, we note that both our proposed pipeline
is data independent, which means that they can be
reused to process, clean and classify any sort of
big multilingual corpus that is available in plain
text form and that is UTF-8 encoded; meaning that
the impact of our work goes way beyond a single
corpus.
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Language Size Words Language Size Words

Orig Dedup Orig Dedup Orig Dedup Orig Dedup

Afrikaans 241M 163M 43,482,801 29,533,437 Lower Sorbian 13K 7.1K 1,787 966
Albanian 2.3G 1.2G 374,196,110 186,856,699 Luxembourgish 29M 21M 4,403,577 3,087,650
Amharic 360M 206M 28,301,601 16,086,628 Macedonian 2.1G 1.2G 189,289,873 102,849,595
Arabic 82G 32G 8,117,162,828 3,171,221,354 Maithili 317K 11K 69,161 874
Aragonese 1.3M 801K 52,896 45,669 Malagasy 21M 13M 3,068,360 1,872,044
Armenian 3.7G 1.5G 273,919,388 110,196,043 Malay 111M 42M 16,696,882 6,045,753
Assamese 113M 71M 6,956,663 4,366,570 Malayalam 4.9G 2.5G 189,534,472 95,892,551
Asturian 2.4M 2.0M 381,005 325,237 Maltese 24M 17M 2,995,654 2,163,358
Avaric 409K 324K 24,720 19,478 Marathi 2.7G 1.4G 162,609,404 82,130,803
Azerbaijani 2.8G 1.5G 322,641,710 167,742,296 Mazanderani 691K 602K 73,870 64,481
Bashkir 128M 90M 9,796,764 6,922,589 Minangkabau 608K 310K 5,682 4,825
Basque 848M 342M 120,456,652 45,359,710 Mingrelian 5.8M 4.4M 299,098 228,629
Bavarian 503 503 399 399 Mirandese 1.2K 1.1K 171 152
Belarusian 1.8G 1.1G 144,579,630 83,499,037 Modern Greek 62G 27G 5,479,180,137 2,412,419,435
Bengali 11G 5.8G 623,575,733 363,766,143 Mongolian 2.2G 838M 181,307,167 68,362,013
Bihari 110K 34K 8,848 2,875 Nahuatl languages 12K 11K 1,234 1,193
Bishnupriya 4.1M 1.7M 198,286 96,940 Neapolitan 17K 13K 5,282 4,147
Bosnian 447K 116K 106,448 20,485 Nepali 1.8G 1.2G 107,448,208 71,628,317
Breton 29M 16M 5,013,241 2,890,384 Newari 5.5M 4.1M 564,697 288,995
Bulgarian 32G 14G 2,947,648,106 1,268,114,977 Northern Frisian 4.4K 4.4K 1,516 1,516
Burmese 1.9G 1.1G 56,111,184 30,102,173 Northern Luri 76K 63K 8,022 6,740
Catalan 8.0G 4.3G 1,360,212,450 729,333,440 Norwegian 8.0G 4.7G 1,344,326,388 804,894,377
Cebuano 39M 24M 6,603,567 3,675,024 Norwegian Nynorsk 85M 54M 14,764,980 9,435,139
Central Bikol 885 885 312 312 Occitan 5.8M 3.7M 750,301 512,678
Central Khmer 1.1G 581M 20,690,610 10,082,245 Oriya 248M 188M 14,938,567 11,321,740
Central Kurdish 487M 226M 48,478,334 18,726,721 Ossetian 13M 11M 1,031,268 878,765
Chavacano 520 520 130 130 Pampanga 760 304 130 52
Chechen 8.3M 6.7M 711,051 568,146 Panjabi 763M 460M 61,847,806 37,555,835
Chinese 508G 249G 14,986,424,850 6,350,215,113 Persian 79G 38G 9,096,554,121 4,363,505,319
Chuvash 39M 26M 3,041,614 2,054,810 Piemontese 2.1M 1.9M 362,013 337,246
Cornish 44K 14K 8,329 2,704 Polish 109G 47G 15,277,255,137 6,708,709,674
Croatian 226M 110M 34,232,765 16,727,640 Portuguese 124G 64G 20,641,903,898 10,751,156,918
Czech 53G 24G 7,715,977,441 3,540,997,509 Pushto 361M 242M 46,559,441 31,347,348
Danish 16G 9.5G 2,637,463,889 1,620,091,317 Quechua 78K 67K 10,186 8,691
Dhivehi 126M 79M 7,559,472 4,726,660 Romanian 25G 11G 3,984,317,058 1,741,794,069
Dimli 146 146 19 19 Romansh 7.4K 6.5K 1,093 960
Dutch 78G 39G 13,020,136,373 6,598,786,137 Russia Buriat 13K 11K 963 809
Eastern Mari 7.2M 6.0M 565,992 469,297 Russian 1.2T 568G 92,522,407,837 46,692,691,520
Egyptian Arabic 66M 33M 7,305,151 3,659,419 Sanskrit 93M 37M 4,331,569 1,713,930
Emilian-Romagnol 25K 24K 6,376 6,121 Scottish Gaelic 1.9M 1.3M 310,689 207,110
English 2.3T 1.2T 418,187,793,408 215,841,256,971 Serbian 3.9G 2.2G 364,395,411 207,561,168
Erzya 1.4K 1.2K 90 78 Serbo-Croatian 25M 5.8M 5,292,184 1,040,573
Esperanto 299M 228M 48,486,161 37,324,446 Sicilian 3.3K 2.8K 554 468
Estonian 4.8G 2.3G 643,163,730 309,931,463 Sindhi 347M 263M 43,530,158 33,028,015
Finnish 27G 13G 3,196,666,419 1,597,855,468 Sinhala 1.4G 802M 93,053,465 50,864,857
French 282G 138G 46,896,036,417 23,206,776,649 Slovak 9.1G 4.5G 1,322,247,763 656,346,179
Galician 620M 384M 102,011,291 63,600,602 Slovenian 2.5G 1.3G 387,399,700 193,926,684
Georgian 3.6G 1.9G 171,950,621 91,569,739 Somali 61K 16K 1,202 472
German 308G 145G 44,878,908,446 21,529,164,172 South Azerbaijani 27M 19M 2,175,054 1,528,709
Goan Konkani 2.2M 1.8M 124,277 102,306 Spanish 278G 149G 47,545,122,279 25,928,290,729
Guarani 36K 24K 7,382 4,680 Sundanese 211K 141K 30,321 20,278
Gujarati 1.1G 722M 72,045,701 50,023,432 Swahili 13M 8.1M 2,211,927 1,376,963
Haitian 3.9K 3.3K 1,014 832 Swedish 44G 25G 7,155,994,312 4,106,120,608
Hebrew 20G 9.8G 2,067,753,528 1,032,018,056 Tagalog 573M 407M 98,949,299 70,121,601
Hindi 17G 8.9G 1,372,234,782 745,774,934 Tajik 379M 249M 31,758,142 21,029,893
Hungarian 40G 18G 5,163,936,345 2,339,127,555 Tamil 9.3G 5.1G 420,537,132 226,013,330
Icelandic 1.5G 846M 219,900,094 129,818,331 Tatar 670M 305M 51,034,893 23,825,695
Ido 147K 130K 25,702 22,773 Telugu 2.5G 1.6G 123,711,517 79,094,167
Iloko 874K 636K 142,942 105,564 Thai 36G 16G 951,743,087 368,965,202
Indonesian 30G 16G 4,574,692,265 2,394,957,629 Tibetan 187M 138M 1,483,589 936,556
Interlingua 662K 360K 180,231 100,019 Tosk Albanian 5.0M 2.8M 841,750 459,001
Interlingue 24K 1.6K 5,352 602 Turkish 60G 27G 7,577,388,700 3,365,734,289
Irish 88M 60M 14,483,593 10,017,303 Turkmen 11M 6.8M 1,113,869 752,326
Italian 137G 69G 22,248,707,341 11,250,012,896 Tuvinian 12K 7.9K 759 540
Japanese 216G 106G 4,962,979,182 1,123,067,063 Uighur 122M 83M 8,657,141 5,852,225
Javanese 659K 583K 104,896 86,654 Ukrainian 53G 28G 4,204,381,276 2,252,380,351
Kalmyk 113K 112K 10,277 10,155 Upper Sorbian 4.2M 1.8M 545,351 236,867
Kannada 1.7G 1.1G 81,186,863 49,343,462 Urdu 2.7G 1.7G 331,817,982 218,030,228
Karachay-Balkar 2.6M 2.3M 185,436 166,496 Uzbek 21M 12M 2,450,256 1,381,644
Kazakh 2.7G 1.5G 191,126,469 108,388,743 Venetian 18K 17K 3,492 3,199
Kirghiz 600M 388M 44,194,823 28,982,620 Vietnamese 68G 32G 12,036,845,359 5,577,159,843
Komi 2.3M 1.2M 201,404 95,243 Volapk 2.0M 2.0M 321,121 318,568
Korean 24G 12G 2,368,765,142 1,120,375,149 Walloon 273K 203K 50,720 37,543
Kurdish 94M 60M 15,561,003 9,946,440 Waray 2.5M 2.2M 397,315 336,311
Lao 174M 114M 4,133,311 2,583,342 Welsh 213M 133M 37,422,441 23,574,673
Latin 26M 8.3M 4,122,201 1,328,038 Western Frisian 35M 26M 5,691,077 4,223,816
Latvian 4.0G 1.8G 520,761,977 236,428,905 Western Mari 1.2M 1.1M 93,338 87,780
Lezghian 3.3M 3.0M 247,646 224,871 Western Panjabi 12M 9.0M 1,426,986 1,111,112
Limburgan 29K 27K 4,730 4,283 Wu Chinese 109K 32K 11,189 4,333
Lithuanian 8.8G 3.9G 1,159,661,742 516,183,525 Yakut 42M 26M 2,547,623 1,789,174
Lojban 736K 678K 154,330 141,973 Yiddish 141M 84M 13,834,320 8,212,970
Lombard 443K 433K 75,229 73,665 Yoruba 55K 27K 8,906 3,518
Low German 18M 13M 2,906,347 2,146,417 Yue Chinese 3.7K 2.2K 186 128

Total 6.3T 3.2T 844,315,434,723 425,651,344,234

Table 2: Size of the OSCAR corpus by language measured in bytes and number of words. Standard UNIX human-
readable notation is used for the size in byte. We define “words” as spaced separated tokens, which gives a good
estimate of the size of each corpus for languages using Latin or Cyrillic alphabets, but might give a misleading size
for other languages such as Chinese or Japanese.
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