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The problem of indoor navigation is investigated using a Commercial Off-the-Shelf (COTS)

pseudolite system. The system is operated in synchronous and asynchronous mode. It is

shown that, when the system is operated in synchronous mode, it is unsuitable for deep

indoor operations: in complex propagation environments, the synchronisation required for

metre level navigation is difficult to achieve and different solutions have to be adopted.

Two asynchronous approaches are thus considered and indoor navigation with metre level ac-

curacy is demonstrated using C/N0 measurements. The approaches use a modified Receiver

Signal Strength (RSS) navigation algorithm and a weighted centroid technique, respectively.

In both cases, a pre-filtering stage has been adopted to enhance the quality of C/N0 measure-

ments. The two methods have been compared under different operating conditions and the

advantages and drawbacks of the two techniques have been analysed. The experiments dem-

onstrate that metre level accuracy can be achieved using asynchronous pseudolites. These

results are particularly encouraging since they were obtained without exploiting map con-

straints and prior knowledge of the user position.
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1. INTRODUCTION. Indoor navigation using Global Navigation Satellite

System (GNSS) signals is a challenging task that involves the solution of several pro-

blems such as signal attenuation, fading and measurement biases due to multipath

propagation. Although High Sensitivity (HS) techniques allow detecting and tracking

weak GNSS signals, indoor navigation based only on GNSS signals seems to be un-

feasible and a possible way to fill this gap is the integration with other technologies

(Van Diggelen, 2009). Among the technologies developed for indoor GNSS augmen-

tation and navigation, pseudolites or pseudo-satellites (Elrod and Van Dierendock,

1996; Cobb, 1997) have been considered for their ability to provide GNSS-like

signals which could be used with minimal receiver changes (Cobb, 1997).
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The majority of pseudolite systems exploit the same operational principle of GNSS:

all the pseudolites are synchronised to a single time scale and pseudolite signals are

used to compute travel times and pseudoranges which are finally used to compute

the user position (Söderholm and Jokitalo, 2002).

The development of synchronous systems is however characterised by stringent syn-

chronisation requirements which may lead to significant deployment costs. Moreover,

biases in the measurements could still be present due to multipath propagation.

In this paper, the limitations of synchronous pseudolite systems are experimentally

investigated using a Commercial Off-the-Shelf (COTS) pseudolite system (Laitinen

and Ström, 2009; Space System Finland, 2010). Several tests were performed and differ-

ent configurations were considered in deep indoor scenarios. Despite significant effort, it

was not possible to achieve the synchronisation required for metre level navigation and

the limitations of this technology clearly emerged. Although synchronous pseudolite

systems can provide good performance in environments such as large hangars and

open fields (Laitinen and Ström, 2009), the scenarios considered in this paper are chal-

lenging for the technology considered and hence a different approach has to be adopted.

For this reason, two asynchronous approaches have been adapted to pseudolite

navigation. The first technique uses Receiver Signal Strength (RSS) measurements

(Patwari et al., 2005) and the second is based on the weighted centroid approach

(Honkavirta et al., 2009). These techniques are commonly adopted when using WiFi

(Honkavirta et al., 2009) and other radio systems (Bekkelien, 2012) for indoor loca-

tion. Pseudolites are however attractive since pseudolite signals can be processed

using the GNSS chip already available in smartphones. In this way, seamless

outdoor/indoor navigation can be implemented. This was the original goal of the

Japanese Aerospace Exploration Agency (JAXA) for the development of the Indoor

MEssaging System (IMES) that will be the indoor extension of the Quasi-Zenith

Satellite System (QZSS). IMES exploits the proximity principle that provides a

limited accuracy corresponding to the area covered by a single IMES transmitter

(Manandhar et al., 2010). In addition to this, pseudolites are natively designed for navi-

gation purposes and their navigation message can be optimised for improving perform-

ance. For example, parameters such as the path-loss exponent can be broadcast using

the pseudolite signal. This opportunity is not provided by WiFi signals which are used

in an opportunistic way for navigation.

Thus one of the main contributions of the paper is the adaptation and empirical

analysis of asynchronous navigation approaches for pseudolites. RSS localisation

(Tarrio et al., 2008; 2011) is adapted here using the Carrier-to-Noise density power

ratio (C/N0) values estimated by a GNSS receiver processing pseudolite signals. The

user position is then determined using a modified Weighted Mean Square Error

(WMSE) criterion.

The second method considered is based on the weighted centroid (Wang et al., 2011)

where the user position is computed as a weighted mean of the positions of the pseu-

dolites in view.

A pre-filtering stage has been developed and used in both cases to enhance the quality

of the C/N0 measurements. The filter has been designed taking into account the spectral

characteristics of the C/N0 measurements collected in different indoor scenarios.

The analysis has been performed using the COTS pseudolite system mentioned

above and detailed in Section 2. Several measurement campaigns were conducted,

and the accuracy of the system was assessed using repeatability tests, where the user
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performed periodic trajectories. The consistency of the different loops performed is

used as a quality indicator for the navigation solution obtained. The two methods

have been compared under different operating conditions and the advantages and

drawbacks of the two techniques have been analysed. The different tests performed

and the results obtained are better discussed in Sections 6 and 7. The experiments dem-

onstrate that metre level accuracy can be achieved using asynchronous pseudolites.

Moreover, it is shown that the accuracy of the position fixes depends strongly on the

geometry defined by the locations of the pseudolites. The results obtained are particu-

larly encouraging, since they were achieved without exploiting map constraints and

prior knowledge of the user position. Although the results presented are specific to

the scenarios and the technology adopted, the work performed demonstrates the po-

tential of the approach developed. The results obtained are in line with the preliminary

findings described in Borio and Gioia (2013) where the authors performed tests using a

pseudolite system based on Universal Software Radio Peripherals (USRPs). Despite

the different technology adopted for the tests, similar results were obtained.

This work is an extension of a conference paper (Borio and Gioia, 2014) where

only preliminary results were presented and weighted centroid positioning was not

considered. In this paper, the algorithm adopted for RSS positioning is better detailed

and location based on the weighted centroid approach is analysed and used as a term

of comparison. Moreover, additional experimental results are provided. The experi-

ments demonstrate that metre level accuracy can be achieved using asynchronous

pseudolites.

The reminder of this paper is organised as follows: Section 2 describes the COTS

pseudolite system adopted in this work. The limitations of indoor synchronous

pseudolite systems are investigated in Section 3 and the asynchronous pseudolite

approaches considered for overcoming them are detailed in Section 4. The filter

used for enhancing C/N0 measurements is described in Section 5 along with the spec-

tral analysis performed for the filter design. The experimental setup and the tests per-

formed are described in Section 6. Experimental results are detailed in Section 7 and,

finally, Section 8 concludes the paper.

2. PSEUDOLITE NAVIGATION SYSTEM. In this section, the characteristics of

the COTS pseudolite system (Laitinen and Ström, 2009; Space System Finland, 2010)

used for the analysis are briefly summarised. In particular, the pseudolite system

adopted is made of:

. Six pseudolites operating in the Global Positioning System (GPS) L1 band and

able to broadcast continuous and pulsed signals. Each pseudolite can be operated

in synchronous or asynchronous mode.

. A Master Control Station (MCS) along with a software tool able to coordinate

and to synchronise the different pseudolites computing the synchronisation para-

meters for the different devices. The MCS is not required when the system is oper-

ated in asynchronous mode.

. Radio modems used for the communication between the components of the

system.

. Two modified GPS receivers able to process pseudolite signals. One of the recei-

vers is used as reference by the MCS to determine synchronisation parameters.
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The receivers are modified to support non-standard GPS Coarse Acquisition

(C/A) Pseudo-Random Noise (PRN) codes. These codes can be allocated to

pseudolite signals.

The system is able to provide signals with the same format as that of GPS L1 C/A

signals and the MCS can synchronise the system to the GPS time scale. The MCS syn-

chronises the different nodes of the system exploiting the knowledge of distances of the

different pseudolites with respect to the reference receiver. Moreover, a good synchron-

isation is possible only if the MCS have all the pseudolites in Line-Of-Sight (LOS) con-

ditions. It this way, the pseudoranges determined from the different pseudolites can be

used to compute synchronisation errors. The MCS software performs several checks to

verify the synchronisation level. If the checks are not passed, the synchronisation

process is restarted without achieving even partial results.

When operated singularly, pseudolites can be adopted for asynchronous navigation

using, for example, the approaches described in Section 4.

3. LIMITATIONS OF SYNCHRONOUS SYSTEMS. In this section, the limita-

tions of the synchronous pseudolite system considered are analysed in light of experi-

ments conducted in indoor environments.

The first limitation is that the MCS has to have all the pseudolites in LOS in order

to accurately measure the pseudoranges of the different pseudolites and compare them

with the actual distances stored in theMCS control software. As discussed in Section 2,

the MCS sends control signals to the pseudolites which adjust their local clocks in

order to match the pseudoranges measured by the MCS to the actual distances.

Thus multipath and other propagation errors have to be sufficiently small to achieve

synchronisation. Note that range measurements can be corrupted by significant

biases (Conti et al., 2012) depending on the environment considered. In the indoor

scenarios analysed in this work, the propagation conditions did not allow the MCS

to achieve the synchronisation level required.

In order to overcome limitations connected to the MCS and analyse measurement

errors, a relative positioning approach was implemented using two u-blox LEA-6 T

GPS devices which were used as reference and rover receivers, respectively.

Pseudorange measurements from the two receivers can be modelled as

ρrov;i ¼ drov;i þ brov þ b pl;i þ ηrov;i

ρref ;i ¼ dref ;i þ bref þ b pl;i þ ηref ;i

ð1Þ

where drov,i and dref,i are the geometric distances between rover/reference receivers and

the ith pseudolite. brov and bref are the clock biases of the rover and reference receivers

and bpl,i is the clock bias of the ith pseudolite. bpl,i is a synchronisation error specific to

each pseudolite. ηrov,i and ηref,i are residual unmodelled errors. The synchronisation

error, bpl,i, can be removed considering single pseudorange differences:

Δρi ¼ ρrov;i � ρref ;i

¼ drov;i � dref ;i þ brov � bref þ ηrov;i � ηref ;i

: ð2Þ
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Finally, using the geometric distance between the reference receiver and the ith pseudo-

lite, it is possible to construct new measurements free of pseudolite synchronisation

errors:
�ρi ¼ Δρi þ dref;i ¼ drov;i þ Δbþ Δηi ð3Þ

where Δb= brow− bref and Δηi = ηrov,i− ηref,i. Note that Equation (3) has the same

functional form of the pseudoranges adopted for GNSS positioning (Kaplan and

Hegarty, 2005) and in particular a single clock bias term, Δb, is present. This term is

common to all the pseudolite measurements and can be estimated by adding it as

an unknown in the navigation solution. This is the same principle adopted by commer-

cial GNSS receivers.

Note that the principle described above is valid only if the reference and rover recei-

vers are accurately synchronised, i.e., if their measurements are generated and time-

tagged using the same time reference. This is a stringent requirement and represents

an additional limitation of indoor synchronous pseudolite navigation systems. In

order to achieve precise receiver synchronisation, two methodologies were adopted.

In the first case, a specific pseudolite, named Master Pseudolite (MPL), was turned

on before all the other elements of the network. Additional pseudolites were activated

only after reference and rover receivers used the MPL signal for the measurement gen-

eration and time-tagging. Alternatively, when the receivers were able to determine a

position fix using GPS, GPS time was adopted.

Despite these efforts, it was not possible to compute valid position fixes employing

the measurements generated using Equation (3). The problem was investigated consid-

ering double pseudorange differences

∇Δρi;j ¼ �ρi � ρj : ð4Þ

The scenario where the measurements were taken, i.e., the meeting room described in

Section 6.1, was also simulated assuming perfect receiver synchronisation. Measured

and simulated double pseudorange differences are shown in Figure 1. In both simu-

lated and real tests, the user is repeating the same rectangular trajectory: for this

reason double differences oscillate periodically. From Figure 1, it can be noted that

real measurements are affected by biases that are difficult to estimate. This effect is

probably due to a lack of synchronisation between reference and rover receivers: syn-

chronisation errors affect measurement generation and time-stamping. This lack of

synchronisation can be due to multipath and other indoor propagation effects.

The residual bias on the measurements has been further studied considering a zero-

baseline configuration. In particular, reference and rover receivers were kept static in a

zero-baseline configuration for 60 seconds before starting the dynamic test. The mea-

surements obtained during the first phase of the test were used to estimate the biases

from the measurements. However, when the rover receiver started moving, the meas-

urement corrections were no longer valid and the position solution computed

started diverging. This fact is clearly shown in Figure 2, which shows the position so-

lution obtained using pseudorange measurements corrected for the initial synchronisa-

tion biases. These results indicate that synchronisation biases are time-varying and

depend on the user dynamics. For this reason, synchronous pseudolite systems can

not be easily used in deep indoor environments.

4. ASYNCHRONOUS PSEUDOLITE POSITIONING. The two asynchronous

navigation approaches considered are detailed below.
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Figure 1. Double pseudorange differences computed from the measurements collected from the

four pseudolites using two u-blox LEA 6-T receivers.

Figure 2. Position solution obtained using corrected pseudorange measurements where initial

synchronisation biases were removed exploiting the zero-baseline configuration adopted during

the first 60 seconds of the test. When the rover receiver starts moving, the measurement

corrections become invalid and the position solution starts diverging.
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4.1. RSS positioning. According to Patwari et al. (2005), RSS is defined as the

voltage measured by a receiver’s Receiver Signal Strength Indicator (RSSI) circuit

and corresponds to the received power measured on a logarithmic scale. RSS measure-

ments are usually modelled as (Okumura et al., 1968; Lindström et al., 2007;

Fontanella et al., 2012; Patwari et al., 2005):

PðdÞ ¼ P0 � 10α log10
d

d0
ð5Þ

where P(d) is the RSS measured at the distance d from the emitter. α is the path-loss

exponent and P0 is the power received at a short reference distance, d0.

RSS-based techniques are widely used because RSS is easy to measure. In particular,

RSS values can, for example, be obtained from the Automatic Gain Control (AGC)

levels (Scott, 2011; Isoz et al., 2010; Lindström et al., 2007) or C/N0 measurements

(Kraemer et al., 2012).

In this paper, C/N0 measurements are adopted for RSSI positioning. In particular,

Equation (5) can be rewritten in terms of C/N0 measurements as

C

N0

� �

i

¼ Ki � α10 log10ðdiÞ ð6Þ

where the index i has been introduced to denote C/N0measurements from the ith transmit-

ter and Ki is a constant accounting for the power of the i
th transmitted signal and for the

referencedistance d0.Unless specified, theC/N0will always be expressed inunits of dB-Hz.

When the constants Ki and α are known, it is possible to establish a direct relation-

ship between the measured C/N0 and the transmitter-receiver distance. In turn, dis-

tances can be expressed as a function of the user position:

di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxu � xiÞ
2 þ ðyu � yiÞ

2

q

ð7Þ

where (xu, yu) and (xi, yi) are the coordinates of the user and the ith pseudolite,

respectively.

Although Equation (7) considers the case of 2D positioning, the 3D case can be

easily obtained. Using Equation (7), it is possible to rewrite Equation (6) as

C

N0

� �

i

¼ Ki �
1

2
α10 log10 ðxu � xiÞ

2 þ ðyu � yiÞ
2

h i

ð8Þ

where the user coordinates are the only unknowns. When a sufficiently large number of

C/N0measurements is available (N≥ 2), it is possible to determine the user position for

example by minimising the following cost function:

Jðx; yÞ ¼
X

N�1

i¼0

E2
i ð9Þ

where

Ei ¼
C

N0

� �

i

�Ki þ
1

2
α10 log10 ðx� xiÞ

2 þ ðy� yiÞ
2

h i

ð10Þ

is the error between the measured C/N0 and empirical model in Equation (8). In this

way, the user coordinates are obtained as

ðxu; yuÞ ¼ argminx;y Jðx; yÞ: ð11Þ
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Cost function in Equation (9) is the Mean Square Error (MSE) between the measured

C/N0 values and the model in the right-hand side of Equation (8). The minimisation

problem in Equation (11) can be solved using a gradient descent algorithm where

the initial user position can be set equal to the average of the pseudolite coordinates.

The MSE algorithm detailed above was tested using the C/N0 measurements collected

in several indoor environments. However, it has been empirically verified that as C/N0

values approach zero, significant errors are introduced. C/N0 measurements do not

only carry distance information but are also indicators of the signal quality. Thus

low C/N0 measurements should be considered unreliable. In the limit case, measure-

ments with C/N0 values close to zero should be removed. For this reason, cost function

in Equation (9) was modified to de-weight measurements characterised by low C/N0

values. The new cost function adopted is defined as:

Jwðx; yÞ ¼
X

N�1

i¼0

C

N0

� �

i

E2
i ð12Þ

where the subscript “w” has been added to denote the fact that the cost function is now

a form ofWMSEwhere each term in the summation in Equation (12) is weighted by its

relative C/N0. In Equation (12), (C/N0)i is the C/N0 of the ith received pseudolite signal

expressed in dB-Hz.

In Equation (12) the different errors are weighted proportionally to the C/N0. Other

weighting functions can be adopted and their analysis is left for future work.

The WMSE algorithm significantly outperforms the MSE method defined by

cost function in Equation (9) and, for this reason, only results obtained minimising

Equation (12) are presented in Section 7.

The approach detailed above assumes the knowledge of the parameters

α;Ki for i ¼ 0; . . . ;N � 1: ð13Þ

These parameters are however unknown and have to be determined using a calibration

process. This process was performed using C/N0 measurements collected in known

positions. Additional details on the calibration procedure adopted for determining

parameters in Equation (13) can be found in (Gioia, 2014).

Using this approach, it was finally possible to perform indoor location using C/N0

measurements. In the experiments detailed below, C/N0 measurements were obtained

from a u-blox LEA-6 Treceiver which provides them in a dedicated message. Although

different algorithms are available for the estimation of the C/N0 (Pini et al., 2008), the

approach used by the u-blox receiver is not publically available. This is not a limitation

for the RSS algorithm adopted which does not rely on specific techniques for the gen-

eration of C/N0 measurements. The measurements are provided with a 1 Hz sampling

rate. This rate is commonly adopted by commercial GPS receivers and it is the default

setting for the u-blox device.

4.2. Weighted Centroid positioning. In the weighted centroid approach, the user

position is determined as a linear combination of the pseudolite coordinates:

Pu ¼ ðxu; yuÞ ¼

PN�1
i¼0 wiPpl;i
PN�1

i¼0 wi

ð14Þ
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where

P pl;i ¼ xi; yið Þ

is the vector containing the coordinates of the ith pseudolite and wi is a weight deter-

mined from the C/N0 of the i
th received pseudolite signal. In this work, the following

relationship is adopted

wi ¼ 10ðC=N0Þi=10 ð15Þ

Equation (15) defines a transformation from the C/N0 measurements to the position/

range domain. In particular, when a standard GNSS receiver is adopted, the user pos-

ition is computed using pseudorange measurements expressed in metres. The variance

of such pseudoranges is proportional to the weights defined by Equation (15)

(Kuusniemi et al., 2007) and it is used in classical Weighted Least Squares (WLS) to

compute the user position. Similarly, the weighting Equation (15) has been adopted

here for weighing the different pseudolite positions.

5. PRE-FILTERING TECHNIQUES. In order to improve the performance of

asynchronous positioning algorithms using C/N0 measurements, a pre-filtering stage

was introduced. In particular, filters were designed exploiting the frequency and correl-

ation properties of C/N0 measurements. Note that C/N0 measurements are charac-

terised by a Direct Current (DC) component that is determined by the average

received power and the noise floor. The DC components of the C/N0 measurements

define a geometric point that can be thought as a reference location with respect to

which the user is moving (Borio and Gioia, 2014). For the analysis, the DC terms

have been removed in order to better study the characteristics of the zero mean com-

ponents that determine the relative displacement of the user.

In Borio and Gioia (2014), the Power Spectral Densities (PSDs) of C/N0 measure-

ments were studied for the meeting room test described in Section 6.1. It was shown

that the PSD are characterised by a main peak at about 0·031 Hz corresponding to

a periodicity of about 32 s, the average time required by the user to perform a loop.

In addition to this, most of the power was significantly attenuated for frequencies

higher than 0·15 Hz. This fact suggests that high frequency components can be

removed with a cut-off frequency fc= 0.15 Hz. This result is confirmed by Figure 3

that shows the PSD of the measurements from the five pseudolites used in the corridor

test described in Section 6.2.

The power of the C/N0 measurements is mainly concentrated in the low frequencies

and thus the quality of C/N0 measurements can be improved by using a low-pass filter.

In addition to the considerations derived from the PSD analysis, the following require-

ments have been identified for the filter design:

. The filter should have a short impulse response: C/N0 measurements are time-

varying and long impulse responses may introduce significant biases due to the

averaging of signals which are only locally stationary. The requirement of

having short impulse responses limits the delay introduced by the filter.

. It has been empirically verified (Borio and Gioia, 2014) that symmetric impulse

responses provide better results and thus should be adopted.
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The results discussed in Borio and Gioia (2014) and the findings reported above have

been used to design a Finite Impulse Response (FIR) Wiener filter for the pre-

processing of C/N0 measurements. The Transfer Function (TF) of the filter is depicted

in Figure 4 along with its impulse response. The filter mainly preserves low frequency

components as desirable from the PSD analysis. The short impulse response selected

(seven samples) is sufficient to significantly improve the algorithm performance, as

detailed in Section 7, without introducing significant delays.

By inspecting the impulse response of the Wiener filter, it was found that it can

be effectively approximated by a triangular function. This fact is highlighted in

Figure 4 where the impulse responses and TFs of the two filters are compared.

Their good agreement suggests the usage of a filter with a triangular impulse response

that is simpler to design for different filter lengths.

The effect of pre-filtering can be clearly seen in Figure 5 which shows filtered and

unfiltered C/N0 measurements. High-frequency noise components are effectively

removed by the pre-filtering stage. The measurements are from pseudolite 2 in the cor-

ridor test.

6. EXPERIMENTAL SETUP. The effectiveness of the asynchronous pseudolite

approaches considered in this paper was tested under different conditions. In the fol-

lowing, two of the deep-indoor scenarios considered for the analysis are described.

The environments selected are from an office building and are scenarios typically con-

sidered for network localisation (Conti et al., 2012).

6.1. Large Meeting Room. The first scenario considered was the large meeting

room of about 5 m × 10 m shown in Figure 6. Four pseudolites were placed in the

Figure 3. Normalised PSDs of the C/N0 measurements obtained in the corridor test described in

Section 6.2. The PSDs have been normalised in order to have signals with unitary power.
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corners of the room. The positions of the pseudolites were carefully surveyed and used

for the computation of the user position. Two types of experiments were conducted:

. Repeatability tests: the user performed several loops around the large table present

in the meeting room trying to always repeat the same trajectory. The quality of the

Figure 4. TFs and impulse responses of the filters used to pre-process C/N0 measurements.

Figure 5. Impact of triangular filtering on C/N0 measurements. High-frequency noise components

are effectively removed by the pre-filtering stage. Measurements are from pseudolite 2 in the

corridor test.
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navigation solution is assessed by comparing the different trajectories estimated

for the different loops. A high consistency level of the navigation solution indi-

cates good performance of the system.

. Control point experiments: several control points were placed in the meeting room.

The locations of the control points were carefully determined by surveying the

room. For each control point data were collected and used for calibration

purposes.

Experimental results obtained for repeatability tests are provided in Section 7

whereas details on the calibration procedure and on control point experiments can

be found in Gioia (2014).

6.2. Corridor Scenario. The performance of the asynchronous pseudolite system

was further tested considering a user moving along the corridor of the second floor of

the building depicted in Figure 7. In this case, five pseudolites were adopted and placed

according to the geometry shown in Figure 7. It is noted that the building where the

tests were performed has a geometry mainly oriented along the North-South direction.

Consequently, the five pseudolites are able to provide useful information mainly for the

estimation of the North coordinate. The geometry along the East-West direction is

quite poor due to the pseudolite displacement, which is less than 10 m.

7. EXPERIMENTAL RESULTS. This section presents the results obtained using

the asynchronous pseudolite systems described in Section 4. The different solutions are

compared and the effects of pre-filtering are evaluated. The impact of filtering is at first

evaluated for the meeting room scenario.

7.1. Large Meeting Room Test. In the test considered, the user performed five

loops around a large table present in the meeting room described in Section 6.1

trying to always repeat the same trajectory. RSS positioning is presented at first.

A comparison between the solutions obtained applying triangular (red dashed line)

and Wiener (blue line) filtering is provided in Figure 8. The solution using unfiltered

Figure 6. Different views of the large (5 m × 10 m) meeting room used for testing asynchronous

pseudolite approaches. Four pseudolites were placed in the corners of the room.
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measurements is also plotted (black dashed line) to evaluate the effects of the filters. In

order to have a clear representation only one loop is plotted in Figure 8. The position

solutions are presented in a local frame centred in the corner of the room closed to

pseudolite 3.

Figure 7. Location of the five pseudolites used for the corridor experiment. The blue line indicates

the trajectory performed during the experiment detailed in Section 7.2.

Figure 8. Comparison between navigation solutions obtained using RSS positioning and different

pre-filtering stages for the C/N0 measurements. Loop performed in a large meeting room.
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From Figure 8, the benefits of filtered C/N0 measurements clearly emerge: although

the unfiltered solution (black line) is contained within the room, it is not possible to

identify the trajectory followed by the user. On the contrary, the user trajectory can

be easily identified when filtered measurements are used. The two filtering techniques

considered provide similar performance and no significant differences can be noted.

Since the performance obtained with the two filters is very similar, the triangular

filter should be preferred for its simplified design and implementation.

The quality of the navigation solution is assessed in Figure 9 by comparing the tra-

jectories estimated for the different loops. The position solutions have been obtained

using the RSS approach and filtered measurements (triangular filter). From

Figure 9, a high consistency level of the navigation solution emerges: only sub-metre

differences can be appreciated between different loops. This indicates the good per-

formance of the system.

The analysis performed using the RSS approach has been repeated using the

weighted centroid approach: the navigation solutions obtained using this method are

plotted in Figures 10 and 11. From Figure 10, the improvement due to pre-filtering

Figure 9. Position estimates obtained using the RSS asynchronous technique proposed and

processing filtered C/N0 measurements. Triangular filter, repeatability tests.

652 DANIELE BORIO AND OTHERS VOL. 69

https://doi.org/10.1017/S037346331500082X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331500082X


also clearly emerges for the weighted centroid case. This supports the findings obtained

using the RSS approach and confirms the benefits of pre-filtering: only when filtered

measurements are employed can the user trajectory be easily identified.

As for the RSS case, only the position solutions obtained using the triangular filter

are considered in Figure 11. Also in this case, a high consistency of the navigation so-

lution clearly emerges, demonstrating the good performance achievable using this

approach.

From Figure 11, it also emerges that the weighted centroid approach constrains the

navigation solution to lay within the polygon described by the pseudolites. This is due

to the fact that weights from Equation (15) are always positive. This could be consid-

ered an advantage for indoor navigation when the pseudolites are placed in the corners

or along the sides of the structure inside which the user is moving. This property can be

exploited to constrain the user position within the building or room of interest.

Although the lack of a reference trajectory makes it difficult to directly compare the

position solutions depicted in Figures 9 and 11, the weighted centroid seems to provide

improved performance. In particular, the user was trying to perform a trajectory as

close as possible to the walls of the room. The only exception was along the side

between pseudolite 3 and pseudolite 4 where the presence of a large bookcase was

Figure 10. Comparison between navigation solutions obtained using weighted centroid positioning

and different pre-filtering stages for the C/N0 measurements. Loop performed in a large meeting

room.

653ASYNCHRONOUS PSEUDOLITE NAVIGATIONNO. 3

https://doi.org/10.1017/S037346331500082X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331500082X


forcing a trajectory slightly displaced towards the centre of the room. The solutions

obtained using the weighted centroid seem to provide a more faithful representation

of the user motion.

7.2. Corridor Scenario. In the second scenario, the user performed a periodic tra-

jectory moving between the beginning and the end of the corridor depicted in Figure 7.

In particular, the user was moving back and forth along the blue line depicted in

Figure 7. As for the previous experiment, the user performed five loops. The position

solutions have been computed in a local frame centred on pseudolite 1.

The North and East coordinates of the position solutions estimated using the afore-

mentioned asynchronous approaches are provided in Figure 12. Although the loops

can be clearly identified from the North component depicted in the upper box of

Figure 12, an anomalous behaviour can be clearly seen in correspondence of the

shaded areas reported in the figure.

The trajectory in the shaded area shows an almost constant North component while

the user was moving with an almost constant velocity. Such an anomaly is consistent in

all loops performed and occurred in correspondence to the shaded area in Figure 7.

In this area, there is the entrance of the floor and a direct view on the stairs of the build-

ing. This can cause a change in the propagation conditions and compromise the effect-

iveness of the position solution. The East component is more degraded by this effect as

Figure 11. Position estimates obtained using the weighted centroid technique and processing

filtered C/N0 measurements. Triangular filter, repeatability tests.

654 DANIELE BORIO AND OTHERS VOL. 69

https://doi.org/10.1017/S037346331500082X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331500082X


clearly seen in the bottom part of Figure 12. This fact is justified by the geometry

defined by the pseudolite location.

The trajectory obtained for the RSS and weighted centroid techniques are further

analysed in Figure 13 where the North and East components shown in Figure 12

are jointly plotted in the horizontal plane.

Figure 13 confirms the results shown in Figure 12, i.e., the errors are mainly along

the East component of the trajectory performed. As already highlighted, this phenom-

enon is mainly due to geometric effects: the building concerned has an elongated shape

and offices are placed symmetrically along the central corridor of about 36 metres. The

pseudolites were placed in different offices and a poor geometry was obtained along

the direction perpendicular to the central corridor. For this reason, the East compo-

nent of the position solution is severely penalised, most of all in the RSS case. The

weighted centroid is significantly more robust to propagation anomalies as clearly

emerges from Figures 12 and 13. The geometrical property discussed above allows

one to constrain the position solutions within the building.

Finally, it is possible to note that weighted centroid positioning can degenerate to a

form of proximity-based navigation when a received signal is significantly stronger

than the others. This fact clearly emerges in Figure 13, for example when the user is

close to pseudolite 1. In this case, the signal received is two orders of magnitude stron-

ger than the others and the user position is determined as that of pseudolite 1. For this

reason, the East component assumes a value close to zero, the coordinate of pseudolite

1. The user was however in the centre of the corridor with East coordinate approxi-

mately equal to -6 metres as in the rest of the trajectory reported in Figure 12. This

problem can be solved by placing pseudolites in a symmetrical way. From Figure 13

Figure 12. North and East coordinates of the position solutions estimated using asynchronous

approaches for the corridor experiments. An anomalous behaviour has been identified in the

middle of the corridor. Comparison between RSS and weighted centroid positioning.
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it also emerges that the East error for RSS positioning can be as large as 25 metres. The

error is limited to about 3 metres for weighted centroid positioning.

8. CONCLUSIONS. In this paper, the problem of indoor navigation using pseudo-

lites was considered. Synchronous and asynchronous approaches were at first analysed

and potential limitations of synchronous pseudolite systems in indoor scenarios were

identified. In particular, the synchronous system adopted for the experiments was not

able to cope with the harsh propagation conditions considered. Although two different

approaches were adopted to obtain synchronous Time Of Arrival (TOA) measure-

ments, the level of synchronisation required for indoor navigation was never achieved.

Although the analysis performed highlights potential limitations of synchronous pseu-

dolite systems in harsh propagation conditions, different approaches can be adopted to

address the synchronisation problem. The limitations discussed are related to the

system adopted and better performance may be obtained using more sophisticated

synchronisation approaches. For example, a shared clock connected through wires

to the different pseudolites can be used.

In order to overcome the limitations of the system considered, two asynchronous lo-

calisation approaches were adapted to pseudolites and used for indoor navigation. The

Figure 13. Position estimates obtained using the RSS and weighted centroid techniques for the

corridor tests. Red circles represent the positions of the pseudolites. An anomalous behaviour is

observed along the East component.
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two techniques use C/N0 measurements from different pseudolites to compute the user

position. The first approach is based on the RSS principle and on an empirical model

that allows mapping received C/N0 values into distances. The second technique deter-

mines the user position as the weighted centroid of the pseudolite locations using C/N0

measurements for determining the different weights. Both techniques enable indoor

navigation with metre level accuracy that was demonstrated in different indoor envir-

onments. It was also shown that the performance of an asynchronous system can be

greatly improved using a pre-filtering stage for smoothing C/N0 measurements. The

use of asynchronous pseudolites significantly reduces the design and implementation

constraints of the system because the different devices can operate independently.

Moreover, the system can be implemented in frequency bands different from the

GNSS frequencies since inter-frequency biases are no longer relevant. Among the

approaches analysed, weighted centroid location is the most robust to unmodelled phe-

nomena and should be preferred also because it does not need a calibration phase.
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