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ABSTRACT

 

Experiments over a variety of optimization problems indicate that scale-effective conver-
gence is an emergent behavior of certain computer-based agents, provided these agents
are organized into an asynchronous team (A-Team). An A-Team is a problem-solving
architecture in which the agents are autonomous and cooperate by modifying one
another’s trial-solutions. These solutions circulate continually. Convergence is said to
occur if and when a persistent solution appears. Convergence is said to be scale-effec-
tive if the quality of the persistent solution increases with the number of agents, and the
speed of its appearance increases with the number of computers. This paper uses a trav-
eling salesman problem to illustrate scale-effective behavior and develops Markov mod-
els that explain its occurrence in A-Teams, particularly, how autonomous agents, without
strategic planning or centralized coordination, can converge to solutions of arbitrarily
high quality. The models also predict two properties that remain to be experimentally
confirmed: 
• construction and destruction are dual processes. In other words, adept destruction can

compensate for inept construction in an A-Team, and vice-versa. (Construction refers
to the process of creating or changing solutions, destruction, to the process of erasing
solutions.)

• solution-quality is independent of agent-phylum. In other words, A-Teams provide an
organizational framework in which humans and autonomous mechanical agents can
cooperate effectively. 
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1. INTRODUCTION

 

All the available algorithms for optimization and constraint satisfaction have weaknesses-
-the rigorous algorithms tend to be too slow, the heuristics, too unreliable. Rather than
trying to design a new algorithm without weaknesses, a task that is difficult if not impossi-
ble, we have been working on ways to organize algorithms so they can suppress their
weaknesses through cooperation, and together do what separately they might not. The
result is a type of organization, called an asynchronous team (A-Team), that combines
features from a number of systems, particularly, insect societies [1], cellular communities
[2], genetic algorithms [3], blackboards [4], simulated annealing [5], tabu search [6], and
brainstorming [28]. 

 

1.1 What is an A-Team?

 

Definition.

 

 

 

An A-Team is a set of autonomous agents and a set of memories,
interconnected to form a strongly cyclic network, that is, a network in which
every agent is in a closed loop. 

An A-Team can be visualized as a directed hypergraph, called a data flow, like those in
Fig. 1. Each node represents a complex of overlapping memories. Each arc represents
an autonomous agent. Results or trial-solutions accumulate in the memories (just as
they do in blackboards) to form populations (like those in genetic algorithms). These pop-
ulations are time varying: new members are continually added by construction agents,
while older members are being erased by destruction agents. More specifically, a con-
struction agent copies results from the population at its tail, modifies the copies and
inserts them into the population at its head. A destruction agent examines a population
and erases those results it feels should not be there, often working from a list of results to
be avoided (like the lists used in tabu searches).
 
The numbers of construction and destruction agents can be arbitrarily large and each
agent, whatever its type, can be arbitrarily complex. Consequently, the problem-solving
skills of a data flow can be arbitrarily apportioned between construction and destruction.
(Other synthetic problem-solving systems invariably concentrate on one or the other. Hill
climbing, for instance, concentrates on how to construct new and better solutions while
simulated annealing, genetic algorithms and tabu search concentrate on how to destroy
or reject weak solutions. Natural systems, however, often benefit from a more symmetric
use of construction and destruction. The process of Lamelar bone growth [9], for
instance, relies as much for its efficacy on cells that add bone material to surfaces where
the stress is high, as it does on cells that remove bone material from surfaces where the
stress is low.)

All the agents in an A-Team are autonomous. An autonomous agent decides for itself
what it is going to do and when it is going to do it (like the adult members of insect societ-
ies). Consequently, there can be no centralized control. But new autonomous agents can
be easily added (there is no supervisory hierarchy to get in their way). 

Agents cooperate by working on one another’s results. Because the agents are autono-
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mous, this cooperation is asynchronous (no agent can be forced to wait for results from
another). Rather, all the agents can, if they so choose, work in parallel all the time. (Other
synthetic problem-solving systems often include precedence constraints to force at least
a partial order on the activities of their computational modules. Traditional genetic algo-
rithms, for instance, require destruction to cease while construction is in progress, and
vice-versa.)

 

1.2 The Effects of Scale

 

One might think that A-Teams would be prone to anarchy. After all, every agent does
what it wants when it wants, and makes its decisions without knowing anything about the
other agents except for the results they produce. Nevertheless, useful A-Teams have
been developed for a wide variety of optimization and constraint satisfaction problems,
including, nonlinear equation solving [7], [24], traveling salesman problems [14], high-
rise building design [8], reconfigurable robot design [9], diagnosis of faults in electric net-
works [10], control of electric networks [11], [25], job-shop-scheduling [16], steel and
paper mill scheduling [26], [27], train-scheduling [15], and constraint satisfaction [18]. Not
only do these A-Teams produce very good solutions, but they appear to be scale-effec-
tive.

Definition.

 

 

 

An organization is scale-effective if its performance improves with
size. A computer-based organization is scale-effective if there are agents whose
addition improves solution-quality and computers whose addition improves solu-
tion-speed. 

Scale-effectiveness is an extremely desirable property. The problem of improving the per-
formance of a scale-effective organization reduces to one of finding which components
to add. A non-scale-effective organization faces the much more difficult problem of find-
ing which of its parts to eliminate or modify before additions can be of benefit. Synthetic
organizations are often non-scale-effective, being described by the proverb, “too many
cooks spoil the broth.” That is, there comes a point when the addition of another “cook,”
no matter how competent she may be, has a negative impact on overall performance. In
a scale effective organization there can never be too many “cooks.”

Scale-effective behavior will be illustrated later in the paper by the application of A-Teams
to the TSP (traveling salesman problem: given M cities and their separations, find the
shortest tour or closed path that goes through all the cities).     

 

1.3 About The Rest Of The Paper

 

The remainder of the paper is organized as follows. Section 2 covers the structure of A-
Teams and presents a representative sampling of experimental results. Section 3 devel-
ops a Markov model that explains these experimental results and predicts some behav-
iors that remain to be experimentally confirmed. Section 4 summarizes the most
important parts of the preceding sections. Finally, the appendix provides the mathemati-
cal details of the Markov model. 

 

2. A DESIGN SPACE FOR A-TEAMS
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Let {Df} be a design space for A-Teams, that is, a set of A-Teams represented in terms of
their design variables. More specifically, let {Df} be the set of every possible hypergraph
(data flow): Df = (V, W), where V is a set of nodes (memories) and W is a set of arcs
(agents). 

The process of designing an A-Team to solve a given optimization problem, X, is equiva-
lent to searching {Df} for a data flow Df*, such that a solution to X of appropriately high
quality will appear in one of the memories of Df* in an appropriately short time after Df*
has been activated.There is no automatic procedure for conducting this search, nor is
one likely to become available in the immediate future. Instead, as with many other
design tasks, the best that can be done is to decompose the overall design space into
more manageable subspaces. A decomposition that we have found to be helpful is given
below. The searches through the subspaces are labeled as steps and illustrated with
some A-Teams we built for the TSP (traveling salesman problem).
   

 

Step 1

 

. 

 

Choose a superproblem.

 

Definition. A superproblem is a set of problems containing X and problems related to
X, such as parts of X, relaxations of X, and other problems whose solutions might
provide clues to good solutions of X. 

When X is the TSP in M cities, three related problems are: a) find good tours of the M cit-
ies, b) find good partial tours of the M cities, and c) find good 1-trees of the M cities;
where “good” means “containing many of the arcs of an optimal tour” and a 1-tree is a
graph with M arcs that connects all the cities but does not always form a tour (the 1-trees
are a superset of the tours and hence, the shortest 1-tree provides a lower bound on the
shortest tour).

 

Step 2. Choose the node-set, V, by assigning one or more memories to each member of
the superproblem.

 

The purpose of each memory is to hold a population of trial-solutions to its problem. As
in the case of genetic algorithms, larger populations lead to better solutions but require
greater computing efforts. However, the marginal benefits to solution-quality fall off rap-
idly. In other words, moderately sized populations produce solutions that are almost as
good as those from large populations.      

After some experimentation, we choose the population size for the TSP to be the same
as M, the number of cities (M/2 and 2M seem to work almost as well as far as solution-
quality is concerned). We used ordered lists of cities as the representation for complete
and partial tours. With this representation, {Atlanta, Boston, Raleigh, Pittsburgh} means
a tour that goes from Atlanta to Boston to Raleigh to Pittsburgh, and then back to Atlanta.
The representation chosen for 1-trees is more complicated. Interested readers can find it
in [14]. 

 

Step 3. Choose a set of construction algorithms or operators for the members of the
superproblem.

 

 
In our experience, the greater the range of skills of these algorithms, the better the solu-
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tions that will be found. The algorithms do not have to be uniform in size or coverage.
Rather, some can be large, others small, some can be general, others specialized. Weak
but fast algorithms, such as crossover and mutation, when used exclusively, or powerful
but slow algorithms, such as branch-and-cut, when used alone, will invariably do less
well than a mix that includes both.          

Rigorous algorithms that can solve large TSPs in reasonable (polynomial) amounts of
time are unknown. However, there are dozens of faster heuristics, several of which are
available as computer codes. One of the better heuristics is the Lin-Kernighan (LK) algo-
rithm [12]. A variety of simpler heuristics is listed in Fig. 2.

 

Step 4. Form each construction algorithm into an autonomous agent. 

 

Think of an agent as operating between two worlds--one it perceives, the other it affects.
These worlds may overlap and can be thought of as input and output memories (reposi-
tories for the objects the agent is able to perceive and affect).

Definition. An agent consists of an input-memory, an output memory, an operator and
a control system.The operator modifies objects obtained from the input-memory and
places the results in the output-memory. The control system decides which objects
will be obtained and when, that is, the control system consists of a selector (to
choose objects from the input-memory for the operator to work on) and a scheduler
(to determine when the operator will work, and which of the tools and other resources
available to the agent will be used in doing this work). 

This definition of agency is broad enough to include everything from a simple program
with some input-selectivity, through intelligent robots, to humans.

Definition. An agent is autonomous if its control system is completely self-contained,
that is, if it accepts no selection or scheduling instructions from other agents. 

One might expect that effective cooperation among autonomous agents would be contin-
gent on the use of good selection strategies. In our experience, “good” does not have to
mean “complex.” When solution-quality is measured by a single attribute (such as tour
length), a very simple selection strategy seems to work quite well. This strategy is: select
solutions randomly with a bias towards the better solutions. Murthy [9] describes a vari-
ant for cases where solution-quality is best measured by a vector of conflicting attributes.
Specifically: compare a vector representing the estimated needs of the solution to a vec-
tor representing the estimated capabilities of the agent; then arrange for the probability of
selection to increase as the magnitude of the angle between these two vectors
decreases.

While scheduling strategies are undoubtedly important, we have yet to investigate their
effects. For the TSP, and all the other cases we have studied, we have used only one
very simple strategy: allow each agent to run continuously, or as close to continuously as
the available computers will permit.
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Step 5. Choose autonomous destroyers. 

 

The construction agents produced in the previous step are designed to add trial-solu-
tions to their output-memories. Their actions must be balanced by destroyers--agents
that erase trial-solutions--or the memories would soon overflow. There are two additional
functions that destroyers can perform. First, they can improve the overall quality of solu-
tion-populations by erasing their weakest members. Second, they can terminate undesir-
able patterns of construction, such as repeating sequences of solutions, by recognizing
and erasing them as soon as they occur.

Since the operation performed by a destroyer--erasure--requires no skill, all the intelli-
gence of a destroyer is concentrated in its selector and scheduler. There are three
sources of selection technology for erasing or rejecting solutions: genetic algorithms,
simulated annealing and tabu search. The first two of these use essentially the same pro-
cess: random selection biased by a scalar merit function to make solutions with greater
merit less likely to be selected for destruction. We chose this process for the TSP. Specif-
ically, tours and 1-trees were selected randomly for erasure, with the longer tours and 1-
trees being more likely to be selected than the shorter ones. The destroyers were sched-
uled to act so there were always a few slots left open for the constructors to fill.

 

Step 6. Choose the arc-set, W, that is, choose an interconnection of agents and memo-
ries that is strongly cyclic.

 

Implement the resulting data flow in a network of computers. Seed the memories with ini-
tial populations of trial-solutions, activate the agents and monitor the resulting population
dynamics. If convergence is overly slow, that is, if at least one complete solution of
acceptable quality to X, the problem to be solved, is overly slow in appearing, then add
more cycles to the data flow, either by repeating from step-1or from step-3. The assump-
tion in both cases is that the data flow is scale-effective, and therefore, there are always
cycles whose addition will produce better convergence. 

The process of designing data flows by “repeating from step-1” is illustrated in Fig. 1. The
first iteration, Fig. 1 (a), contains a single memory for tours. The algorithms include LK,
the most powerful tour-improvement algorithm we were able to acquire, CLK, a simpler
and faster version of LK, as well as OR and D1, which are much simpler algorithms cho-
sen to compensate for LK’s and CLK’s weaknesses. (LK and CLK are not iterative algo-
rithms. When either is applied to a population of tours, all the improvements it can make
are obtained after its first application to each tour. For difficult TSPs, it is likely that this
application will leave some of the tours unchanged, and none improved to optimality. The
purpose of OR was to make possible repeating patterns in which a tour that was
improved by LK or CLK could be further improved by OR, and in the process, changed
enough so it could again be improved by LK or CLK. The purpose of D1, a random
destroyer, was to keep the population in check.) The resulting data flow was able to find
optimal solutions far more frequently than LK [14]. The other data flows in Fig. 1 were
obtained by adding more complex cycles, each intended to produce more tours that LK
or CLK could improve. Notice the effects of scale on solution-quality, especially, how
quality increases with the size of the data flow (Fig. 3).
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The process of designing data flows by “repeating from step-3” is, in our experience, a lit-
tle easier, perhaps because the designer can concentrate on the strengths of the agents
instead of their weaknesses. The node-set is fixed during the first and only pass through
steps 1-2, and is made as comprehensive (large and diverse) as practical. In the itera-
tions through steps 3-6, the designer seeks to increase the diversity of the arc-set (the
range of skills of the algorithms), until a suitably wide range is obtained. The simpler
algorithms can be added first allowing the more complex and usually more troublesome
algorithms to be added later, if and when their skills are needed. For example, consider
the node-set of Fig. 1(d). Agents can be added in almost any order to provide improving
solutions. And in some orders that go from simple to complex, there is also a progressive
improvement in solution-speed, even though all the agents must share a single computer
(Fig. 4). With more computers, all the data flows, but especially the larger ones, can be
further speeded-up (e.g. Fig. 5).

It must be emphasized that the A-Teams of Fig. 1 are not intended to be competitive with
the leading TSP procedures. Rigorous algorithms (e.g. [31]) always find optimal tours, if
given enough time, and the leading heuristics [29], [30], [32]-[34] are far faster. Rather,
the purpose of Figs. 1-5 is to illustrate how distinct algorithms can be combined into
teams and what benefits these teams can provide.    
 

 

3. COOPERATION IN STRONGLY CYCLIC DATA FLOWS

 

Why do A-Teams behave as they do? What are the underlying phenomena and causal
relations? We will tackle these questions with the aid of a model called a CDM (constant
drift memory). The justification for the use of this model, in outline, is as follows:
•     all forms of cooperation can be represented by data flows;
• in any data flow, all the behaviors of interest occur in only one memory;
•  this, and all the other memories in any strongly cyclic data flow, can be accurately 

modeled by devices called cyclic memories;
• all cyclic memories can be modeled by a certain simple type of cyclic memory, 

namely, a CDM.
The technical apparatus needed to make this justification is given in some detail below
and greater detail in the Appendix.

 

3.1 Data Flows As Universal Models Of Cooperation

 

Definition.Two agents cooperate when the input-space of one has a non-zero inter-
section with the output-space of the other, that is, when the agents can exchange
results, regardless of whether the exchanges are productive or not. 

By this definition, all the ways in which agents can cooperate are representable by data
flows. We believe this definition includes all possible interactions among problem-solving
agents. This being so, all forms of cooperation among problem-solving agents can be
represented by data flows.

Recall that each memory in a data flow is dedicated to holding a population of trial-solu-
tions to one member of a superproblem. Obviously, the dynamics of these populations
are determined by their initial values and by the agents that act on them. We will examine
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these dynamics in what follows. 

 

3.2 Terminology

 

Definition. A memory is a cyclic memory if all the agents that write to it also read from it.

 Thus, any memory in a strongly cyclic data flow can be modeled by a cyclic memory.
After all, a memory only has direct contact with those agents that read from or write to it.
If the data flow is strongly cyclic, then most, if not all, the agents that do one of these
things can also be thought of as doing the other. For instance, the entire subgraph that
begins with agent-AI and ends with agent Dec in Fig 1 (d), can, from the perspective of
the partial tour memory, be replaced by a single super-agent that both reads from, and
writes to, the partial tour memory.
 

Definition. A cyclic memory is a constant drift memory (CDM) if: 
•The members of its initial population of solutions are chosen randomly from the space

of all possible solutions that can be stored in the memory. And the size of this popula-
tion is small in comparison to the size of the space of all possible solutions.

• A path (a connected sequence of solutions) is developed from each of the members
of the initial population by the combined actions of constructors and destroyers. A
constructor, when it chooses to act on a path, lengthens it by adding a point to its end;
this point is a modification of its immediate predecessor. A destroyer, when it chooses
to act on a path, shortens it by removing a point from its end. The aggregate results of
the actions of the constructors and destroyers are described by a Markov chain of the
sort shown in Fig. 6.

• All the paths are developed concurrently. The total time required for the development
of each path is the sum of the time that agents spend actually working on the path
(adding or erasing points) plus the time by which they are delayed in their work.
These delays are of three types: synchronization delays that occur when an agent
must pause in order to satisfy a synchronization or precedence constraint in the orga-
nization’s control structure, communication delays that occur when an agent must
wait for the delivery of the data it needs, and resource contention delays that occur
when an agent must wait for the computers it requires.

• The memory and its agents are implemented in a network of computers. Each agent
is assigned a computer for its exclusive use, so there are no resource contention
delays. Moreover, this computer is sized so that each agent requires the same
amount of time for an action as every other agent (that is, the power of the computer
assigned to each agent is proportional to the agent’s computational needs). 

Consider any CDM. Let:
C     be the set of construction agents that acts on the CDM.

 

θ

 

C

 

   be the set of operators contained in C.
D     be the set of destruction agents that acts on the CDM. 
S     be the space (set) of all possible solutions, good and bad, that can be stored in the

 CDM.
H(S)   be the set of all the paths in S, a path being a sequence of one or more points.

Therefore, S 

 

⊂

 

 H(S). 
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H

 

D

 

(S) be the subset of H(S) that contains those undesirable paths (such as points that
are very far from G

 

δ

 

, overly long paths and orbits) that the destroyers can recognize
and erase. 

 
Definition. A point, s, is inaccessible if s 

 

∈

 

H

 

D

 

(S), that is, if the destroyers in D recog-
nize and erase the point before it can be selected by a construction agent. Thus, con-
struction agents are prevented from developing paths that begin at inaccessible
points.

Consider any CDM. Let:

 

δ

 

   be an indicator of solution-quality, such that 

 

δ

 

 increases with solution-quality.
G

 

δ

 

   be the subset of S that contains all the solutions of quality 

 

δ

 

 and better.
N     be the size of the initial population of solutions stored in the CDM. Assume that the

members of this population are chosen randomly from S and that N is always small in
comparison with the size of S. 

T

 

δ

 

   be the expected amount of time for the population of solutions to evolve at least one
solution of quality 

 

δ

 

 or better. 

Definition. G

 

δ

 

 is reachable if T

 

δ

 

 is finite. Moreover, the performance of a CDM is the
double: (

 

δ

 

m, vm), where 

 

δ

 

m is the highest quality solution that will appear in the mem-
ory, that is, 

 

δ

 

m is the greatest value of 

 

δ

 

 such that G

 

δ

 

 is reachable, and vm is the
expected speed with which this solution appears, that is, vm = 1/T

 

δ

 

m

 

 where T

 

δ

 

m

 

 is the
expected time for reaching G

 

δ

 

m

 

.

Consider any CDM. Let:
d

 

C

 

(y) be the distance of y from G

 

δ

 

, where y is any solution in S, and d

 

C

 

(y) is the minimum
number of successive actions by construction agents from C that are needed to con-
vert y into a member of G

 

δ

 

. Thus, d

 

C2

 

(y) < d

 

C1

 

(y) when C1 

 

⊂  

 

C2.
P(S, C, D, 

 

δ

 

) be a partition of S into regions S

 

0

 

, S

 

1

 

,..., S

 

∞

 

, and I, such that S

 

0

 

 = G

 

δ

 

; S

 

n

 

contains all the solutions that are at a distance of n from S

 

0

 

; and I contains all the
points that are made inaccessible by the destroyers in D; as in Fig. 7.

 

µ

 

   be the mean distance of the accessible points to G

 

δ

 

.                         
L

 

exp

 

 be the expected length of the path from the best point in the initial population of solu-
tions to G

 

δ 

 

(it is assumed that this point is accessible).

 

β

 

   be the amount of time required for each agent to take one action.
T

 

syn

 

 and T

 

com

 

 be the expected synchronization and communication delays experienced
by agents in developing a successful path (one that reaches G

 

δ

 

m

 

).

Consider s

 

i

 

 and s

 

i+1

 

, the two latest points in any developing path. Assume that both
points are accessible and neither is in G

 

δ

 

.Let:
p, q and r be the probabilities that s

 

i+1

 

 is closer, further and at the same distance, respec-
tively, as s

 

i

 

 from G

 

δ

 

.
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p

 

c

 

, q

 

c

 

 and r

 

c

 

 be the values of p,q and r when the destroyers are disabled.
p

 

d

 

, q

 

d

 

 and r

 

d 

 

be the conditional probabilities that s

 

i+1

 

will be destroyed, if it is considered
for destruction and if it is further, closer and at the same distance, respectively, as s

 

i

 

from G

 

δ

 

.

 

λ

 

(s

 

i

 

) = p - q be the overall drift of the CDM at si; λc(si) = pc - qc, be the component of drift
contributed by the constructors; and λd(si) = pd - qd be the component of drift contrib-
uted by the destroyers. (Note: in a CDM, λ, λc and λd are constants for all accessible
points at finite and non-zero distances from the goal. But in other cyclic memories
they could vary. Also, it is possible for pd + qd + rd to be different from 1.)

Λ(S) be the space of all the λ(si).   

Consider P(S, C, D, δ). Its configuration can be of several different types. Three are of
interest here:
P1 = {P(S, C, D, δ) | S∞ is empty or inaccessible},
P2 = {P(S, C, D, δ) | S∞ is non-empty and accessible}, and
P3 = {P(S, C, D, δ) | S∞ is non-empty, accessible and includes all of S not in Gδ}.

3.3 Reachability Conditions And Causal Relations
For any CDM: 

• if λ is positive and P(S, C, D, δ) ∈  P1, then Gδ is reachable;
• the causal relations among the variables are as depicted in Fig. 8.

The proof is given in the Appendix.

 3.4 CDM Behavior
What do the reachability conditions and causal relations mean?

 3.4.1 Reachability
Paraphrased, the reachability conditions for a CDM say that if the mean distance (µ) of
the accessible points to the goal (Gδ) is finite, and if the drift (λ) is positive, then the
expected length (Lexp) of paths developed from accessible points to the goal by the com-
bined actions of the constructors and destroyers, will also be finite.   

The partition P(S, C, D, δ) makes two facts obvious:
• µ is finite if and only if S∞ is empty or inaccessible; and 
• µ increases as δ increases, that is, as Gδ shrinks.

Less obvious but equally true: µ decreases with certain expansions of C or D. To under-
stand why, note that by definition, dC(y), the distance from any point y in S to Gδ, cannot
increase as C expands and will decrease with certain expansions. In other words,
expanding C tends to cause a migration of solutions from the outer regions of P(S, C, D,
δ) to its inner regions. For instance, consider the problem of finding optimal tours for the
TSP. If the set of construction agents is expanded by the addition of LK, then all the solu-
tions that LK can improve to optimality will move from their positions, however distant
from the goal, into S1, the region that is just one action away from the goal. As another
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illustration, when LK is used alone, all the solutions that it cannot improve to optimality
are in S∞. But when any other construction agent is added, all the solutions that can be
iteratively improved to optimality by the alternate application of LK and this new agent,
are moved out of S∞ into regions closer to the goal. 

Certain expansions of D have a similarly beneficial effect. In particular, additions of
destroyers that make the outermost regions of P(S, C, D, δ) inaccessible will reduce µ.
For instance, if LK is the sole construction operator, then adding destroyers that can rec-
ognize and quickly erase all solutions that LK cannot improve to optimality, would cause
all the accessible, non-optimal solutions to be in S1, and µ to decrease from ∞ to 1.

Thus, finding solutions of arbitrarily high quality in a CDM requires neither strategic plan-
ning nor coordination. Rather, agents acting independently, without central control, can
find these solutions provided only that the skills of the agents, in aggregate, are suffi-
ciently large and diverse to make µ finite and λ positive. µ is decreased by the addition of
construction agents whose operators have new skills and by the addition of destruction
agents that make distant solutions inaccessible. The value of λ depends on the values of
λc and  λd, the drifts of the individual constructors and destroyers. Recall that these indi-
vidual drifts are measures of selection acuity. A constructor has a positive value for λc
when the solutions it selects to work on, are moved closer to the goal more often than
further away. A destroyer has a positive value of  λd when its decisions to erase solutions
are correct more often than wrong. 

Expressions for the dependence of λ on λc and  λd can be found in the Appendix and
visualized with the aid of curves of the sort shown in Fig. 9. This dependence is such that
destruction has little effect on overall drift when the construction agents make relatively
few selection errors (λc > 0.2). But when construction agents are prone to making numer-
ous selection errors, high overall drifts can still be obtained by using destroyers to pre-
vent these errors or repair their effects, the former, by making inaccessible the points that
construction agents shouldn’t select, the latter, by erasing erroneous construction pat-
terns, such as orbits and paths heading in the wrong direction. As a simple illustration, an
LK-based construction agent could be kept from making any selection errors by destroy-
ers that erase all solutions that LK cannot improve to optimality, as soon as these unim-
provable solutions appear.

3.4.2. Solution-Speed
The causal diagram of Fig. 8 indicates that the addition of agents (expansions of C or D)
will improve solution-speed if the completely solid paths from C and D to quality and
speed dominate the paths containing broken arcs (because the solid paths represent
relationships that are known to be monotonically improving while the broken arcs repre-
sent indeterminate relationships).

In an organization with a centralized control system, agents suffer synchronization
delays whenever they must pause in their work to satisfy the precedence constraints that
such systems invariably impose. These synchronization delays can be significant. But
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autonomous agents respect no precedence constraints and therefore, have no synchro-
nization delays. Thus, the exclusive use of autonomous agents causes the Tsyn node to
disappear from the causal diagram, along with all the broken paths that go through it.
Consequently, the conditions under which solution-quality and speed become commen-
surate (both increasing as agents are added) are easier to meet. So much so, that quality
and speed may both improve even as the average amount of computer power per agent
is decreasing. Fig. 4 is a case in point. Recall that a CDM requires each agent to be
assigned its own computer, sized so that an action by the agent takes the same amount
of time as an action by any other agent. Thus, when an agent that has been working con-
tinuously completes n actions, all the other agents that have been working continuously
will also have completed roughly the same number of actions. This situation is simulated
by the “round-robin” scheme of Fig. 4: no agent is allowed to begin its (n+1)-th action
until all the other agents have completed their n-th actions. Of course, since all the
agents must share a single computer, the time to complete each round of actions
increases with the number of agents. But in the case of Fig. 4, the number of “rounds”
needed seems to decrease faster than the rise in time per “round,” so overall speed
increases as new agents are added.

3.4.3. Population Size
The causal diagram (Fig. 8) indicates that, N, the size of the solution-population, has no
affect on solution-quality. The explanation is in 3.4.1. Briefly, solution-quality (δm) is
determined solely by when µ becomes infinite and λ becomes negative, events that
depend only on the structure of P(S, C, D, δ) and the selection acuity of the agents.    

The causal diagram does indicate improvements in solution-speed with increases in N,
but an examination of the details in the Appendix reveals that these improvements are
prominent only in the early stages of path-development and are prone to saturation.

3.4.4. The Mechanics of Expansion
How difficult is it to add an agent to a CDM? The reachability conditions place no restric-
tions on agent-type or granularity. Therefore, as far as solution-quality is concerned,
large agents can be mixed with small agents, general agents with specialists, human
agents with computer-based agents, and autonomous agents with non-autonomous
agents. 
     
If an organization contains non-autonomous agents, then it must provide the supervision
these agents need. And the addition of a new type of non-autonomous agent may neces-
sitate expensive modifications to the supervisory system. However, if each agent comes
with its own complete and self-contained control system, as is the case with autonomous
agents, then no modifications are necessary. Furthermore, the control system can be
customized for the agent’s operator: large, complex operators can be paired with appro-
priately large and complex controls, small operators, with simple controls.

3.4.5. Duality 
In a CDM, constructors and destroyers are similar in their effects on solution-quality and
speed. In other words, adept destruction can compensate for inept construction, and
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vice-versa. The argument is as follows. 

First, the addition of both destroyers and constructors reduces µ, the mean distance to
the goal. Destroyers do this by making distant solutions inaccessible, constructors, by
moving solutions closer to the goal. 
 
Second, the sensitivity of the overall drift, λ, to the constructor drift,  λc, is similar to its
sensitivity to destroyer drift, λd (Fig 9). 

Since  µ and λ are the sole determinants of reachability, it follows that constructors and
destroyers are similar, if not equivalent, in their effects on solution-quality. This is con-
firmed by the near-symmetry of the subgraphs connecting C and D to δm in the causal
diagram (Fig. 8). (The symmetry means that the relations between C, the set of construc-
tors, and δm, the highest quality of solution that is reachable, are similar to the relations
between, D, the set of destroyers, and δm.) Notice also that the subgraphs connecting C
and D to vm are symmetrical indicating that constructors and destroyers have similar, if
not equivalent relationships with solution-speed.

3.5 Design Rules For A-Teams
There are structural differences between A-Team memories and CDMs. Specifically, in
an A-Team memory: a) an agent may use several old solutions, rather than just one, to
produce a new solution, b) the overall drift or rate of diffusion of accessible solutions
towards the goal is likely to vary, rather than be constant, and c) there may be many
fewer computers than agents. We believe these differences to be inconsequential to the
conclusions reached in section 3.4. Indeed, empirical results [7-11, 14-18, 24-27] con-
firm the conclusions on reachability, population-size, and the mechanics of expansion for
A-Teams built exclusively from computer-based agents. Duality, however, remains to be
experimentally confirmed, as does the prediction that humans can as easily and effec-
tively be incorporated into A-Teams as computer-based agents. 

With regard to solution-speed, we believe that CDMs provide optimistic estimates that
will be approached by A-Teams as the numbers of computers are increased till every
agent has its own, dedicated computer. 

All this being so, the conclusions of section 3.4 can be distilled into the following rules: If
memories and autonomous agents are connected into a strongly cyclic network (so there
are no synchronization delays, results can circulate freely and agents can cooperate by
modifying one another’s results), then
• the network tends to be scale-effective; solution-quality tends to increase with the num-

ber of construction agents and particularly, with the diversity of their operators; solu-
tion-speed tends to increase with the number of computers till every agent has its own
computer.

• construction and destruction are dual processes; adept destruction can compensate for
inept construction, and vice-versa. (A corollary is that knowledge can and should be
placed where it fits best. Specifically, knowledge on what to do should be put into con-
struction agents, knowledge on what to undo, into destruction agents).
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• performance is independent of agent granularity and type. Therefore, designers should
feel free to mix large agents with small ones, and mechanical agents with humans.

   
 
4. SUMMARY AND CONCLUDING REMARKS
The function of an A-Team is to combine operators or algorithms, so together they can
tackle bigger and more difficult problems than they could if working alone. A-Teams have
been shown to be useful for problems whose algorithm sets are rich but imperfect, that is,
problems for which many different sorts of algorithms are available but no single algo-
rithm is entirely satisfactory. 

Structurally, an A-Team is a strongly cyclic network of memories and autonomous
agents. Each memory is dedicated to one problem. Collectively, the memories represent
a superproblem or cover of the problem-to-be-solved. Trial-solutions to members of the
superproblem are produced by the agents and stored in the memories to form popula-
tions. Agents cooperate by working on one another’s solutions, and are divided into two
types by the sort of work they do. Specifically, construction agents add solutions to popu-
lations and destruction agents erase solutions from populations. 

Agents are defined broadly enough to include all manner of problem-solving entities,
including computer-based agents and humans. Specifically, an agent is defined to con-
sist of three components: an operator (algorithm), a selector and a scheduler. The opera-
tor creates or modifies trial-solutions, the selector determines which solutions the
operator will work on, and the scheduler determines when this work will be done and with
what resources. In other words, the skills of the agent to create or modify solutions are
resident in its operator, the intelligence with which it applies these skills is resident in its
selector and scheduler. An agent is autonomous if its selector and scheduler are com-
pletely self-contained.

The networks that constitute A-Teams can be visualized as directed hypergraphs, called
data flows. We have found it helpful to decompose the task of designing such networks
(searching the space of all data flows) into six subtasks: design a superproblem, design
memories to store populations of trial-solutions to members of the superproblem, select
a set of construction algorithms, combine these algorithms with selectors and schedulers
to form autonomous construction agents, design a set of autonomous destruction
agents, and form the constructors, destroyers and memories into a strongly cyclic net-
work.     

While none of the structural features of an A-Team is unique, their combination is
unusual, and the behaviors of A-Teams can be counter-intuitive. How are these behav-
iors to be understood? There is reason to believe that the memories of A-Teams and cer-
tain analytical devices, called CDMs (constant drift memories), have the same causal
mechanisms. This being so, CDMs can be used not only to understand A-Teams but also
to help design them. Specifically, CDMs provide reachability conditions (section 3.3) and
causal relations (Fig. 8) by which to improve solution-quality and speed, when such
improvements are needed.
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Besides CDMs, three useful conceptual aids are: P(S, C, D, δ), a partition of all possible
trial-solutions by their accessibility and distance from the goal; HD(S), a partition of all
possible construction patterns by their desirability; and Λ(S), a field of the net rates at
which solutions will drift or diffuse towards the goal. P(S, C, D, δ) provides a view of the
solutions that are accessible for modification by the construction operators, and what the
these operators could do, if they were controlled perfectly; HD(S) provides a view of the
mistakes the construction-operators can make, if they are controlled imperfectly; and
Λ(S) shows how well the constructors and destroyers will actually do when they are
working together.      

The CDM reachability conditions indicate that the task of obtaining solutions of accept-
able quality in any single memory can be broken into two sub-tasks: a) make the outer
regions of P(S, C, D, δ) empty or inaccessible, and b) make λ(s), the net drift at solution
s, positive and as large as possible, for all accessible values of s. Any mix of construction
and destruction agents that accomplishes these sub-tasks will, if the agents are allowed
to work on one another’s trial-solutions, ensure that some of these solutions will eventu-
ally achieve an acceptable level of quality. Moreover, if the agents are autonomous and
free of resource constraints, they can work in parallel all the time, and there is good rea-
son to believe that solution-speed improves if they do. 

In more practical terms, these conclusions can be stated as the following design rules: If
memories and autonomous agents are connected into a strongly cyclic network, then
• the network tends to be scale-effective, so adding agents tends to improve solution-

quality and adding computers tends to improve solution-speed.
• construction and destruction are dual processes, so adept destruction can compensate

for inept construction, and vice-versa.
• performance is independent of agent granularity and type, so large agents can be

mixed with small ones, and mechanical agents with human beings.
Parts of these rules have been confirmed by experiment, at least for optimization prob-
lems. The remainder--construction as the dual of destruction and the possibility of effec-
tive cooperation between humans and autonomous mechanical agents--are predictions
from the analysis of CDMs that are still to be experimentally verified.

The rules say nothing about two important steps in the design of an A-Team: how is the
superproblem to be selected? and, what scheduling strategies should the agents
employ? So far, these steps have been performed by trial-and-error. Models other than
CDMs will be required to develop more systematic procedures.    
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Fig. 1: Four data-flows for the traveling salesman problem. D1-D4 are destruction
agents. The other agents (LK, OR, CLK, etc.) are construction agents built from
the algorithms listed in Fig. 2.
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Lin-Kernighan, a long and powerful heuristic 
for the TSP [12] 

a shorter and less powerful version of LK [14]

Or-Opt, a moderately complicated, moderately powerful

Arbitrary Insertion, a very short and simple heuristic [14]

the Held-Karp algorithm modified to convert tours into 

a deconstructor that produces a partial tour from the
common edges of two complete tours [14]

a mixing heuristic that combines two tours to get one [14]

a mixing heuristic that combines a tour with a 1-tree
to give a new tour [14].

Fig. 2: A sample of algorithms for the traveling salesman problem.
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Fig. 3: Results from applying the data flows of Figure 1 to four TSP problems. The results
are averages over 15 runs. Each run was terminated when improvements in the tours
ceased. All the agents of each data flow were made to share a single computer (a DEC
5000).

DATA 
FLOW 
(See 
Fig. 1 
for 
details)

PERFORMANCE

∆ : the average difference in length between the best tour that was found 
in each of 15 runs and the optimum tour.

Tδm: the average computation time per run with all the agents sharing 
one computer (a DEC 5000)

Krolak 24
100 cities [21]

LK 318
318 cities [14]

PCB 442
442 cities [22]

ATT 532
532 cities [23]

∆ (%) Tδm 
(sec)

∆ (%) Tδm 
(hrs)

∆ (%) Tδm 
(hrs)

∆ (%) Tδm 
(hrs)

(a) 0 35 1.27 2.9 1.20 4.2 0.87 7.5

(b) 0 39 1.13 2.4 0.89 3 0.47 6.8

(c) 0 39 0.06 1 0.26 4.8 0.40 14

(d) 0 13 0 1.5 0.01 3.5 0.06 13
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Fig. 4: Results from the application of six A-Teams to the ATT 532 traveling salesman
problem. Each team was run on a single computer. The teams use the same node set
(that of Fig. 1 (d)) but different sets of construction agents, as indicated below:

1: MI
2: MI, Dec, AI
3: MI, Dec, AI, HK, TM
4. MI, Dec, AI, HK, TM, CLK
5: MI, Dec, AI, HK, TM, CLK, OR
6: MI, Dec, AI, HK, TM, CLK, OR, LK

Notice that he larger teams are faster and produce better solutions than the smaller
ones. Though not shown in the figure, the teams also produce better solutions than the
agents from which they are composed [14]. 
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Fig. 5: Plots of speed vs. number of computers for problem ATT532 and the
data flow of Fig. 1 (d). The average, maximum and minimum speeds were
for 15 runs.
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Fig. 6: A Markov chain. Nodes represent solutions states, arcs represent transition prob-
abilities. Consider a trial solution in state Sn. The next agent to work on this solution has
a probability p of converting the solution to a solution in Sn-1, a probability q of converting
it to state Sn+1 and a probability r of leaving its state unchanged

Gδ S1 S2 S3 ... SK 
p p p p p

q q q q

1 r r r r +q
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Fig 7: P(S, C, D, δ), the space of solutions partitioned into regions so that all the solutions
in Sn are n-constructive operations from the goal space, Gδ, and all the solutions in the
hatched region have been made inaccessible by destroyers.
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An orbit
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Fig. 8: Causal relations of a CDM. Each solid arc denotes a monotonically-increasing

relationship. For instance the solid arc between N and  means that  increases

monotonically with N.
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Fig. 9: Iso-drift curves for one set of values of qd, rd and rc. Notice how λ, the overall drift
depends on λc, the construction drift, and λd, the destruction drift.
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APPENDIX
In this appendix we explore CDMs in greater detail. 

Definitions:
Let:
C     be the set of construction agents that acts on a CDM
θC   be the set of algorithms contained in C. 
D     be the set of destruction agents that acts on a CDM 
S     be the space (set) of all possible solutions, good and bad, that can be stored in a
       CDM.
δ      be an indicator of solution-quality such that δ increases as solution-quality
        increases.
Gδ   be the subset of S that contains all the solutions of quality δ and better.
N     be the size of the initial population of solutions stored in a CDM. (In real problems, N
       is always small in comparison to the size of S.) 
Tδ   be the expected amount of time for the population of solutions to evolve at least one
       solution of quality δ or better. Gδ is said to be reachable if Tδ is finite.
δm be the greatest value of δ such that Gδ is reachable.
vm = 1/Tδm be the expected speed with which Gδm is reached. 
d(y) be the distance of y from Gδ, where y is any solution in S, and d(y) is the minimum

number of construction-operations needed to convert y into a member of Gδ.
Sn be the subset of S containing all the solutions that are at a distance of n from Gδ, as in

Fig. 6.
H   be the power set of S (the family of all the subsets of S).    
HD be the subset of H that are recognized and erased y the destroyers in D.
p, q and r be the constant probabilities that the latest edge in any developing path will be

a progressive, regressive or neutral edge, respectively; where a progressive edge
moves the path’s end closer to Gδ, a regressive edge moves it further away and a
neutral edge leaves it at the same distance.

pc, qc and rc be the values of p,q and r when the destroyers are disabled.
pd, qd and rd be the conditional probabilities that a regressive edge, if considered for

destruction, will be destroyed; that a progressive edge, if considered for destruction,
will be destroyed; and that a neutral edge, if considered for destruction, will be
destroyed. 

λ = p-q be the overall drift of the CDM; λc = pc -qc, be the drift of the constructors; and λd
= pd - qd be the drift of the destroyers.   

β be the amount of time required for each agent to take one action.
Tsyn and Tcom be the expected synchronization and communication delays experienced

by agents in developing a complete path (one that reaches Gδm).

Calculating the overall drift λ of the system.
Consider a single path through S as it is developed by the constructors and destroyers. 
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We assume that in each step a constructor which will extend the path is chosen with 
probability x and a destroyer which may shorten the path is chosen with probability 1-x. λ 
can then be computed from x, pc, qc, rc, pd, qd and rd.

Let:
e denote the edge most recently added to the path.
kpro, kreg, kneu denote the probabilities that e is destroyed some time in the future 

given that it is a progressive, regressive or neutral edge respectively.

The most recently added edge e can be destroyed in two ways. Either it is destroyed 
before any other edge is added to the path, or it is destroyed after some other edge has 
been added. In the latter case the new edge has to be destroyed before e can be consid-
ered for destruction again. If we assume the A-team will run for a very large number of 
iterations, then, once the new edge is destroyed, the system will be in exactly the same 
state as when e was first added. Hence we get the following recursive formulae for kpro, 

kreg and kneu.

The overall drift of the A-team then becomes

Fig. 9 shows λ as a function of pc, qc, rc, pd, qd and rd for optimal x.
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Reachability of Gδ 

If Gδ is small or the set of construction agents is weak, not all solutions in S are at a finite 

distance from Gδ. Let S∞ be this set of points for which there is no path to Gδ. Clearly we 

cannot guarantee reaching Gδ unless the destroyers make S∞ inaccessible.

If: 
• λ is positive, and 
• if the outermost regions of S are either empty or made inaccessible by the destroy-

ers, 
 that is, if there is a finite K such that for k > K, Sk = ∅  or Sk ⊆  HD

 then:
• Gδ is reachable.

proof:
Let j be the expected number of steps required to get one step closer to the goal. 
Then   

                                (0)

so when λ > 0 we get a finite j. Starting with a solution in Sn the expected number of steps 

required to get to Gδ is . let E[n] denote the expected distance to Gδ from the randomly 

seeded solution. Since all solutions not made inaccessible by the destroyers are at dis-
tance at most K we have E[n] < ∞. Hence then expected time to goal from the randomly 

seeded solution is . 

Monotonic relationships. (Fig. 8)
1. Solution Speed vm.

Let:
U be the subset of S that is not in HD. 

Rn be the residue of Sn, that is, the fraction of points in U that are at distances of n or 

greater from Gδ. In other words:

 If:
• the destruction agents make the portion of S that is outside U completely inaccessi-

ble, preventing paths in U from ever leaving it;

j 1 p 0( ) r j( ) q 2j( )+ + += j⇒ 1
p q–
--------- 1

λ
--= =

n
λ
---

E n[ ]
λ

----------- ∞<
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• N starting points are randomly chosen from U, all points in U being equally likely; 
• the best (closest to Gδ) of these points is identified and a path from it to Gδ is devel-

oped by the sequential application of construction agents and destroyers; 

Then:

 if and only if (1)

R1, R2, R3,... decrease monotonically as the variety of 

constructive skills in increases, that is, as the number
of agents in C increases (2)

 (3)

(4)

where nmin is the expected distance of the best starting point from Gδ, and Lexp is the 

expected length of the path from this point to Gδ.

Proof:
Result (1) is obvious from the definition of Rn. Result (2) follows directly from the defini-

tion of Rn and the fact that Sn decreases as the skills in θC increases. 

To see (3) note that the probability that the best of N starting points is in distance n from 
the goal equals the probability that all points are at least in distance n and not all points 
are at least in distance n+1 so

(4) follows immediately from (3) and (0)

Now when N increases each term in the sum (3) decreases so the expected speed 

 with which we reach Gδ increases.

Likewise by (2),(4) an increase in θC or λ also causes the vm to increase.

2. Solution-quality, δm.

Rn 0= Sn U∩ Sn 1+ U∩ … ∅= = =

nmin Rn
N

n 1=

∞

∑=

Lexp
1
λ
---nmin=

nmin n Rn
N

Rn 1+
N

–( )
n 0=

∞

∑ nRn
N

n 1=

∞

∑ n 1–( )Rn
N

n 1=

∞

∑– Rn
N

n 1=

∞

∑= = =

vm

Lexp

nmin
-------------=
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S∞ depends on δ and θC. Specifically S∞ fills as δ increases, and empties as θC expands. 

Suppose that an improvement of solution quality from δ to δ-∆δ causes S∞ to fill by the 

amount ∆S∞. Then sufficient conditions for achieving this improvement are: an expansion 

of θC to empty part of ∆S∞, and an expansion of HD to contain the rest of ∆S∞, all while 

maintaining λ > 0. 

Age Based Restarting.
For small λ, the expected path length to the goal Lexp becomes unmanageably large. 

Faster convergence to the goal can then often be achieved by terminating all paths and 
restarting with a new random population of solutions. The decision to terminate a path 
should be made on the basis of information actually available. One piece of information 
that can readily be used is the number of operations performed since last restart.

Let  be the distribution for the best member in the set of initial solu-

tions, that is , and let      

Then  is the distribution of distance to goal of the solution after it has been 
worked on for N iterations. If after N iterations we haven’t reached the goal state the con-
ditional distribution of the distance to the goal is given by

  

and we may say that the solution has age N.

The average remaining number of iterations to get a solution of age N into  is then 

 For certain values of , ,  and , even for some  this remaining 

number of iterations will for some N exceed the expected time to reach the goal from the 

initial solution. For these values of , ,  and  it is beneficial to use age based 
restarting. Suppose we always reseed the memory after N iterations. Then the expected 

number of iterations to reach  is
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∞
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(*)

As a numerical example take , ,  and assume that the best newly 
created solution will always start in S10


